
 

  

 

 

 

 

 

 
 
 
 
 

 
Metabolomics in the field of biomedical research 
 

With the advent of metabolomics, a new, important milestone in 
the endeavor to fully measure a biological system could be achieved. 
Metabolomics refers to the quantitative assessment of all metabolites 
(small molecules) within a biological system [1]. The analytical 
techniques predominantly used for the quantification are mass 
spectrometry (MS) and nuclear magnetic resonance (NMR) 
spectroscopy both having different strength and weaknesses [2–5]. 
There exist two main strategies for the quantification and 
identification of metabolites, the choice of which mainly depends on 
the experimental question to be answered. Targeted metabolomics is 
the method of choice in a hypothesis driven experiment, i.e. if the 
research focus lies on one or more particular metabolic pathways that 
are known to play a role in the examined biochemical setting. Only a 
predefined panel of metabolites is quantified, allowing for a precise 
snapshot of the desired physiological context. In contrast to that, 
untargeted metabolomics aims to measure ideally all endogenous 
metabolites contained in a biological sample providing a global and 
unbiased picture of a system’s metabolism. However, the chemical 
identification and functional characterization of many yet unknown 
compounds measured in an untargeted metabolomics approach 
remains a substantial challenge [6]. Typically, compounds are 
identified by comparing the measured masses to those of known 
metabolites stored in databases such as HMDB [7], LipidMaps [8] 
and Metlin [9] besides others (see e.g. 
http://www.metabolomicssociety.org/database). We will not go into 
further details on the different data preprocessing steps here since they 
differ greatly between the particular analytical platforms available for 
measuring the metabolome. However, a comprehensive review dealing  

  
 
 
 
 
 

 
 

 
  

with this topic can be found in [10]. Applications of metabolomics 
can be found in a huge diversity of research fields, including 
environmental perturbations of biological systems, toxicology, disease 
diagnosis and biomarker identification. Biomarkers are measurable 
biological indicators that can be used for instance in clinical 
screenings to stratify patients according to the characteristics of their 
phenotype [11].  

The suitability of metabolites as molecular biomarkers was 
demonstrated in several recent publications. Suhre et al. [12,13] and 
Gieger et al. [14] showed that changes in the concentration levels of 
biochemically related metabolite pairs are often highly correlated with 
genetic variation in the general population. Specifically, they report 
that a SNP in the proximity of the coding regions of genes is 
frequently associated with variations in the concentration levels of 
metabolites which the protein processes or transports. Mohit et al. 
[15] examined the concentration changes of metabolites from NCI-
60 cancer cells along with gene expression data. They reported a 
strong correlation between glycine consumption, the expression of 
glycine biosynthetic pathway related genes and the proliferation rate 
of cancer cells. Further successful applications were demonstrated 
both in nutritional challenge studies [16,17] and in the investigation 
of molecular cell mechanisms [18,19]. 

In the early days, biochemical approaches typically focused on a 
very limited amount of metabolites keeping the results manually 
interpretable by the researchers [20,21]. However, being a very active 
field of research, metabolomics has made rapid progress nowadays 
allowing modern instrumentation to measure thousands of 
metabolites simultaneously. This growing complexity of high-
throughput small molecule measurements now constitutes a 
substantial challenge to the researchers. The question that arises is 
how to derive biological meaningful results given thousands of 
chemically distinct metabolites measured in a specific experiment. In 
order to answer this question, robust statistical methods suitable to 
analyze and functionally interpret the complex interactions between 
the thousands of analytes are required. 

The intention of this mini review is to give a coarse overview of 
the field of metabolomics and to briefly discuss the most commonly 
used statistical methodologies for the analysis of metabolomics data. 
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Whenever possible, we provide the reader with references on two or 
more application examples as well as comprehensive articles or reviews 
dealing with theoretical aspects of the methodologies. Because of the 
broad application field of metabolomics and to keep a common focus 
we have chosen to mainly select human studies on disease diagnostics 
or biomarker identification as application examples. In the remainder 
of this mini review, two statistical concepts recently applied to high-
throughput metabolomics data by our group will be especially 
emphasized: network modeling based on Gaussian graphical models 
(GGMs) and higher-order correlation analysis denoted as 
independent component analysis (ICA). 

 
Common statistical analysis techniques for metabolomics data  

 
Methodologies used to interpret high-throughput metabolomics 

data are mainly adapted from earlier emerged omics technologies, 
mostly originally developed for transcriptomics analysis. Classic 
analytical approaches aim to assess group-wise differences, either in a 
univariate i.e. parameter-by-parameter fashion (e.g. t-test, analysis of 
variance (ANOVA), see Figure 1A) or using multivariate techniques 
(e.g. MANOVA, ASCA, PCA, PLS, see Figure 1B). Univariate 
methodologies are frequently used to reduce a possibly large number 
of measured analytes to only those that show the strongest response 
under the investigated conditions. Examples for such univariate 
approaches are a two-way ANOVA to investigate medication-induced 
level changes of individual metabolites [22] or a Wilcoxon rank-sum 
test combined with ANOVA to delineate different cancer progression 
states ranging from benign prostate to the metastatic disease [23]. 
However, univariate methods fail to discriminate between groups if 
there are only minor differences on single molecule level, even if 
multi-molecule combinations would delineate them on a systems level. 

 

 
 

 
 
 
 
 

 
Therefore, multivariate analysis methods seek to capture not only 

changes of single metabolites between different groups, but also to 
utilize the dependency structures between the individual molecules. 
Probably the most prominent multivariate analysis techniques applied 
in the field of metabolomics are principal component analysis (PCA), 
cluster analysis and partial least squares regression (PLS) including 
derivative methods. 

PCA represents an unsupervised linear mixture model that 
attempts to explain the variance within a dataset by a smaller number 
of mutually decorrelated principal components (PCs) [5,24]. In the 
case of metabolomics data, these PCs are vectors of metabolite 

contributions. All of the PCs are constructed such that they are 
pairwise orthogonal (decorrelated) to each other and ordered by the 
amount of variance they explain. PCA can be interpreted as linear 
mixture model, where the data matrix is factorized into two matrices: 
A score matrix, which contains the positions of the observations in a 
new, rotated coordinate system and a loading matrix, which contains 
the weights for the original variables to transform them into the 
scores. Because of its applicability in dimensionality reduction, data 
visualization, clustering and sample group discrimination (Figure 1B), 
PCA is often used as a starting point for data analysis, especially in a 
hypothesis free, exploratory experimental setup. Some applications 
amongst many in the field of metabolomics are the analysis of urine 
metabolomics in kidney cancer diagnostics [25] or urine and serum 
metabolites in Parkinson’s disease [26] and diabetes [27]. 

A related multivariate method recently developed by Smilde et al. 
[28] is ANOVA-simultaneous component analysis (ASCA), a 
combination of ANOVA and PCA methodologies. ASCA is 
particularly suited for the analysis of datasets with a complex 
underlying experimental design, consisting of many simultaneously 
measured covariates. It thereby allows to directly relate variation in the 
data to the different design factors. Further theoretical aspects about 
ASCA as well as application examples on metabolomics data, e.g. the 
effect of oral rinse on human saliva metabolic profiles can be found in 
[29–31]. 

Cluster analysis represents another unsupervised multivariate 
technique suitable for the analysis of metabolomics data with self-
organizing map (SOM) [32,33], hierarchical cluster analysis (HCA) 
[34,35] and k-means clustering [36,37] being the most prominent 
representatives. In general, clustering methods group and visualize 
samples according to intrinsic similarities in their measurements, 
irrespective of sample groupings. Notably, some authors point out 
general issues of clustering approaches, like error propagation, 
difficult interpretability and poor reproducibility of the identified 
clusters [38,39]. We will not go into detail here but refer the 
interested reader to a comprehensive review on clustering methods 
[40]. 

PLS regression, which belongs to the class of supervised linear 
mixture models, attempts to find an optimal decomposition of the 
predictor dataset given a matrix of responses. The general idea behind 
supervised methods is to unravel inherent patterns, e.g. distinct 
metabolite profiles that are strongly associated with the predefined 
response structure. For example, PLS-DA (discriminant analysis, i.e. 
with a categorical response), relates the data matrix (e.g. multivariate 
metabolite data) to the response vector (containing the sample class 
affiliations, e.g. case-control) by a linear regression model. The 
detailed procedure is elaborated elsewhere [41,42]. PLS-DA is usually 
used for classification purposes either to infer the variables that 
maximize the discrimination between predefined sample groups or 
even to predict class affiliations of unclassified samples based on a 
calibration set of known class distributions. PLS-DA was applied for 
instance to discriminate healthy individuals from Crohn’s disease 
patients on metabolomics data [43] or in the diagnosis of different 
types of cancer [25,44,45]. 

A recent extension to the PLS repository is the orthogonal-PLS 
(OPLS) [46] method. The main difference to classical PLS analysis is 
to split up the data variation into the variance of interest which is 
related to the response and an orthogonal (noise) part which is 
unrelated to the response. This leads to a simplified interpretability of 
the resulting components allowing to additionally asses within- and 
between-group variance [46–48]. OPLS has drawn attention in 
metabolomics research recently with a broad variety of classification 
applications including molecular epidemiology [35], alternative 
medicine [49] and the monitoring of kidney transplant patients [50].  

Figure 1. Classical approaches to analyze metabolomics data. A) 
Differences in the concentration level of single metabolites between two 
or more groups (e.g. t-test, ANOVA). B) Multivariate approaches like PCA 
and PLS model the relationships between metabolites and/or samples to 
detect group differences. Data points represent observations (samples). 
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A general limitation of supervised methods is the risk of overfitting 
[51] which means an incorporation of noise into the statistical model, 
e.g. caused by excessive learning on a training dataset. Yet there exists 
a number of validation techniques like cross validation [52] or 
bootstrapping [53] to overcome this issue but are not further 
discussed here. 

It has to be noted that the selection of multivariate statistical 
methods discussed here is far from being complete and that a detailed 
critical review of the methods is beyond the scope of this mini review. 
Hence, the interested reader is referred to the pertinent literature 
[38,42,54–57]. In the following, we will focus on Gaussian graphical 
models and Independent Component Analysis, which have recently 
been applied to metabolomics data by our group. 

 
Gaussian graphical models 

 
Cellular components, like metabolites, are members of strongly 

intertwined biological pathways and thus show a high degree of 
interactivity. A way to systematically model and intuitively interpret 
such interdependencies is the depiction as a graph or network [58]. 
This approach has become popular and widely used over the last 
decade. Networks typically consist of nodes, usually representing 
molecules (genes, proteins, metabolites), while links between the 
nodes depict their interactions. In a metabolic network, a node 
represents a metabolite and a link corresponds to a metabolic 
interaction (e.g. a biochemical reaction). Currently, several publicly 
available metabolic databases exist that focus on global 
reconstructions of metabolic pathways, like KEGG [59], human 
Recon 1 [60] and EHMN [61]. The biological networks contained 
in such databases can be used to guide statistical analysis in a 
functional manner. The concept of a network-guided analysis was 
applied to, for instance, classify different cancer subtypes by the 
identification of condition-specific activity patterns of PPI-networks 
or metabolic pathways [62,63] or even for the inference of an 
individualized therapy [64].  

Obviously, pathway databases are far from being complete, a fact 
which introduces bias to pathway-based analyses urging the need for 
new complementing strategies. One alternative, unbiased approach is 
to reconstruct pathway networks directly from the data. While this 
approach has been attempted and was of limited success in the context 

of regulatory networks in particular in mammalian cells [65], the 
biochemical nature of metabolite reactions has shown to be better 
suited for such a reconstruction [66].  

In order to reconstruct metabolic pathways directly from the data, 
statistical methods exploit the naturally occurring biological variation 
in the abundance of metabolites between biological replicates. Such 
variation in metabolite concentrations could occur either due to 
intrinsic fluctuations  (e.g. in temperature or pH) [67] or due to 
extrinsic factors (e.g. changes in enzyme levels caused by different 
regulatory states) [68] in the system. It is important to note here that 
these variations in metabolite concentration often occur in a concerted 
way, as such reflecting the wiring of the underlying metabolic 
network. Common methods for the reconstruction of pathways from 
high-throughput data are based on Bayesian networks [69] or 
correlation-based measures [67]. Bayesian networks are probabilistic 
graphical models which depict random variables (e.g. gene expression 
levels or metabolite concentrations) as nodes and their conditional 
dependencies as directed edges. Prominent application examples are 
gene networks inferred from gene expression data [70,71]. However, 
amongst other issues, Bayesian networks can only reconstruct acyclic 
graphs, while real biological networks are well-known to contain 
cycles and feedback loops [72,73]. 

A quite direct and simple possibility to circumvent this limitation 
are pairwise correlation methods, where two nodes are connected if 
their respective correlation lies above a certain threshold [74]. 
Although their usefulness has been shown in several applications [75–
77], standard correlation-based methods lack the ability to 
discriminate between direct and indirect associations: a high 
correlation between two metabolites could be mediated by one or 
more confounding variables which are the actual cause for the 
observed correlation [78,79]. 

Gaussian graphical models (GGMs), which are based on so-called 
partial correlation coefficients, eliminate indirect interactions by 
conditioning each pairwise association between two variables against 
all remaining variables. A GGM is an undirected graph, where each 
node corresponds to a random variable and an edge between two 
nodes is drawn if the variables are conditionally dependent given all 
other variables [80] (Figure 2A). GGMs have attracted some 
attention in the field of transcriptomics analysis [81,82] and, more 
recently, also in the analysis of metabolomics data [83,84]. However, 

Figure 2. Gaussian graphical models applied to metabolomics data. A) Network representation of a Gaussian graphical model. Each node corresponds to a 
metabolite, whereas each edge represents a significant partial correlation. B) Reconstructed subgraphs correspond to known biological reactions. Line widths 
indicate partial correlations strength; Edges are labeled with enzymes that supposedly account for the observed correlation. We observe effects of fatty acid 
desaturation and elongation in phospholipids, as well as beta-oxidation signatures for acyl carnitines. lysoPC = lyso phosphatidylcholine, SM = sphingomyelin, 
carn = carnitine. C) The same GGM from A colored with gender-specific effects from a differential statistical analysis. In part adapted from [58]. 
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the calculation of full-order partial correlations usually requires a 
higher number of samples than variables [78], a demand often not 
met by current experimental designs. Several approaches addressed 
this issue, suggesting alternative estimation algorithms utilizing low-
order partial correlations [81], bootstrap resampling [78] or shrinkage 
estimation [85]. 

Our group recently applied GGMs to targeted high-throughput 
metabolomics data [66]. In this work, we systematically demonstrated 
that GGMs are capable of recovering metabolic reactions solely from 
human blood plasma metabolomics data. In a first step, we generated 
in silico metabolomics data from different computer-simulated 
reaction systems, and found a clear advantage of GGMs over standard 
correlation networks. While correlation networks typically fail in 
recovering the true underlying network structure, GGMs perform well 
for most scenarios. The application to real metabolomics data from a 
population cohort and subsequent comparison to existing metabolic 
pathway databases revealed that high partial correlation coefficients 
generally coincide with known metabolic reactions (Figure 2B). In 
addition to that, several novel candidates for pathway interactions 
could be identified. Further applications to other datasets not only 
confirmed these findings, but also revealed the potential of GGMs in 
the identification of biomarkers. For example, in a study on gender 
inequalities, a Gaussian graphical model helped to discover sex-
specific differences on the metabolite level [86] (Figure 2C). 
Moreover, Jourdan et al. [87] established a link between fat-free mass 
index and several blood serum metabolites by utilizing GGMs. In 
addition, several authors suggest methods to extend the undirected 
partial correlation information to the inference of directional 
networks. These include approaches based on partial variance [88], 
directed partial correlations [89] or the d-separation principle [90].  

As already mentioned earlier, the chemical identification of yet 
unknown metabolites in mass spectrometry remains a key issue. 
Often, these unknown compounds cannot be assigned because current 
metabolic libraries lack entries or at least details on a non-negligible 
number of metabolites. We recently addressed this issue and 
successfully identified several compounds by utilizing GGMs in 
combination with genomic data [91], further hinting at the broad 
range of possible applications of Gaussian graphical models for 
functional metabolomics. 

 
Bayesian independent component analysis 

 
Despite their powerful capabilities in the analysis of multivariate 

data, a drawback of methods like PLS-DA, PCA and GGMs is their 
limitation to second-order statistical dependencies (i.e. covariance) 
between the variables. Higher order dependencies, possibly deriving 
from non-linear metabolic processes, are inherently neglected by these 
classical statistical approaches. The linearity of associations between 
measured entities is an approximation which is only correct for 
precisely normally distributed data. We have shown in our previous 
studies that even after log-transformation (thus assuming log-
normality), notable deviations from the normal distribution can be 
detected for a large fraction of metabolites [66,91]. Note that a 
simple way to deal with non-normally distributed data is to use rank 
correlation (Spearman) or mutual information [92]. 

Independent component analysis (ICA) is a method that is able to 
capture higher order dependencies by extending the concept of regular 
correlation to statistical dependence. ICA has recently attracted 
attention in the field of biomedical research [93]. First applications 
were reported in the neurobiological field, including 
electroencephalographic (EEG) [94] and functional magnetic 
resonance imaging (fMRI) [95,96]. Even in molecular biology, ICA 

found a use in the classification of cancer types [97,98] and in the 
examination of the cell proliferation process [99,100] from 
transcriptomics data. More recently, ICA was also discovered to be a 
promising method for metabolomics analysis, for instance, when 
dealing with plant toxins [101] or for the investigation of starch 
metabolism in Arabidopsis thaliana [102] and the development of 
colitis in mice [103]. 

 

 
 
 
 
 
 
 
 
 
 
 

 
While conceptually related to PCA, the main mathematical 

difference between ICA and PCA lies in the relation between the 
determined components. As mentioned above, ICA extends the 
decorrelation concept from PCA to statistical independence, a 
stronger condition if the data is non-Gaussian. For this purpose, ICA 
decomposes the data matrix of measured metabolomics profiles into k 
statistically independent components (ICs). A biological rationale 
behind this is the mixture of different biological processes (e.g. 
pathways) each of which contributes to a certain extent to the overall 
metabolic profile of the living system. Hence, metabolomics 
measurements represent a combination of these distinct metabolic 
processes that we seek to disentangle. Mathematically, a factorization 
of the data matrix into a mixing matrix A and a source matrix S has to 
be found (Figure 3A). These two matrices allow for different 
interpretations: each row in S can be seen as a particular metabolic 

Figure 3. Concept of Bayesian independent component analysis. A) The 
data matrix of metabolite concentrations X is factorized into a mixing 
matrix A (containing contributions for each component in each proband) 
and a source matrix S (of statistically independent components, ICs). B) 
Functionally, we check for enriched metabolic pathways in each of the ICs 
to determine whether this statistical construct contains biological 
information. C) The mixing matrix values for each proband can be 
correlated with other traits, e.g. plasma HDL levels. Reprinted with 
permission from [76]. Copyright (2012) American Chemical Society. 
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process mixing up to the overall metabolic profile, whereas A 
indicates how strong each process is activated in a study sample. 

A major challenge for ICA is the determination of a reasonable 
number of components k. There have been several suggestions from 
the ICA community on how to select k, mostly based on heuristics 
[104]. Moreover, classical ICA does not allow for the incorporation 
of prior information. Both issues can be tackled by employing a 
Bayesian ICA approach. Additionally, in such a framework, the 
Bayesian information criterion (BIC) [105] can be used to obtain the 
optimal number of independent components. 

We recently applied a Bayesian mean-field ICA method [106] to 
metabolomics data, setting a nonnegativity constraint for both 
matrices as prior [107]. We argued that nonnegative contributions are 
biologically more reasonable than arbitrary values, since the 
concentration of metabolites cannot be negative and also the activity 
of a biological process should be positive or zero. The metabolomics 
data was derived from the German KORA F4 cohort and consists of 
1764 blood serum samples and 218 measured metabolites covering 
various pathways (see [13] for details). By applying ICA to the 
metabolomics data and comparison to k-means clustering and a 
standard PCA, we were able to show that ICA outperforms the other 
methods in terms of a biologically more sound decomposition of the 
data. More precisely, the independent components showed a strong 
enrichment of distinct metabolic pathways (see Figure 3B and [107] 
for details) as opposed to for instance PCA, which showed an 
inconsistent distribution of the metabolites. On a side note, a similar 
study of ICA on gene expression data also reported a stronger 
biological enrichment as opposed to k-means and PCA [108]. 

Moreover, correlating IC’s to blood plasma HDL (high-density 
lipoprotein) levels revealed a strong association with one particular IC 
(Figure 3C). HDL is a specific class of lipoproteins which transports 
lipophilic molecules like cholesterol and triglycerides in the blood 
plasma. HDL has long been known to be associated with a variety of 
biological processes and is therefore of particularly high clinical 
interest [109,110]. An inspection of the independent component 
revealed a high contribution of branched-chain amino acids which 
possibly indicates a yet unknown association between branched-chain 
amino acids and HDL blood plasma levels. 

 
Conclusion 

 
A wide spectrum of analysis techniques for metabolomics data 

have already been proposed, including various standard analysis 
methods such as t-test and ANOVA, as well as more sophisticated 
methodologies. In general, we argue that the combination of different 
methods, thereby combining their complementing features, represents 
a promising approach allowing the researcher to extract the best-
possible amount of information from an experiment. Furthermore, 
future experimental designs have to be adjusted to the capabilities of 
existing methodologies, for instance keeping in mind adequate sample 
sizes. Despite that, all of the studies discussed in this mini review 
highlighted the potential of existing methods for analyzing 
metabolomics data ranging from the reconstruction of pathway 
reactions to the identification of disease biomarkers and the 
delineation of chemical identities. These studies further increased our 
understanding not only of cellular and physiological biochemistry but 
also of the functional mechanisms underlying the onset and 
progression of particular diseases. Indeed, changes in the abundance of 
metabolites in response to pathophysiological states are a direct 
consequence of the underlying biological processes (gene function and 
enzyme activity) including environmental factors, which renders them 
a promising link between genotype and phenotype [111]. 

 
 
 
 
 
 
 
 
 
 

 
However, given the complexity of biological systems - which are 

controlled by different levels of biological regulation, all highly 
dynamically interacting with each other (Figure. 4) - it is unlikely that 
biomarkers from a single layer (e.g. metabolites) bear the ability to 
explain an individual’s phenotype. Each organizational level, like the 
transcriptome or metabolome, yields distinct information about 
physiological and cellular processes. Therefore, data from multiple 
molecular entities have to be analyzed in a multivariate and integrative 
manner to be able to capture not only the subtle changes on single 
molecule level, but also changes of the interconnectivity between the 
cellular components. A major challenge that is already addressed by 
several groups is the development of adequate methodologies capable 
of integrating measurements from multiple levels of biological 
organization. First progress has already been made in this field with 
successful integration of multiple omics datasets in different research 
areas, including the analysis of E. coli stress response [112], or in 
human biology with a comprehensive analysis of metabolomics, 
transcriptomics and genomics data of a population cohort [113]. 
Moreover, in a tremendous effort, genomic, transcriptomic, proteomic 
and metabolomic profiles were measured and integratively analyzed 
from a single individual for a period of 14 month with the ultimate 
goal of an individually tailored treatment [114]. As the quality and 
resolution of metabolomics measurement techniques proceeds, an 
integrative analysis of different high-throughput datasets on single cell 
level will become possible [115]. We expect that the increasing 
quality of the available data will not only lead to the development of 
new statistical methods but also to an improved performance of 
existing analysis techniques eventually providing even deeper insights 
into the complete picture of an organism’s biology. 

 
 

 
 

 
 

Figure 4. Flow of biological information. Genomic information is 
transcribed into RNAs (A), which thereafter are translated into proteins 
(B). Proteins act in the regulation of transcription (e.g. as transcription 
factors, C) or directly on metabolite levels as enzymes or transporters (D). 
Metabolites, in turn, can regulate the activity of proteins for instance as 
ligands or via protein modifications (E). All organizational levels are 
affected by environmental factors like diet, lifestyle or mutagenic 
exposure (F). 
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