
RESEARCH PAPER

Simulating dynamic tumor contrast enhancement 
in breast MRI using conditional generative 

adversarial networks
Richard Osuala , a,b,c, * Smriti Joshi , a Apostolia Tsirikoglou , d Lidia Garrucho , a,d

Walter H. L. Pinaya , e Daniel M. Lang , b,c Julia A. Schnabel , b,c,e Oliver Diaz , a,f,�

and Karim Lekadir a,g,�

a Universitat de Barcelona, Departament de Matemàtiques i Informàtica, Barcelona Artificial Intelligence in 
Medicine Lab (BCN-AIM), Barcelona, Spain 

b Helmholtz Munich, Institute of Machine Learning in Biomedical Imaging, Munich, Germany 
c Technical University of Munich, School of Computation, Information and Technology, Munich, Germany 

d Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden 
e King�s College London, School of Biomedical Engineering & Imaging Sciences, London, United Kingdom 

f Universitat Autónoma de Barcelona, Computer Vision Center, Bellaterra, Spain 
g Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

ABSTRACT. Purpose: Deep generative models and synthetic data generation have become 
essential for advancing computer-assisted diagnosis and treatment. We explore one 
such emerging and particularly promising application of deep generative models, 
namely, the generation of virtual contrast enhancement. This allows to predict and 
simulate contrast enhancement in breast magnetic resonance imaging (MRI) without 
physical contrast agent injection, thereby unlocking lesion localization and categori- 
zation even in patient populations where the lengthy, costly, and invasive process of 
physical contrast agent injection is contraindicated.

Approach: We define a framework for desirable properties of synthetic data, which 
leads us to propose the scaled aggregate measure (SAMe) consisting of a balanced 
set of scaled complementary metrics for generative model training and convergence 
evaluation. We further adopt a conditional generative adversarial network to trans- 
late from non-contrast-enhanced T 1-weighted fat-saturated breast MRI slices to 
their dynamic contrast-enhanced (DCE) counterparts, thus learning to detect, local- 
ize, and adequately highlight breast cancer lesions. Next, we extend our model 
approach to jointly generate multiple DCE-MRI time points, enabling the simulation 
of contrast enhancement across temporal DCE-MRI acquisitions. In addition, three- 
dimensional U-Net tumor segmentation models are implemented and trained on 
combinations of synthetic and real DCE-MRI data to investigate the effect of data 
augmentation with synthetic DCE-MRI volumes.

Results: Conducting four main sets of experiments, (i) the variation across single 
metrics demonstrated the value of SAMe, and (ii) the quality and potential of virtual 
contrast injection for tumor detection and localization were shown. Segmentation 
models (iii) augmented with synthetic DCE-MRI data were more robust in the pres- 
ence of domain shifts between pre-contrast and DCE-MRI domains. The joint syn- 
thesis approach of multi-sequence DCE-MRI (iv) resulted in temporally coherent 
synthetic DCE-MRI sequences and indicated the generative model�s capability of 
learning complex contrast enhancement patterns.

Conclusions: Virtual contrast injection can result in accurate synthetic DCE-MRI 
images, potentially enhancing breast cancer diagnosis and treatment protocols. 
We demonstrate that detecting, localizing, and segmenting tumors using synthetic
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DCE-MRI is feasible and promising, particularly considering patients where contrast 
agent injection is risky or contraindicated. Jointly generating multiple subsequent 
DCE-MRI sequences can increase image quality and unlock clinical applications 
assessing tumor characteristics related to its response to contrast media injection 
as a pillar for personalized treatment planning.
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1 Introduction

1.1 Deep Learning Progress in Breast Cancer Imaging 
Breast cancer was the most common cancer diagnosis worldwide in 2020, taking people of all 
ages and genders into account. The staggering number of 2.26 million new cases and 684,996 
reported deaths underline the significant global burden of breast cancer. 1 In breast cancer imag- 
ing and medical imaging at large, deep learning has been gaining popularity due to its promising 
capabilities of sifting through image data to uncover hidden associations. This capacity allows 
trained deep learning models to recognize subtle patterns in unseen data, which enables solving 
a plethora of clinical tasks with high potential to improve patient care. With the emergence of 
deep learning, vast progress has been observed, e.g., in the promising development of automatic 
methods for the screening, diagnosis, treatment, and monitoring of cancer based on dynamic 
contrast-enhanced magnetic resonance imaging (DCE-MRI). Such methods include the auto- 
mated tumor detection, localization, segmentation, and characterization for preoperative plan- 
ning, patient survival assessment, quantification of recurrence risk, and estimation of treatment 
response. 2�7

1.2 Usage and Benefit of Contrast Agents 
Through the alteration of magnetic properties of tissue, intravenously administered contrast 
agents (CAs), which are commonly based on gadolinium, manifest as hyper-intense in DCE- 
MRI. Thus, they allow the visualization of blood flow and changes in permeability. Multiple 
DCE-MRI volumes are consecutively acquired (before, during, and after CA administration) 
to enable the time-dependent evaluation of tissue characteristics and assessment of potential 
abnormalities. The time�signal intensity curves of such dynamic contrast sequences reflect signal 
intensity changes induced by the uptake and wash-out of CA over time. 8�10 DCE-MRI contrast 
uptake serves as an important biomarker in oncology, enabling cancer detection, characterization, 
subtype determination, differentiation of malignancy, recurrence prediction, and treatment 
response assessment. 2,11,12 Notably, kinetic analysis of contrast enhancement in breast DCE- 
MRI plays a crucial role in lesion characterization, with features such as peak enhancement, 
time-to-peak, and wash-in and wash-out slopes reflecting malignancy risk. Furthermore, 
DCE-MRI reveals temporal patterns of contrast enhancement that are not only correlated with 
breast cancer presence but also offer insights into genetic alterations associated with risk of recur- 
rence, response to chemotherapy, and even the underlying molecular subtypes of breast
tumors. 8�10,12,13

1.3 Disadvantages of Contrast Agents 
Despite their undeniable value in diagnostic imaging, gadolinium-based contrast agents 
(GBCAs) involve concerns regarding their safety profile. For instance, GBCA administration 
has been linked to an increased risk of nephrogenic systemic fibrosis (NSF). 14 A further concern 
is given by the deposition of residual gadolinium and its potential bioaccumulation within the 
body with unknown long-term clinical significance. 14�18 Following a 2016 European 
Commission request for a review of GBCAs, the European Medicines Agency recommended 
restrictions on specific intravenous linear agents to mitigate potential risks associated with
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gadolinium deposition. 19 Apart from that, safety concerns extend beyond deposition and NSF, as 
they also comprise well-known acute effects, such as physiologic and allergic-like reactions, as 
well as symptoms associated with gadolinium exposure for which the causal relationship to 
GBCA is still unknown. 20 Furthermore, the administration process involves various drawbacks, 
including lengthy protocols and scan times, significant financial costs, and the requirement for 
intravenous cannulation and injection procedures. The reliance of DCE-MRI on multiple tem- 
poral acquisitions further exacerbates the increased costs and extended examination times for 
patients. In addition, susceptibility to motion artifacts necessitates meticulous patient cooperation 
(e.g., breath-holding) and can be a source of discomfort. Collectively, the aforementioned issues 
contribute to an undue burden on patients, encompassing both inconvenience and potential risks 
to their well-being. 15,18 In addition, GBCA administration has been causing the emergence of 
gadolinium as a contaminant polluting aquatic ecosystems and environments 21,22 including 
drinking water supplies, where its respective degradation products can further increase the risk 
of adverse health effects. 23 As a consequence, GBCA administration is contraindicated in multi- 
ple scenarios, which include patient populations with adverse reactions, pregnancy, kidney mal- 
functions, missing consent, or high-risk breast cancer screening populations where GCBA 
exposure extends recommended thresholds in accumulated dosage or frequency. 24�26

1.4 Contribution 
The aforementioned issues emphasize the necessity of alternatives that can be safely issued while 
also simulating GBCA administration in a way that still yields some of its benefits. To this end, as 
depicted in Fig. 1, we propose the synthetic generation of DCE-MRI using deep generative mod- 
els, which constitutes a faster, motion artifact-free, and non-invasive alternative with improved 
cost-effectiveness that also avoids burdening patient health and well-being. Extending over 
Osuala et al., 25 we provide a principled definition of trustworthy synthetic data and introduce 
the simultaneous generation of images from multiple DCE-MRI time points. We further include a 
quantitative and qualitative evaluation for jointly generated several DCE-MRI time points. In 
addition, the temporal contrast enhancement is analyzed at the lesion level including a quanti- 
fication of contrast intensity patterns per patient case and accumulated over the entire dataset. 
Overall, our work presents the following contributions and novelties to advance the field of syn- 
thetic DCE-MRI for breast cancer applications:

� Pre-contrast to DCE-MRI synthesis: We implement and validate a conditional generative 
adversarial image synthesis model capable of translating pre-contrast to DCE breast 
MRI axial slices, which includes lesion detection, localization, and realistic contrast 
manifestation.

� Generative model selection framework: We provide a principled definition of trustworthy 
synthetic data upon which we derive the scaled aggregate measure (SAMe) and validate it 
by finding the optimal synthetic data generator. SAMe combines perceptual and pixel-level 
synthetic data evaluation, enabling comparisons across generative models and the selection 
of optimal training checkpoints.

� Clinical utility validation of synthetic DCE-MRI volumes for tumor segmentation: We 
demonstrate the potential of our synthetic data by incorporating it into breast tumor seg- 
mentation pipelines. This approach enhances robustness across data domains by providing 
a wider range of training data while showing the coherence of our synthetic axial slices 
when stacked as three-dimensional (3D) MRI volumes.

� Joint synthesis of multiple DCE-MRI time points: We introduce and empirically validate 
the joint generation of images from multiple DCE-MRI time points using generative adver- 
sarial networks (GANs). Further, intensity distributions are extracted from the region of 
interest to model and assess contrast enhancement patterns of real and synthetic data on 
individual and dataset levels.

2 Related Work
Generative models such as GANs 27 and denoising probabilistic diffusion models (DDPMs) 28�30 

and latent diffusion models (LDMs) 31 have been widely applied to medical imaging in general 
and breast imaging in particular. 4,32�34 For example, Khader et al. 35 use unconditional DDPMs to
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generate non-fat saturated T 1-weighted breast DCE-MRI sequences. A set of models has been 
proposed to condition the generation process on input images 36�42 unlocking image-to-image 
translation and domain-adaptation applications in medical imaging. 43�45 Konz et al., 46 for in- 
stance, conditioned LDMs on anatomical segmentation masks to generate pre-contrast breast 
MRI based on 100 patient cases from the Duke-Breast-Cancer-MRI Dataset. 47 

Furthermore, a few first studies started to condition generative models on pre-contrast 
images to generate their post-contrast counterparts. 24,26,48�50 For instance, Kim et al. 51 designed 
a tumor-attentive segmentation-guided GAN that synthesizes a contrast-enhanced T 1 breast MRI 
image from a pre-contrast image while being guided by the predictions of a surrogate segmen- 
tation network. However, with the objective of improving segmentation using GAN-generated 
data, it can become counterproductive to limit the GAN contrast translation to the tumor seg- 
mentation predicted by the segmentation model. Similarly, but based on a chained tumor detec- 
tion model instead of a segmentation model, Zhao et al. 52 introduced tripartite-GAN to generate 
contrast-enhanced from non-contrast-enhanced liver MRI. As high-quality annotations such as 
segmentation masks or region-of-interest bounding boxes are costly to annotate and, therefore, 
likely a scarce resource, 4 it is desirable to accomplish the task of pre- to post-contrast synthesis 
without relying on such annotations. Wang et al. 53 introduced a two-stage GAN that, in its first 
stage, segments the contrast enhancement of the T 1-weighted image based on an adversarial loss. 
Next, in its second stage, it is trained to generate post-contrast DCE images relying on the 
segmentation network from the first stage using an L1 loss, an adversarial loss, and an edge 
detector�based L2 loss. Xue et al. 49 presented a pre- to post-contrast and post- to pre-contrast 
GAN for brain MRI images. Their bi-directional GAN encodes contrast and image in separate 
latent representations with the contrast representation producing a contrast enhancement map as 
output, which can then be subtracted from the synthetic post-contrast image to create the cor- 
responding pre-contrast image. 

Recent work has further demonstrated the potential of virtual contrast agents across various 
medical imaging modalities. 54�61 For instance, a feasibility study explored replacing gadolinium 
with a Bayesian deep learning model that predicts virtual contrast enhancement from non- 
contrast multiparametric brain MRI. 62 Similarly, a multicenter, retrospective neuro-oncology 
study showed that convolutional neural networks can generate synthetic post-contrast T 1- 
weighted MRI from pre-contrast scans, enabling accurate tumor burden assessment comparable 
to real contrast-enhanced images. 63 

In parallel, novel methodological advances have emerged. One example is the conditional 
autoregressive vision model, which synthesizes contrast-enhanced brain MRI using masked self- 
attention in an autoregressive framework that simulates progressive contrast agent dosage. 64 

Another approach leverages conditional diffusion and flow-matching models to incorporate 
uncertainty estimation in virtual contrast synthesis. 65 

Further, diffusion models have been shown to harmonize varying contrast levels while main- 
taining consistent segmentation performance in brain MRI. 66 Conditional GANs have also been 
trained on scans acquired at varying GBCA doses to synthesize contrast-enhanced images at 
fractional levels, using a patch-based Wasserstein loss to preserve noise characteristics. 67,68 

Other works have introduced novel loss functions to improve synthesis fidelity, such as 
frequency-domain consistency 69 and tumor-focused learning objectives. 50 

Müller-Franzes et al. 48 translated T 1 and T 2 images to contrast-enhanced breast MRI images 
using pix2pixHD 70 and conducted an observer study to test the realism of the synthetic images. 
Furthermore, Müller-Franzes et al. 71 compare in a more recent work diffusion models and GANs 
for synthesizing higher-dose DCE-breast MRI subtraction images from their lower-dose counter- 
parts. Han et al. 72 model the translation of diffusion-weighted imaging (DWI) from breast DCE- 
MRI volumes as a sequence-to-sequence translation task, whereas Zhang et al. 24 designed a GAN 
to synthesize contrast-enhanced breast MRI from a combination of encoded T 1-weighted MRI 
and DWI images. 24,48,49,53 

However, recent promising approaches have not been used to compute synthetic subtraction 
images and have not been validated on their potential to improve tumor segmentation using syn- 
thetic data. Furthermore, these previous approaches generated images from a single post-contrast 
sequence rather than generating images from multiple temporal DCE-MRI sequences. The latter 
remains a largely underexplored research problem. To this end, Schreiter et al. 73 tested the
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simultaneous generation of DCE-MRI time points with a U-Net architecture using multiple 
inputs (T 1-weighted, T 2-weighted, and diffusion-weighted MRI with multiple b-values). In 
Osuala et al., 26 the generation of a single, temporally variable DCE-MRI time point was shown 
by conditioning a latent diffusion model on the time passed since respective pre-contrast acquis- 
ition. However, jointly synthesizing DCE-MRI time points can be desirable to ensure coherence 
across the resulting images. Although extending over U-Net architectures by adopting a multi- 
scale conditional GAN, we further note that some modalities are not readily available in all clini- 
cal settings (e.g., high-risk population DCE-MRI breast cancer screening without T 2-weighted 
and diffusion-weighted MRI), prompting us to input only single T 1-weighted MRI images into 
our model for contrast synthesis. 

By addressing the temporal dynamics in DCE-MRI generation, we enable a more nuanced 
radiologic analysis of tumor localization and contrast enhancement patterns required in clinical 
settings. For instance, we show that our approach is promising to achieve higher image quality 
and detection sensitivity. At the same time, it also enables the assessment of contrast kinetics, 
which comprises important clinical biomarkers for cancer characterization such as contrast wash- 
in and wash-out slopes, peak enhancement, and perfusion and permeability parameters. 2,8�11

3 Materials and Methods

3.1 Dataset 
The Duke-Breast-Cancer-MRI Dataset, 47 a single-institutional open-access dataset available on 
The Cancer Imaging Archive, 74 is used in this study. The dataset was acquired at the Duke 
Hospital in the United States between January 1, 2000, and March 23, 2014. The dataset spans 
922 biopsy-confirmed patient cases with invasive breast cancer. It contains information about 
their histology reports, demographics, treatment records, recurrence and follow-up information, 
and ultrasound and mammography screening information, alongside a set of pre-operative MRI 
images. Each case involves one fat-saturated T 1-weighted sequence (pre-contrast) and up to four 
corresponding fat-saturated T 1-weighted DCE sequences (post-contrast). Between each DCE 
acquisition, a median of 131 seconds passed with scans acquired using a field strength of either 
1.5- or 3-T MRI machine. Out of the 922 patients, 828 were administered either Magnevist ® or 
MultiHance ® as CA with a contrast bolus volume ranging from 6 to 20 mL. The axial MRI scans 
come in dimensions of either 320 2 , 448 2 , or 512 2 in the coronal and sagittal planes while con- 
sisting of a varying number of slices in the axial plane. After transforming the respective digital 
imaging and communications in medicine (DICOM) files into 3D Neuroimaging Informatics 
Technology Initiative (NIfTI) volumes, their voxel values are min�max normalized per volume 
and scaled to values in the range [0, 255]. Next, axial slices are extracted from the 3D fat- 
saturated T 1-weighted (DCE-)MRI volumes after resampling them to an isotropic resolution 
of 1 mm 3 using the pixel spacing information provided in the DICOM headers. 

We further source 3D tumor segmentation masks for 254 of our cases from Caballo et al. 2 

Caballo et al. segmented these masks automatically using a fuzzy means algorithm in MATLAB. 
The masks were then refined by an experienced medical physicist and validated by a radiologist. 
We further manually verified these 254 cases, validating that the masks correctly correspond to 
the tumor volumes in the first phase of the DCE-MRI acquisition (time point 1) and, where 
necessary, adjusted the orientation. 

For the single-sequence pre- to post-contrast synthesis model, as shown in Fig. 1, we used 
668 cases without segmentation masks, out of the total of 922 cases of the dataset, as training 
data, whereas the remaining 254 cases with masks are randomly split into validation (224 cases) 
and test (30 cases) sets. This split is due to the availability of ground truth tumor masks and 
avoids data leakage by training the synthesis model exclusively on cases that are not used for 
validation or testing of the segmentation model. All axial slices, i.e., tumor-containing and non- 
tumor-containing slices, were extracted from 3D fat-saturated T 1-weighted (DCE-)MRI NIfTI 
volumes. These slices are then used as train, validation, and test data to enable the model to 
translate any two-dimensional (2D) slice from the 3D volumes. For the segmentation model, 
the same test set is used. For training and validation, we exclude 33 multi-focal cases from the 
224 cases where ground truth tumor masks are available. Multi-focal cases are defined as con- 
taining multiple distinct tumor foci. Their removal allows to ensure consistency with the ground
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truth annotations which delineate only a single primary tumor lesion. We apply a fivefold cross- 
validation, splitting the remaining 191 cases into training (80%) and validation (20%) subsets. 

For the multi-sequence pre to post-contrast synthesis model, we apply a new random split of 
the dataset to have a higher number of training cases, resulting in 762 train, 50 validation, and 
100 test cases, and including only cases with a minimum of three available DCE-MRI sequences. 
In this multi-sequence scenario, all tumor-containing axial slices were extracted and used along- 
side an additional 10% of axial slices adjacent to the tumor (i.e., 5% before the first and 5% after 
the last tumor-containing slice in axial dimension). Tumor-containing slices are identified based 
on the bounding box annotations of the Duke Dataset. Pre- and post-contrast slices are extracted 
as corresponding pairs.

3.2 Image Synthesis

3.2.1 Generative adversarial networks 
GANs 27 are a family of deep generative models composed of multi-hidden layer neural networks 
to implicitly learn a real data distribution from a set of real data samples to then, ultimately, 
sample unobserved new data points from that distribution. GANs are based on a two-player 
min�max game of a generator and a discriminator network. The generator (G) strives to create 
samples (^ x) from a noise distribution (p z ) that the discriminator (D) cannot distinguish from 
samples (x) stemming from the real image distribution (p data ), resulting in the value function

EQ-TARGET;temp:intralink-;e001;114;260min 
G

max 
D 

V ðD; GÞ ¼ min 
G 

max 
D 

½E x∼p data ½log DðxÞ � þ E z∼p z ½logð1 − DðGðzÞÞÞ �� : (1)

Goodfellow et al. 27 define the discriminator D as a binary classifier, detecting whether a 
sample x is either real or generated. The discriminator is trained via binary cross-entropy with 
the objective of minimizing the adversarial loss function L adv , which the generator, on the other 
hand, tries to maximize

EQ-TARGET;temp:intralink-;e002;114;183L adv ¼ −E x∼p data ½log DðxÞ � þ E z∼p z ½logð1 − DðGðzÞÞÞ � : (2)

3.2.2 Pre- to post-contrast DCE-MRI synthesis 
In the context of image-to-image translation, instead of generating data from a noise distribution, 
GANs 27 receive an input sample from a source distribution (x) to generate a corresponding output 
sample from a target distribution (^ y). In this research, we implement a Pix2PixHD 70 GAN for 
translating pre-contrast to post-contrast images. Pix2PixHD was chosen for its proven effective- 
ness in producing high-quality cancer imaging data, 4 along with its network architecture and 
methodological approach specifically tailored for paired image-to-image translation, fitting the

Real Pre-Contrast Real Post-Contrast Synthetic SubtractionSynthetic Post-Contrast Real Subtraction

Fig. 1 Overview of the pre- to post-contrast DCE-MRI synthesis using deep generative models, 
thereby localizing the contrast-enhanced tumor. Extending single sequence to multi-sequence 
DCE-MRI image generation further allows the characterization of tumors based on their temporal 
patterns of contrast agent uptake. The resulting synthetic images can be added as training data for 
downstream tasks (e.g., tumor segmentation), but, as shown, they can also be utilized to compute 
subtraction images commonly used in clinical settings for the diagnosis and treatment of breast 
cancer.
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pre-to-post-contrast transformation scenario. As illustrated in Fig. 2, the GAN architecture com- 
prises a generator network that processes images at two different scales�one to ensure global 
consistency and the other to generate fine details. In addition, the model incorporates two iden- 
tical discriminator networks, each operating at different image scales based on downsampled 
versions of the input images. The training of the model involves a weighted combination (λ) 
of least squares adversarial losses 75 (λ adv ¼ 1), discriminator feature matching losses 
(λ fm ¼ 10) calculated as the summed L1 loss between the real and synthetic image features 
extracted by each of the two discriminators and a VGG-based 76 perceptual loss (λ per ¼ 10)

EQ-TARGET;temp:intralink-;e003;117;299L GAN ¼ λ adv · ðL advðD1Þ þ L advðD2Þ Þ þ λ fm · ðL fmðD1Þ þ L fmðD2Þ Þ þ λ per · L per : (3)

Input images are transformed into the range ½−1;1 � and have a probability of 50% of being 
rotated by 90 deg during training. Following the best practices from Wang et al., 70 the model is 
trained for 200 epochs using an Adam optimizer (β ¼ 0.5) 79 and a learning rate of 2 × 10 −4 that 
decays linearly to zero from epoch 100 to 200. The images in the dataset are resized to pixel 
dimensions of 512 × 512. 

In the case of (i) pre-contrast to phase 1 DCE-MRI image synthesis, the grayscale post- 
contrast (phase 1) image is duplicated three times and stacked into three channels. This model 
was trained on a single NVIDIA GeForce RTX 3090 GPU with 24 GB RAM using a batch size 
of 1. 

For the case of (ii) pre-contrast to multi-DCE phase synthesis, the respective images of DCE 
phases 1, 2, and 3 are concatenated resulting in an output pixel dimension of 512 × 512 × 3. In 
this latter case, and despite outputting a single image, the pix2pixHD learns to synthesize the first 
three DCE-MRI acquisitions jointly. We extract the output of each of the three channel dimen- 
sions from these output images and store them separately as 512 × 512 × 1 image per DCE 
phase. We specifically selected the first three DCE-MRI phases, as additional acquisitions, such 
as DCE phases 4 and 5, are not available for a considerable fraction of cases in the dataset. This

Fig. 2 Overview of training workflow of our pre- to post-contrast translating GAN based on 
Pix2PixHD. 70 Three reconstruction losses (L1) and two least squares adversarial losses 75 from 
two discriminators (D 1 and D 2) and one pre-trained VGG 76 model are backpropagated into the 
generator, where lambda (λ) represents the weight of each of the different losses. Processing the 
images at two different scales inside the generator architecture balances local detail and global 
consistency, 70 which is further enforced by the two different image input scales in D 1 (full size) and 
D 2 (downsampled). The segmentation method is based on 3D U-Nets 77 from the nnU-Net 78 frame- 
work. The iteratively translated synthetic post-contrast axial slices are stacked to create 3D breast 
MRI volumes. These synthetic volumes correspond to the tumor segmentation masks, which were 
initially acquired based on the real post-contrast fat-saturated sequence.
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model was trained on a single Nvidia RTX A6000 GPU with 48 GB RAM and a batch size of 8 
using the PyTorch library 80 in a Python 3.11 environment.

3.3 Synthetic Data Evaluation

3.3.1 Defining trustworthy synthetic data 
Our review of the medical image synthesis literature 4,24,34,48,49,51�53 described in Sec. 2 reveals a 
lack of agreement on the appropriate metrics for assessing synthetic imaging data. Different 
metrics provide particular strengths such as correlation with human visual perception or useful- 
ness for clinical application. To prioritize and select specific metrics, we note the need for a 
principled definition of what desirable trustworthy synthetic data should encompass. To this end, 
inspired by the SynTRUST framework, 4 while also building upon insights from previous syn- 
thetic data evaluation studies and guidance provided in the literature, 4,25,33,81�85 we provide a 
general definition of trustworthy synthetic data. As depicted in Fig. 3, we define trustworthy 
synthetic data as a multi-dimensional framework comprising synthetic data (a) fidelity, (b) diver- 
sity, (c) condition adherence, (d) utility, (e) privacy, and (f) fairness. 

Fidelity (a) refers to the quality, realism, and degree to which the generated images accu- 
rately and convincingly replicate the characteristics of real-world images. Beyond visual sim- 
ilarity, fidelity also requires preserving essential features, shapes, textures, and statistical 
properties of the original data. Diversity (b) represents the objective of generating a wide range 
of synthetic images, ideally capturing the full spectrum of variability present in real-world 
images. This includes variations in features such as intensities, texture, structure, and patterns, 
as well as domain shifts within the data such as differences in pathological and anatomical man- 
ifestations, viewpoints, and contexts. Condition adherence (c) describes the extent to which the 
generated images accurately reflect specific, predefined conditions or attributes that were set 
during the synthesis process. This ensures that the images conform to particular requirements 
or constraints, such as provided features, labels, variables, contextual details, or input images. 
Utility (d) represents the practical value and effectiveness of synthetic images, commonly tied to 
achieving one or multiple specific goals or applications. This includes how actionable synthetic 
images are in serving their intended purposes, such as training machine learning models, val- 
idating algorithms, translating data to another domain, or augmenting real-world datasets. Utility 
can be measured indirectly by quantifying the contribution and impact of synthetic images in a 
practical task, e.g., via ablation studies. Privacy (e) pertains to the ability of synthetic images to 
protect sensitive information to ensure confidentiality while still providing valuable data for 
analysis or training. On one hand, generated data are desired to maintain essential characteristics 
of the real-world dataset to serve specific applications, however, without revealing or compro- 
mising confidential or identifiable information such as for instance a patient�s ailments, iden- 
tifying visual features, or other related personal data. Fairness (f) involves ensuring that synthetic 
images represent diverse and balanced data across different groups or conditions, avoiding biases 
that could lead to undesirable outcomes. Examples include generating synthetic images that

Fig. 3 Depiction of the generally applicable dimensions of trustworthy synthetic data alongside 
respective examples (in blue font) for their adoption in deep generative models for medical image 
synthesis. The present study evaluates fidelity, diversity, condition adherence, and utility. Privacy 
and fairness are included herein for the comprehensiveness of the dimensions encompassing 
trustworthy synthetic data.
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accurately reflect specific or specifically balanced demographics, conditions, or scenarios with- 
out favoring or underrepresenting any particular subpopulation. Hence, synthetic images are not 
to create or reinforce biases or inequities, thereby promoting equitable, impartially, and inclusive 
performance on downstream applications.

3.3.2 Synthetic data evaluation metrics for DCE-MRI synthesis 
As discussed above, it is desirable to provide a multi-faceted analysis of synthetic data while also 
automating the evaluation process to avoid laborious and costly manual human expert observer 
revisions. 4,84,85 We assess our synthetic DCE-MRI using multiple metrics comparing them 
against their real counterparts hence measuring (a) fidelity, (b) diversity, and (c) condition adher- 
ence. To this end, we provide comparisons of real�synthetic image pairs and real and synthetic 
image distributions. The latter is evaluated using the Fréchet inception distance (FID), 86 which 
computes the distance between two sets of features each extracted from one imaging dataset. 
These features are latent representations generated by passing each image in the dataset through 
a pretrained deep learning model, e.g., an Inception v3 87 pretrained on natural images from 
ImageNet 88 (FID Img ) or pretrained on radiology images from RadImageNet 89 (FID Rad ). Once 
the latent features are extracted from both synthetic and real datasets, they are each fitted to 
a multi-variate Gaussian X = real and Y = synthetic having means μ X and μ Y and covariance
matrices Σ X and Σ Y to compute the Fréchet distance as FDðX; Y Þ ¼ kμ X − μ Y k22 þ trðΣ X þ
Σ Y − 2ðΣ X Σ Y Þ12Þ. A recently introduced variation is the Fréchet radiomics distance (FRD), 26 

which compares extracted handcrafted radiomics 90,91 feature distributions extracted from medical 
images. To evaluate corresponding real�synthetic DCE-MRI image pairs, we use a comprehen- 
sive set of metrics including the mean squared error (MSE), mean absolute error (MAE), peak 
signal-to-noise ratio (PSNR), multi-scale structural similarity index measure (SSIM), 92 and 
learned perceptual image patch similarity (LPIPS). 93 Given the presence of corresponding refer- 
ence images in the pre- to post-contrast translation of axial MRI slices, we average metrics across 
all MRI slice image pairs, reporting each metric alongside its standard deviation across image 
pairs. Lastly, we additionally assess the generated DCE-MRI images based on their (d) utility by 
measuring their impact when included as additional breast tumor segmentation model training 
data, as described in Sec. 3.4.

3.3.3 Scaled aggregate measure 
As discussed in Secs. 2 and 3.3.1, there is no consensus on methods and metrics for evaluating 
synthetic data in general and in image-to-image synthesis tasks specifically. Various metrics are 
employed and reported, but there is ambiguity about which metric should take precedence, par- 
ticularly when different metrics yield conflicting results. This issue also complicates determining 
the optimal stopping point for training a generative model. Overall, this evident lack of a con- 
sistent evaluation metric underscores the necessity for our proposed unified measure of synthetic 
data quality. Given that each metric captures different facets of truth, we suggest that the most 
effective way to evaluate synthetic data is through an ensemble of metrics. Therefore, we propose 
an SAMe that scales and combines several metrics. These metrics include the SSIM, MSE, MAE, 
FID Img , 

86,88 and FID Rad . 
33,89 In this work, for simplicity, we define SAMe based on the afore- 

mentioned five metrics, but note that the integration of further metrics, such as LPIPS or PSNR, 
as well as additionally distinguishing between image-level and lesion-level metrics, can further 
improve the expressiveness and comprehensiveness of SAMe. The metrics in SAMe are scaled to 
a range [0, 1] using per-metric min�max normalization to achieve comparability and allow their 
combination. After scaling, smaller values correspond to increased performance for SAMe and 
each of its internal metrics, including SSIM which was reversed after scaling (i.e., the smaller, 
the better). Next, we compute SAMe as a non-weighted average among these metrics. The choice 
of the metrics in SAMe is flexible as we motivate researchers to adopt SAMe based on their 
particular image synthesis problem at hand. However, we draw attention that our choice of met- 
rics comprises a complementary selection balancing perceptual metrics that capture global 
semantics of imaging features (FIDs), metrics of perceived quality of images (SSIM and 
FIDs), and metrics focusing on fine-grained pixel-level comparisons between generated and tar- 
get images (MAE and MSE) to assess the accurateness of replication between an image pair. 
Although FID is associated with a high sensitivity to small changes and high correspondence
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to human inspection, 85 the pixel level metrics in SAMe measure objective (MSE, MAE) and 
perceived image fidelity based on a combination of luminance, contrast, and structural informa- 
tion (SSIM). 94 We further combine analytical metrics (SSIM, MAE, and MSE) with metrics 
derived from latent space feature representations of neural networks (FIDs), with the latter being 
further divided into domain-agnostic (FID Img ) and radiology domain-specific (FID Rad ) features 
to capture different dimensions of relevant information within the synthetic data. To this end, we 
compress complementary and mutually exclusive information present in the selected image qual- 
ity metrics into a single meaningful measure and show its application for the problem of gen- 
erative model training stopping criterion definition and training checkpoint selection.

3.4 Tumor Segmentation Downstream Task 
The segmentation of tumors is an important clinical task used, among others, to analyze and 
quantify the tumor and its volume. An accurate tumor delineation can be used for surgery and 
radiation treatment planning as well as monitoring and evaluating tumor growth or decline e.g., 
before, during, and after neoadjuvant chemotherapy. 

To evaluate synthetic data for automated tumor segmentation, we adopt a single 3D U-Net 77 

model using the nnU-Net framework 78 (i.e., nnunetv2 3d full_res). nnU-Net is a versatile deep 
learning framework for medical image segmentation, which self-configures its architecture based 
on the input data. We adopt its 3D U-Net architecture to capture volumetric tumor context while 
also retaining fine details via its skip connections between encoding and decoding layers. Using 
only the 3D convolutional architecture variant of the nnU-Net framework further enables testing 
whether individually translated synthetic 2D breast MRI slices can be reassembled to useful 3D 
breast MRI volumes. We follow the vanilla nnU-Net training configuration, however, without 
applying any of nnU-Net�s post-processing techniques such as all-but-largest-component sup- 
pression, 78 which are not specifically targeted to our breast tumor segmentation task. We train 
one 3D U-Net tumor volume segmentation model for 500 epochs for each fold in a fivefold cross- 
validation (CV). Test set performance is measured based on the averaged predictions of the 
ensemble of the five models, each of which was trained during one of the CV folds. The 
Dice coefficient is used as training loss and test set evaluation metric to measure segmentation 
performance. The Dice coefficient quantifies the overlap between the predicted tumor segmen- 
tation ðAÞ and the ground truth ðBÞ in a range [0, 1], with 0 representing no overlap and 1 indi- 
cating complete overlap. 

As shown in Fig. 2, the 2D synthetic slices are stacked to 3D synthetic volumes before being 
integrated as additional training data into our tumor segmentation pipeline. The same segmen- 
tation masks, which had initially been annotated in (a) the first real post-contrast DCE-MRI 
sequence, are used as labels in the segmentation model for (a) real post-contrast, (b) real 
pre-contrast, and (c) synthetic post-contrast MRI volumes, as depicted in Fig. 5. Given that 
in the ground truth masks only the primary lesion was annotated, we remove multifocal cases 
(33 cases) from the segmentation dataset. We further crop the volumes to include only a single 
breast per image rather than both breasts to avoid any bilateral cases and apply bias field 
correction. 95 The segmentation models were trained on a single NVIDIA GeForce RTX 
3090 GPU with 24 GB RAM.

4 Experiments and Results

4.1 Selection of Generative Model 
As the first experiment, we apply our proposed SAMe to our single sequence DCE-MRI gen- 
erative model, which translates a T 1-weighted pre-contrast image to its first sequence (phase 1) 
DCE-MRI counterpart. To this end, we demonstrate SAMe�s effectiveness as a generative model 
weight selection criterion. As shown in Fig. 4(a), we compute SAMe and its internal metrics 
(FID Img , FID Rad , MAE, MSE, and SSIM) during generative model training on each 10th epoch 
up until epoch 170. The FID metrics are computed for 3000 and MSE, MAE, and SSIM metrics 
for 5000 synthetic�real post-contrast axial MRI slice pairs from the validation set. In Fig. 4(a), 
epochs with metric values close to 0 indicate good generative model performance in comparison 
with values close to 1. For completeness, we also provide the original values of the metrics before 
SAMe scaling in Table 1. SAMe, as the aggregate across complementary metrics, is depicted
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using bar charts (in blue) in Fig. 4(a). Hence, the shortest bar represents the generative model 
checkpoint which performs the best across metrics and epochs. We note that the generative model 
achieves good performance already early in training with a SAMe score of 0.087 in epoch 10. 
The only checkpoint achieving better results is the one in epoch 30, resulting in a SAMe of 0.077. 
Further training follows a trend of gradually reduced performance in SAMe (e.g., 0.682 in epoch 
100) likely indicating an increasing overfitting on the training dataset. In the last row of Table 1, 
real post-contrast images are compared with their real pre-contrast counterparts. Compared with 
this baseline, the synthetic images from the different epochs (e.g., ep10, ep30, and ep50)

Fig. 4 Quantitative (a) and qualitative (b) illustrations of SAMe applied to DCE-MRI synthesis.
(a) We inspect the overall synthetic data fidelity and diversity using the SAMe across generative 
model training epochs, thereby enabling an informed selection of the best training checkpoint 
(i.e., epoch 30, achieving the lowest SAMe). Our SAMe metrics include synthetic image distribution 
distances (FID Img and FID Rad ), pixel space objective (MSE and MAE), and perception-based (SSIM) 
quality metrics. Metrics are scaled in the range [0,1], where lower values indicate better performance.
(b) Illustration of synthetic breast DCE-MRI images generated during GAN training after epochs 30 
and 90, exhibiting discernible variances in tumor representation. From left to right, (i) the real pre- 
contrast image is shown (i.e., the GAN input image), (ii) the respective real DCE phase 1 image, the 
synthetic real DCE phase 1 counterpart after (iii) 30 and (iv) 90 training epochs.

Table 1 Example of quantitative image quality results, based on SAMe and reported with stan- 
dard deviation on the validation set where applicable, for different GAN training epochs (ep). FID Img 

and FID Rad are based on 3000, and MSE, MAE, and SSIM are based on 5000 synthetic�real DCE- 
MRI axial MRI image slice pairs. As an upper bound, the real DCE versus real pre-baseline com- 
pares corresponding real pre-contrast and real DCE pairs.

Comparison

Metric

Dataset FID Img ↓ FID Rad ↓ SSIM ↑ MAE ↓ MSE ↓ SAMe ↓

Real DCE versus 
Syn ep10 DCE

Val 15.047 0.108 0.701 ± 0.081 93.895 ± 41.748 37.803 ± 9.960 0.087

Real DCE versus 
Syn ep30 DCE

Val 17.308 0.081 0.699 ± 0.081 88.733 ± 39.426 38.334 ± 9.582 0.077

Real DCE versus 
Syn ep50 DCE

Val 16.412 0.089 0.696 ± 0.090 101.696 ± 44.672 38.045 ± 10.985 0.188

Real DCE versus 
Syn ep100 DCE

Val 18.778 0.219 0.669 ± 0.116 113.144 ± 59.360 42.320 ± 17.792 0.682

Real DCE versus 
real pre

Val 34.062 0.120 0.660 ± 0.090 66.146 ± 31.758 42.933 ± 11.528
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consistently result in overall better metrics (e.g., FID Img , SSIM, MSE, and albeit with the excep- 
tion of MAE) when compared with real post-contrast images from the validation set. 

A noteworthy observation is that, both across and within training epochs, the various metrics 
yield inconsistent conclusions regarding the optimal synthesis model, highlighting the need for a 
unified measure such as SAMe. Yet, all metrics exhibit a similar overall trend, with lower (better) 
values until epoch 60, after which they increase remarkably, suggesting overfitting and dimin- 
ishing returns from continued training. Based on SAMe, epoch 30 emerges as the optimal source 
for a model checkpoint for generating synthetic post-contrast samples, which are subsequently 
used for the tumor segmentation downstream task and image synthesis test set evaluation.

4.2 Synthesis of First DCE-MRI Sequence 
To systematically assess the quality of image synthesis, we compare metrics between synthetic 
and real post-contrast MRI slices in the test set. After training the generative model, we generate 
T 1-weighted DCE-MRI phase 1 images�often corresponding to peak enhancement in the stud- 
ied dataset 47 �for both the image synthesis test set (30 cases) and validation set (224 cases). 
Figure 5 presents the qualitative results, illustrating the model�s translation of entire axial breast 
MRI slices to the post-contrast domain, along with corresponding subtraction images for six 
different patient cases. It is observed that some false-positive contrast regions are hallucinated 
(e.g., see the fourth row), and some tumors are only partially contrast-enhanced (e.g., see the fifth 
row of Fig. 5). In the randomly chosen patient case 045, depicted in the sixth row of Fig. 5, the 
real post-contrast image displays hypointense areas within the tumor, suggesting the presence of 
a necrotic core. With this feature being not clearly visible in the pre-contrast domain, it is not 
reproduced in the synthetic post-contrast image. Nevertheless, the respective synthetic subtrac- 
tion image enables detection and localization of the tumor, thereby preserving clinical utility for 
diagnostic and treatment workflows 96,97 despite limitations in replicating the internal tumor 
microenvironment in full detail for contrast kinetics assessment. Overall, the qualitative out- 
comes of our model underscore its capability to proficiently translate pre-contrast to DCE- 
MRI, demonstrating strong potential in synthetic contrast localization and enhancement. 

Table 2 presents a comparison of the 2D full axial slice image dataset, evaluating the sim- 
ilarity between the synthetic and real test case images. In this analysis, the synthetic DCE-MRI

Fig. 5 Synthesis of breast DCE-MRI as shown for six cases. 47 Two cases were manually selected 
from the validation set (first row: case 228 and second row: case 886), two manually selected from 
the test set (third row: case 378 and fourth row: case 907), and two randomly selected from the test 
set (fifth row: case 041 and sixth row: case 045). From left to right, we illustrate axial slices of the 
(a) real T 1-weighted pre-contrast MRI, (b) real DCE-MRI sequence 1, (c) synthetic DCE-MRI 
sequence 1, the subtraction image based on the (d) real and (e) synthetic DCE-MRI subtractions, 
and (f) ground truth segmentation mask.
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images demonstrate a significantly closer semantic and perceptual resemblance (as measured by 
FID scores, LPIPS, SSIM, and MS-SSIM) to the real DCE-MRI phase 1 images compared with 
their real pre-contrast counterparts. In the comparison of the splitted test datasets, it is important 
to note that the compared sets do not correspond to the same patient cases, enabling the assess- 
ment of variability across different patient test cases. Interestingly, based on the domain-agnostic 
FID Img , the variability among real DCE-MRI cases is found to be higher than that between real 
and synthetic DCE-MRI cases. Conversely, the FID Rad indicates less variability among real 
DCE-MRI datasets than between real and synthetic ones for the same dataset split. Specifically, 
according to the radiology domain-specific FID Rad , the variability across patient cases (splitted 
test) is generally higher than the variability among the pre-, post-, and synthetic post-contrast 
sequences (test) of corresponding cases. For real versus synthetic DCE-MRI, this also holds 
for FID Img . 

In addition, we assess subtraction images created by subtracting a pre-contrast image from 
either its real or synthetic DCE-MRI counterpart. Compared with the real versus synthetic DCE- 
MRI images, the corresponding real (real Subt) versus synthetic (Syn ep30 Subt) subtraction 
images show improved metrics in pretrained neural network�based image-level comparisons 
(i.e., LPIPS) and reconstruction-based metrics (i.e., MSE and MAE). However, at least this latter 
improvement can be attributed to the clipping of pixel values to 0 when they become negative 
after subtraction. In terms of structural perceptual metrics (i.e., SSIM and MS-SSIM) and latent 
feature distribution-based metrics (i.e., FID Rad and FID Img ), the comparison between real and 
synthetic DCE-MRI images yields better quantitative results than the subtraction image 
comparison.

4.3 Tumor Segmentation in First DCE-MRI Sequence 
Given the potential variability in data availability between pre- and post-contrast domains across 
different clinical environments, we conduct four types of tumor segmentation experiments. 
The first set of experiments, shown in the first block of Table 3, assumes that ground truth

Table 2 Multi-metric synthetic image quality evaluation on the test set containing 5186 images. 
Synthetic images were generated after 30 GAN training epochs with SAMe score as an epoch 
selection criterion. FID Img and FID Rad results are based on 2000 synthetic�real phase 1 DCE- 
MRI axial slice pairs, whereas 5000 pairs were used for the remainder of the metrics. Real 
DCE versus real pre describes the upper bound baseline that compares paired real pre-contrast 
and real phase 1 DCE slices. Subt refers to subtraction images, where pre-contrast images are 
subtracted from either their real (real Subt) or synthetic (Syn Subt) DCE counterparts. Splitted test 
describes a random by-patient split of the test set (i.e., without corresponding image pairs) that 
allows to capture the variance across patient cases in distribution comparison metrics (i.e., FID).

Comparison

Metric

Dataset FID Img ↓ FID Rad LPIPS ↓ PSNR ↑ SSIM ↑ MS-SSIM ↑ MAE ↓ MSE ↓

Real DCE versus
Syn ep30 DCE

Test 28.717 0.0385 0.064 ±
0.04

32.91 ±
1.35

0.726
±

0.089

0.798 ±
0.08

85.623
±

38.297

34.882
±

10.520

Real DCE versus
real pre

Test 59.644 0.1556 0.084 ±
0.05

32.42 ±
1.68

0.705
±

0.104

0.780 ±
0.07

66.121
±

34.473

40.124
±

16.183

Real Subt versus
Syn ep30 Subt

Test 46.931 0.2864 0.062 ±
0.03

34.74 ±
1.73

0.692
±

0.097

0.717 ±
0.09

44.896
±

23.403

23.425
±

8.602

Real DCE versus
Syn ep30 DCE

Splitted
test

43.865 0.7012 � � � � � �

Real DCE versus
real DCE

Splitted
test

49.808 0.2060 � � � � � �
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post-contrast data are entirely unavailable for segmentation during both training and testing. In 
this scenario, available pre-contrast training cases (baseline 1) are augmented with their synthetic 
post-contrast counterparts. The second set of experiments assumes that pre-contrast data are 
available for training, whereas the test data consists of post-contrast images. Here, we evaluate 
tumor segmentation performance under a domain shift, examining the impact of adding synthetic 
post-contrast cases to the pre-contrast baseline 2. The third set in Table 3 considers a scenario 
where real post-contrast data are available and used for both training and testing, assessing 
whether synthetic data can enhance the performance of the post-contrast baseline 3. Finally, the 
fourth set of experiments investigates a situation where segmentation models are trained on real

Table 3 Tumor volume segmentation results across four scenarios: (1) pre-contrast domain only,
(2) domain shift with post-contrast testing and no access to real post-contrast data during training,
(3) combined pre- and post-contrast training with post-contrast testing, and (4) synthetic post-con- 
trast data aiding models trained in the post-contrast domain but tested on pre-contrast data (e.g., 
due to patient pregnancy or allergy). Synthetic data improves performance notably in domain shift 
and pre-contrast test cases. Reported Dice coefficients are from a model ensemble with each 
model trained via one fivefold cross-validation fold.

Scenario 1. Pre-contrast training data and 
pre-contrast test data available

Dice ↑

Train on: Test on: real pre-contrast 

Real pre-contrast (baseline 1) 0.569 

Real pre-contrast + syn post-contrast (augmentation) 0.531 

Syn post-contrast 0.486

Scenario 2. Domain shift: pre-contrast training 
data but no pre-contrast test data available

Train on: Test on: real post-contrast 

Real pre-contrast (baseline 2) 0.484 

Real pre-contrast + syn post-contrast (augmentation) 0.663 

Syn post-contrast 0.687

Scenario 3. Post-contrast training data and 
post-contrast test data available

Train on: Test on: real post-contrast 

Real post-contrast (baseline 3) 0.790 

Real post-contrast + syn post-contrast (augmentation) 0.797 

Real post-contrast + real pre-contrast (augmentation) 0.780

Real post-contrast + real pre-contrast + syn 
post-contrast (augmentation) 

0.770

Syn post-contrast 0.687

Scenario 4. Domain shift: post-contrast training 
data but no post-contrast test data available

Train on: Test on: real pre-contrast 

Real post-contrast (baseline 4) 0.164 

Real post-contrast + syn post-contrast (augmentation) 0.409 

Syn post-contrast 0.486
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post-contrast data but tested on pre-contrast cases. This scenario includes instances where con- 
trast agents are not administered, such as in patient sub-populations such as pregnant women, 
patients with kidney issues, those who decline contrast media, or those at high risk of allergic 
reactions to contrast agents. 

In all data augmentation experiments, each training case is supplemented with its corre- 
sponding augmented version (e.g., real and/or synthetic post-contrast volumes). Importantly, the 
model does not receive any indication that an original training data point (e.g., a pre-contrast 
volume) and its augmented counterpart (e.g., a synthetic post-contrast volume) pertain to the 
same patient. The reported Dice coefficients are based on ensemble predictions from five seg- 
mentation models trained using fivefold cross-validation, 78 which is why standard deviations are 
not reported. 

Reviewing the results for baseline 1 in Table 3, we observe that synthetic post-contrast aug- 
mentations do not enhance segmentation performance within the pre-contrast domain. However, 
in the domain shift context of baseline 2, the inclusion of synthetic DCE-MRI volumes leads to a 
marked improvement in the post-contrast domain. Specifically, augmenting real pre-contrast data 
with synthetic post-contrast images increases the post-contrast Dice coefficient by 0.179 (from 
0.484 to 0.663) while maintaining a similar performance level in the pre-contrast domain (with 
Dice scores of 0.531 compared with 0.569). This finding aligns with the image quality analysis in 
Table 2, which confirms that the GAN-generated images fall within the post-contrast domain 
distribution, highlighting their effectiveness in addressing domain shift scenarios. 

Baseline 3 demonstrates strong tumor segmentation performance in the post-contrast 
domain, achieving a Dice score of 0.790. Although the improvement with synthetic DCE- 
MRI augmentation is modest, it still enhances performance to 0.797, making it preferable over 
pre-contrast augmentations, which yield a slightly lower score of 0.780. In contrast, baseline 4 
shows a more significant Dice score increase of 0.245 (from 0.164 to 0.409) in the pre-contrast 
test domain when synthetic post-contrast augmentations are used. Despite the synthetic DCE- 
MRI images being closely aligned with the DCE-MRI distribution (as indicated by an FID Rad of 
0.0385 between synthetic and real post-contrast test data in Table 2), it nonetheless captures 
relevant pre-contrast signals that enable the post-contrast segmentation model to generalize more 
effectively to pre-contrast test data. Notably, training solely on synthetic images, without real 
post-contrast counterparts, further boosts segmentation performance in the post-contrast domain 
by 0.077 (from 0.409 to 0.486).

4.4 Joint Synthesis of Multiple DCE-MRI Sequences 
Based on the respective pre-contrast T 1-weighted image of each patient, we jointly generate the 
images corresponding to the first three DCE-MRI sequence acquisitions using a checkpoint after 
30 training epochs of our multi-sequence conditional GAN. 

As shown in Table 4, we use multiple metrics to quantitatively assess each generated DCE- 
MRI sequence based on its similarity to its respective real DCE-MRI sequence. To facilitate 
interpreting and evaluating the obtained metrics, we compute the metrics also for the similarity 
of pre-contrast images with images from each of the real DCE-MRI sequences. It is observable 
that across each of the three DCE-MRI sequences, the synthetically generated images by our 
GAN method are substantially closer to the real DCE-MRI images compared with the lower 
bound pre-contrast-based baseline. This holds true across both image distribution comparison 
metrics (FID Img and FID Rad ) and image-level comparison metrics (e.g., LPIPS, SSIM, and MSE). 
With the exception of MAE and FID Rad (DCE P2 to DCE P3 ), an improvement across metrics is 
observed with temporally later DCE-MRI acquisitions, indicating enhanced performance at sub- 
sequent imaging phases. The achieved FID Img values (20.32 in DCE P1 ) are notably low even 
when compared with the single DCE-MRI sequence experiments (28.71) from Sec. 4.2 indicat- 
ing that the training and joint generation using multiple DCE-MRI sequences is likely to pos- 
itively affect model performance. 

To quantitatively evaluate the texture of the tumor area on the synthesized images, we 
employ the FRD, 26 comparing radiomics texture feature distributions extracted from both the 
real and synthetic images. The FRD BB þ Tex metric we compute restricts feature extraction to 
tumor regions defined by bounding box annotations 47 for the 2737 respective image-annotation 
pairs for each dataset. In FRD BB þ Tex we include exclusively the texture-based features of
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interest, namely, glcm, glrlm, gldm, glszm, and ngtdm derived using the PyRadiomics toolkit. 91 

The values of these features are z-score normalized across all features from both datasets (e.g., 
synthetic and real) and, for better interpretation, are scaled to the range common for FID as 
defined and recommended in Osuala et al. 26 Our adapted formulation emphasizes tumor-specific 
texture, which has been identified as a particularly challenging aspect of contrast-enhanced 
image synthesis due to the subtle and heterogeneous appearance of cancerous lesions and the 
tumor microenvironment. By focusing the analysis on this dimension, FRD BB þ Tex provides a 
robust measure of how well the generative model captures clinically relevant tumor character- 
istics in synthetic images. For our GAN-generated synthetic DCE-MRI data, we observe sub- 
stantially lower FRD BB þ Tex scores compared with the real pre-contrast versus real DCE 
comparison baseline, e.g., 116.37 and 209.70, respectively, for the first DCE-MRI time point. 
This trend is present across all of the temporal DCE-MRI sequences, demonstrating that tumor 
areas within our GAN-generated images overall capture a range of meaningful texture features 
that are present in the real DCE-MRI tumor areas. The GAN-generated subtraction images, while 
resulting in higher FRD BB þ Tex compared with its generated DCE-MRI counterparts, obtained 
vastly lower FRD BB þ Tex compared with the U-Net baseline across all DCE sequences. 

Inspired by the work of Schreiter et al., 73 which to our knowledge represents the closest 
approach to multi-sequence DCE breast MRI slice generation, we implemented a benchmark 
U-Net model 77 for comparative evaluation. Although our implementation is based on the 
MCO-Net architecture proposed by Schreiter et al., it has been adapted to fit the specific require- 
ments of our application. Different from their setup, we use a batch size of 16 and apply a sig- 
moid activation function in the final layer instead of tanh, as our output values lie within the range 
[0,1]. Unlike the original work, which incorporates T 2-weighted and multi-b-value diffusion- 
weighted images as additional inputs, we restrict our input to T 1-weighted non-contrast- 
enhanced MRI due to the constraints of our dataset. The U-Net is trained to generate subtraction 
images, i.e., computed by subtracting the non-contrast T 1-weighted input from each corre- 
sponding post-contrast DCE sequence, across all three DCE time points. Although we also 
experimented with directly predicting post-contrast images using this U-Net approach, the sub- 
traction-based output yielded better qualitative and quantitative performance and we report the 
latter in Table 4. 

Overall, the U-Net generated subtraction images (compared with their real subtraction image 
counterparts) show considerably lower performance (apart from MSE and MAE metrics) across 
all DCE-MRI time points in terms of image distribution metrics, as well as image-to-image com- 
parison metrics, when compared with the GAN-based approaches. The GAN-based approaches 
consist of (a) the comparison of GAN-generated DCE-MRI images with their real counterparts 
and (b) the comparison of real subtraction images with synthetic subtraction, where the latter are 
computed based on real pre-contrast images subtracted from GAN-generated DCE-MRI images. 
Subtraction images, particularly those generated by the U-Net, show strong performance on 
pixel-wise metrics such as MAE and MSE. This is in part likely due to the high proportion 
of low-intensity pixels present in both real and synthetic subtraction images, especially when 
compared with full DCE-MRI slices. Although the GAN-generated subtraction images otherwise 
have generally slightly lower performance values compared with the GAN-generated DCE-MRI 
images, they (i) capture the real subtraction image distribution reasonably well (e.g., see FID Img 

of 27.88 for sequence 2 in Table 4) and (ii) also show desirable results on the image-to-image 
comparison metrics (e.g., see LPIPS across all temporal sequences in Table 4). 

Figure 6 provides a respective qualitative comparison of three patient cases across the first 
three DCE-MRI sequences. In these cases, and while noting a high similarity of images across 
DCE-MRI acquisitions, both in the real as well as in the synthetic images a trend of increased 
lesion contrast enhancement toward later DCE-MRI acquisitions is noticeable. This temporal 
enhancement pattern is further reflected in the contrast enhancement curves, which show a gen- 
erally increasing mean pixel intensity across the DCE-MRI time points. This trend is consistently 
observed in both the synthetic and real DCE data, indicating that the generative model captures 
patterns of the underlying contrast kinetics. 

To further explore the differences among DCE-MRI acquisitions, we additionally compute 
the mean and standard deviation of the pixel intensity within the tumor area, which we locate 
based on the bounding box information provided in the dataset. 47 The bounding box allows to
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capture and assess contrast uptake within the lesion but also, as opposed to lesion-level delin- 
eation, its closely surrounding tissue adjacent to the gross tumor region. Next, we aggregate the 
mean tumor intensity over all test cases to get a value and standard deviation for intensity for each 
of the three analyzed temporal DCE-MRI sequences. This process is repeated for pre-contrast 
and also for each synthetic DCE-MRI sequence, with the results being summarized and plotted 
in Fig. 7.

Fig. 6 Qualitative results of joint multi-sequence DCE-MRI generation shown for three test cases 
with real images in each first row and respective synthetic images displayed in each second row. A 
single conditional GAN was trained to translate all test cases from pre-contrast to all three DCE- 
MRI sequences. Contrast enhancement curves are also shown, visualizing changes in image 
intensity across consecutive temporal DCE-MRI sequences for both real and synthetic data.

Fig. 7 Illustration of temporal contrast enhancement patterns based on the mean pixel intensity 
within the tumor bounding box area aggregated over all tumor-containing axial slices of all test 
cases. Although gray coloring represents values computed for pre-contrast (T 1) and post-contrast 
(DCE) of real test case images, red denotes values extracted from their synthetic DCE-MRI 
counterparts.
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Focusing on the differences between real and synthetic post-contrast mean intensity tem- 
poral patterns, it is noted that the intensities generally increase toward later stages of DCE-MRI 
acquisition, which is in line with the aforedescribed visual assessment of Fig. 6. This trend in the 
real mean pixel intensity patterns is also followed by their synthetic counterparts. Although the 
synthetic intensities have a slightly lower mean value than the real DCE-MRI ones, both syn- 
thetic and real intensities have comparable corresponding variances. In both cases, these varian- 
ces are larger than the one of the pre-contrast tumor area intensity. This indicates more variety in 
the DCE-MRI domain, which is present in the synthetic DCE-MRI images. A rationale for this 
diversity is given, for instance, by the inter- and intra-tumor heterogeneity often manifesting in a 
mixture of both hyper-intense and hypo-intense areas within the tumor in the DCE-MRI domain. 
Moving from generative model evaluation toward clinical application, where contrast kinetics are 
used as biomarkers for tumor characterization, malignancy estimation, and treatment planning, 
we assess intensity changes per individual tumor area across DCE-MRI sequences. To this end, 
we randomly select 33 test cases and visualize their mean lesion intensity value for synthetic 
(denoted as x markers) and real (denoted as circle markers) for each sequence as well as for 
the respective pre-contrast image (denoted as gray circle marker) in Fig. 8. 

The observations in Fig. 8 corroborate conclusions drawn from Fig. 7 indicating the general 
ability of the model to capture the dynamics of contrast uptake in the tumor lesion area. In the 
more detailed per-case scheme in Fig. 8, the majority of the cases (22 out of 33), the synthetically 
generated images feature the right order for the mean pixel intensity values, increasing over time. 
Moreover, the standard deviation value among pixel intensity values in the tumor lesion bound- 
ing box, depicted by the marker size, can also be seen to be captured overall correctly by the 
generative model. However, although synthetic data generally follows the trend of the real data, 
an offset between the mean intensity values for the real and the synthetic images can be observed. 
To this end, Fig. 8 demonstrates both, the complexity of the general task at hand, which asserts 
the generative model to detect, localize, highlight accordingly, and temporally adjust the high- 
lighting for each heterogeneous tumor of each patient with variations in manufacturer, scanner, 
tumor molecular subtypes, and patient characteristics. Overall, it is further indicated that the 
generative model is able to learn and represent this complexity reasonably well despite the 
differences between cases in contrast enhancement and tumor manifestation.

Fig. 8 Visualization of temporal contrast enhancement patterns based on mean pixel intensity 
within the tumor bounding box area aggregated over all tumor-containing axial slices for each 
of randomly selected 33 (out of 100) test cases. Circles denote real images, whereas x denotes 
synthetic counterparts. The mean pixel intensity standard deviation is represented by the marker 
size. The marker color encodes the temporal DCE-MRI sequence, with gray circles indicating the 
pre-contrast MRI sequence for comprehensiveness and comparability.
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5 Discussion and Future Work
Based on the results described in Sec. 4, we confirm our initial hypothesis that (post-contrast) 
DCE-MRI imaging data can be effectively generated from pre-contrast MRI inputs. Thus, the 
pre-contrast MRI provides a signal that is learnable via extracting statistical patterns from patient 
cohorts that allow the generative model to detect, localize, and enhance cancerous lesions. Our 
modeling approach can be viewed as an unsupervised lesion detection method that enables to 
identify cancerous lesions without the need for respective lesion-level annotations. Our modeling 
paradigm is thus of particular interest for clinical settings considering the need for cost-effective 
deep-learning methods, where annotation conducted by clinical experts commonly represents a 
major cost-driving factor. Toward clinical application, it is to be further noted that synthetic data 
can occasionally produce false-positive tumor hallucinations. Despite that, it can still be a valu- 
able tool for localizing and highlighting potential anomalies within the MRI volume, as such 
anomalies can then be flagged for clinical revision and in-depth examination by clinical experts. 
In cases where imaging of both virtual contrast and injected contrast are available, the difference 
is to be explored whether insights can be derived from the difference among the contrast enhance- 
ment in both images. For instance, if the virtual contrast prediction model is trained on only 
cancerous lesions (or, e.g., tumors of a specific molecular subtype), then a different tumor mani- 
festation in the real contrast enhancement can indicate an out-of-distribution case (e.g., benign, 
different molecular subtype). This consideration sheds light on the potential lying in research 
synthesizing multiple possible (contrast-enhanced) lesion manifestations to explore the within- 
distribution diversity and, thus, the uncertainty of a contrast prediction for a specific patient case. 
A contrast prediction marked as being uncertain (e.g., based on a variance threshold) can warrant 
the administration of contrast media in a clinical setting, where the risk-benefit tradeoff of physi- 
cal CA injection is evaluated on a case-by-case basis. 

Apart from treatment applications, future clinical validation studies are also encouraged to 
investigate generative modeling methods as diagnostic tools in DCE-MRI as screening modality 
in high-risk populations (e.g., with change in BRCA1 or BRCA2). Validating CA-free MRI 
screening regimes with synthetic DCE-MRI requires evaluation of an additional dataset, where, 
apart from cancerous lesions, a variety of benign findings are present. As compared with the 
present dataset assembled from neoadjuvant treatment cohorts, tumors in the screening regime 
can differ being smaller in size, earlier in stage, while also the potentially younger median age of 
patients can affect manifestations on the imaging data. 

Going beyond unsupervised lesion detection, the prediction of contrast enhancement 
kinetics via multi-sequence DCE-MRI generation unlocks further additional clinical use cases. 
As also indicated by our work, the progress in the field of computer vision, which rapidly 
expands the capabilities of deep generative models, narrows the gap toward wide-spread clinical 
application of such complex temporal modeling tasks. We note that multi-sequence DCE-MRI 
synthesis can potentially result in higher-quality synthetic images than single-sequence synthe- 
sis, likely due to the generative model having to learn more nuanced patterns in the temporal 
synthesis task. Considering our exploratory results for the multi-sequence synthesis of DCE- 
MRI, such synthetic temporal contrast enhancement patterns can be considered a promising alter- 
native for patients where CA injection is too risky. In this realm, biomarkers based on contrast 
kinetics are to be further investigated, particularly toward a comparison between real and syn- 
thetic biomarkers. This can enable future studies to define a benchmark for the research com- 
munity that assesses the clinical meaningfulness of a generative model�s produced synthetic 
biomarkers. Such a benchmark can further be extended by assessing the usefulness of real and 
synthetic biomarkers for specific clinical downstream tasks such as lesion malignancy prediction 
or treatment response prognosis. We note the additional potential for enhancement of our 
approach by integrating time-since-event variables 26 that condition the generative model to gen- 
erate DCE-MRI images for specific moments in time, e.g., based on milliseconds passed since 
pre-contrast acquisition or CA injection. This methodological extension introduces new possibil- 
ities of clinical application such as synthetically covering time points of interest in DCE-MRI 
protocols that could not have been acquired, for instance, due to the limitation of lengthy acquis- 
ition times of MRI scans. Multi-variable conditioning of the generative model can further allow 
counterfactual generation of DCE-MRI sequences, where for instance the malignancy level,
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tumor subtype, patient age, tumor staging, selected treatment, or other variables can be varied 
thereby resulting in insightful comparisons of alternative tumor manifestations. 

Although an exhaustive hyperparameter search was beyond the scope of this work due to 
computational constraints, future research is to explore alternative training schedules and opti- 
mizer configurations, 98�100 enhancing the stability and generalization of our generative models. 
Notably, the observed performance degradation beyond epoch 30 suggests that more refined 
learning rate strategies can help mitigate overfitting and enable sustained training stability. In 
this context, a future direction is to quantify the impact of these strategies, such as cosine 
annealing learning rate schedules, which have been shown to facilitate smoother convergence 
and help avoid sharp minima 101 and learning rate warm-up strategies. 102 

Additional potential realms of research include the comparison of fine-tuning versus training 
from scratch of the generative model and assessing different GAN and generative model archi- 
tectures such as denoising probabilistic diffusion models. 28�30 Using larger-scale datasets will 
further invite a stratified analysis as per tumor type, CA type, bolus volume, scanner type, field 
strength, and clinical center. A further line of research is to investigate the effect of integrating 
additional 2D and 3D imaging data such as diffusion-weighted MRI, T 2-weighted MRI, non-fat- 
saturated images as well as subtraction images either as (additional) inputs or as outputs that can 
be useful to enhance image fidelity. 24,73,103 In this regard, such input modalities provide com- 
plementary information to conditioning the generative model likely resulting in increased ana- 
tomical accuracy and reliability of lesion characteristics of the synthetic post-contrast sequences, 
particularly in complex cases. For instance, T2-weighted images can depict lesion morphology 
better as well as perifocal or prepectoral edema within the breast, whereas DWI captures higher 
signal intensity without relying on contrast agent administration. 96 However, including these 
modalities is associated with additional challenges, such as the need for accurate image regis- 
tration across modalities to avoid the introduction of respective alignment errors or artifacts, as 
well as the limited availability of such MRI acquisitions in real-world settings. 

Another avenue to explore is to probe whether DCE-MRI synthesis quality can be enhanced 
by (a) iteratively enlarging the proportion of tumor-containing slices or (b) by gradually increas- 
ing the patch size around the tumor region of interest 104 during training. 

As exemplified by row 1 in Fig. 5, we observe the difficulty in distinguishing fibroglandular 
tissue from tumor enhancement in contrast enhancement synthesis. This distinction is inherently 
challenging, especially in dense breasts, where benign fibroglandular enhancement can mimic 
malignant uptake. To avoid such cases, leading to an increase in false positives future work can 
apply region-aware loss functions or incorporating annotated fibroglandular maps can improve 
tissue differentiation in complex breast compositions. In general, adding and correctly weighting 
a reconstruction, perceptual, or adversarial loss for only the tumor area in DCE-MRI synthesis 
holds the potential to increase fidelity, diversity, and usefulness of the synthetic data. Such 
approaches can potentially allow models to better capture particular tumor features that lie in 
the long tail of the distribution such as, for instance, tumors with particular necrotic cores. 
Future studies can include these tumor-focused modifications additionally in the evaluation 
methods extending SAMe and its components by adding and weighting tumor area restrict com- 
putation of metrics for 2D slices as well as 3D volumes. 

Based on tumor segmentation, we show that stacked synthetic DCE-MRI volumes can be 
useful in increasing the robustness of downstream task models. Enhancing segmentation model 
generalizability across imaging domains is particularly advantageous in DCE-MRI, especially 
for patient populations restricted to pre-contrast imaging due to CA administration contraindi- 
cations such as allergic reactions, absence of consent, pregnancy, or compromised renal function. 
In addition, in some cases, fat-saturated DCE-MRI sequence may closely mimic pre-contrast 
images due to small-sized tumors, low CA doses, or rapid washout, emphasizing the necessity 
for models that maintain robust performance across both pre-contrast and post-contrast settings. 

Focusing on the use of synthetic DCE-MRI for training via augmentation and domain adap- 
tation, another dimension worth exploring is testing models trained on real post-contrast images 
using synthetic post-contrast images at inference. Although this may offer technical insights 
into the interchangeability of real and synthetic data, it remains a clinically open and critical 
question whether decision-making can rely on synthetic inputs, given the risk of artifacts or 
hallucinations. 4,105,106 The clearer clinical utility of synthetic data lies in enhancing model
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performance as training input, both within and across modalities, where it has shown value in 
improving generalization and robustness. 33,44,107,108 

As an alternative to data augmentation, we guide future work to also explore pre-training on 
synthetic DCE-MRI for downstream model training. Related to that, a promising approach is to 
analyze the impact of concatenated corresponding multi-modality image inputs into the segmen- 
tation model during training and testing (e.g., pre-contrast with multiple DCE-MRI sequences, as 
well as synthetic sequences) while also separately evaluating challenging bilateral and multifocal 
cases. Although this study explores synthetic DCE-MRI in the context of tumor segmentation, 
additional downstream applications such as radiomic feature analysis represent important direc- 
tions for future research. Radiomic features quantify tumor heterogeneity, morphology, and 
enhancement dynamics, which are essential for diagnosis and treatment planning. 90 In this con- 
text, the proposed SAMe metric may serve as a useful proxy for evaluating the preservation of 
structural and textural features relevant to radiomic tasks. Conversely, insights from radiomic 
analysis can inform future extensions of the SAMe metric to enhance its interpretability and 
robustness as a quantification tool of medical image synthesis. As a unified score of multiple 
quantitative measures, the next step in the evaluation of SAMe is to assess its alignment with 
clinical relevance. The latter can be assessed based on radiologist feedback or expert-driven 
image validation to correlate SAMe scores with visual assessments, diagnostic confidence, 
or lesion detectability. Guiding potential refinements to its weighting or formulation, such future 
work can help to establish the metric in clinical workflows.

6 Conclusion
Following the SynTRUST framework 4 for trustworthy medical image synthesis studies, our work 
demonstrates that virtual contrast injection can generate high-quality synthetic DCE-MRI 
images, effectively supporting tumor detection, localization, and segmentation. Our findings 
highlight the potential of integrating deep generative models into MRI workflows as a non- 
invasive alternative for patients who cannot undergo standard contrast-enhanced imaging, 
thereby enabling more accurate and personalized treatment strategies. The potential of DCE- 
MRI synthesis is further demonstrated as a training data augmentation method to enhance down- 
stream breast tumor segmentation models, which, for instance, increases robustness across 
modalities. We further define trustworthy synthetic data based upon which we introduce the 
SAMe as a unified metric to evaluate synthetic data quality and guide generative model training 
checkpoint selection, addressing the limitations of conventional single-metric assessments. In 
addition, generating multiple subsequent DCE-MRI sequences facilitates a deeper assessment 
of tumor response to contrast media, offering critical insights for tumor characterization and 
individualized care planning. Overall, this work marks a significant step toward incorporating 
virtual contrast and deep generative models into clinical practice, paving the way for improved 
diagnostic accuracy and patient outcomes in breast cancer management.
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