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Abstract: Metabolomics is a relatively new high-throughput technology that aims at measuring all endogenous metabolites within a
biological sample in an unbiased fashion. The resulting metabolic profiles may be regarded as functional signatures of the

physiological state, and have been shown to comprise effects of genetic regulation as well as environmental factors. This potential

to connect genotypic to phenotypic information promises new insights and biomarkers for different research fields, including

biomedical and pharmaceutical research. In the statistical analysis of metabolomics data, many techniques from other omics fields
can be reused. However recently, a number of tools specific for metabolomics data have been developed as well. The focus of this

mini review will be on recent advancements in the analysis of metabolomics data especially by utilizing Gaussian graphical models

and independent component analysis.

MINI REVIEW ARTICLE

Metabolomics in the field of biomedical research

With the advent of metabolomics, a new, important milestone in
the endeavor to fully measure a biological system could be achieved.
Metabolomics refers to the quantitative assessment of all metabolites
(small molecules) within a biological system [I]. The analytical
techniques predominantly used for the quantification are mass
spectrometry (MS) and nuclear magnetic resonance (NMR)
spectroscopy both having different strength and weaknesses [2-5].
There exist two main strategies for the quantification and
identification of metabolites, the choice of which mainly depends on
the experimental question to be answered. Targered metabolomics is
the method of choice in a hypothesis driven experiment, i.e. if the
research focus lies on one or more particular metabolic pathways that
are known to play a role in the examined biochemical setting. Only a
predefined panel of metabolites is quantified, allowing for a precise
snapshot of the desired physiological context. In contrast to that,
untargeted metabolomics aims to measure ideally all endogenous
metabolites contained in a biological sample providing a global and
unbiased picture of a system’s metabolism. However, the chemical
identification and functional characterization of many yet unknown
compounds measured in an untargeted metabolomics approach
remains a substantial challenge [6]. Typically, compounds are
identified by comparing the measured masses to those of known
metabolites stored in databases such as HMDB [7], LipidMaps [8]
and Metlin [9] besides

http://www.metabolomicssocietytorg/database). We will not go into

others (see e.g.

turther details on the different data preprocessing steps here since they
differ greatly between the particular analytical platforms available for
measuring the metabolome. However, a comprehensive review dealing
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with this topic can be found in [10]. Applications of metabolomics
can be found in a huge diversity of research fields, including
environmental perturbations of biological systems, toxicology, disease
diagnosis and biomarker identification. Biomarkers are measurable
biological indicators that can be used for instance in clinical
screenings to stratify patients according to the characteristics of their
phenotype [11].

The suitability of metabolites as molecular biomarkers was
demonstrated in several recent publications. Suhre et al. [12,13] and
Gieger et al. [14] showed that changes in the concentration levels of
biochemically related metabolite pairs are often highly correlated with
genetic variation in the general population. Specifically, they report
that a SNP in the proximity of the coding regions of genes is
frequently associated with variations in the concentration levels of
metabolites which the protein processes Of transports. Mohit et al.
[15] examined the concentration changes of metabolites from NCI-
60 cancer cells along with gene expression data. They reported a
strong correlation between glycine consumption, the expression of
glycine biosynthetic pathway related genes and the proliferation rate
of cancer cells. Further successful applications were demonstrated
both in nutritional challenge studies [16,17] and in the investigation
of molecular cell mechanisms [18,19].

In the early days, biochemical approaches typically focused on a
very limited amount of metabolites keeping the results manually
interpretable by the researchers [20,21]. However, being a very active
tield of research, metabolomics has made rapid progress nowadays
allowing modern instrumentation to measure thousands of
metabolites simultaneously. This growing complexity of high-
throughput small molecule measurements now constitutes a
substantial challenge to the researchers. The question that arises is
how to derive biological meaningful results given thousands of
chemically distinct metabolites measured in a specific experiment. In
order to answer this question, robust statistical methods suitable to
analyze and functionally interpret the complex interactions between
the thousands of analytes are required.

The intention of this mini review is to give a coarse overview of
the field of metabolomics and to briefly discuss the most commonly
used statistical methodologies for the analysis of metabolomics data.
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Whenever possible, we provide the reader with references on two or
more application examples as well as comprehensive articles or reviews
dealing with theoretical aspects of the methodologies. Because of the
broad application field of metabolomics and to keep a common focus
we have chosen to mainly select human studies on disease diagnostics
or biomarker identification as application examples. In the remainder
of this mini review, two statistical concepts recently applied to high-
throughput metabolomics data by our group will be especially
emphasized: network modeling based on Gaussian graphical models
(GGMs)
independent component analysis (ICA).

and  higher-order  correlation denoted as

analysis

Common statistical analysis techniques for metabolomics data

Methodologies used to interpret high-throughput metabolomics
data are mainly adapted from earlier emerged omics technologies,
mostly originally developed for transcriptomics analysis. Classic
analytical approaches aim to assess group-wise differences, either in a
univariate i.e. parameter-by-parameter fashion (e.g. t-test, analysis of
variance (ANOVA), see Figure IA) or using multivariate techniques
(e.g, MANOVA, ASCA, PCA, PLS, see Figure IB). Univariate
methodologies are frequently used to reduce a possibly large number
of measured analytes to only those that show the strongest response
under the investigated conditions. Examples for such univariate
approaches are a two-way ANOVA to investigate medication-induced
level changes of individual metabolites [22] or a Wilcoxon rank-sum
test combined with ANOVA to delineate different cancer progression
states ranging from benign prostate to the metastatic disease [23].
However, univariate methods fail to discriminate between groups if
there are only minor differences on single molecule level, even if
multi-molecule combinations would delineate them on a systems level.
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Figure 1. Classical approaches to analyze metabolomics data. A)
Differences in the concentration level of single metabolites between two
or more groups (e.g. t-test, ANOVA). B) Multivariate approaches like PCA
and PLS model the relationships between metabolites and/or samples to
detect group differences. Data points represent observations (samples).

Therefore, multivariate analysis methods seek to capture not only
changes of single metabolites between different groups, but also to
utilize the dependency structures between the individual molecules.
Probably the most prominent multivariate analysis techniques applied
in the field of metabolomics are principal component analysis (PCA),
cluster analysis and partial least squares regression (PLS) including
derivative methods.

PCA represents an unsupervised linear mixture model that
attempts to explain the variance within a dataset by a smaller number
of mutually decorrelated principal components (PCs) [5,24]. In the

case of metabolomics data, these PCs are vectors of metabolite
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contributions. All of the PCs are constructed such that they are
pairwise orthogonal (decorrelated) to each other and ordered by the
amount of variance they explain. PCA can be interpreted as linear
mixture model, where the data matrix is factorized into two matrices:
A score matrix, which contains the positions of the observations in a
new, rotated coordinate system and a loading matrix, which contains
the weights for the original variables to transform them into the
scores. Because of its applicability in dimensionality reduction, data
visualization, clustering and sample group discrimination (Figure 1B),
PCA is often used as a starting point for data analysis, especially in a
hypothesis free, exploratory experimental setup. Some applications
amongst many in the field of metabolomics are the analysis of urine
metabolomics in kidney cancer diagnostics [25] or urine and serum
metabolites in Parkinson’s disease [26] and diabetes [27].

A related multivariate method recently developed by Smilde et al.
[28] is ANOVA-simultaneous component analysis (ASCA), a
combination of ANOVA and PCA methodologies. ASCA s
particularly suited for the analysis of datasets with a complex
underlying experimental design, consisting of many simultaneously
measured covariates. It thereby allows to directly relate variation in the
data to the different design factors. Further theoretical aspects about
ASCA as well as application examples on metabolomics data, e.g. the
effect of oral rinse on human saliva metabolic proﬁles can be found in
[29-31],

Cluster analysis represents another unsupervised multivariate
technique suitable for the analysis of metabolomics data with self-
organizing map (SOM) [32,33], hierarchical cluster analysis (HCA)
[34,35] and k-means clustering [36,37] being the most prominent
representatives. In general, clustering methods group and visualize
samples according to intrinsic similarities in their measurements,
irrespective of sample groupings. Notably, some authors point out
general issues of clustering approaches, like error propagation,
difficult interpretability and poor reproducibility of the identified
clusters [38,39]. We will not go into detail here but refer the
interested reader to a comprehensive review on clustering methods
[40].

PLS regression, which belongs to the class of supervised linear
mixture models, attempts to find an optimal decomposition of the
predictor dataset given a matrix of responses. The general idea behind
supervised methods is to unravel inherent patterns, e.g. distinct
metabolite profiles that are strongly associated with the predefined
response structure. For example, PLS-DA (discriminant analysis, i.e.
with a categorical response), relates the data matrix (e.g. multivariate
metabolite data) to the response vector (containing the sample class
affiliations, e.g. case-control) by a linear regression model. The
detailed procedure is elaborated elsewhere [41,42]. PLS-DA is usually
used for classification purposes either to infer the variables that
maximize the discrimination between predefined sample groups or
even to predict class affiliations of unclassified samples based on a
calibration set of known class distributions. PLS-DA was applied for
instance to discriminate healthy individuals from Crohn’s disease
patients on metabolomics data [43] or in the diagnosis of different
types of cancer [25,44,45].

A recent extension to the PLS repository is the orthogonal-PLS
(OPLS) [46] method. The main difference to classical PLS analysis is
to split up the data variation into the variance of interest which is
related to the response and an orthogonal (noise) part which is
unrelated to the response. This leads to a simplified interpretability of
the resulting components allowing to additionally asses within- and
between-group variance [46—48]. OPLS has drawn attention in
metabolomics research recently with a broad variety of classification
applications including molecular epidemiology [3S5], alternative
medicine [49] and the monitoring of kidney transplant patients [50].
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Figure 2. Gaussian graphical models applied to metabolomics data. A) Network representation of a Gaussian graphical model. Each node corresponds to a
metabolite, whereas each edge represents a significant partial correlation. B) Reconstructed subgraphs correspond to known biological reactions. Line widths
indicate partial correlations strength; Edges are labeled with enzymes that supposedly account for the observed correlation. We observe effects of fatty acid
desaturation and elongation in phospholipids, as well as beta-oxidation signatures for acyl carnitines. lysoPC = lyso phosphatidylcholine, SM = sphingomyelin,
carn = carnitine. C) The same GGM from A colored with gender-specific effects from a differential statistical analysis. In part adapted from [58].

A general limitation of supervised methods is the risk of overfitting
[51] which means an incorporation of noise into the statistical model,
e.g. caused by excessive learning on a training dataset. Yet there exists
a number of validation techniques like cross validation [S52] or
bootstrapping [53] to overcome this issue but are not further
discussed here.

It has to be noted that the selection of multivariate statistical
methods discussed here is far from being complete and that a detailed
critical review of the methods is beyond the scope of this mini review.
Hence, the interested reader is referred to the pertinent literature
[38,42,54-57]. In the following, we will focus on Gaussian graphical
models and Independent Component Analysis, which have recently
been applied to metabolomics data by our group.

Gaussian graphical models

Cellular components, like metabolites, are members of strongly
intertwined biological pathways and thus show a high degree of
interactivity. A way to systematically model and intuitively interpret
such interdependencies is the depiction as a graph or network [58].
This approach has become popular and widely used over the last
decade. Networks typically consist of nodes, usually representing
molecules (genes, proteins, metabolites), while links between the
nodes depict their interactions. In a metabolic network, a node
represents a metabolite and a link corresponds to a metabolic
interaction (e.g. a biochemical reaction). Currently, several publicly
exist that global
reconstructions of metabolic pathways, like KEGG [59], human
Recon I [60] and EHMN [61]. The biological networks contained

in such databases can be used to guide statistical analysis in a

available metabolic  databases focus on

functional manner. The concept of a network-guided analysis was
applied to, for instance, classify different cancer subtypes by the
identification of condition-specific activity patterns of PPI-networks
or metabolic pathways [62,63] or even for the inference of an
individualized therapy [64].

Obviously, pathway databases are far from being complete, a fact
which introduces bias to pathway-based analyses urging the need for
new complementing strategies. One alternative, unbiased approach is
to reconstruct pathway networks directly from the data. While this
approach has been attempted and was of limited success in the context
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of regulatory networks in particular in mammalian cells [65], the
biochemical nature of metabolite reactions has shown to be better
suited for such a reconstruction [66].

In order to reconstruct metabolic pathways directly from the data,
statistical methods exploit the naturally occurring biological variation
in the abundance of metabolites between biological replicates. Such
variation in metabolite concentrations could occur either due to
(e.g. in temperature or pH) [67] or due to

extrinsic factors (eg. Changes in enzyme levels caused by different

intrinsic fluctuations

regulatory states) [68] in the system. It is important to note here that
these variations in metabolite concentration often occur in a concerted
way, as such reflecting the wiring of the underlying metabolic
network. Common methods for the reconstruction of pathways from
high-throughput data are based on Bayesian networks [69] or
correlation-based measures [67]. Bayesian networks are probabilistic
graphical models which depict random variables (e.g. gene expression
levels or metabolite concentrations) as nodes and their conditional
dependencies as directed edges. Prominent application examples are
gene networks inferred from gene expression data [70,71]. However,
amongst other issues, Bayesian networks can only reconstruct acyclic
graphs, while real biological networks are well-known to contain
cycles and feedback loops [72,73].

A quite direct and simple possibility to circumvent this limitation
are pairwise correlation methods, where two nodes are connected if
their respective correlation lies above a certain threshold [74].
Although their usefulness has been shown in several applications [75—
77), standard correlation-based methods lack the ability to
discriminate between direct and indirect associations: a high
correlation between two metabolites could be mediated by one or
more confounding variables which are the actual cause for the
observed correlation [78,79].

Gaussian graphical models (GGMs), which are based on so-called
partial correlation coefficients, eliminate indirect interactions by
conditioning each pairwise association between two variables against
all remaining variables. A GGM is an undirected graph, where each
node corresponds to a random variable and an edge between two
nodes is drawn if the variables are conditionally dependent given all
other variables [80] (Figure 2A). GGMs have attracted some
attention in the field of transcriptomics analysis [81,82] and, more
recently, also in the analysis of metabolomics data [83,84]. However,
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the calculation of full-order partial correlations usually requires a
higher number of samples than variables [78], a demand often not
met by current experimental designs. Several approaches addressed
this issue, suggesting alternative estimation algorithms utilizing low-
order partial correlations [81], bootstrap resampling [78] or shrinkage
estimation [85].

Our group recently applied GGMs to targeted high-throughput
metabolomics data [66]. In this work, we systematically demonstrated
that GGMs are capable of recovering metabolic reactions solely from
human blood plasma metabolomics data. In a first step, we generated
i siico metabolomics data from different computer-simulated
reaction systems, and found a clear advantage of GGMs over standard
correlation networks. While correlation networks typically fail in
recovering the true underlying network structure, GGMs perform well
for most scenarios. The application to real metabolomics data from a
population cohort and subsequent comparison to existing metabolic
pathway databases revealed that high partial correlation coefficients
generally coincide with known metabolic reactions (Figure 2B). In
addition to that, several novel candidates for pathway interactions
could be identified. Further applications to other datasets not only
confirmed these ﬁndings, but also revealed the potential of GGMs in
the identification of biomarkers. For example, in a study on gender
inequalities, a Gaussian graphical model helped to discover sex-
specific differences on the metabolite level [86] (Figure 2C).
Moreover, Jourdan et al. [87] established a link between fat-free mass
index and several blood serum metabolites by utilizing GGMs. In
addition, several authors suggest methods to extend the undirected
partial correlation information to the inference of directional
networks. These include approaches based on partial variance [88],
directed partial correlations [89] or the d-separation principle [90].

As already mentioned earlier, the chemical identification of yet
unknown metabolites in mass spectrometry remains a key issue.
Often, these unknown compounds cannot be assigned because current
metabolic libraries lack entries or at least details on a non-negligible
number of metabolites. We recently addressed this issue and
successfully identified several compounds by utilizing GGMs in
combination with genomic data [91], further hinting at the broad
range of possible applications of Gaussian graphical models for
functional metabolomics.

Bayesian independent component analysis

Despite their powerful capabilities in the analysis of multivariate
data, a drawback of methods like PLS-DA, PCA and GGMs is their
limitation to second-order statistical dependencies (i.e. covariance)
between the variables. Higher order dependencies, possibly deriving
from non-linear metabolic processes, are inherently neglected by these
classical statistical approaches. The linearity of associations between
measured entities is an approximation which 1s only correct for
precisely normally distributed data. We have shown in our previous
studies that even after log-transformation (thus assuming log-
normality), notable deviations from the normal distribution can be
detected for a large fraction of metabolites [66,91]. Note that a
simple way to deal with non-normally distributed data is to use rank
correlation (Spearman) or mutual information [92].

Independent component analysis (ICA) is a method that is able to
capture higher order dependencies by extending the concept of regular
correlation to statistical dependence. ICA has recently attracted
attention in the field of biomedical research [93]. First applications
were  reported in  the neurobiological  field,
electroencephalographic (EEG) [94] and functional magnetic
resonance imaging (fMRI) [95,96]. Even in molecular biology, ICA

including
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found a use in the classification of cancer types [97,98] and in the
examination of the cell proliferation process [99,100] from
transcriptomics data. More recently, ICA was also discovered to be a
promising method for metabolomics analysis, for instance, when
dealing with plant toxins [I101] or for the investigation of starch
metabolism in Arabidopsis thaliana [102] and the development of
colitis in mice [103].
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Figure 3. Concept of Bayesian independent component analysis. A) The
data matrix of metabolite concentrations X is factorized into a mixing
matrix A (containing contributions for each component in each proband)
and a source matrix S (of statistically independent components, ICs). B)
Functionally, we check for enriched metabolic pathways in each of the ICs
to determine whether this statistical construct contains biological
information. C) The mixing matrix values for each proband can be
correlated with other traits, e.g. plasma HDL levels. Reprinted with
permission from [76]. Copyright (2012) American Chemical Society.

While conceptually related to PCA, the main mathematical
difference between ICA and PCA lies in the relation between the
determined components. As mentioned above, ICA extends the
decorrelation concept from PCA to statistical independence, a
stronger condition if the data is non-Gaussian. For this purpose, ICA
decomposes the data matrix of measured metabolomics profiles into &
statistically independent components (ICs). A biological rationale
behind this is the mixture of different biological processes (e.g.
pathways) each of which contributes to a certain extent to the overall
metabolic profile of the living system. Hence, metabolomics
measurements represent a combination of these distinct metabolic
processes that we seek to disentangle. Mathematically, a factorization
of the data matrix into a mixing matrix A and a source matrix S has to
be found (Figure 3A). These two matrices allow for different

interpretations: each row in S can be seen as a particular metabolic
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process mixing up to the overall metabolic profile, whereas A
indicates how strong each process is activated in a study sample.

A major challenge for ICA is the determination of a reasonable
number of components & There have been several suggestions from
the ICA community on how to select k, mosdy based on heuristics
[104]. Moreover, classical ICA does not allow for the incorporation
of prior information. Both issues can be tackled by employing a
Bayesian ICA approach. Additionally, in such a framework, the
Bayesian information criterion (BIC) [105] can be used to obtain the
optimal number of independent components.

We recently applied a Bayesian mean-field ICA method [106] to
metabolomics data, setting a nonnegativity constraint for both
matrices as prior [107]. We argued that nonnegative contributions are
biologically more reasonable than arbitrary values, since the
concentration of metabolites cannot be negative and also the activity
of a biological process should be positive or zero. The metabolomics
data was derived from the German KORA F4 cohort and consists of
1764 blood serum samples and 218 measured metabolites covering
various pathways (see [13] for details). By applying ICA to the
metabolomics data and comparison to A-means clustering and a
standard PCA, we were able to show that ICA outperforms the other
methods in terms of a biologically more sound decomposition of the
data. More precisely, the independent components showed a strong
enrichment of distinct metabolic pathways (see Figure 3B and [107]
for details) as opposed to for instance PCA, which showed an
inconsistent distribution of the metabolites. On a side note, a similar
study of ICA on gene expression data also reported a stronger
biological enrichment as opposed to &-means and PCA [108].

Moreover, correlating IC’s to blood plasma HDL (high-density
lipoprotein) levels revealed a strong association with one particular IC
(Figure 3C). HDL is a specific class of lipoproteins which transports
lipophilic molecules like cholesterol and triglycerides in the blood
plasma. HDL has long been known to be associated with a variety of
biological processes and is therefore of particularly high clinical
interest [109,110]. An inspection of the independent component
revealed a high contribution of branched-chain amino acids which
possibly indicates a yet unknown association between branched-chain

amino acids and HDL blood plasma levels.

Conclusion

A wide spectrum of analysis techniques for metabolomics data
have already been proposed, including various standard analysis
methods such as t-test and ANOVA, as well as more sophisticated
methodologies. In general, we argue that the combination of different
methods, thereby combining their complementing features, represents
a promising approach allowing the researcher to extract the best-
possible amount of information from an experiment. Furthermore,
future experimental designs have to be adjusted to the capabilities of
existing methodologies, for instance keeping in mind adequate sample
sizes. Despite that, all of the studies discussed in this mini review
highlighted the potential of existing methods for analyzing
metabolomics data ranging from the reconstruction of pathway
to the
delineation of chemical identities. These studies further increased our

reactions identification of disease biomarkers and the
understanding not only of cellular and physiological biochemistry but
also of the functional mechanisms underlying the onset and
progression of particular diseases. Indeed, changes in the abundance of
metabolites in response to pathophysiological states are a direct
consequence of the underlying biological processes (gene function and
enzyme activity) including environmental factors, which renders them

a promising link between genotype and phenotype [111].
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Figure 4. Flow of biological information. Genomic information is
transcribed into RNAs (A), which thereafter are translated into proteins
(B). Proteins act in the regulation of transcription (e.g. as transcription
factors, C) or directly on metabolite levels as enzymes or transporters (D).
Metabolites, in turn, can regulate the activity of proteins for instance as
ligands or via protein modifications (E). All organizational levels are
affected by environmental factors like diet, lifestyle or mutagenic
exposure (F).

However, given the complexity of biological systems - which are
controlled by different levels of biological regulation, all highly
dynamically interacting with each other (Figure. 4) - it is unlikely that
biomarkers from a single layer (e.g. metabolites) bear the ability to
explain an individual’s phenotype. Each organizational level, like the
transcriptome or metabolome, yields distinct information about
physiological and cellular processes. Therefore, data from multiple
molecular entities have to be analyzed in a multivariate and integrative
manner to be able to capture not only the subtle changes on single
molecule level, but also changes of the interconnectivity between the
cellular components. A major challenge that is already addressed by
several groups is the development of adequate methodologies capable
of integrating measurements from multiple levels of biological
organization. First progress has already been made in this field with
successful integration of multiple omics datasets in different research
areas, including the analysis of E. colf stress response [112], or in
human biology with a comprehensive analysis of metabolomics,
transcriptomics and genomics data of a population cohort [113].
Moreover, in a tremendous effort, genomic, transcriptomic, proteomic
and metabolomic profiles were measured and integratively analyzed
from a single individual for a period of 14 month with the ultimate
goal of an individually tailored treatment [114]. As the quality and
resolution of metabolomics measurement techniques proceeds, an
integrative analysis of different high-throughput datasets on single cell
level will become possible [I115]. We expect that the increasing
quality of the available data will not only lead to the development of
new statistical methods but also to an improved performance of
existing analysis techniques eventually providing even deeper insights
into the complete picture of an organism’s biology.
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