
Appendix A Supplementary Material

A.1 Dataset

The AURORA trial was conducted with the Radiosurgery and Stereotactic Radiother-
apy Working Group of the German Society for Radiation Oncology(DEGRO). In total,
seven hospitals contributed to the data collection: TUM: Klinikum rechts der Isar of
the Technical University of Munich, USZ: University Hospital of Zurich, FD: General
Hospital Fulda, FFM: Saphir Radiochirurgie/University Hospital Frankfurt, FR: Uni-
versity Hospital Freiburg, HD: Heidelberg University Hospital, KSA: Kantonsspital
Aarau. The eligibility criteria to include patients in the study are shown in Figure A1.

Ethical approval was obtained from each participating institution, with the pri-
mary license granted at the Technical University of Munich under reference 119/19
S-SR. No informed consent for the research study was necessary as the retrospective
analysis of patient records and data is generally allowed following Article 27 of the
Bavarian Hospital Act (Bayerisches Krankenhausgesetz ) from the law Landeskranken-
hausgesetz des Freistaates Bayern. Informed consent for treatment was obtained from
every patient.

Based on prior findings showing an area under the curve (AUC) of 0.79 for LF
prediction in a single-center study with a 15% event rate [8], the minimum sample
size for the test set was determined as 55 patients. To increase heterogeneity, we
augmented the test set with data from multiple smaller centers. This resulted in a
training cohort of 253 individuals from two centers (TUM, USZ) and an external,
multi-center international test group of 99 patients from five centers (FD, FFM, FR,
HD, and KSA). The training cohort was divided into 201 training and 52 validation
cases for each five-fold cross-validation.

In the training and test cohorts, five and 29 patients received stereotactic radio-
surgery (median dose 20 Gy and 16 Gy, respectively), while 248 and 70 patients
underwent fractionated SRT (median seven fractions of 5 Gy in the training cohort
and six fractions of 5 Gy in the test cohort). Table A2 summarizes all prescribed dose
and fraction combinations. We also show the full list of MRI devices used in the data
acquisition and their presence in the training and test cohorts in Table A1.

Among the 352 patients, 52 experienced LF, resulting in a highly imbalanced event
rate of 15%. The FFLF exhibited a long-tail distribution, with 31.5% of patients having
follow-up times under six months. The longest LF-free duration was 111 months, while
the earliest censoring occurred after two days. LF was first observed at three days and
last observed at 101 months.
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Fig. A1: Flowchart visualizing the total number of patients obtained in the trial, the
inclusion criteria for our study, as well as the final partitions
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Vendor Scanner Train Test

GE

Discovery MR750w ✁ ✁
Optima MR360 ✂ ✁
Optima MR450w ✂ ✁
Signa Excite ✂ ✁
Signa Explorer ✁ ✂
Signa Voyager ✁ ✂
Signa HDxt ✂ ✁
Signa PET MR ✂ ✁

Philips

Achieva ✁ ✁
Achieva dStream ✁ ✁
Ingenia ✁ ✁
Intera ✁ ✁
Panorama HFO ✁ ✁

Siemens

Aera ✁ ✁
Avanto ✁ ✁
Avanto fit ✁ ✁
Espree ✁ ✁
Harmony ✁ ✂
HarmonyExpert ✁ ✁
Magnetom Vida ✁ ✂
Skyra ✁ ✁
Prisma fit ✁ ✂
Symphony ✁ ✁
SymphonyTim ✁ ✂
TrioTim ✂ ✁
Verio ✁ ✁

Toshiba MRT200SP8 ✂ ✁

Table A1: List of vendors and MRI scanners used to acquire imaging data in the
training and test cohorts.
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Fraction → Dose (in Gray) Train (N = 253) Test (N = 99)

1 → 12 Gy 0 (0%) 5 (5.1%)
1 → 13 Gy 0 (0%) 1 (1.0%)
1 → 14 Gy 0 (0%) 6 (6.1%)
1 → 15 Gy 0 (0%) 1 (1.0%)
1 → 16 Gy 0 (0%) 6 (6.1%)
1 → 17 Gy 0 (0%) 3 (3.0%)
1 → 18 Gy 1 (0.4%) 6 (6.1%)
1 → 20 Gy 4 (1.6%) 1 (1.0%)
3 → 7 Gy 0 (0%) 1 (1.0%)
3 → 8 Gy 0 (0%) 3 (3.0%)
5 → 5 Gy 3 (1.2%) 8 (8.1%)
5 → 6 Gy 0 (0%) 16 (16%)
6 → 4 Gy 1 (0.4%) 0 (0%)
6 → 5 Gy 91 (36%) 22 (22%)
7 → 5 Gy 153 (60%) 14 (14%)
13 → 3 Gy 0 (0%) 5 (5.1%)
14 → 3 Gy 0 (0%) 1 (1.0%)

Table A2: Fractions and radiation doses in Gray (Gy) in this study. Five and 29
patients were treated with stereotactic radiosurgery (SRT) in the training and test
cohorts. 248 and 70 were treated with fractioned SRT.

Chemotherapy Agents Train (N = 15) Test (N = 3)

5-Fluorouracil+Folinic Acid/Oxaliplatin 1 0
Bicalutamid/Leuprorelin 1 0
Capecitabine 1 0
Carboplatin/Gemcitabine 1 1
Cisplatin/Pemetrexed 5 2
Cisplatin/Vinorelbin 2 0
Enzalutamid 1 0
Vinorelbin 1 0
Unknown 2 0

Table A3: Chemotherapy (CTX) agents. In total, 18 patients were treated with
concurrent CTX
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Immunotherapy Agents Train (N = 10) Test (N = 13)

Alectinib 0 1
Axitinib 1 0
Cabozantinib 1 0
Crizotinib 0 1
Denosumab 0 1
Erlotinib 1 0
Ipilimumab/Nivolumab 1 1
Lapatinib 1 0
Nivolumab 1 0
Palbociclib/Anastrozol 0 1
Pembrolizumab 0 5
Tamoxifen 1 0
Trastuzumab 1 0
Trastuzumab/Pertuzumab 0 1
Vemurafenib 1 0
Vemurafenib/Trametinib 1 0
Vinorelbin/Trastuzumab/Pertuzumab 0 1
Unknown 0 1

Table A4: Immunotherapy (ITX) agents. In total, 23 patients were treated with
concurrent ITX
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Appendix B Supplementary Methods

B.1 Optimization

The momentum parameters of the AdamW optimizer were ω1 = 0.9 and ω2 = 0.999.
A weight decay parameter of 10→3 was used as a regularization technique to avoid
overfitting. The initial learning rate was set to 5 → 10→3 but divided by two if the loss
value did not decrease for ten epochs.

B.2 Augmentations

All of the augmentations on Table B5 were applied with a probability of 0.5 without
restricting the total number of augmentations per image.

Augmentation Probability Parameters

Random Flip 0.5
Axis

0,1

Random Contrast Adjustment 0.5
Gamma Range

[0.5,1.5]

Random Gaussian Smoothing 0.5
Sigma Range

[0.25,1.5]

Table B5: Data augmentations and corresponding param-
eters used during training.

B.3 Loss Function

The Cox Partial Log-Likelihood [24] is computed with the following formula:

LCox(ω, X) = ↑
∑

i↑U

(ωTXi ↑ log
∑

j↑!i

eω
TXj ) (B1)

Here ri = ωTXi is the predicted hazard ratio, U is the set of patients with LF, and
!i is the ”at-risk” patients concerning patient i, !i = {j|tj > ti}.

In the ideal case, the formula for the loss function would consider all predic-
tions simultaneously, allowing for a global optimization of the model across the entire
dataset. However, because our predictions were generated by propagating whole images
through large and complex networks, it became computationally infeasible to process
every patient in the dataset simultaneously due to the high demand for memory and
processing power. To address this limitation, we computed the loss function locally on
smaller batches of data, updating the network incrementally with each batch. The loss
function learns to rank the predicted hazard ratios anti-concordant to the follow-up
times while considering the censoring information.
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B.4 Explainability

The beyond attention method [32] generates the network’s explanations as:

Ā(l) = I + Eh[↓A(l) ↔R(nl ]+ ; l = 1, ..., L (B2)

C = Ā(1) · Ā(2) · ... · Ā(L) (B3)

where R(nl) is the propagated relevance of attention layer A(l), ↔ is the Hadamard
product and Eh is the mean operation across the heads dimension. Only positive values
of the gradients-relevance multiplication are considered to resemble positive relevance.

Appendix C Supplementary Experiments

C.1 Ablation Study: Di!erent Sizes of ViT

The number of model parameters highly impacts neural network training, especially
regarding the model’s generalizability, a key factor in preventing overfitting the train-
ing set. The network size is also important for optimizing the utilization of hardware
resources. In Table C6, we present the results of our selection of transformer size,
comparing it to commonly used ones in the literature [21]. ViT-Small and ViT-Basic
depicted examples of underfitting and overfitting to the dataset, respectively, while
our medium-sized ViT model demonstrated superior performance. We also explain the
performance of TransRP [31] as overfitting due to it being the largest network overall.
Moreover, training ViT-Medium was also 15% faster compared to ViT-Basic .

Transfomer
Encoder

#Parameters Train C-Index Val C-Index Test C-Index

ViT-Small 26.1M 0.8824± 0.042 0.7010± 0.044 0.6911± 0.026
ViT-Basic 94.7M 0.9145± 0.039 0.6773± 0.099 0.6976± 0.055

TransRP 118M 0.9084± 0.057 0.6815± 0.062 0.7138± 0.049

ViT-Medium (ours) 57.3M 0.8945± 0.031 0.7042± 0.055 0.7311± 0.048

Table C6: Comparison of results for di”erent sizes of ViT and TransRP. All the
networks were trained with the final configurations for input-cropping, batching, etc.
No register tokens were used.

C.2 E!ect of Cropping

We investigated the e”ect of cropping the MRI volumes to the VOI guided by the pre-
trained segmentation network [19]. For a pure analysis, we trained end-to-end models
with a single type of image processing (i.e., fully convolutional ResNet or transformer,
and no hybrid). Row three of Table C7 shows that even with expanded bounding
boxes, cropping had a strong impact on model performance, as it supported the focus
on the target area with an 85% size reduction. It was also greatly beneficial for the
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Model Added Feature Test C-Index

Vanilla ResNet34
-

0.5672± 0.035
Vanilla ViT 0.5912± 0.041

ResNet34
+ Clinical Feautes

0.6493± 0.039
ViT 0.6691± 0.031

ResNet34
+ Segmentation-guided Image Cropping

0.6705± 0.039
ViT 0.7139± 0.044

ResNet34
+ Segmentation as Extra Input

0.6796± 0.041
ViT 0.7267± 0.042

ResNet34
+ Stratified Batching

0.6879± 0.032
ViT 0.7311± 0.048

ResNet34
+ Register Tokens

n.a.
ViT 0.7336± 0.029

Table C7: Extension of Table 2 with ResNet34 results. Each row represents the
addition of the given feature to the configuration from the previous row. It showcases
the incremental improvement through our methodological enhancements, independent
of the used model.

e#cient use of computation resources, as the training duration for ViTs dropped from
60 minutes to 20 per 100 epochs.

C.3 Segmentation Maps as Input

For further assistance from the segmentation results, we used the predicted edema and
tumor contours as an additional input channel. Row four of Table C7 demonstrates
that models benefited from this additional guidance.

C.4 Improvement by Stratified Batching

When trained with randomly sampled batches, the prediction performance drops for
all models. This proves that our stratified batching method yields more stable and
powerful training.
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