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Serum lipid levels, which are influenced by both genetic and environmental factors, are key determinants of cardiometabolic health and are
influenced by both genetic and environmental factors. Improving our understanding of their underlying biological mechanisms can have
important public health and therapeutic implications. Although psychosocial factors, including depression, anxiety, and perceived social
support, are associated with serum lipid levels, it is unknown if they modify the effect of genetic loci that influence lipids. We conducted a
genome-wide gene-by-psychosocial factor interaction (G×Psy) study in up to 133,157 individuals to evaluate if G×Psy influences serum lipid
levels. We conducted a two-stage meta-analysis of G×Psy using both a one-degree of freedom (1df) interaction test and a joint 2df test of the
main and interaction effects. In Stage 1, we performed G×Psy analyses on up to 77,413 individuals and promising associations (P<10−5) were
evaluated in up to 55,744 independent samples in Stage 2. Significant findings (P< 5× 10−8) were identified based on meta-analyses of the
two stages. There were 10,230 variants from 120 loci significantly associated with serum lipids. We identified novel associations for variants in
four loci using the 1df test of interaction, and five additional loci using the 2df joint test that were independent of known lipid loci. Of these 9
loci, 7 could not have been detected without modeling the interaction as there was no evidence of association in a standard GWAS model.
The genetic diversity of included samples was key in identifying these novel loci: four of the lead variants displayed very low frequency in
European ancestry populations. Functional annotation highlighted promising loci for further experimental follow-up, particularly rs73597733
(MACROD2), rs59808825 (GRAMD1B), and rs11702544 (RRP1B). Notably, one of the genes in identified loci (RRP1B) was found to be a target of
the approved drug Atenolol suggesting potential for drug repurposing. Overall, our findings suggest that taking interaction between genetic
variants and psychosocial factors into account and including genetically diverse populations can lead to novel discoveries for serum lipids.
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INTRODUCTION
The concentrations of key serum lipids, such as high-density
lipoprotein cholesterol (HDLC), low-density lipoprotein cholesterol
(LDLC), and triglycerides (TG) are routinely assessed to determine
an individual’s cardiometabolic clinical risk profile, and to guide
drug therapy (e.g., statins) aiming to reduce the morbidity and
mortality associated with diseases such as coronary artery disease,
stroke, and type 2 diabetes. Serum lipid levels are known to be
influenced both by lifestyle, including diet, physical activity,
smoking, and alcohol consumption, as well as genetic factors, with
over 700 lipids loci identified using genome-wide association
studies (GWAS) [1–3]. Although the importance of both genetic
and lifestyle factors is well-established, the interplay between
these two factors on serum lipid levels is less well understood. The
Gene-Lifestyle Interactions Working Group, under the aegis of the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) Consortium [4], has developed a framework for studying
gene-lifestyle interactions for cardiometabolic traits in large, multi-
ancestry meta-analyses [5]. This strategy has facilitated the
discovery of novel lipids loci in studies accounting for interactions
with smoking [6], physical activity [7], alcohol consumption [8],
educational attainment [9], and sleep duration [10], suggesting
that these lifestyle factors may indeed modulate genetic effects on
serum lipids. The loci identified in these efforts could potentially
explain how lifestyle exposures can contribute to disturbances in
lipid levels.
Psychosocial factors, especially depression, contribute to the

pathogenesis of cardiovascular diseases (e.g., myocardial infarc-
tion) and increased mortality in patients with coronary heart
disease [11–13], and Mendelian Randomization (MR) analysis
suggests that this association is causal [14]. Depression and
depressive symptoms are associated with serum lipid concentra-
tions [13, 15], the plasma lipidome [16, 17], and lipid metabolism,
with distinct metabolic signatures associated with various
symptom dimensions [18]. APOE alleles associated with serum
lipids have also been associated with anxiety and depression
[19, 20]. Some evidence from MR analyses suggests that
depression increases TG and decreases HDLC [21]. Serum lipids
may also mediate the association between depression and
cardiovascular disease. The association between depression and
coronary artery disease was attenuated when an MR analysis was
adjusted for serum lipids [14]. Similarly, in one study, nearly a third
of the association of depression with arterial stiffness, a key
intermediary of major cardiovascular events, was found to be
mediated by metabolic syndrome, particularly hypertriglyceride-
mia among men [22]. Low social support has been associated with
high cholesterol in a nationally representative US nonelderly
population [23] and with high cholesterol, LDL, and non-HDL
cholesterol among type 2 diabetics and their families [24]. Both
anxiety and depression have been associated with elevated
triglycerides [25]. Proposed mechanisms through which psycho-
social factors and serum lipids may influence each other include
high dietary intake of saturated fat and cholesterol, gut dysbiosis,
the hypothalamic-pituitary-adrenal axis, and neuroinflammation
[26–28]. Both direct and indirect mechanisms, such as psychoso-
cial factor-associated changes in lifestyle or medication use, are
plausible. This may confound interaction effects. Importantly,
there is evidence for a genetic contribution to some of these
psychosocial factors, particularly depression [29–33].
In this study, we assess how incorporating interaction between

genetic variants and psychosocial factors (depressive symptoms,
anxiety symptoms, and low social support) helps identify lipid loci
missed by standard marginal genetic effect GWAS. To maximize
the transferability of our results and to address known gaps in the
field, we prioritized the inclusion of diverse population groups, as
ancestry can influence both genetic (e.g. frequency of variants,
linkage disequilibrium around associated signals) and psychoso-
cial factors (e.g. presence of stigma, availability of healthcare

access). We conducted multi-ancestry meta-analyses of genome-
wide variant × psychosocial factor interaction (G×Psy) studies on
serum lipids in up to 133,157 individuals.

RESULTS
In this study of psychosocial factors and serum lipids, we meta-
analyzed data on up to 133,157 individuals from 50 genome-wide
interaction studies using a two-stage study design (Fig. 1; Study
Details Supplementary Tables S1-2; Supplementary Note). Sample
sizes and descriptive statistics of the studies participating in Stages
1 and 2 analyses are summarized in Supplementary Table 2. Study
participants included European ancestry (EUR; 67.5%; n= 89,939),
African ancestry (AFR; 14.4%; n= 19,133), Hispanic/Latino (HISP;
12.0%; n= 15,949), Asian ancestry (ASN; 3.5%; n= 4672), and
Brazilian individuals (BRZ; 2.6%; n= 3464; see Methods for further
details regarding selection of groups and population descriptors).
All psychosocial factors were coded as binary variables. On
average, 17.5% of Stage 1 participants were reported to have
elevated depressive symptoms (DEPR) and 24.2% had elevated
anxiety symptoms [ANXT], based on standard cutpoints,
with a similar distribution among Stage 2 participants (15.8%
[DEPR] and 24.3% [ANXT]). Low social support (SOCS) was defined as
the lowest quartile of the distribution (Methods). Fewer studies had
data on SOCS (n= 23) and ANXT (n= 21) than DEPR (n= 50;
harmonization of psychosocial factors is described in Supplemen-
tary Table 3).
In Stage 1 population-specific and cross-population meta-

analyses (CPMA), we identified 15,774 variants that met our
selection criteria of P < 10−5 for either the 1 degree of freedom
interaction test (1df) or the 2df joint test of the main and
interaction effects (2df; Fig. 1). These variants were carried forward
for further analysis in Stage 2 samples. In the meta-analysis of
stages 1 and 2, there were 10,230 variants from 120 loci that were
significantly associated in at least one model using either
statistical test (P1df or P2df < 5 × 10−8; Supplementary Table 4).
We found seven variants in four loci that were associated with
serum lipids with a genome-wide significant p-value for the 1df
test of interaction (Table 1). For instance, among those reporting
low social support, the A allele of rs11949029 was associated with
a much lower LDLC concentration than among those who did not
(βInteraction=−19.2, SE 3.5 mg/dL, P1df= 4.1 × 10−8; Fig. 2A). Thus,
among those with low social support, this allele was associated
with 12.6 mg/dL lower LDLC, but 6.6 mg/dL higher LDLC among
those not reporting low social support. In meta-analyses that did
not include a multiplicative term (i.e. a standard GWAS model;
available only for stage 1 studies), no association of the variant
with LDLC was observed (P= 0.69), even after adjustment for
SOCS (P= 0.75).
A significant association using the 2df joint test of the main

effect and interaction can represent the main effect of a variant, its
interaction with the exposure, or both. To exclude associations
driven primarily by the main effect, we considered as previously
unidentified only those variants with P2df < 5 × 10−8 that were
independent of known loci (defined as ± 500 kb from the 95%
credible sets reported in Graham et al [1] or variants reported in
other major publications [34–39]). There were 14 variants and 8
loci that were significantly associated with serum lipids using the
2df test and independent from known loci (Table 2). Six of these
loci displayed nominal significance for an interaction effect
(P1df < 0.05). This includes three of the four loci that were
genome-wide significant using the 1df test, with the remaining
two near this threshold. Among these is rs59808825 (GRAMD1B
[nearest gene]), for which the main effect of the C allele on LDLC
was positive (β= 5.0, SE= 2.1 mg/dL) but an inverse interaction
effect with ANXT (βInteraction=−22.9, SE= 4.2 mg/dL), so that the
total effect of the C allele among those reporting anxiety
symptoms was negative (P2df= 8.8 × 10−9; Fig. 2B). In the main

A.R. Bentley et al.

2

Translational Psychiatry          (2025) 15:207 



effect only meta-analysis, no association between rs59808825 and
LDLC was observed (P= 0.13). Of the 8 loci identified through the
2df test, two associations had P1df ≥ 0.1, suggesting that the 2df
test may reflect novel main effect associations (though we cannot
exclude that G×Psy interactions may contribute to these findings
but are undetectable at the current sample sizes). For instance, the
joint 2df test was significant for rs34636484 (CD96) × SOCS on
LDLC (P2df= 3.1E-8), while the 1df test was not (P1df= 0.27;
Supplementary Figure 4C). rs11702544 (RRP1B) × DEPR on HDLC
was also plausibly driven by a main effect (Supplementary Figure
4H). Importantly, both of these potential main effect associations
were identified in the CPMA results, highlighting the importance
of including diverse populations for novel discoveries.
The inclusion of underrepresented population groups in this

study also provided an advantage in identifying novel interaction
associations, with associations observed at four lead loci at which
no data from EUR studies were available because of a minor allele
frequency < 0.01. For instance, an interaction of rs11949029 (CTC-
207P7.1) and SOCS on LDLC was statistically significant for both
the 1df test of interaction (Fig. 2A) and the 2df test of interaction
and main effect (Supplementary Figure 4D) and was driven by
data from the AFR and HISP populations. In this case, there was
consistency of both the main and interaction associations across
backgrounds. Such consistency was common among these lead
findings; however, there were a few associations that were driven
predominantly by one population, despite the availability of data
for other groups. In the interaction between rs61248562 (UNC13 C)
and DEPR on HDLC, the observed association among EUR reached
statistical significance (β= 0.14; SE= 0.025; P1df= 5.2 × 10−9;
Supplementary Figure 3C), yet this association was not seen in
other populations despite a comparable number of samples with
available data (EUR 15,052 vs. AFR 13,069 and HISP 15,977) and
larger effect allele frequencies (EUR 0.02 vs. AFR 0.16 and HISP
0.07). As expected, the CPMA for this association was greatly

reduced in statistical significance (P1df= 1.5 × 10−3). Similarly, the
rs73597733 (MACROD2) × DEPR interaction on HDLC in AFR
(P1df= 8.4 × 10−9) was not seen in HISP (P1df= 0.43; Supplemen-
tary Figure 3D).
Of the 10 lead associations in 9 loci that reached genome-wide

statistical significance in the meta-analyses of Stages 1 and 2 (for
one locus there were significant associations in two population
groups), 4 were significant in both stages (P < 0.05) while 6 were
only significant in stage 1 (Supplementary Table 5). There were 16
variants in 9 loci that were considered as the novel associated
variant set for annotation and follow-up: those associated with
either P1df < 5 × 10−8 (seven variants in four loci) or P2df < 5 × 10−8

and independent of known lipids loci (14 variants in 8 loci; five
variants in three loci overlapping in 1df and 2df findings). The
novel associated variants were characterized using FUMA. As
expected, most of the variants were annotated to be intronic
(n= 10) or intergenic (n= 3; Supplementary Table 6). While a
single signal was detected for most of of the described loci in
Tables 1 and 2, the associated region on chromosome 21 (CPMA-
HDL-DEPR) had three independent genomic signals at variants
rs11702544, rs6518309, and rs9977076. Each of these variants is an
eQTL for three genes in a variety of tissues, including whole blood:
PDXK, RRP1B, and HSF2BP [40] (Supplementary Table 7).
We also evaluated 257 variants in LD with our lead variants

(R2 ≥ 0.6 in 1000 Genomes, Phase 3 ALL; Supplementary Table 8).
Evaluation of these variants in RegulomeDB identified 75 variants
(29.2%) with functional prediction scores ≤ 3, indicating moderate
to high potential for regulatory effects. Variants within the locus
on chromosome 21 characterized by rs11702544, rs6518309, and
rs9977076 (RRP1B) had the lowest RegulomeDB scores in this set:
1a (n= 1) and 1b (n= 6), which indicates that they are likely to
affect transcription factor binding to the gene targets, in this case
HSF2BP, RRP1B, or LINC00313. These variants were also tested in
our data and nearly reached statistical significance for the 2df

Fig. 1 Study design. African ancestry (AFR), Asian ancestry (ASN), Brazilian (BRZ), European ancestry (EUR), Hispanic (HISP), cross-population meta-
analysis (CPMA)1 Brazilian samples were only available in Stage 1, so a Stage 1+ 2 meta-analysis of BRZ was not possible. These samples are include in
the cross-population Stage 1+ 2 meta-analysis; 2 As the 2df results joinly measure the variant's main and interaction effects, our main results only
include those 2df findings that are also more than 500 kb from known lipids loci.

A.R. Bentley et al.

3

Translational Psychiatry          (2025) 15:207 



interaction with DEPR on HDLC (P2df range 2.4 × 10−6 to
4.2 × 10−7), with similar effect sizes in all.
Next, we assessed the predicted chromatin state around our 16

novel associated variants using the minimum 15-core chromatin
state models calculated across 127 tissue/cell types [41]. We
identified histone chromatin markers in regions associated with
strong transcription (n= 6; Supplementary Table 6). In the 257
variants in LD with our lead variants, there were histone chromatin
markers consistent with active (n= 13) or flanking active (n= 21)
transcription start sites, transcription at the 3′ or 5′ end (n= 7), or
in regions associated with strong transcription (n= 50) (Supple-
mentary Table 8). For most of our loci, significant chromatin
interactions were detected between regions containing our
variants and regions overlapping gene promoters (Supplementary
Table 9); for instance, between the locus on chromosome 21 (lead
variant rs11702544) and regions overlapping the promoter of
multiple genes, including PDXK, RR1BP, and HSF2BP.
Finally, to explore the potential clinical relevance of our

findings, we performed an integrated druggability analysis of
identified genes, as previously described [42]. We queried high
and medium priority candidate gene targets (identified by FUMA
and OpenTargets) using the Drug-Gene Interaction database
(DGIdb), which revealed 2 genes annotated as clinically actionable
or members of the druggable genome (Supplementary Table 10).
Several of these gene targets are implicated in ion transport
(NKAIN3), vitamin metabolism (PDXK), and immune or viral
response (CD96, RRP1B) pathways. We identified 1 gene, RRP1B,
with a reported drug interaction. RRP1B was shown to interact
with an FDA-approved drug, Atenolol, that has been evaluated in
late-stage clinical trials using DrugBank and ClinicalTrials.gov
databases (Supplementary Table 10). Atenolol is a well-established
anti-hypertensive drug used to treat high blood pressure, heart
failure, or angina in some patients. Together these results suggest
a potential drug repurposing opportunity to intervene in a
common pathway implicated in cardiometabolic disorders.

DISCUSSION
In this study, we investigated genome-wide variant-by-
psychosocial factor interactions (G×Psy) in large, multi-ancestry
meta-analyses of serum lipids. We identified nine novel lipid loci
using this strategy, including four loci based on the 1df test of
interaction and eight loci based on the 2df joint test of interaction
and main effects (with three loci significantly associated using
both strategies). Importantly, most of these associations could not
have been identified in a standard GWAS that does not take
interaction into account. Our inclusion of relatively large sample
sizes representing diverse ancestries facilitated novel findings.
Functional annotation highlights the promise of some of these
identified loci for understanding the potential influence of
psychosocial factors on serum lipids.
Both the 1df test of interaction and the 2df test of main effect

and interaction identified statistically significant results for
rs73597733 (intronic to MACROD2) × DEPR on HDLC, in which
the main effect of the variant was near zero, with a large positive
association among those with depressive symptoms. Intriguingly,
an interaction between an intronic variant in MACROD2 (not in LD
with rs73597733) was previously found between thiazide diuretic
use and HDLC [43]. Other intronic variants in MACROD2 have been
associated with the ceramides and sphingomyelins, suggesting a
potential role in lipids pathways [44]. There is a large body of
evidence for associations of intronic variants in MACROD2 with
complex psychosocial, neurological, and psychiatric traits, includ-
ing: attention deficit hyperactivity disorder [45, 46], morningness
(being a morning person) [47], risk-taking behavior [48], eating
disorders [49], autism [50–52], and bipolar disorder [52, 53]. Infants
with atypical neonatal neurobehavioral scores had differentially
methylated CpG sites within the MACROD2 gene [54]. Macrod2Ta
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knockout mouse models displayed hyperactivity that became
more pronounced with age [55]. Intronic variants in MACROD2
have also been associated with measures of cognitive ability
[56–58] and a variety of brain measurements [59–63]. Given the
significant evidence for the involvement of this gene in a range of
complex psychological and psychiatric phenotypes and a previous
finding for an interactive effect on HDLC, our reported finding of
an interaction between an intronic variant in MACROD2 and DEPR
on HDLC seems of particular interest and worthy of further
investigation.
An association between rs59808825 (110 kb upstream of

GRAMD1B) and ANXT on LDLC was P < 5 × 10−8 for both the 2df
joint test of main effect and interaction and the 1df test of
interaction, and no association was observed for this variant in an
analysis without interaction modeled. GRAMD1B was identified as
a locus for schizophrenia in multiple studies [64–69], a condition
that has been linked with anxiety [70, 71]. The protein encoded by
GRAMD1B, Gramd1b or Aster-B, has a role in cholesterol home-
ostasis, transporting accessible cholesterol from the plasma
membrane to the endoplasmic reticulum [72, 73]. It was recently
discovered that Aster proteins including Aster-B are key players in
dietary lipid absorption in mice: the systemic absorption of dietary
cholesterol was reduced by treatment with a small-molecule Aster
inhibitor and mice without intestinal Aster proteins were
protected from diet-induced hypercholesterolemia [74]. While
further investigation is needed to propose a biological mechanism
that might underlie the observed interaction between this variant
and ANXT on LDLC, the known associations between nearby
GRAMD1B with both complex psychiatric and psychological
phenotypes and absorption of dietary lipid are intriguing.
We identified a 2df interaction of DEPR with variants on

chromosome 21 (lead variant rs11702544 [RRP1B]) that appeared
to represent a novel main effect of a common variant on HDLC.
Interestingly, there was some evidence for an association of
rs11702544 with HDLC using a standard GWAS model in the
recent Global Lipids Genetics Consortium results (P= 2.2E-6) [1],
consistent with the contribution of a main effect of this variant
contributing to the 2df joint test of main effect and interaction.
FUMA annotation identified 3 independent genomic loci in this
region, each of which is an eQTL for PDXK, RRP1B, and HSF2BP.
Each of the genes has been previously associated with risk of
diseases for which serum lipids concentration is a key risk factor:
PDXK and RRP1B with coronary artery disease [75] and HSF2BP
with cardiovascular disease [76]. PDXK encodes a protein essential

for the generation of the active form of Vitamin B6. PDXK mRNA
levels in adipose tissue were strongly associated with adipogenic,
lipid-droplet-related, and lipogenic genes, and administration of
the active form of Vitamin B6 led to increased adipogenic markers
in adipocyte precursor cells [77]. While the role for variants in this
locus in HDLC concentration is not clear, they have been shown to
affect PDXK expression, which could affect HDLC concentration
through the expression of genes involved in lipogenesis. Our
druggability analysis also identified PDXK as part of the druggable
genome. RRP1B is a target gene that interacts with the beta-
blocker drug Atenolol, which is sometimes used to treat
hypertension and chronic angina.
We also identified an association using the 2df test rs34636484

(CD96) × SOCS on LDLC. The main effect appeared to contribute
more to the association than the interaction at this locus, as the
association was also apparent in a standard GWAS model in our
data and the 1df test of interaction was not significant (P= 0.27).
Based on these results, the association at rs34636484 appears to
represent a novel main effect locus; however, this result should be
interpreted with caution. The association of rs34636484 and LDLC
was recently evaluated in the Global Lipids Genetics Consortium
with a much larger sample size (n= 1,393,230 at this locus) and
was not statistically significant (P= 0.029) [1].
Some of our significant associations were fairly consistent

across studies within the same population group, but with no
compelling evidence of association in other population groups,
despite the availability of data. For instance, rs61248562 (UNC13C)
× DEPR on HDLC was significant only among EUR, and not AFR or
HISP in whom allele frequencies were higher and sample sizes
were comparable. Similarly, an interaction of rs73597733
(MACROD2) × DEPR on HDLC in AFR was not seen in HISP at
similar sample sizes (with a slightly lower allele frequency). It is
unclear why these associations may differ by population group,
but this phenomenon has been reported in previous gene-lifestyle
interaction publications [6, 78, 79]. Differences in gene-lifestyle
interactions across populations may arise from genomic factors,
such as variations in linkage disequilibrium that lead to the
tagging of different variants, as well as from lifestyle factors, such
as differences in the measurement of or the experience of the
psychosocial factor or in the behaviors or conditions associated
with that psychosocial factor.
Psychosocial factors are complex traits that are associated with

a variety of other factors, including some lifestyle exposures that
we have previously evaluated using the same genome-wide

Fig. 2 Forest Plots of Key Findings. Forest plot showing all studies contributing data on an interaction of A. rs11949029 × social support
(SOCS) on LDLC using a 1df test of the interaction term (this interaction was also statistically significant using the 2df joint test of the main
effect and interaction, shown in Supplementary Figure 4D); and B. rs59808825 × anxiety symptoms (ANXT) on LDLC. Box size represents the
precision of the estimate, with larger boxes shown for results with lower variance. Abbreviations: African ancestry (AFR), Brazilian (BRZ), Effect
Allele Frequency (EAF), European Ancestry (EUR), Hispanic (HISP), cross-population meta-analysis (CPMA).

A.R. Bentley et al.

5

Translational Psychiatry          (2025) 15:207 



interaction study approach. Overlap in the interaction results for
this study and previous analyses for one of these associated
lifestyle factors could be very informative for disentangling the
mechanism underlying these statistical interactions. We com-
pared our statistically significant findings with those that we have
previously reported for genome-wide interactions of smoking [6],
alcohol intake [8], physical activity [7], educational attainment [9],
and sleep duration [10] on serum lipids; no overlap among the
results was identified. If one of our loci were found to be
associated with a psychosocial factor, that could provide
additional context into the relationship between psychosocial
factors and serum lipids. To explore this possibility, we evaluated
recent GWAS for these traits [29, 33, 80–84], but did not identify
any overlap with our loci of interest.
Some of the strengths of this study include the relatively large

sample sizes for a study of psychosocial factors, with analyses
including up to 133,157 individuals. Also notable was the
particular attention to the inclusion of non-European ancestry
individuals (reaching over 19,000 AFR and nearly 16,000 HISP,
although the number of ASN and BRZ was smaller, <5000 per
population). The sample sizes for the non-European ancestry
groups, however, were relatively small in size, particularly in terms
of the statiscial power needed for a gene-environment interaction
study. We used a two-stage design with both a 1df test of
interaction and a 2df joint test of main effect and interaction, an
approach that is well-established for the study of gene-lifestyle
interactions [6–10, 78, 79, 85, 86]. Our study also has some
limitations. First, we had a smaller sample size for Stage 2,
particularly for certain populations; as a result, the power for our
two-stage approach was reduced. Second, despite our best efforts
to harmonize psychosocial factors, the use of different instru-
ments to measure these outcomes may have resulted in
heterogeneity among studies, which would have reduced the
power to identify lipids loci. In addition, these phenotypes
themselves are quite complex and heterogeneous, and that
complexity is not reflected in our categorization. Moreover,
although our sample size is large for a study of lipids and
psychosocial factors, it is not large enough to enable correction
for multiple testing with adequate statistical power, and so its
results need further validation. We did not have enough statistical
power to usefully evaluate differences in these interactions by
sex, which may prove to be of interest, as there are differences in
the pathophysiology of cardiovascular disease by sex, and women
experience a greater burden of depression [87]. Additionally, the
association between TG and depressive symptoms has been
shown to differ by sex, with men showing a stronger association
[88], and low social support had a greater adverse effect on
cardiovascular disease prevention among men than women [89].
Evaluating these interactions would require much greater sample
sizes than were available in the current study. Although we have
organized our contributing studies into population groups, there
is likely to be meaningful heterogeneity within those groups in
terms of relevant environmental background. For instance, the
East Asian population group included individuals living in China
as well as individuals with ancestry in China living in the United
States. Information regarding neuropsychiatric medication use
was not collected, though it is possible that use of these
medications might directly or indirectly influence serum lipid
levels [90]. In silico functional annotation and druggability
analyses identified loci and candidate drug-gene interactions
that are of interest for further follow-up; future experimental
studies are needed to validate these findings.
In summary, we identified novel lipids loci in this large, multi-

ancestry meta-analyses of genome-wide interaction studies of
variants and psychosocial factors. Understanding these loci may
help to disentangle the complex interplay between factors such
as anxiety, depression, and low social support on serum lipids, a
key biomarker of cardiometabolic risk.
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MATERIALS AND METHODS
Study design
We adopted a two-stage study design (Fig. 1) that was implemented
according to the Gene-Lifestyle Interactions Working Group of the CHARGE
consortium [5]. We included men and women aged between 18 to 80
years of age with available data on lipids and psychosocial factors, and
with genotype data imputed to the 1000 Genomes reference panel.
Stage 1 included 77,413 individuals in 31 study/population groups. Each

study conducted genome-wide analyses (GWAS) incorporating a variant-
by-psychosocial factor multiplicative interaction term. Centralized quality
control was carried out, which was followed by a meta-analysis within and
across five population groups: African ancestry (AFR), Asian ancestry (ASN),
Brazilian (BRZ), European ancestry (EUR), and Hispanic (HISP). Variants that
showed suggestive (P < 10−5) associations for either a 1df test of
interaction or a 2df joint test of interaction and main effect were carried
forward for evaluation in Stage 2. Stage 2 analyses included data on 55,744
individuals from 19 studies distributed in 4 population groups. As no BRZ
samples were included in Stage 2, no population-specific Stage 1 + 2 meta-
analysis was undertaken, though the BRZ samples were included in cross-
population meta-analyses (CPMA). Analytical details (Supplementary Table
S1) and descriptive statistics (Supplementary Table S2) of each participat-
ing study for Stages 1 and 2 are provided.

Phenotypes and lifestyle variables studied
Analyses were conducted separately for three lipid parameters: HDLC,
LDLC, and TG. HDLC and TG were directly assayed and natural log-
transformed prior to analysis. LDLC was either directly assayed or derived
using the Friedewald equation: LDLC= TG – HDLC – (TG / 5), if
TG ≤ 400mg/dL [91]. If a sample was drawn from an individual who had
not been fasting for at least 8 h, then neither TG nor derived LDLC values
were used. LDLC values were adjusted for lipid-lowering medication use
(defined as the use of a statin or of any unspecified lipid-lowering
medication after 1994, when statin usage became common). If LDLC was
directly assayed, adjustment for lipid-lowering drugs was performed by
dividing the LDLC value by 0.7. If LDLC was derived using the Friedewald
equation, total cholesterol was first adjusted for lipid-lowering drug use
(total cholesterol/0.8) before calculation of LDLC. No adjustments were
made for any other lipid medication, nor were adjustments made to HDLC
or triglycerides for medication use. For longitudinal studies where multiple
lipid measurements were available, analysts selected the measurement
with the largest sample size for analysis.
The three psychosocial variables (elevated depressive symptoms [DEPR],

low social support [SOCS], and elevated anxiety symptoms [ANXT]) were
measured within each cohort using validated screening questionnaires
and coded as binary (yes/no) variables. A standard cut point was used for
DEPR and ANXT, and SOCS was defined based on the lowest quartile of
perceived social support. Further details regarding the instruments used
within each study are given (Supplementary Table 3). Where multiple
measurements of psychosocial factors were available, we used the
questionnaire administered concomitantly with the measurement of
serum lipids.

Genotyping and imputation
To harmonize data across studies, all studies imputed to 1000 Genomes
data. Details on genotyping and imputation for each of the included
studies are given in Supplementary Table 1. Most studies used Affymetrix
(Santa Clara, CA, USA) or Illumina (San Diego, CA, USA) arrays and imputed
to the cosmopolitan reference panel of the 1000 Genomes Project Phase I
Integrated Release Version 3 Haplotypes. Prior to analysis, studies excluded
all variants with minor allele frequency <0.01 or those that mapped to the
X and Y chromosomes or the mitochondria.

Study-level genome-wide analysis
Each cohort participating in Stage 1 analysis regressed serum lipids (Y) on
the variant (G), psychosocial factor (E), and their interaction (G×E), with
adjustment for covariates (C) including age, sex, principal components, and
study-specific variables (listed for each study in Supplementary Table 1):

Y ¼ β0 þ βGGþ βEE þ βG ´ EG ´ E þ βCC

The 1df test was based on the null hypothesis H0: βG´ E ¼ 0, while the
2df test was based on H0: βG ¼ βG ´ E ¼ 0. [92] To ensure robust estimates
of covariance matrices and robust standard errors, studies of unrelated

subjects used either the sandwich R package or ProbABEL genetic software
[93]. Family studies used Mixed Model Analysis for Pedigrees and
populations (MMAP), a comprehensive mixed model program that
provides an optimized and flexible platform incorporating a wide range
of covariance structures. Stage 2 studies carried out the same regressions,
but only on the variants that reached suggestive significance (P < 10−5) in
Stage 1 for any trait in population-specific or cross-population meta-
analysis. For comparison, stage 1 studies also ran a main effect model
(serum lipids as a function of the variant with adjustment for covariates
and study-specific variables) and a main effect model additionally adjusted
for the psychosocial factor.

Population groups
Appropriate selection of population descriptors is a matter of consider-
able discussion in the field and consensus regarding optimal terms has
not yet emerged. In this work, contributing studies were subdivided into
population groups based on where individuals included in those studies
were expected to cluster genetically to reduce the potential for spurious
findings due to population structure and to maximize the potential for
discovery within a population. Inclusion of samples within a particular
cluster of genetic similarity was based on consultation with study teams
given their expertise and understanding of the study population. Our
approach includes African ancestry (AFR), Asian ancestry (ASN), Brazilian
(BRZ), European ancestry (EUR), and admixed Hispanic/Latino and Native
American participants (HISP). The AFR population group includes sub-
Saharan Africans as well as participants with predominantly African
ancestry living in the United States. The ASN population group includes
participants of predominantly Asian ancestry living in East Asia,
Singapore, or the United States. The EUR population group includes
participants with predominantly European ancestry living in Europe or
the United States. The HISP population group includes admixed
Hispanic/Latino and Native American participants living in the United
States. Brazilian individuals (BRZ) were analyzed separately after
consultation with local researchers regarding the genetic clustering of
these participants.

Quality control and cross-population meta-analysis
We performed extensive study- and population-level quality control (QC)
using the R package EasyQC for all GWAS results [94]. In study-level QC,
allele frequencies for each study were compared visually to an ancestry-
matched 1000 genomes reference panel to identify systematic errors in
data preparation (no variants were excluded), and marker names were
harmonized to ensure consistency across studies. Any resulting concerns
were resolved in consultation with the contributing study. Variants were
excluded if the imputation quality score was less than 0.5 or if
2×MAF×Nexposed×imputation quality score was less than 20. Population-
level QC was also conducted prior to meta-analysis to check for any
outliers among included studies, which might suggest improper trait
transformation or model specification, among other things.
We then conducted population-specific and cross-population meta-

analysis in Stage 1 using the approach developed by Manning et al. [95]
and implemented in METAL [95, 96]. This method performs a joint meta-
analysis of the variant and the G×Psy exposure regression coefficients and
then uses a 2df test to identify genetic variants driven jointly by main and
interaction effects. Additionally, we used the inverse-variance weighted
meta-analysis implemented in METAL to meta-analyze G×Psy interaction
coefficients alone using a 1df test. Variants in the Stage 1 meta-analysis had
to be present in at least 2 cohorts or at least 3000 individuals for AFR and
EUR, with a lower threshold (n= 2000) set for ASN, BRZ, and HISP because
of the smaller number of individuals available in these ancestries. In Stage 2,
we used the same approach as in Stage 1 to perform population-specific
and cross-population meta-analyses. After combining results from Stages 1
and 2, variants with P < 5.0 × 10−8 for either the 2df joint test of the main
effect and the interaction or the 1df test of the interaction were considered
significant. Results with a heterozygosity p-value < 0.05 were evaluated
further and excluded if results were driven by a single cohort.
The novelty of associated loci was determined by comparison to the

recent Global Lipids Genetic Consortium results for GWAS meta-analyses
including approximately 1.65 million individuals with notable inclusion of
those of diverse ancestral backgrounds [1]. The 95% credible sets from the
meta-analyses of all lipids traits (available at http://csg.sph.umich.edu/
willer/public/glgc-lipids2021/results/credible_sets/) were compiled. Var-
iants were considered novel if they were 500 kb from all variants listed
in this list, as well as those reported in other major publications [34–39].
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Identification of independent genomic loci and functional
annotation
Identification of genetic loci related to each of the three serum lipids and
functional annotation was accomplished using Functional Mapping and
Annotation of GWAS (FUMA) v1.5.6 (http://fuma.ctglab.nl/) [97]. Variants
were grouped into genomic loci using an R2 < 0.6 (1000 Genomes, Phase 3
ALL as the reference population) and a merge distance of 250 kb.
Functional annotation was conducted using output from the set of tools
incorporated within FUMA, including RegulomeDB score, Combined
Annotation Dependent Deletion (CADD) score [98], 15-core chromatin
state (ChromHMM) [41, 99, 100], and expression Quantitative Trait Loci
(eQTL) on the variants from lead associations as well as those in LD with
those variants (R2 > 0.1), using all tissues and all included databases
(including GTex, BloodeQTL, BIOS, and BRAINEAC).

Druggability analysis
We first used the Drug-Gene Interaction database (DGIdb; v4.2.0) to query
psychosocial factors-lipid interacting genes to determine the potential
druggability of the candidate gene targets. We annotated genes for
implicated pathways and functions using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. We annotated the druggability target
categories and queried all interacting drugs reported in 41 databases
(BaderLabGenes, CarisMolecularIntelligence, dGene, FoundationOneGenes,
GO, HingoraniCasas, HopkinsGroom, HumanProteinAtlas, IDG, MskImpact,
Oncomine, Pharos, RussLampel, Tempus, CGI, CIViC, COSMIC, CancerCom-
mons, ChEMBL, ChemblDrugs, ChemblInteractions, ClearityFoundationBio-
markers, ClearityFoundationClinicalTrial, DTC, DoCM, DrugBank, Ensembl,
Entrez, FDA, GuideToPharmacology, JAX-CKB, MyCancerGenome, MyCan-
cerGenomeClinicalTrial, NCI, OncoKB, PharmGKB, TALC, TEND, TTD,
TdgClinicalTrial, Wikidata). We queried protein targets for available active
ligands in ChEMBL. We queried gene targets in the druggable genome
using the most recent druggable genome list established by the NIH
Illuminating the Druggable Genome Project (https://github.com/
druggablegenome/IDGTargets) available through the Pharos web plat-
form. We also queried FDA-approved drugs, late-stage clinical trials, and
disease indications in the DrugBank, ChEMBL, ClinicalTrials.gov databases
and provided results for the top MESH and DrugBank indications and
clinical trials.

DATA AVAILABILITY
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LDLC.SOCS.2df (GCST90570675); EUR.LDLC.SOCS.1df (GCST90570676); EUR.TG.ANXT.2df
(GCST90570677); EUR.TG.ANXT.1df (GCST90570678); EUR.TG.DEPR.2df (GCST90570679);
EUR.TG.DEPR.1df (GCST90570680); EUR.TG.SOCS.2df (GCST90570681); EUR.TG.SOCS.1df
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(GCST90570686); HISP.LDLC.DEPR.2df (GCST90570687); HISP.LDLC.DEPR.1df (GCST90570688);
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(GCST90570693); HISP.TG.SOCS.1df (GCST90570694); CPMA.HDLC.ANXT.2df (GCST90570695);
CPMA.HDLC.ANXT.1df (GCST90570696); CPMA.HDLC.DEPR.2df (GCST90570697);
CPMA.HDLC.DEPR.1df (GCST90570698); CPMA.HDLC.SOCS.2df (GCST90570699);
CPMA.HDLC.SOCS.1df (GCST90570700); CPMA.LDLC.ANXT.2df (GCST90570701); CPMA.LDL-
C.ANXT.1df (GCST90570702); CPMA.LDLC.DEPR.2df (GCST90570703); CPMA.LDLC.DEPR.1df
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(GCST90570711); CPMA.TG.SOCS.1df (GCST90570712)
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