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A B S T R A C T

Background and purpose: This study investigates the use of Vision Transformers (ViTs) to predict Freedom from 
Local Failure (FFLF) in patients with brain metastases using pre-operative MRI scans. The goal is to develop a 
model that enhances risk stratification and informs personalized treatment strategies.
Materials and methods: Within the AURORA retrospective trial, patients (n = 352) who received surgical resection 
followed by post-operative stereotactic radiotherapy (SRT) were collected from seven hospitals. We trained our 
ViT for the direct image-to-risk task on T1-CE and FLAIR sequences and combined clinical features along the 
way. We employed segmentation-guided image modifications, model adaptations, and specialized patient sam-
pling strategies during training. The model was evaluated with five-fold cross-validation and ensemble learning 
across all validation runs. An external, international test cohort (n = 99) within the dataset was used to assess the 
generalization capabilities of the model, and saliency maps were generated for explainability analysis.
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Results: We achieved a competent C-Index score of 0.7982 on the test cohort, surpassing all clinical, CNN-based, 
and hybrid baselines. Kaplan-Meier analysis showed significant FFLF risk stratification. Saliency maps focusing 
on the BM core confirmed that model explanations aligned with expert observations.
Conclusion: Our ViT-based model offers a potential for personalized treatment strategies and follow-up regimens 
in patients with brain metastases. It provides an alternative to radiomics as a robust, automated tool for clinical 
workflows, capable of improving patient outcomes through effective risk assessment and stratification.

Introduction

Brain metastases (BMs) are ten times more common than primary 
brain tumors and the most prevalent intracranial tumor type. They affect 
about 20 % of cancer patients and cause significant morbidity and 
mortality [1,2]. For symptomatic or large BMs, guidelines recommend 
surgery. Post-operative stereotactic radiotherapy (SRT) to the resection 
cavity improves local control by achieving up to 70–90 % control rates 
at twelve months [3,4].

Understanding individual local failure (LF) better can enhance 
therapy, allowing high-risk patients to benefit from escalated SRT doses, 
systemic therapies that penetrate the blood–brain barrier, and more 
frequent imaging follow-ups for early detection of potential failures [5].

In a recent study, Buchner et al. achieved a concordance index (C- 
Index) of 0.77 in external validation for predicting freedom-from-local- 
failure (FFLF) by integrating radiomic features from contrast-enhancing 
pre-therapeutic brain metastases (BMs) and surrounding edema with 
clinical data [5]. Other studies have used radiomic features for FFLF 
prediction [6–8], often reducing the task to binary predictions at specific 
time points and without external validation. Radiomics models require 
complex feature selection based on domain expertise, whereas deep 
learning models automatically extract features and learn data repre-
sentations with multiple levels of abstraction, enabling end-to-end 
training [9].

The advancements in deep learning have impacted medical research 
as well, with studies exploring brain metastasis local failure prediction 
on pre-therapeutic MRIs [10–13]. These studies often treat it as a binary 
prediction problem at a specific time cutoff [11–13] or use a two-stage 
approach, separating feature extraction from final prediction [10].

While Convolutional Neural Networks (CNNs) have been considered 
the standard in computer vision, the Vision Transformer (ViT) has 
recently emerged as a powerful alternative. ViTs, which adapt the state- 
of-the-art natural language processing (NLP) architecture, transformers 
to image analysis, have shown superior results to CNNs like ResNet 
[14,15]. In ViTs, images are divided into patches that serve as input 
tokens, similar to words in NLP, and fed through the network as sen-
tences. The self-attention mechanism among tokens in ViTs allows them 
to process local and global dependencies across an entire image, 
improving their ability to understand spatial relationships [14].

Deep learning models are often criticized for their lack of inter-
pretability [16]. However, the attention mechanism in ViTs can be 
visualized to support interpretability by highlighting the parts to which 
the network gives importance [17,18].

The objective of this project was to explore the capabilities of ViTs to 
develop a deep learning model predicting FFLF after resection and SRT 
of BMs as a right-censored time-to-event endpoint. We trained ViTs on 
pre-treatment MRI scans and clinical features, using Cox partial log- 
likelihood to predict hazard ratios for FFLF, adapting survival 
modeling to deep learning for a direct from-image-to-risk estimation. 
The models were externally validated with a multicenter international 
test cohort.

Materials and methods

AURORA study

As part of the retrospective AURORA trial (A Multicenter Analysis of 

Stereotactic Radiotherapy to the Resection Cavity of Brain Metastases), 
MR imaging and clinical data were collected from 352 eligible patients 
across seven hospitals. Inclusion criteria required a known primary 
tumor, treated with BM resection and subsequent SRT (>5 Gy per 
fraction) within 100 days after surgery. Patients with prior cranial RT or 
premature RT discontinuation were excluded. Synchronous non- 
resected BMs were treated concurrently. See Table 1 for patient 
characteristics.

LF was determined through radiological assessment at 3-month in-
tervals by a board-certified radiologist or via histology after surgical 
removal of recurring BMs. FFLF was measured from the end of SRT to LF, 
with patients censored at their last imaging follow-up if LF did not occur.

Further details on hospitals, treatments, doses, event distribution, 
and ethical approval are available in supplementary material A.1.

Dataset

The imaging data consisted of four pre-operative scans: T1-weighted, 
T1-CE (contrast-enhanced), T2-weighted, and T2-FLAIR (fluid-attenu-
ated inversion recovery) sequences. Due to the absence of T2 scans in 34 
% of patients, we excluded them. As they contain the highest intensity 
contrast between healthy and malignant tissue and are rich in infor-
mation, we used only T1-CE and FLAIR sequences in our study.

Expert-delineated BM core and edema segmentations were available 
alongside segmentations by the U-Net algorithm developed and tested in 
the same patient cohort [19].

Tabular clinical data included age, Karnofsky index (KPS), primary 
cancer type, BM location, and binary indicators for chemotherapy and 
immunotherapy during primary tumor treatment. To ensure all inputs 
were pre-therapy, we excluded metastasis-specific treatment details (e. 
g., total Gy).

For training, 253 patients from two centers (TUM, USZ) were sepa-
rated from an external, multi-center international test group of 99 pa-
tients from five centers (FD, FFM, FR, HD, and KSA). See supplementary 
material A.1 for details on dataset partitioning.

The same group of patients was used in [5] for FFLF prediction using 
radiomic features.

Pre-processing
MRI sequences were pre-processed using the BraTS Toolkit [20], 

yielding co-registered, skull-stripped images with 1 mm isotropic reso-
lution in the SRI-24 atlas (240 × 240 × 155 voxels). Intensities were 
min–max normalized to [0, 1] based on the 0.5th–99.5th percentiles. For 
a more focused input, we cropped scans to a volume of interest (VOI) 
around the edema tissue of the BMs. For patients with multiple BMs (120 
in total), we used the largest GTV associated with recorded LF infor-
mation. Cropping was guided by U-Net segmentations [19], underlining 
a fully automatic pipeline.

Cropped volumes varied in size, so we standardized them by 
expanding the cropping boundaries to 95 × 123 × 105 voxels—the 
dataset’s largest edema extents. and hence ensured a global shape that 
was consistent for batching. Although this expansion added large 
amounts of healthy tissue for most patients, it still brought a more 
tumor-focused view and an 85 % size reduction.

MRI modalities (T1-CE, FLAIR) and segmentation maps were com-
bined along the channel dimension, forming a 3 × 95 × 123 × 105 input 
per patient. Clinical features were processed by normalizing age and 
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dummy-encoding categorical variables.

Deep learning model

Model architecture
We employed a 3D Vision Transformer (ViT) [14] to encode MRI 

sequences into latent representations, which were fused with clinical 
features and processed through linear layers to predict LF risk. The 
encoder comprised twelve transformer layers (Fig. 1), using a latent size 
of 512, eight attention heads, and an MLP (multi-layer perceptron) 
dimension of 3072. These architectural parameters deviate from con-
ventional ViT configurations [21] but were optimal for our use case. An 
ablation experiment showing this can be seen in supplementary 
Table C6.

Input images x  ∈ R3×95×123×105 were tokenized via non-overlapping 
patches using a single 3D convolution (163 kernel, stride 16) as in [14].

A learnable CLS (classification) token was appended to the initial 
patch embeddings and propagated through the transformer. This token 
acted as a blank slate for the input, forcing the model to encapsulate all 
vital information via self-attention. Ultimately, only the CLS token was 
used for prediction.

Following Darcet et al. [22], we appended four learnable register 
tokens to the end of the input sequence. These tokens help the trans-
former register redundant information to learn to ignore some details for 
more focused predictions. This approach also aids in isolating the net-
work’s attention around the target area, enhancing the explainability 
analysis.

The final CLS token state was concatenated with clinical features and 
passed through three LeakyReLU-activated [23] linear layers for 
dimensionality reduction before output.

All the learnable model parameters were initialized randomly 

without any transfer learning. Our model and workflow are visualized in 
Fig. 1.

Loss function
We modeled the LF risk as a scalar output of patient hazard ratios 

dependent on input features. Thus, we used Cox Partial Log-Likelihood 
[24] as the loss function to optimize our network. The equation can be 
found in supplementary material B.3.

Software details
We implemented the code in Python using PyTorch (version 2.2.0) as 

the deep learning framework. The model was based on the ViT from the 
MONAI library [25] (version 1.3.0), which was also used for data 
loading and augmentation. The training pipeline was created with 
PyTorch Lightning (version 1.8.6).

Training

All our experiments shared identical training configurations. The 
neural network weights were updated by batch-wise gradient descent. 
The batch size was ten, but we accumulated the gradients for four 
batches, increasing the effective size to 40 patients. Optimization- 
specific parameters can be seen in Appendix B.

We always trained as a five-fold cross-validation to inspect the 
variance in the prediction performance. The maximum number of 
epochs per fold was set to 100, which lasted around 20 min to complete. 
6 GB of VRAM was sufficient to train the model.

Augmentations
To increase the robustness of models through more variability in the 

training data, we employed a set of random image-level intensity and 

Table 1 
Patient cohort demographics. Continuous features are given as medians and interquartile ranges (IQR) in parentheses. Categorical features are depicted by the number 
of counts in the dataset.

Training cohort Test cohort
Overall 
N = 253

TUM1 

N = 167
USZ2 

N = 86
Overall N = 99 FD3 

N = 5
FFM4 

N = 11
FR5 

N = 18
HD6 

N = 44
KSA7 

N = 21

Age 62 
(53,71)

62 
(53,71)

62 
(54,69)

61 
(54,67)

63 
(55,64)

57 
(52,66)

58 
(50,66)

61 
(54,65)

63 
(59,70)

KPS 80 
(70,90)

80 
(70,90)

90 
(80,90)

90 
(80,90)

80 
(80,80)

90 
(90,90)

90 
(82,100)

80 
(78,90)

90 
(90,100)

Location
Frontal 

Temporal 
Parietal 
Occipital 
Cerebellar 
Other

86 
32 
47 
27 
56 
5

67 
18 
28 
12 
39 
3

19 
14 
19 
15 
17 
2

33 
7 
20 
12 
24 
3

1 
2 
2 
0 
0 
0

4 
0 
1 
2 
4 
0

5 
1 
1 
3 
5 
3

14 
2 
13 
5 
10 
0

9 
2 
3 
2 
5 
0

Primary Diagnosis
NSCLC 

Melanoma 
Breast 
RCC 
GI 
Other

89 
47 
34 
11 
26 
46

37 
24 
33 
9 
26 
38

52 
23 
1 
2 
0 
8

39 
9 
19 
8 
11 
13

3 
1 
0 
0 
0 
1

6 
1 
3 
1 
0 
0

2 
1 
5 
2 
4 
4

19 
2 
9 
3 
5 
6

9 
4 
2 
2 
1 
2

Residual 
Areas

66 66 0 21 1 2 1 11 6

Surgery 
to RT (d)

20 
(5,29)

26 
(20,34)

4 
(3,5)

32 
(22,44)

31 
(28,32)

30 
(24,40)

7 
(6,8)

40 
(31,50)

35 
(25,44)

Concurrent CTX 15 8 7 3 0 2 0 1 0
Concurrent ITX 10 6 4 13 0 3 0 9 1
EQD2 43.75 

(37.5, 
43.75)

43.75 
(43.75, 
43.75)

37.5 
(37.5, 
37.5)

37.5 
(34.7, 
42.0)

37.5 
(37.5, 
40.0)

34.7 
(28.9, 
36.0)

37.5 
(37.5, 
42.3)

38.3 
(34.7, 
43.8)

40 
(31.2, 
40.0)

Total BM burden (ml) 11 
(5,29)

11 
(20,34)

12 
(3,5)

13 
(22,44)

41 
(28,32)

17 
(24,40)

14 
(6,8)

9 
(31,50)

14 
(25,44)

Events 36 26 10 16 2 2 5 4 3

1: Technical University of Munich 2: University Hospital of Zurich 3: General Hospital Fulda 4: University Hospital Frankfurt 5: University Hospital Freiburg 6: Hei-
delberg University Hospital 7: Kantonsspital Aarau.
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geometric augmentations. The total set of operations and their respec-
tive parameters can be viewed in supplementary Table B5.

Addressing LF Imbalance with batching
Patient distribution per batch is crucial since the loss value LCox be-

comes zero if all patients in a batch are censored, causing instability in 
the learning process. It is also resource-inefficient to run steps that do 
not contribute to the network updates. To address this, we used stratified 
batching, ensuring each batch included at least one patient (up to three 
to allow randomness) with LF as long as uncensored patients remained. 
If uncensored patients were oversampled, we started a new epoch.

Model ensemble
Combining multiple models into a single predictor to increase model 

performance is a common practice to reduce variance and exploit 
different focus points of diverse models [26]. Instead of picking the best, 
we performed ensembling by averaging the outputs of all folds for every 
test patient.

Evaluation

For evaluation, we used Harrell’s Concordance Index (C-Index) [27], 
as typical in time-to-event analyses.

We compared our approach with various baseline methods. The 
predictive performance of two clinically established indices, Recursive 
Partitioning Analysis (RPA)48 and Graded Prognostic Assessment 
(GPA)49, as well as BM volume alone, was evaluated using univariate 
Cox analysis.

As deep learning baselines, we trained DeepSurv [28], a renowned 
time-to-event model for tabular data, with different sets of features: 
clinical only and clinical combined with image features extracted with a 
recently published medical foundation model, FMCIB [29].

Further, for end-to-end learning baselines, we used a 3D ResNet34 
[30] and the TransRP [31] model, a hybrid network combining 
ResNet18 and ViT, which has been successful in predicting recurrence- 
free survival (RFS) in head-and-neck tumors. To ensure comparability, 
we applied the same input processing steps for the baseline models and 
modified their final predictor layers to match our approach (three linear 
layers, see Fig. 1). The method for fusing clinical features was also kept 
constant when applied. For all models, we report imaging-only results as 
well.

For patient stratification, the 33rd and 66th percentiles of the 
continuous risk ranks in the training cohort served as cutoffs, which 
were used to divide the test cohort into three groups based on predicted 
risk ranks. We employed Kaplan-Meier analysis to compare the survival 
rates among the groups. Both cutoff determination and stratification 
were performed on the final predictions after ensembling.

Model explainability

We conducted a qualitative analysis of the saliency maps from the 
networks to identify image areas relevant to predictions. In transformer 
architectures, saliency maps can be generated inherently from attention 
matrices of the layers as the network learns which patches are impor-
tant. However, our model had twelve attention blocks with eight heads 
each, making it difficult to determine which is the true explanation. 

Fig. 1. Overview of our total workflow and our transformer architecture.

A.C. Erdur et al.                                                                                                                                                                                                                                Radiotherapy and Oncology 210 (2025) 111031 

4 



Various methods have been explored [18] to incorporate more of the 
network’s structure into the explanations. We applied the beyond 
attention method [32] that combines attention matrices with Layer-wise 
Relevance Propagation (LRP) [33] across all heads and layers to high-
light the most relevant components in the image. The equations are 
provided in supplementary material B.4.

We considered relevance scores only for the CLS token against input 
tokens since the rest were discarded for the prediction at the end. Sa-
liency maps were generated for one example model (with the highest 
test score), as it was challenging to backpropagate through the ensem-
bled networks to create an aggregated explanation.

Results

Table 2 highlights the importance of our proposed methods. Each 
addition contributed to the total increase of C-Index from the baseline 
vanilla ViT (image only, no segmentation guidance, random batching) to 
our final model. We further show in the supplementary Table C7 that the 
improvement was model agnostic. Hence, when applicable, these fea-
tures were set as default while benchmarking against other models.

As seen in Table 3, our ViT outperformed all the baseline models on 
average test set results (0.7336 C-Index). Compared to the image-only 
scenario, all the models benefited from including clinical features.

Among the clinical baselines, BM volume was a strong predictor in 
the test cohort with a 0.77 C-Index but only achieved 0.51 in the training 
cohort, showing high instability. There was no significant difference in 
BM volumes between the training and test cohorts (p = 0.64, Wilcoxon 
rank sum test).

Ensembling improved the model’s performance in all cases up to the 
best total performance (0.7982 C-Index). This may be interpreted as the 
predominance of the best individual fold closer to the ensemble per-
formance than the mean performance. There was no sign of a strong 
correlation between the ensemble predictions and the BM volumes 
(Spearman’s rank coefficient r = 0.2046, p = 0.042).

In Table 4, we analyzed the performance of the model ensemble for 
each primary diagnosis subgroup. It was highly predictive for each 
primary cancer but was sensitive to ambiguity when multiple subtypes 
were gathered as Other.

When tested using expert-made contours instead of the U-Net seg-
mentations, the performance increased to 0.7358 C-Index on average 
and to 0.7992 for the ensemble. In comparison with the expert seg-
mentations, the U-Net contours had Dice coefficients of 0.8960 (edema) 
and 0.9266 (BM core) for the largest lesions in the test cohort.

Using the cutoffs from the training cohort, the test cohort was split 
into low-, medium-, and high-risk groups. Survival functions for each 
group are visualized in Fig. 2 with Kaplan-Meier analysis. Our model 
could stratify patients significantly (p = 0.0001, log-rank test).

Decision curve analysis indicated that our model provides a net 
benefit over treating all patients or none, and the clinical-only model 
within the threshold range from 0.1 to 0.5. Compared to the clinical- 
only model, it also shows an improved calibration (see Fig. 3).

Visualization of the relevant areas of the input MRI scans through 

gradient-fused attention maps [30] validated that our model focused 
well on the BM to predict the LF risk (Fig. 4). We investigated the 
overlap of BM volumes with the top 80th percentile of attention. Such a 
threshold was applied to remove regions with up to 103 smaller atten-
tion magnitudes.

On average, 89.5 % of the BM core and 78.4 % of GTV were covered 
by the attention area. Using the register tokens further increased the 
localization capabilities (93.5 % coverage of BM core and 84 % GTV). 
However, it should be noted that for both settings, attention was also 
observed outside of GTV areas and even outside of the brain structure. 
Specifically, 15 % of the total was laid over the GTV on average. We 
analyzed prediction quality by calculating individual C-Index scores per 
patient. There was no significant correlation between high C-Index and 
GTV coverage of attention (Spearman’s rank coefficient r = 0.25, p =
0.82) or percentage of total attention laid over the GTV (Spearman’s 
rank coefficient r = 0.3, p = 0.88).

Discussion

We explored ViTs for predicting FFLF using pre-operative MRI scans 
of BM patients. Despite a relatively small dataset, our model benefited 
from network modifications and segmentation-guided input adapta-
tions, achieving strong predictive performance (0.7982 C-Index). ViTs 
consistently outperformed clinical and CNN-based baselines, demon-
strating their superiority.

However, larger models such as TransRP [31] and ViT-Basic [21] 
(with 118 M and 94.7 M parameters, respectively) struggled with data 
scarcity and showed lower test performance despite better training 
cohort learning. Our medium-sized ViT (57.3 M parameters) achieved a 
better balance.

Table 2 
Mean ± standard deviation C-Index scores of our different Vision Transformer 
(ViT) settings on the held-out test set, illustrating the incremental performance 
gains from each methodological enhancement. Each row adds one feature to the 
previous configuration. The bolded value indicates the best-performing model 
variant.

Model Added Feature Test C-Index

Vanilla ViT − 0.5912 ± 0.041
ViT + Clinical Features 0.6691 ± 0.031
ViT + Segmentation-guided Image Cropping 0.7139 ± 0.044
ViT + Segmentations as Additional Input 0.7267 ± 0.042
ViT + Stratified Batching 0.7311 ± 0.035
ViT + Register Tokens 0.7336 ± 0.029

Table 3 
Comparison against baseline models. Deep learning results are reported from 
cross-validation on the held-out test set and include the mean ± standard de-
viation, best-performing fold, and final performance of the ensemble predictor 
(averaged across folds). Bold values indicate the best performance in each 
column.

Model Test C-Index

Clinical (Cox analysis)
Recursive Partitioning Analysis 

(RPA)48
0.39

Graded Prognostic Assessment 
(GPA)49

0.44

BM Volume 0.77
Deep Learning 5-Folds Best Fold Ensemble
DeepSurv (clinical only) 0.6625 ± 0.023 0.7002 0.6681
DeepSurv (clinical + FMCIB) 0.5507 ± 0.016 0.5738 0.5549
ResNet34 (image only) 0.6501 ± 0.038 0.6845 0.6587
ResNet34 (image + clinical) 0.6879 ± 0.032 0.7105 0.7135
TransRP (image only) 0.6728 ± 0.021 0.6942 0.7022
TransRP (image + clinical) 0.7138 ± 0.049 0.7915 0.7401
ViT (image only) 0.6814 ± 0.038 0.7112 0.7144
ViT (image + clinical) 0.7311 ± 0.035 0.7784 0.7865
ViT + registers (image + clinical) 0.7336 ±

0.029
0.7842 0.7982

Table 4 
Sensitivity of C-Index of the ensembled predictor on each primary diagnosis 
subgroup in the test cohort. No LF was observed among the melanoma patients, 
so C-Index could not be computed.

Primary Diagnosis # of LFs C-Index

NSCLC 5 0.8953
Melanoma 0 n.a.
Breast 3 0.8936
RCC 1 1.0
GI 4 0.88
Other 3 0.44
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Model robustness was validated via five-fold cross-validation, and 
ensembling further improved predictions by leveraging multiple 
models’ strengths (Table 3). The ensembles were mostly governed by the 
highest-performing model. However, in edge cases, the versatility of 
multiple models helped align patient risks better and thus achieved a 
better overall ranking. Only TransRP ensembles showed performance 
declines, likely due to high variance among sub-models.

Our approach was also computationally efficient, requiring just 6 GB 
of VRAM and completing five-fold cross-validation in 100 min. Testing 
was rapid (0.5 s per patient), making it accessible for clinics with basic 
hardware.

Recent work [5] addressed the same problem with a clinically 
accustomed approach by using radiomics features and achieved a C- 
Index of 0.77 on the same test cohort. Radiomics requires domain 
expertise for feature selection, whereas our model operates easily and 
fast without intervention. Additionally, [5] showed low robustness to 
segmentation variances, dropping performance to a C-Index of 0.72 
when using autosegmented contours. Our model maintained perfor-
mance across segmentation differences and proved that it does not 
require hand-segmented contours. This could offer further ease in clin-
ical workflow with a fully automatic pipeline.

Cox analysis with BM volume reached a 0.77 C-Index on the test set 
but only 0.51 in training, highlighting its limited generalizability. Sa-
liency maps confirmed tumor-focused attention, aligning with expert 
observations. Using register tokens [22] further enhanced attention to 
relevant regions, improving GTV coverage (+7%) and predictive per-
formance (+0.0117 C-Index).

Even though our model focused well on the BMs, a substantial 
amount of attention was also distributed in other regions. It should be 
noted that the generated maps serve as a means for interpreting the 
network’s working mechanism and do not provide absolute reasoning 
for its decisions [18,32]. Complete explainability still remains a chal-
lenge for AI models in general due to the difficulty in interpreting the 
interactions across multiple layers and millions of parameters.

Clinically, patients with a high predicted risk of LF could benefit 
from tailored strategies such as SRT dose escalation or expanded clinical 
target volumes, both shown to improve local control [34]. Additional 
measures, including systemic agents crossing the blood–brain barrier 
and more frequent follow-ups, may further aid in early LF detection.

This work carries several limitations along with advances. The 
retrospective design led to suboptimal clinical data quality, necessi-
tating prospective validation to confirm efficacy and reliability.

In clinical routine, diagnosing LF from radiation necrosis or pseu-
doprogression is challenging [35,36]. A significant portion of patients 
were labeled before the publication of the BM-RANO criteria [37]. 
Consequently, some cases may have been possibly misclassified, leading 
to noise in data, despite board-certified experts’ diagnosis and, in part, 
histological validation. Our BM segmentation relied on a U-Net trained 
on the same dataset, potentially leading to idealized tumor contours. 
However, this U-Net was trained purely on the pre-therapeutic imaging 
data with no cases of prior radiation therapy. Therefore, the differenti-
ation between metastases, pseudoprogression, or radiation necrosis has 
not biased the performance of the U-Net model.

In conclusion, our fully automated model outperformed existing 
radiomics-based approaches and demonstrated robust performance 
across a multicenter external test cohort, accommodating different MRI 
scanners and protocols. By tailoring treatment strategies to individual 
risk profiles, our model offers a promising step toward improved BM 
management.

Generative AI in scientific writing

During the preparation of this work the author(s) used ChatGPT-4o 
(OpenAI) for minor improvements in the language and readability of 
the manuscript. After using this tool/service, the author(s) reviewed and 
edited the content as needed and take(s) full responsibility for the 
content of the publication.

Fig. 2. Kaplan-Meier analysis of the final predictor results after ensembling. The 33rd and 66th percentiles of continuous hazard ratios in the training set were used 
as cut-offs.
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