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Abstract 

Background Previous case–control studies have reported aberrations of the gut microbiota in individuals with pre-
diabetes. The primary objective of the present study was to explore the dynamics of the gut microbiota of individuals 
with prediabetes over 4 years with a secondary aim of relating microbiota dynamics to temporal changes of meta-
bolic phenotypes.

Methods The study included 486 European patients with prediabetes. Gut microbiota profiling was conducted 
using shotgun metagenomic sequencing and the same bioinformatics pipelines at study baseline and after 4 years. 
The same phenotyping protocols and core laboratory analyses were applied at the two timepoints. Phenotyping 
included anthropometrics and measurement of fasting plasma glucose and insulin levels, mean plasma glucose 
and insulin under an oral glucose tolerance test (OGTT), 2-h plasma glucose after an OGTT, oral glucose insulin sensi-
tivity index, Matsuda insulin sensitivity index, body mass index, waist circumference, and systolic and diastolic blood 
pressure. Measures of the dynamics of bacterial microbiota were related to concomitant changes in markers of host 
metabolism.
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Results Over 4 years, significant declines in richness were observed in gut bacterial and viral species and microbial 
pathways accompanied by significant changes in the relative abundance and the genetic composition of multiple 
bacterial species. Additionally, bacterial-viral interactions diminished over time. Despite the overall reduction in bacte-
rial richness and microbial pathway richness, 80 dominant core bacterial species and 78 core microbial pathways were 
identified at both timepoints in 99% of the individuals, representing a resilient component of the gut microbiota. Over 
the same period, individuals with prediabetes exhibited a significant increase in glycemia and insulinemia along-
side a significant decline in insulin sensitivity. Estimates of the gut bacterial microbiota dynamics were significantly 
correlated with temporal impairments in host metabolic health.

Conclusions In this 4-year prospective study of European patients with prediabetes, the gut microbiota exhibited 
major changes in taxonomic composition, bacterial species genetics, and microbial functional potentials, many 
of which paralleled an aggravation of host metabolism. Whether the temporal gut microbiota changes represent 
an adaptation to the progression of metabolic abnormalities or actively contribute to these in prediabetes cases 
remains unsettled.

Trial registration The Diabetes Research on Patient Stratification (DIRECT) study, an exploratory observational study 
initiated on October 15, 2012, was registered on ClinicalTrials.gov under the number NCT03814915.

Keywords Long-term dynamics, Gut bacterial microbiota, Gut viral microbiota, Microbial functional pathways, Gut 
bacterial genetics, Prediabetes, Metabolism, Insulin sensitivity

Background
Prediabetes is a condition characterized by elevated 
blood glucose levels that fall below the threshold for a 
diabetes mellitus diagnosis [1]. In 2021, the prevalence of 
prediabetes was estimated at 9.1% for impaired glucose 
tolerance, affecting approximately 464 million individu-
als, and 5.8% for impaired fasting glucose, affecting 298 
million people worldwide [2]. Even though prediabetes is 
not classified as a disease, it is often associated with obe-
sity, hypertension and dyslipidemia, and with elevated 
plasma concentrations of triglycerides and/or low plasma 
concentrations of HDL cholesterol. Prediabetes is an 
important risk factor for the development of type 2 dia-
betes mellitus (T2D) and ischemic heart disease [1].

Prediabetes may, however, be a reversible metabolic 
condition. Some progress to incident T2D, while others 
either remain prediabetic or regress to normal glucose 
metabolism [3]. Therefore, understanding the factors that 
influence the trajectory of prediabetes is essential for the 
attempts to develop effective prevention strategies.

One factor that may influence the trajectory of pre-
diabetes is the gut microbiota that in several independ-
ent cross-sectional studies have been reported to show 
gut dysbiosis in prediabetes cases when compared with 
matched healthy individuals [4–6]. Still, longitudinal 
studies are needed to capture gut microbial features that 
are stable or variable over time and to assess their asso-
ciations with host metabolic fluctuations.

To date, studies of the dynamics of the gut microbiota 
have primarily been conducted in healthy populations 
[7–9]. For instance, a 1-year prospective study of 75 

healthy Swedish individuals found that intra-individual 
variation accounted for 23% of gut microbiota variance, 
with lower variability linked to higher abundances of 
gut bacteria related to metabolic health such as Fae-
calibacterium prausnitzii and Bifidobacterium species 
[8]. In another gut microbiota study of 338 individuals 
from the Netherlands followed for 4 years, a microbial 
fingerprint was identified. This approach achieved up to 
85% accuracy in classifying microbiota samples taken 
4 years apart [7]. These studies offer important insights 
into gut microbiota dynamics in healthy individuals 
or focus primarily on broad population-level trends, 
rather than examining specific metabolic health asso-
ciations in at-risk groups.

Here, we conducted a 4-year longitudinal study 
involving 486 European adults with prediabetes as 
part of the Innovative Medicines Initiative Diabetes 
Research on Patient Stratification (IMI-DIRECT) Pro-
ject [10]. Gut microbiota profiling of stool samples 
collected at two timepoints with 4 years apart was con-
ducted using the same metagenomic sequencing proto-
col and identical pipelines for data processing, ensuring 
consistency across all samples. Bioclinical assessments 
following the same protocols were performed at study 
baseline and after 4 years.

The primary aim of our study was to characterize the 
long-term dynamics of the gut microbiota in predia-
betic individuals and the secondary aim was to associ-
ate the dynamics of the gut microbiota with temporal 
changes of host metabolic variables. An overview of the 
study design and main outcomes is given in Fig. 1.
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Fig. 1 Overview of study materials, methods, and major study outcomes. The figure is created with biorender.com
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Methods
Recruitment and phenotyping of study participants
In this protocol, we recruited participants who met 
the inclusion criteria: White European ethnicity, aged 
between 35 and 75 years, and meeting at least one of the 
three 2011 American Diabetes Association (ADA) cri-
teria for prediabetes were recruited and phenotyped in 
the baseline study between November 2012 and August 
2014 from four European study centers: Finland [11], 
the Netherlands [12, 13] Denmark [14–16], and Sweden 
[17], as part of the IMI-DIRECT consortium [18]. The 
ADA prediabetes criteria include fasting plasma glucose 
(100  mg/dL (5.6  mmol/L) to 125  mg/dL (6.9  mmol/L)); 
2-h plasma glucose after an OGTT (140  mg/dL 
(7.8  mmol/L) to 199  mg/dL (11.0  mmol/L)); or HbA1c 
(5.7–6.4%, 39–47  mmol/mol) [19]. A total of 813 par-
ticipants with impaired glucose regulation were recruited 
and phenotyped. However, 327 individuals were excluded 
due to failure to meet specific criteria, including antibiot-
ics use within the past 3 months, insufficient stool sam-
ple quantity or quality, or lack of available metagenomic 
sequencing data after 4 years (Additional file 2: Fig. S1). 
The final prediabetes cohort comprised 486 adults with 

prediabetes (169 females and 317 males), with 173 partic-
ipants from the Netherlands, 158 from Finland, 122 from 
Denmark, and 33 from Sweden (Fig.  1). At study entry, 
participants had a mean age of 62 ± 6  years (Table  1). 
Study participants were phenotyped in the baseline study 
between November 2012 and August 2014, and in the 
endline study between November 2016 and August 2018.

Consortium-wise standard operation procedures 
(SOPs) for phenotyping were applied in each of the four 
study centers. Clinical examinations and blood sam-
pling for biochemistry were conducted in the morning 
after a 10-h overnight fast. Height was measured with-
out shoes using calibrated wall-mounted stadiometers, 
while weight was recorded without shoes and with par-
ticipants wearing light clothing using calibrated scales. 
Body mass index (BMI) was calculated by dividing weight 
in kilograms by the square of height in meters. Waist cir-
cumference was measured in the standing position with 
non-stretchable measuring tapes placed midway between 
the lower rib margin and the iliac crest. Blood pres-
sure was measured after 10 min of rest using calibrated 
manual or automatic sphygmomanometers with appro-
priately sized arm cuffs. On the day of the examination, 

Table 1 Anthropometric and bioclinical characteristics of 486 individuals in the IMI-DIRECT study. Values are presented as 
mean ± standard deviation or count and percentage. Statistical significance between baseline and endline measurements was 
assessed using Wilcoxon paired t-test for samples where both baseline and endline data were available. Adjusted p values were 
derived using the Benjamini–Hochberg method to correct for multiple comparisons

# For all metadata, data were available for over 89% of individuals at both time points

Baseline Endline Adjusted p value
n = 486 n = 486#

Study center

The Netherlands 173 (36%) 173 (36%)

Finland 158 (33%) 158 (33%)

Denmark 122 (25%) 122 (25%)

Sweden 33 (7%) 33 (7%)

Age (years) 62 ± 6 66 ± 6

Sex

Female 169 (35%) 169 (35%)

Male 317 (65%) 317 (65%)

Waist circumference (cm) 99.7 ± 10.8 100.7 ± 11.0 9.9e–05

Body mass index (kg/m2) 28.2 ± 3.8 28.3 ± 4.0 1.1e–01

Fasting plasma glucose (mmol/L) 5.9 ± 0.5 6.2 ± 0.7 1.5e − 14

Mean plasma glucose (mmol/L) 8.0 ± 1.5 8.6 ± 1.7 4.4e − 15

Fasting plasma insulin (pmol/L) 93 ± 67 96 ± 70 4.5e − 02

Mean plasma insulin (pmol/L) 466 ± 313 529 ± 365 8.6 − 08

Oral glucose insulin sensitivity index 358 ± 58 336 ± 61 2.6e − 15

Matsuda insulin sensitivity index 3.3 ± 1.9 3.1 ± 2.0 4.4e − 05

2-h plasma glucose after an OGTT (mmol/L) 6.2 ± 1.7 6.9 ± 2.1 2.4e − 11

Systolic blood pressure (mmHg) 130 ± 15 131 ± 16 5.6e − 02

Diastolic blood pressure (mmHg) 80 ± 8 79 ± 9 6.8e − 02
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three seated blood pressure readings were recorded and 
averaged for each study participant.

A standardized OGTT was done where the individual 
over 5 min drank 75-g glucose dissolved in 325 mL water. 
Blood samples were collected at fasting and at 30, 60, 
90, and 120 min to measure plasma glucose and insulin 
levels. Mean plasma glucose or insulin represents the 
average concentration of glucose or insulin measured 
during the OGTT. This value is calculated using the trap-
ezoidal rule for numerical integration, which divides the 
total area under the concentration–time curve (AUC) 
by the duration time of the test. This variable provided 
a standardized estimate of the mean glucose or insu-
lin levels over the test period. Oral glucose insulin sen-
sitivity (OGIS) index was determined using a validated 
mathematical model that incorporates plasma glucose 
and insulin levels at fasting, 90, and 120 min [20]. Addi-
tionally, the Matsuda insulin sensitivity index, which 
assesses whole-body insulin sensitivity, was calculated 
using plasma glucose and insulin levels at fasting, 30, 
60, 90, and 120  min based on the defined formula [21]. 
Plasma glucose and insulin concentrations were meas-
ured centrally in batches at the University of Eastern Fin-
land, Kuopio. Plasma glucose was quantified using the 
enzymaPc glucose hexokinase method with photometric 
detecPon on a Konelab 20 XT Clinical Chemistry Ana-
lyzer (Thermo Fisher ScienPfic, Vantaa, Finland). Plasma 
insulin was measured through electrochemiluminescence 
on Roche E170 Analyzers (Hoffmann-La Roche). All 
plasma samples were stored at − 80  °C prior to analysis. 
To control for inter-assay variability, reference samples 
were included in all assays. This core laboratory regularly 
engaged in international external quality assessments and 
to control for inter-assay variability, reference samples 
were included in all assays.

Stool sample collection, bacterial cell counting, and gut 
microbial DNA extraction
Participants collected stool samples at home, adhering 
to SOPs that included immediate freezing of the samples 
at − 18 °C in their home freezers. The samples were then 
transported to the laboratory in an insulating cooler bag 
or styrofoam box containing cooling elements or dry ice. 
Upon arrival at the laboratory, the samples were stored at 
80 °C until DNA extraction.

Bacterial cells in stool samples were counted using 
staining and flow cytometry [22]. Data on bacterial cell 
counts was used for quantitative microbial profiling, as 
described [22].

Microbial DNA was extracted and purified from the 
frozen fecal samples using the NucleoSpin Soil DNA 
extraction kit (Machery-Nagel, catalog No. 740780.50) 
following the manufacturer’s protocol.

Metagenomic sequencing and data processing
Library preparation and next-generation sequenc-
ing were conducted at the University of Lille-CNRS, 
France. Shotgun sequencing was performed on the Illu-
mina HiSeq 4000 system, utilizing a paired-end 2 × 150 
base pair (bp) protocol with one pool per lane. The 
resulting reads underwent quality filtering with Kne-
adData (http:// hutte nhower. sph. harva rd. edu/ knead 
data) to remove low-quality bases. Reads aligning to the 
human genome were excluded by mapping the quality-
filtered reads to the human genome (GRCh38 release) 
using Bowtie2 [23] (version 0.2.3.2). Polymerase chain 
reaction (PCR) and optical duplicates were removed 
from the data using samtools [24] (version 1.6).

High-quality metagenomic sequencing reads were 
processed using Phanta [25] (version 1.1.0) to generate 
species count data, including species of bacteria, virus, 
and fungi, with default settings. The default Phanta 
database was used for annotations. For bacteria and 
archaea, the HumGut collection, comprising 30,691 
dereplicated genomes from Unified Human Gastro-
intestinal Genome (UHGG) [26] and RefSeq [27], was 
used. For viruses, the Metagenomic Gut Virus catalog 
[28] and RefSeq were employed, while for gut eukary-
otes, annotation was based on RefSeq. We rarefied this 
dataset to a minimum of 3.9 million total reads among 
all the sequencing samples. The compositional data was 
then categorized into gut bacterial species, gut viral 
species, and gut fungi, based on kingdom classifica-
tion. Within kingdom, species abundances were filtered 
stringently based on both read number and prevalence. 
Gut fungi data is not included in the present communi-
cation due to insufficient sequencing coverage.

To reduce bias from very low-abundance taxa, we 
included only species with more than ten reads that were 
present in at least 20% of the samples. The calculation of 
Bray–Curtis distance was made on relative abundance 
following rarefication. The abundance data for gut bac-
terial and viral species were analyzed independently to 
describe the stability of gut microbiota across bacterial 
and viral kingdoms.

HUMAnN3 [29] was used to construct MetaCyc [30] 
pathways from gene family data with default settings, 
providing insights into the functional potentials of the 
microbial community. MetaCyc pathways with relative 
abundance > e − 05 in > 20% of samples were included.

Structural variant (SV) profiles were extracted based on 
high-quality metagenomic sequencing reads. SGV-Finder 
[31] was used to identify both deletion SVs and variable 
SVs using the default parameters [7, 31, 32]. The SV data 
with > 20% non-missing values at both study baseline and 
endline were included to minimize bias from sequencing 
errors.

http://huttenhower.sph.harvard.edu/kneaddata
http://huttenhower.sph.harvard.edu/kneaddata
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Statistical analysis—general approaches
Statistical analyses of differences between study base-
line and endline were performed for microbial richness, 
Shannon and Simpson diversity, inter-individual dis-
tances, the first and second principal coordinates (PCo1 
and PCo2) from principal coordinate analysis (PCoA) 
[33], and microbial relative abundance using the Wil-
coxon signed-rank test. In the association analyses, con-
tinuous variables were scaled using the scale function 
in R to ensure comparability and mitigate differences in 
measurement scales. Unless otherwise stated, temporal 
association analyses were conducted using linear regres-
sion models, adjusted for baseline age, sex, study center, 
and bacterial cell load changes. All adjusted p values were 
calculated using the Benjamini–Hochberg method to 
account for multiple comparisons.

Analysis of the temporal dynamics at the microbial 
community level
Alpha diversity (microbiota composition) of the gut 
microbial species was assessed as richness, and Shan-
non’s and Simpson’s diversity indices [34], following data 
rarefaction but before any filtering. Specifically, compo-
sitional richness, which is the number of different micro-
bial species present within one sample, was calculated 
using the specnumber function from the “vegan” pack-
age (version 2.6–6.1) in R (version 4.3.2). Species diver-
sity and dominance were analyzed using the Shannon 
and Simpson indices [34], respectively, from the diversity 
function. The Shannon index measures species diversity 
by accounting for both the richness (number of species) 
and the evenness (distribution of individuals among spe-
cies) within a community. Higher values indicate greater 
diversity, with a balance in the abundance of species. The 
Simpson index, on the other hand, focuses on species 
dominance by quantifying the probability that two ran-
domly selected individuals from a sample belong to the 
same species. Lower values in the Simpson index reflect 
higher diversity, while higher values suggest dominance 
by one or a few species. Similarly, MetaCyc pathway rich-
ness was calculated applying the specnumber function.

The overall compositional variation and beta diver-
sity of the gut microbiota were assessed using the Bray–
Curtis distance from microbial species-level abundance 
profiles. This variation was further partitioned into intra-
individual and inter-individual distances. Intra-individ-
ual distance quantified the dissimilarity between paired 
samples from the same individual across two different 
timepoints, illustrating temporal shifts in overall bacte-
rial species abundance. The “inter-individual distance at 
study baseline” and “inter-individual distance at study 
endline” were calculated to measure the median value of 

dissimilarities between a sample of one individual against 
those of other individuals at the same timepoints.

Additionally, permutational multivariate analysis of 
variance (PERMANOVA) using the adonis2 function was 
conducted on Bray–Curtis distance matrix to evaluate 
the impact of various host or environmental factors on 
the compositional variation. This analysis included cat-
egorical factors such as timepoint, study center, and sex, 
alongside scaled continuous variables including age, body 
mass index, waist circumference, fasting plasma glucose 
and insulin, mean plasma glucose and insulin under an 
OGTT, 2-h plasma glucose after an OGTT, OGIS index, 
Matsuda insulin sensitivity index, systolic and dias-
tolic blood pressure, and bacterial cell load. In our PER-
MANOVA analysis, 999 permutations were involved, 
with the proportion of variance explained and adjusted 
p values reported. Principal coordinate analysis (PCoA) 
was executed through the cmdscale function in R. The 
first two principal coordinates were used for visualiza-
tion. The variance explained by these coordinates was 
derived from their eigenvalues and expressed as a per-
centage of the total variance.

To specifically assess host factors influencing the 
dynamics of bacterial species richness and the asso-
ciation between baseline bacterial species richness and 
intra-individual distance, Spearman’s rank correlation 
analysis was performed in two settings: (1) between 
changes in bacterial species richness and changes in host 
metabolic variables and (2) between study baseline rich-
ness and intra-individual distance.

Analysis of microbiota dynamics at the level of the single 
microbial species or pathway
The variation of specific taxa and pathways were explored 
with higher resolution. Differentially abundant microbial 
species and pathways between study baseline and endline 
samples were identified using the Wilcoxon signed-rank 
test, with significance set at an adjusted p value < 0.05.

In the assessment of temporal variance (intra-indi-
vidual variance) or individual variance (inter-individual 
variance), we applied linear mixed-effects models with 
subject identity (subject ID) as the random effect. We 
included all variables used in PERMANOVA as fixed 
effects. Consequently, the calculations of intra- and inter-
individual variances were adjusted to account for system-
atic influences from these variables. For each microbial 
feature (bacterial species, viral species, or microbial 
pathways), we calculated variance components from the 
results of linear mixed-effects models. Inter-individual 
variance was extracted from the first component of the 
random effect variance–covariance matrix (subject ID), 
and intra-individual variance from the residual variance 
[8, 9]. The intraclass correlation coefficient (ICC) [35] 
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was calculated as inter-individual variance/(inter-indi-
vidual variance + intra-individual variance) to quantify 
the proportion of total variance attributable to variance 
between individuals.

To explore variance patterns across all gut microbial 
taxa or pathways, we conducted association analyses 
between total variances and relative abundance of the 
pertinent microbial feature using Spearman’s rank corre-
lation analysis.

Analysis of the variations at bacterial genetics level
To evaluate the dynamics of bacterial genetics within 
bacterial species over time and across individuals, we cal-
culated intra-individual and inter-individual distance for 
each species from their SV profiles.

For all SVs derived from the same bacterial species, 
intra-individual and inter-individual distances were cal-
culated using the Canberra distance metric for variable 
SVs and the Jaccard distance metric for deletion SVs, 
implemented via the vegdist function from the R package 
vegan (version 2.6–8).

The degree of microbial individuality (DMI) [9] was 
calculated as the mathematical difference between 
inter-individual distance and intra-individual distance. 
Given that distance is mathematically defined as dis-
tance = 1 − similarity, the DMI effectively captures the 
mathematical difference between intra-individual simi-
larity (1 − intra-individual distance) and inter-individ-
ual similarity (1 − inter-individual distance). This index 
highlights how much more similar SV profiles are within 
individuals compared to between individuals, serving as a 
measure of microbial individuality.

Network analyses of gut microbiota
To analyze the interaction network among bacterial 
and viral species, we applied the SparCC  (sparse corre-
lations for compositional data) algorithm [36] to iden-
tify significant correlations both within and between 
microbial kingdoms. We focused on correlations with an 
absolute value of the correlation coefficient > 0.3, which 
were considered strong enough to construct the interac-
tion network [37]. The network was visualized using the 
Fruchterman–Reingold layout, which was implemented 
through the R igraph package (version 2.1.1). To assess 
the significance of each microbial node in the network’s 
transition between study baseline and endline groups, 
we calculated the NetMoss [38] score for each node. This 
score was compared to a null distribution generated by 
a permutation test with 100 iterations. In each iteration, 
sample labels were randomly shuffled, and the network 
was reconstructed to create a distribution of expected 
node scores under random conditions. For visualization 
and comparison of bacterial-viral interactions between 

study baseline and endline groups, we excluded bacterial-
bacterial and viral-viral interactions from the network to 
focus solely on the cross-kingdom interactions.

Association analyses between temporal changes in the 
relative abundance of the individual bacterial species and 
temporal changes in gut bacterial community indices, or 
host metabolic variables.

The host metabolic variables included in the associa-
tion analyses were waist circumference, body mass index, 
fasting plasma glucose and insulin, mean plasma glucose 
and insulin under an OGTT, 2-h plasma glucose after an 
OGTT, OGIS index, Matsuda insulin sensitivity index, 
and systolic and diastolic blood pressure. For the analysis, 
linear regression models were used where changes in the 
relative abundance of the bacterial species were regressed 
against richness change and intra-individual distance or 
host metabolic variables alterations, controlling for base-
line age, sex, study center, and bacterial cell load changes 
from study baseline to endline.

Mediation analysis
To explore whether changes in gut bacterial richness 
influenced host metabolic variables via specific bacte-
rial species, we conducted mediation analyses using the 
R package mediation (v4.5.0). Candidate triplets (Δgut 
bacterial richness → Δbacterial abundance → Δmetabolic 
variable) were selected based on significant pairwise 
associations (adjusted p value < 0.1). For each triplet, 
two linear models were fitted, adjusting for baseline 
age, sex, study center, and changes in total bacterial 
load, including (1) mediator model: Δbacterial abun-
dance ~ Δgut bacterial richness + covariates and (2) 
outcome model: Δmetabolic variable ~ Δgut bacterial 
richness + Δbacterial abundance + covariates. We esti-
mated the average causal mediation effect (ACME), aver-
age direct effect (ADE), and the proportion mediated 
(ACME/[ACME + ADE]). Mediation triplet with adjusted 
p value < 0.1 of ACME were considered significant.

Analysis of relationships between variation in bacterial 
genetics and host metabolic variables
SVs in bacterial species were tested for correlations with 
host metabolic variables. The first set of association stud-
ies was performed between the delta values of host meta-
bolic variables and the intra-individual distance derived 
from multiple SVs within each bacterial species. The ana-
lytical approach followed that used in delta association 
analyses between host metabolic changes and bacterial 
species abundance changes but applied at the bacterial 
genetics level.

The second set of association analyses was conducted 
using a linear mixed-effects model to explore the rela-
tionships between host metabolic variables and the 
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prevalence of deletion SVs or the coverage of variable 
SVs. The models were constructed with the formula: host 
phenotypic markers ~ coverage of variable SVs or preva-
lence of deletion SVs + sex + age + study center + bacterial 
cell load + (1|SubjectID).

Results
Deterioration of metabolism in prediabetes cases 
over 4 years
For all measurements, data were available for > 89% 
of individuals at both timepoints. After 4  years, we 
observed significant deteriorations in host metabo-
lism across multiple markers. These were evidenced by 
a 4.4% increase in fasting plasma glucose (adjusted p 
value = 1.5e − 14), a 7.4% increase in mean plasma glucose 
under an OGTT (adjusted p value = 4.4e − 15), a 13.8% 
increase in 2-h plasma glucose after an OGTT (adjusted 
p value = 2.4e − 11), a 14.6% increase of fasting plasma 
insulin (adjusted p value = 4.5e − 02), a 19.3% increase 
in mean plasma insulin under an OGTT (adjusted p 
value = 8.6e − 08), and a 1.2% increase of waist circumfer-
ence (adjusted p value = 9.9e − 05), but a 4.9% decrease 
in OGIS index (adjusted p value = 2.6e − 15) and a 3.8% 
decrease in Matsuda insulin sensitivity index (adjusted 
p value = 4.4e − 05) (Table 1). In line with these changes, 
we observed heterogeneous glycemic outcomes among 
individuals with impaired glycemic regulation at base-
line: 16% reverted to normal glycemic regulation, 73% 
remained impaired, and 11% progressed to type 2 diabe-
tes over 4 years (Additional file 1: Table S1).

Identification of a core bacterial microbiota and core 
microbial pathways that are present both at study baseline 
and endline
To investigate the temporal dynamics of the human gut 
microbiota, we first analyzed the shotgun metagenomic 
sequencing reads. After rarefying the sequencing data 
to a minimum total matched reads of 3.9 million (Addi-
tional file  1: Table  S2) and filtering out low-abundance 
species across all 972 metagenomes, we identified 571 
bacterial species and 183 viral species (Additional file 1: 
Tables S3 and S4).

For the gut bacterial species, the median cumulative 
relative abundance across all 571 bacterial species was 
98% (interquartile range, IQR: 96–99%) (Additional file 1: 
Table S3). Within this bacterial community, we identified 
80 core bacterial species that were consistently present 
(read counts > 10) in > 99% of the 486 individuals at both 
timepoints, representing a stable and ubiquitous compo-
nent of the gut bacterial microbiota. The median cumula-
tive relative abundance of these 80 dominant core species 
was 59% (IQR: 53–66%) despite representing only 14% 
(80 out of 571) of the total number of distinct bacterial 

species. Within the core bacterial microbiota, the ten 
most abundant genera included Clostridium, Bacteroides, 
Ruminococcus, Eubacterium, Alistipes, Collinsella, Rose-
buria, Blautia, Streptococcus, and Prevotella. Among 
these, Faecalibacterium prausnitzii exhibited the highest 
relative abundance of 4.6% (Additional file 1: Table S3).

In the analysis of the gut viral microbiota, we identified 
183 prevalent viral species across the 972 samples with 
a median cumulative relative abundance of 36% (IQR: 
27–44%, Additional file 1: Table S4). Most of the identi-
fied viral species belonged to Brigitvirus, Mushuvirus, 
Svunavirus, Taranisvirus, Toutatisvirus, Oengusvirus, 
and Lilyvirus genera. Notably, unlike the core bacterial 
microbiota, no core viral gut microbiota at species level 
was observed in our study, potentially implying the high 
sensitivity of viral species to environmental factors or 
host health condition.

After filtering out unannotated and unintegrated path-
ways, we identified 531 microbial pathways, representing 
a relative abundance range of 3–6%, illustrating the fact 
that only a small portion of the gut microbial pathways 
are known. After filtering of low abundant pathways, we 
defined 278 prevalent microbial pathways. Among these, 
78 core pathways were consistently present (relative 
abundance > 0.01% in > 99% of individuals), representing a 
stable and likely essential configuration of the gut micro-
bial functional potentials (Additional file  1: Table  S5). 
The cumulative relative abundance of the 78 core path-
ways represents a substantial proportion, amounting to 
73% of total abundance of 531 annotated pathways (IQR: 
70–75%). Among the core pathways, sucrose biosynthe-
sis II pathway showing the highest relative abundance 
accounted for 1.4% of total abundance of all annotated 
pathways in the present analysis.

Temporal declines of bacterial and viral microbiota 
richness that correlate with an aggravation of host 
metabolism
Over 4  years, the median value of compositional rich-
ness of gut bacterial species was decreased by 9.1% at 
the study endline (adjusted p value = 1.1e − 31, Fig.  2A). 
Despite the decrease in bacterial species richness over 
time, Shannon and Simpson diversity indices (Additional 
file 2: Fig. S2A and B) remained unchanged between the 
two timepoints, suggesting a preserved ecological bal-
ance over time. In addition, the number of distinct micro-
bial pathways decreased by 2.4% (p value = 9.5e − 04, 
Fig. 2D) over the 4 years. The compositional richness of 
gut viruses showed a 14.3% decline at the study endline 
(p value = 2.1e − 15, Fig. 2G), with virulent viruses show-
ing the larger decline (16.3% and p value = 1.9e − 17, 
Fig.  2J–L). Yet, Shannon and Simpson diversity indices 
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for the viral microbiota remained unchanged (Additional 
file 2: Fig. S2E and F).

Importantly, the decrease in bacterial species rich-
ness was significantly associated with adverse metabolic 
changes over the 4-year period, such as increases in body 
mass index (BMI), waist circumference, mean plasma 
insulin, and reductions in insulin sensitivity (Fig.  3 and 
Additional file  1: Table  S7). These findings suggest that 
the lowering of gut bacterial richness and the loss of key 
bacterial species are closely linked to a worsening of the 
metabolic health in individuals with prediabetes. Strati-
fied analyses further revealed that the temporal associa-
tions between declining bacterial richness and worsening 
metabolic traits were more pronounced in males than 
in females (Additional file 2: Fig. S3), which may reflect 
underlying sex-specific host–microbiota interactions as 
well as reduced statistical power in the female subgroup 
due to sample size imbalance (n = 317 males vs. n = 169 
females, Table 1).

Prediabetes individuals with higher initial microbial 
species richness show smaller intra‑individual distance 
calculated from overall microbial species relative 
abundance
Bray–Curtis dissimilarity analysis based on the relative 
abundance of gut bacterial species showed smaller com-
positional differences within the same individual than 
between individuals (Fig. 2B). This was the case both at 
study baseline (adjusted p value = 6.7e − 116) and at study 
endline (adjusted p value = 3.4e − 101, Fig.  2B). Com-
pared to the inter-individual distance observed at study 
baseline, the inter-individual distance at study endline 
was smaller, indicating a greater resemblance in bacterial 
microbiota composition among the cohort’s endline sam-
ples (adjusted p value = 4.3e − 20, Fig. 2B).

Permutational multivariate analysis of variance (PER-
MANOVA) based on the Bray–Curtis distance matrix 
revealed that both host and environmental factors sig-
nificantly influenced the variation of the bacterial com-
position at the species level (Additional file 2: Fig. S2C). 

Notably, the study center confounder accounted for 
1.6% of the explained variance, implying that the demo-
graphics of each of the four study centers have impacts 
on the observed microbial community structures (Addi-
tional file 2: Fig. S2C). In addition, host factors like age, 
sex, waist circumference, body mass index, mean plasma 
glucose level under an OGTT, and Matsuda insulin 
sensitivity index exerted modest, yet significant influ-
ence (Additional file  2: Fig. S2C). The timepoint factor 
alone, though contributing a small fraction, significantly 
impacted the bacterial composition variance (PER-
MANOVA R2 = 4.9e − 03, adjusted p value = 3.2e − 03). 
Similarly, principal coordinate analysis (PCoA) based on 
the Bray–Curtis distance metric of bacterial species-level 
profiles revealed significant shifts in bacterial composi-
tion over time, as indicated by a change in PCo1 values 
between samples obtained at study baseline and endline 
(p value = 2.7e − 04, Fig. 2C).

Next, we found an inverse link between bacterial spe-
cies richness at study baseline and intra-individual 
distance (Spearman’s correlation coefficient = − 0.13, 
p = 2.2e − 18, Additional file 2: Fig. S2D), indicating that 
individuals with higher initial bacterial species richness 
experienced smaller intra-individual changes in gut bac-
terial abundance over time.

Similarly, for microbial pathways and gut viral spe-
cies, Bray–Curtis distance index revealed greater 
inter-individual differences than intra-individual dif-
ferences, with reduced variability at study endline 
(Fig.  2E and H). PERMANOVA showed that both 
host metabolism markers and demographics signifi-
cantly influenced viral composition (Additional file 2: 
Fig. S2G). PCoA analysis confirmed the significant 
temporal shifts in microbial functional pathways and 
viral composition (Fig.  2F and I). Additionally, base-
line viral species richness was inversely associated 
with intra-individual distance (Spearman’s correlation 
coefficient = − 0.26, p = 1.6e − 18, Additional file  2: 
Fig. S2H). Interestingly, our observations also showed 
that microbial pathways exhibited a higher degree of 

(See figure on next page.)
Fig. 2 Temporal changes of gut microbial features between study baseline and endline. A, D, and G show the compositional richness 
of gut bacterial species, microbial pathways, and viral species, respectively, at study baseline and study endline. B, E, and H display 
the intra- and inter-individual Bray–Curtis distances of gut bacterial species, microbial pathways, and viral species, respectively. The dots in brown, 
yellow, or pink colors show the Bray–Curtis distances derived from the relative abundance of gut bacterial species, microbial pathways, or viral 
species, respectively, illustrating variability within and between individuals at study baseline and study endline. In C, F, and I, the principal 
coordinate analysis (PCoA) of overall composition of gut bacterial species, microbial pathways, and viral species, respectively, based on Bray–Curtis 
dissimilarity matrix, are shown. Yellow and pink dots represent the mean PCo1 and PCo2 coordinates for all study baseline and study endline 
samples with error bars indicating the standard error of the mean (SEM). J–L Changes in the compositional richness of temperate and virulent 
viruses, as well as the ratio of virulent to temperate viral species, respectively, from study baseline to endline. All adjusted p values were derived 
from p values corrected for multiple comparisons using the Benjamini–Hochberg method. The compositional richness and Bray–Curtis distance are 
expressed in arbitrary units
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Fig. 2 (See legend on previous page.)
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DMI than microbial species (Additional file  2: Fig. 
S4), implying a greater intra-individual stability of the 
former.

Temporal changes of the prevalence of gut bacterial 
species
Following the observed decline in gut bacterial micro-
biota richness, we examined the prevalence changes of 
bacterial species that underwent the most significant 
shifts. Our analysis revealed that the reduction in bac-
terial richness was accompanied by a > 30% decrease 
in the prevalence of 14 highly prevalent bacterial spe-
cies (prevalence > 50% at study baseline). These species 
include Coprococcus eutactus, Bacteroides eggerthii, 
Alistipes inops, Phocaeicola massiliensis, and Evtepia 
gabavorous (Additional file 2: Fig. S5A and Additional 
file  1: Table  S6). For gut microbial pathways and gut 
viral microbiota, by performing the same filtering 
criteria, we did not find prevalent pathways or viral 
microbiota that showed any major decrease (data not 
shown).

Temporal shifts of the abundance of gut microbial species 
and pathways
Building upon the community-level analysis of alpha 
and beta diversity, we then focused on species-specific 
and pathway-specific features to explore their abun-
dance dynamics from study baseline to endline. Signifi-
cant changes were observed in the relative abundance of 
species and microbial pathways. Specifically, 295 bacte-
rial species, 51 viral species, and 64 microbial pathways 
showed differential abundance (adjusted p value < 0.05), 
as shown in Additional file 2: Fig. S5B, C and Additional 
file  1: Tables S3–S5. Notably, multiple bacterial species 
from Bifidobacterium genus, such as Bifidobacterium 
adolescentis, Bifidobacterium pseudocatenulatum, and 
Bifidobacterium catenulatum, showed a decreased rela-
tive abundance over time, while the relative abundance 
of Ruthenibacterium lactatiformans, which may have 
pro-inflammatory effects, was higher at study endline 
(Additional file 1: Table S3). Additionally, microbial path-
ways involved in glucose degradation, as well as in energy 
production via the TCA cycle II, also declined over time 
(Additional file 1: Table S5).

Fig. 3 Relationships between temporal changes of bacterial species richness and temporal changes of host metabolic variables. This bar plot 
illustrates the delta associations, referring to the relationship between changes in bacterial species richness and host metabolic variables over time, 
as determined by partial Spearman’s correlation analyses adjusting for baseline age, sex, study centers, and bacterial cell load. The x-axis shows 
the strength of the associations by partial Spearman’s correlation coefficient values, with orange bars indicating positive correlation coefficients 
(aligned co-variation) and green bars indicating negative correlation coefficients (counter co-variation). The y-axis lists the host metabolic variables. 
OGTT means oral glucose tolerance test. Significance levels are denoted as * for adjusted p values < 0.1 derived from p values corrected for multiple 
comparisons using the Benjamini–Hochberg method
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Variance of microbial species and pathways observed 
in this longitudinal study
Furthermore, the longitudinal study design allowed us 
to investigate the variance observed among individuals. 
Hence, after adjusting for all the potential covariates, we 
profiled intra-individual variance, inter-individual vari-
ance, ICC, and total variance for all microbial species and 
pathways (Additional file 1: Tables S3–S5).

For total variance, bacterial and viral species exhib-
ited similar values with bacterial species showing 
slightly lower medians. MetaCyc pathways had the low-
est median value of total variance, indicating a higher 
temporal stability (Additional file  2: Fig. S6A). Interest-
ingly, for gut bacterial species and microbial pathways, 
total variance was inversely correlated with the relative 
abundance of these microbiota components, suggesting 
that more abundant features tend to have lower vari-
ance both across two timepoints and between individuals 
(Spearman’s correlation coefficient = − 0.37 for bacteria 
and − 0.93 for pathways, with both p value < 2.2e − 16, 
Additional file 2: Fig. S6B and C).

Dynamics of structural variants of gut bacteria
Applying the filtering criterion of ≥ 20% non-missing val-
ues at both study baseline and endline, we found 3831 
deletion SVs and 1820 variable SVs across the genomes of 
39 bacterial species (Additional file 2: Fig. S7) with Dorea 
formicigenerans and Dorea longicatena having the high-
est number of SVs (350 and 269 SVs, respectively).

To evaluate the genetic stability of the gut bacte-
rial species using the DMI metric, inter-individual and 
intra-individual dissimilarities were calculated sepa-
rately for both deletion SVs and variable SVs. For both 
types of bacterial SVs, we found a wide range of DMI val-
ues across bacterial species (Fig.  4A). For deletion SVs, 
Prevotella copri had the highest DMI of 0.52, followed 
by Akkermansia muciniphila (DMI = 0.50) and Rumino-
coccus bicirculans (DMI = 0.49), indicating a high degree 
of genetic stability over time. Prevotella copri also stood 
out with a highest DMI value of 0.32 for variable SVs 
(Fig.  4B). Roseburia hominis, Roseburia intestinalis, and 
Faecalibacterium prausnitzii exhibited low DMI values 
based on both types of SV profiles. Particularly, Rose-
buria hominis showed similar intra- and inter-individual 
distance values for its deletion SVs (DMI = 0.06) suggest-
ing a very low temporal genetic stability.

Fewer bacterial‑viral interactions in the gut microbiota 
at study endline
To explore how overall gut microbial interactions evolve 
over time, we first analyzed the interactions within king-
dom and between kingdoms at the study baseline and 
endline. Network analyses of bacterial and viral species 

revealed a diminished microbial interactome at study 
endline compared to study baseline (Fisher’s exact test p 
value = 3.0e − 02, Additional file 2: Fig. S8A–C). To iden-
tify the taxa driving the interactome shifts, we calculated 
the NetMoss score for each microbial node (see Meth-
ods) and visualized the top 50 features significantly con-
tributing to the network alterations from study baseline 
to endline. Notably, the interactions centered at Coproc-
occus comes, a butyrate producer, that contributed most 
substantially to the network changes (Additional file  2: 
Fig. S8D and Additional file 1: Table S8).

Next, we specifically examined bacterial-viral interac-
tions by excluding bacterial-bacterial and viral-viral inter-
actions from the overall network to assess the influence 
of viral dynamics on bacterial populations. The network 
at study baseline was denser and more interconnected, 
whereas the endline network became more dispersed 
and sparser (Fig.  5A and B). Compared to study base-
line, there were significantly fewer bacterial-viral interac-
tions after 4 years (Fisher’s exact test p value = 3.0e − 02, 
Fig.  5C). Both positive and negative associations 
decreased, with positive mutualistic relationships declin-
ing more markedly (615 versus 359 and 248 versus 186, 
respectively, for study baseline versus endline in positive 
and negative correlations, Fig. 5C). This reduction in bac-
terial-viral interactions aligns with the observed tempo-
ral decrease in species richness among both bacteria and 
viruses (Fig. 2A and G). Additionally, the substantial loss 
of virulent viruses may indicate a reduced viral predation 
pressure (Fig. 2J), potentially leading to fewer trans-king-
dom interactions.

Temporal changes of the abundance of specific gut 
bacterial species are associated with overall bacterial 
community dynamics
By performing delta values correlation analysis on 
bacterial species abundance, we found that temporal 
abundance changes of Alistipes putredinis, Oxalobac-
ter formigenes, and Coprobacter secundus co-varied 
directly with total bacterial species richness (beta coef-
ficient = 0.14 to 0.19, adjusted p value = 2.8e − 03 to 
2.5e − 02), suggesting that the increased abundance of 
these bacteria may drive a higher overall bacterial species 
richness (Fig.  6A and Additional file  1: Table  S9). Con-
versely, inverse co-occurrence was seen between compo-
sitional richness and abundance changes of Anaerostipes 
hadrus, Blautia wexlerae, Evtepia gabavorous, and Shi-
gella flexneri (beta coefficient = − 0.17 to − 0.25, adjusted 
p value = 2.2e − 05 to 1.7e − 03), indicating that the 
increased abundance of these bacteria may contribute to 
reduce overall bacterial species richness.

Further association analyses showing counter- or 
aligned co-variation to the intra-individual distance 
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Fig. 4 Gut bacterial genetics stability within the individual and between individuals. To evaluate the dynamics of bacterial genetics within bacterial 
species over time and between individuals, we calculated intra-individual and inter-individual distance for each species from their structural 
variant (SV) profiles. A Profiles of Jaccard distance of deletion structural variants (dSVs) and B profiles of Canberra distance of variable structural 
variants (vSVs) of 39 bacterial species. Degree of microbial individuality (DMI) was labeled. Each box plot represents the distance calculated 
from the genetic structural variant profiles within one bacterial species (see Methods), with light-colored boxes indicating intra-individual distances, 
while dark-colored boxes are showing inter-individual distances. Bacterial species are listed along the y-axis in descending order based on their DMI 
values. Distances are displayed on the x-axis

Fig. 5 Gut bacterial-viral interactions at study baseline and endline. The interaction network of bacterial and viral microbiota at the species level 
at study baseline (A) and study endline (B) was constructed using SparCC (sparse correlations for compositional data). A more dispersed and sparser 
network was observed at study endline (B) compared that at study baseline (A). Interactions with absolute value of correlation coefficient > 0.3 are 
shown in the network. Each edge in the network represents an interaction between a pair of taxa with edge thickness reflecting the absolute value 
of the correlation coefficient. Bacterial species and viral species are shown as blue or yellow nodes, respectively. C Bar plot showing the counts 
of positive or negative bacterial-viral interactions that decline at study endline compared to that at study baseline, with a more pronounced 
reduction observed in positive mutualistic relationships

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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metric of bacterial species abundance (Fig. 6A and Addi-
tional file  1: Table  S9) suggested the existence of both 
stabilizing bacterial species and destabilizing species. 
Thus, the abundance changes of Dorea sp. AF36-15AT 
or Prevotella copri exhibited inverse correlations to 
the intra-individual distance calculated from the rela-
tive abundances of overall bacterial species (beta coef-
ficient = − 0.17 and − 0.16, adjusted p values = 5.6e − 02), 
suggesting their potential role in stabilizing the overall 
gut bacterial community (lowering intra-individual dis-
tance). In contrast, the abundance changes in Intestini-
monas butyriciproducens showed an inverse correlation 
to the intra-individual distance calculated from the rela-
tive abundances of overall bacterial species (beta coeffi-
cient = 0.19, adjusted p value = 1.1e − 02), implying that 
the abundance of Intestinimonas butyriciproducens may 
contribute to, or serve as an indicator of the overall gut 
bacterial microbiota variation.

Temporal changes of the abundance of specific gut 
bacterial species are associated with changes in host 
metabolism
Association analysis revealed that changes in the rela-
tive abundance of specific bacterial species correlate 
with alterations in host metabolism, especially insulin 
sensitivity over time. Notably, increases in Oxalobacter 
formigenes and an uncultured Clostridiales bacterium 
positively correlate with changes in the Matsuda insulin 
sensitivity index and OGIS index (beta coefficients = 0.13 
to 0.18, adjusted p values = 6.0e − 03 to 3.0e − 02, Fig. 6B 
and Additional file  1: Table  S9). Furthermore, additional 
associations were noted between changes in the Matsuda 
insulin sensitivity index and in the abundance change of 
Proteobacteria bacterium CAG:495, Ruminococcaceae 
bacterium D5, Ruminococcus sp. CAG:382, and Lachno-
spiraceae bacterium OM04-12BH (beta coefficient = 0.16 
to 0.22, adjusted p value =2.0e − 02 to 3.0e − 02) as well 
as Parabacteroides goldsteinii (beta coefficient = − 0.20, 

adjusted p value = 2.0e − 02). Changes in mean plasma 
insulin levels were shown to be positively correlated with 
changes in the relative abundance of Anaeromassilibacil-
lus sp. An250 and Clostridium sp. CAG:451 (beta coef-
ficient = 0.19 to 0.22, adjusted p value = 1.0e − 02 and 
9.0e − 02). Conversely, 2-h plasma glucose levels after an 
OGTT were negatively associated with Clostridium sp. 
CAG:253 (beta coefficient = − 0.18, adjusted p value = 8.0e 
− 02). To further explore potential causal links beyond 
associations, mediation analysis revealed that part of the 
association between gut bacterial richness and host meta-
bolic traits—most notably BMI—may be indirectly medi-
ated through specific bacterial taxa, such as Clostridia 
bacterium DTU025 (Additional file 2: Fig. S9).

Structural variants in gut bacterial genomes are associated 
with markers of host metabolism
In the analysis of SVs within bacterial genomes (Fig. 7A 
and Additional file  1: Table  S10), intra-individual dis-
tances of SV profiles in Ruminococcus sp. SR1/5 were 
negatively associated with changes of fasting plasma glu-
cose (beta coefficient = − 0.24, adjusted p value = 1.0e − 
03, Fig.  7A and B). Positive temporal associations were 
identified between intra-individual distances calculated 
from SVs in Methanobrevibacter smithii and changes in 
BMI, diastolic blood pressure, and fasting plasma glucose 
(beta coefficients = 0.22 to 0.27, adjusted p values = 2.0e − 
02 to 8.0e − 02, Fig. 7A and C), while inversely associated 
with changes in OGIS index (beta coefficient = − 0.27, 
adjusted p value = 2.3e − 02, Fig.  7A). Similarly, intra-
individual distances calculated from SVs in Alistipes 
shahii and Alistipes putredinis demonstrated positive 
associations with changes in mean plasma insulin dur-
ing an OGTT and Matsuda insulin sensitivity index (beta 
coefficients = 0.17 to 0.29 and adjusted p values = 7.0e 
− 02 to 8.0e − 02, Fig.  7A). These findings suggest that 
genetic convergence, divergence, or sub-species shifts 

(See figure on next page.)
Fig. 6 Associations of temporal changes of the relative abundance of bacterial species and temporal changes in gut bacterial community 
indices or host metabolic variables. A Correlations between temporal changes of the relative abundance of bacterial species and temporal 
shifts in overall gut bacterial species richness and intra-individual distance of bacterial species abundance profiles, highlighting the bacterial 
species that are driving the community changes. The y-axis lists bacterial species, and the x-axis shows the beta coefficient and standard error 
values calculated from linear regression models. The figure includes the top 10 bacterial species, ranked in ascending order by adjusted p value. 
The dots are colored yellow and blue for positive and negative coefficient values, respectively. Dots size indicates the − log10 (adjusted p value) 
of the correlation, with larger dots showing smaller adjusted p value. B Correlations between temporal changes in relative abundance of bacterial 
species and temporal changes of host metabolic variables, highlighting changes in relative abundance of bacterial species with parallel changes 
in host metabolism. Y-axis lists bacterial species, while x-axis lists host metabolic variable. The dots are colored yellow for positive coefficient 
values and blue for negative coefficient values with color intensity indicating the effect size. Dots size indicates the − log10 (adjusted p value) 
of the correlation, with larger dots showing smaller adjusted p value. In A and B, beta coefficients and adjusted p values were calculated from linear 
regression models after adjusting for co-variates of individual’s age at baseline, sex, study centers, and delta value of bacterial cell load. All 
correlations shown are statistically significant after adjustment for multiple comparisons using the Benjamin-Hochberg procedure, with adjusted p 
value < 0.1. OGTT means oral glucose tolerance test
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within bacterial species may influence or respond (adapt 
or contribute) to alterations in host metabolism.

Focusing on single SVs within gut bacterial genomes, 
we identified 25 associations between host metabolic 
markers and SVs across 15 bacterial species (Fig.  7D 
and Additional file 1: Table S11). Coprococcus catus had 

the highest number of SVs that correlated with host 
metabolism. As noteworthy examples, in the genome of 
Prevotella copri, deletion SVs involved in genes encod-
ing TonB-dependent receptor were positively associated 
with Matsuda insulin sensitivity index of the host (beta 
coefficient = 0.55, adjusted p value = 4.0e − 02, Fig.  7E, 

Fig. 6 (See legend on previous page.)
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Additional file 1: Table S11). In Coprococcus catus, dele-
tion SVs at 1101–1102 kbp and 3414–3415 kbp within 
genes encoding hydrogenase were associated with a 
higher mean plasma insulin level (beta coefficient = 0.92, 
adjusted p value = 9.9e − 02, see Fig.  7F and Additional 
file 1: Table S11).

Discussion
In the present 4-year prospective study of 486 European 
prediabetic patients, we explored the temporal dynam-
ics of the gut bacterial and viral microbiota at different 
resolution levels (Fig.  8) and related these gut micro-
bial changes to the concomitant deterioration of host 
metabolism. The gut microbiota underwent a temporal 
community-level shift characterized by reduced bacterial 
and viral richness, fewer trans-kingdom interactions, and 
increased microbial convergence within the population. 
These microbiota shifts were correlated with changes 
in host metabolic markers that included an increase in 
glycemia and a decline of insulin sensitivity. When com-
pared to the European LifeLines-DEEP cohort [7], which 
included non-prediabetic individuals, the prediabetic 
individuals in the present European cohort exhibited a 
more substantial increase in fasting plasma glucose dur-
ing a 4-year follow-up.

At study endline, the gut bacterial microbiota showed a 
depletion of several bacterial species that are known to relate 
to metabolic health such as Bifidobacterium adolescentis, 
Bifidobacterium pseudocatenulatum [39], Bifidobacterium 
catenulatum, and Coprococcus eutactus [40], but an enrich-
ment of pro-inflammatory bacteria, like Ruthenibacterium 
lactatiformans [41]. In parallel, the abundance of pathways 
involved in glucose degradation and energy production 

decreased, while transitioning to less efficient, non-oxidative 
metabolic processes potentially associated with inflamma-
tion and metabolic stress occurred. Some of these findings 
correspond with discoveries in the gut microbiota of indi-
viduals at risk for type 1 diabetes (T1D) [42–47]. The over-
lapped bacteria and the potential mechanisms for T1D and 
T2D are shown in Additional file 1: Tables S12. Besides these 
partially overlapped gut microbiota features, individuals at 
risk of T1D and T2D exhibit disease-specific gut microbiota 
signatures that may reflect pathogenesis differences and age 
at diabetes onset [48]. 

Despite the metabolic deterioration observed in 
prediabetic individuals at study endline, we noted an 
increase in the relative abundance ofAkkermansia 
muciniphila. This finding may seem paradoxical given 
the beneficial role of various A.muciniphila strains 
in metabolism [49–53]. However, the changes in A. 
muciniphila species abundance in our study despite an 
aggravation of metabolism may reflect broader ecologi-
cal shifts in the gut microbiota.It might also represent 
a compensatory response to metabolic stress [54], with 
A. muciniphila attempting to restore gut ecological bal-
ance and mitigate further metabolic damage. Aligning 
with findings from a multi-cohort study that reported 
an upward trend in Flavonifractor plautii abundance 
across normoglycemic, prediabetic, and T2D individ-
uals [55], we observed an increase in F. plautii abun-
dance at study endline. Again, an unexpected finding 
that may exhibit some of the knowledge gaps in the 
current understanding of intestinal microbial ecology, 
since this bacterium has the genetic potential to pro-
duce monophenolic acid that has been suggested to 
counteract liver steatosis [56]. 

Fig. 7 Correlations between gut bacterial structural variants and host metabolic variables. A Temporal associations between changes in profiles 
of bacterial genetics (shown by intra-individual distance within bacterial species) and changes in host metabolic variables. The y-axis lists bacterial 
species, and the x-axis displays delta values of host metabolic variables. Dots are shaped by types of structural variants (circle for deletion structural 
variants (dSVs) and square for variable structural variants (vSVs)), colored based on beta coefficient values, and sized according to − log10 (adjusted 
p value). Beta coefficients and adjusted p values were calculated from linear regression models after adjusting for co-variates of individual’s age 
at baseline, sex, study centers, and delta value of bacterial cell load. B and C Scatter plots showing selected examples of the temporal association 
results in A. B Temporal associations between the delta values of diastolic blood pressure and the intra-individual Canberra distance calculated 
from the profile of 19 vSVs within the Methanobrevibacter smithii genome, and C temporal associations between the delta values of fasting plasma 
glucose and the intra-individual Jaccard distance calculated from the profiles of 81 dSVs within the Ruminococcus sp. SR1/5 genome. Each dot 
represents an individual participant. D A circular chord diagram illustrating the associations between specific gut bacterial species (right side) 
and host phenotypes (left side) categorized by SV types, either dSVs or vSVs, summarizing the links between single SVs and host phenotypes. Each 
bacterial species is labeled with its name and the count of associated SVs in parentheses, with the color of each link and species label showing 
the variant type involved (green for dSVs; purple for vSVs). The width of each link reflects the count of associated SVs. Beta coefficients and adjusted 
p values were calculated from linear mixed-effects models after adjusting for co-variates of individual’s age, sex, study center, and bacterial cell load. 
E and F Bar plots showing selected examples of association results given in D. E Comparison of Matsuda insulin sensitivity index values in samples 
retaining (n = 105) or deleting (n = 111) gene fragments of 50–52 kbp in Prevotella copri, predicted to encode a TonB-dependent receptor protein. F 
Comparison of fasting plasma insulin in samples where gene fragments 1101–1102 and 3414–3415 kbp in Coprococcus catus are retained (n = 486) 
or deleted (n = 13). The encoding protein is predicted as hydrogenases. Statistical significance from linear mixed-effects model was labeled. All 
correlations shown are statistically significant after adjustment for multiple comparisons using the Benjamin-Hochberg procedure, with adjusted p 
value < 0.1. OGTT means oral glucose tolerance test

(See figure on next page.)
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Despite the reduction in the richness of bacteria, 
viruses, and microbial pathways over time, we mapped 
the presence of 80 dominant core bacterial species and 
78 dominant core microbial pathways. Moreover, micro-
bial pathways showed only a small decrease in richness 
from study baseline to endline, with major functional 
potentials being largely preserved. Collectively, these 
findings suggest a robust microbial ecology over 4 years 
in prediabetes individuals that maintains essential micro-
bial functions, likely through functional redundancy 
and ecological compensation [8]. The presence of a core 

bacterial microbiota and stable microbial pathways in 
prediabetes individuals across diverse European demo-
graphics may suggest that these features play an essential 
role in gut microbial ecology that strive to maintain host 
metabolic health. Future lifestyle and drug interventions 
are warranted to explore whether targeting these core 
microbiota components can add to prevention of T2D in 
individuals at risk.

Notably, no core viral microbiota at species levels was 
observed in our study, potentially indicating a higher 
sensitivity of viral species to environmental factors 

Fig. 7 (See legend on previous page.)
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or host health conditions [57]. Additionally, the rela-
tively shallow sequencing depth (with a rarefaction to 
3.9 million reads) may have further limited the detec-
tion of low-abundance viral species, contributing to the 
absence of a distinct core gut viral microbiota in the 
present study.

A particularly interesting observation was the 
decrease of bacterial-viral interactions over the four 
years, coherently with the observed reduction in both 
bacterial and viral richness. The decline in virulent 
viruses may imply a reduced viral predation pressure, 
which could lead to less regulation of bacterial popu-
lations [58]. Viruses regulate bacterial communities 
by preventing overgrowth, thereby maintaining bal-
ance within the microbiota [59]. A reduction in these 

interactions might allow opportunistic or pathogenic 
bacterial species to dominate, potentially exacerbating 
metabolic dysfunction [60].

Regarding the interplay of gut microbiota and host 
metabolism, we observed several correlations between 
temporal changes in microbial abundance and host 
metabolic markers. For example, we found inverse co-
variations between the abundance of Clostridium sp. 
CAG:253 and 2-hour plasma glucose after an OGTT, 
as well as positive co-variations between Ruminococ-
caceae bacterium D5 abundance and insulin sensitivity. 
The findings that align with previous reports [55, 61, 
62] may suggest a beneficial role for these gut bacteria 
in enhancing glucose metabolism and insulin sensitiv-
ity of their host.

Fig. 8 Summary of temporal changes in host metabolism and gut microbiota dynamics in prediabetes over 4-year follow-up. Created 
with biorender.com
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At the bacterial genetics level, we observed significant 
associations between bacterial genome variation and 
host metabolic changes over time. Notably, the retention 
of hydrogenase-encoding bacterial genes in Coprococcus 
catus was linked to low plasma insulin level. Bacterial 
hydrogenases may play a critical role in butyrate produc-
tion [63] and in neutralization of reactive oxygen species 
[64], both of which may potentially enhance host insulin 
sensitivity. 

In addition, the temporal association analysis identified 
key bacterial species influencing the overall dynamics of 
the gut bacterial community. Thus, changes in the abun-
dance of Alistipes putredinis,Oxalobacter formigenes, and 
Coprobacter secundus were positively linked to increases 
in bacterial species richness. It has been reported that A. 
putredinis supports butyrate production in a bacterial 
community [65],O. formigenes aids in oxalate regulation 
and hyperoxaluria prevention [66–68], and C. secundus 
contributes to butyrate synthesis [69, 70]. These versa-
tile bacteria may potentially foster cross-feeding to other 
bacteria, enhancing microbial diversity. Conversely, tem-
poral changes of the abundance of Prevotella copri, with 
its anti-inflammatory and short-chain fatty acid (SCFA)-
producing functions [71], showed an inverse association 
with the measure of intra-individual distance, underscor-
ing its potential role in stabilizing gut microbiota resil-
ience and temporal stability.

In accordance with what has been reported in a pre-
vious study of the gut bacterial microbiota in healthy 
individuals [8], we observed that the dynamics of gut 
microbiota tend to follow specific patterns. For example, 
high-abundance bacterial species in our study were more 
stable both within individuals and between individuals, 
while low-abundance bacterial species often exhibited 
multi-modal distributions in abundance as indicated by a 
high variance. These findings may imply that high-abun-
dance bacterial species which often are evolutionarily 
dominant within microbial communities [72] are more 
resilient to perturbations. Another pattern we observed 
was the inverse relationship between bacterial species 
richness at study baseline and the temporal stability as 
measured by the intra-individual distance metric, indi-
cating that a diverse microbial community may confer 
resilience against environmental or physiological pertur-
bations [7].

Our study has limitations. The present prospective 
study focused on the dynamics of the gut microbiota in 
prediabetes cases and was not designed to explore any 
role of the gut microbiota in prediction of metabolic out-
comes over the four years. Achieving such a goal would 
require a much larger study population monitored over 
a much longer period, along with detailed information 
on additional potential confounders, such as medication, 

lifestyle factors and interfering comorbidities. Although 
height has been linked to 2-hour glucose levels [73], we 
did not adjust for it as its effect is largely captured by sex, 
and including both would risk multicollinearity, but it 
may be relevant in future stratified or mediation analyses. 
To explore if the abberant gut microbiota in prediabetes 
is a therapeutic target, drug or lifestyle interventions are 
needed. Another shortcoming includes the DNA extrac-
tion and sequencing protocols that were optimized for 
bacterial DNA recovery and not for viral recovery. There-
fore, the actual genetic material analyzed may only rep-
resents a fraction of the total viral DNA in stool samples. 

Conclusions
In conclusion, in this 4-year longitudinal study of Euro-
pean prediabetic patients, we observed a decline in gut 
bacterial and viral richness, microbial functional poten-
tials and bacterial-viral interactions as well as changes 
of bacterial relative abundance, and bacterial genetics, 
with the former being directly linked to a deterioration of 
metabolic health. At present, it is unsettled whether the 
observed dynamics of the gut microbiota in individuals 
with prediabetes reflect adaptations or contributions to 
the observed metabolic deterioration.
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