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SUMMARY

Understanding the recognition of disease-derived epitopes through T cell receptors (TCRs) has the 

potential to serve as a stepping stone for the development of efficient immunotherapies and vaccines. 

While a plethora of sequence-based prediction methods for TCR-epitope binding exists, their pre-trained 

models have not been comparatively evaluated. To alleviate this shortcoming, we integrated 21 

TCR-epitope prediction models into the immune-prediction framework ePytope, offering interoperable 

interfaces with standard TCR repertoire data formats. We showcase the applicability of ePytope-TCR 

by evaluating the performance of these publicly available prediction models on two challenging datasets. 

While novel predictors successfully predicted binding to frequently observed epitopes, all methods 

failed for less frequently observed epitopes. Further, we detected a strong bias in the prediction 

scores between different epitope classes. We envision this benchmark to guide researchers in their 

choice of a predictor and to accelerate the method development by defining standardized evaluation 

settings.

INTRODUCTION

T cells play a fundamental role in the adaptive immune system 

by recognizing diseased cells through diverse T cell receptors 

(TCRs). Target cells present antigen-derived peptides—so- 

called epitopes—bound by the major histocompatibility com-

plex (MHC) to the TCR. The TCR mainly interacts with the 

peptide by the complementary determining region 3 (CDR3) 

of its β-chain, while CDR1 and CDR2 ensure contact with 

the MHC.1 TCR specificity is crucial for understanding vaccine 

efficacy2 and developing immunotherapies against cancer3

and autoimmune diseases.4 By better understanding how 

TCRs recognize specific antigens, we can unlock new strate-

gies for targeted treatments. Therefore, deciphering the TCR- 

epitope interaction was declared one of the nine Cancer 

Grand Challenges in 2023.5 Several solutions exist to discover 

pairs of TCRs and their cognate epitopes, such as high- 

throughput single-cell techniques for staining TCR repertoires 

with peptide-loaded multimers.6 However, these experiments 

are labor- and cost-intensive and typically require an initial set 

of target epitopes to test. In silico prediction methods could 

overcome these restrictions and provide antigen-specific 

TCR candidates.

In two seminal publications, Dash et al.7 and Glanville et al.8

demonstrated that the TCR sequence is indicative of epitope 

specificity when employed for pairwise distance calculation 

and clustering. Based on these findings, several approaches 

were developed to compare sequences between a query TCR 

and an atlas repertoire with known epitope specificity using 

string metrics,7,9 and later deep learning-based representa-

tions.10–12 While such distance- or embedding-based methods 

play a pivotal role in determining TCR specificity in applied 

research, these approaches require the target epitope to be con-

tained in atlases such as the common databases IEDB,13

VDJdb,14 or McPAS-TCR,15 which may not be the case for newly 

arising epitopes from mutations or novel infectious diseases. 

With the increasing amount of publicly available TCR-epitope 

pairs, machine learning models have been trained to predict 

TCR specificity in two settings. In the first setting, the pre- 

defined epitopes are considered as categories, i.e., the models 

receive only the TCR as input and learn from a set of specific 

TCRs their sequence properties that are characteristic for the 

epitope class.16–18 As they do not incorporate the epitope 

sequence into their prediction, they only can be applied to the 

targets on which they were trained. Alternatively, models can 

encode the epitope sequences as an additional input to learn 
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the TCR-epitope interaction.19,20 While such general predic-

tors—in contrast to categorical models—also can be applied 

to unknown targets, this generalization typically results in a forfeit 

of predictive performance.21

While a plethora of prediction methods have been published, 

the comparative performance of their publicly available models 

remains unclear as they have been evaluated on different data-

sets and under differing settings. Recently, efforts have been 

made to evaluate methodological development by comparing 

predictors on standardized datasets22,23 notably by the 

ImmRep workshop.24–26 However, a thorough benchmark of 

available pre-trained models is missing to guide immunologists 

in deciding whether the methods are sufficiently performant for 

their use case and which of the available models to choose. 

Additionally, the lack of clearly defined testing standards hinders 

methodological improvements as the performance of novel 

methods is difficult to compare. Moreover, the different models 

are cumbersome to apply from a practical perspective as they 

employ custom data formats for TCRs and epitopes, discour-

aging interoperability and limiting their usability for researchers.

We here present ePytope-TCR—an extension to the immune- 

prediction framework ePytope (formerly FRED227)—to create a 

simplified interface to TCR-epitope predictors. ePytope-TCR 

provides a unified framework for 18 general and three categori-

cal pre-trained models provided alongside their original publica-

tion, allowing their application to TCR repertoires from six com-

mon data formats. Additionally, we guide researchers in their tool 

selection by utilizing ePytope-TCR for a thorough benchmark of 

these pre-trained models on two challenging datasets, focusing 

on repertoire annotation of single-cell studies,28,29 and predict-

ing cross-reactivity toward epitope mutations.30

RESULTS

ePytope-TCR provides an extendable interface for TCR- 

epitope prediction

ePytope (formerly FRED227) represents a framework for T cell 

epitope detection and vaccine design. Its previous implementa-

tion (Figure 1A) covered several immunological steps starting 

from cleavage prediction to MHC-peptide binding prediction, 

as well as epitope selection and assembly for vaccination. 

Several external tools can be conveniently combined through in-

terfaces to standardized data representations of transcripts, var-

iants, proteins, peptides, and MHC alleles.

To enable the binding prediction between epitopes and TCR 

repertoires (Figure 1B), we extended ePytope with two data 

structures. Here, adaptive immune receptors consist of one or 

several immune receptor chains with known CDR3 amino acid 

sequences and optional V-, D-, and J-genes in addition to meta-

data such as T cell type and species. Epitopes represent the 

combination of peptide sequence and, optionally, its binding 

MHC allele through the aforementioned data representations, 

enabling full interoperability with the remaining framework. To 

allow users to incorporate their repertoires, ePytope-TCR pro-

vides functionality to load TCRs from common single-cell and 

bulk formats such as the AIRR standard,31 the cellranger-vdj 

output, and scirpy data object.32 Additionally, TCRs can be 

loaded in the formats of the IEDB,13 VDJdb,14 and McPAS- 

TCR,15 which represent the three most common public data-

bases of TCR-epitope pairs.

Based on the input of AIR repertoires and epitopes, specificity 

predictors can be used to estimate binding between all individual 

combinations of TCRs and pMHCs. While we support 18 general 

ePytope
ePytope-TCR

Benchmark Suite
A C

B

Figure 1. Overview of ePytope-TCR and the benchmark suite 

(A and B) The existing framework of ePytope (A) was extended for TCR-epitope prediction (B). TCR repertoires can be loaded from six common data formats, and 

their binding capabilities for pMHCs estimated with 18 general and three categorical sequence-based predictors. 

(C) The benchmark suite applies ePytope-TCR to two challenging datasets and evaluates the predictive performance for classification, ranking, and correlation.
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and three categorical predictors for this work (detailed overview in 

Table 1), novel predictors can be easily integrated by following 

the defined interface. We utilized the flexibility of ePytope-TCR 

to evaluate the predictors on two datasets in a standardized 

fashion via the benchmarking suite (Figure 1C). Overall, 

ePytope-TCR offers an extendable and easy-to-use tool for 

applied researchers to predict binding specificity between TCRs 

and epitope-MHCs. At the same time, it can be used to evaluate 

new models and make them accessible to the community.

Predictors

In an extensive literature review (STAR Methods, Tool selection), 

we collected a corpus of 18 sequence-based TCR-epitope 

specificity predictors (Tables 1 and S1). As a prerequisite for inte-

gration into ePytope-TCR, the pre-trained models must have 

been publicly available, and the models were required to predict 

arbitrary 9-mer epitopes to allow researchers to apply the 

method to their own TCR repertoires without retraining the 

model. As a comparative baseline, we further selected three cat-

egorical models comprising one of the first predictors and two 

recent methods indicating high performance.

The resulting methods mainly differ in training data, input infor-

mation, and network style. All models were trained on combina-

tions of the three major databases IEDB,13 VDJdb,14 and 

McPAS-TCR,15 in addition to smaller datasets48 or sequencing 

studies.41,49 However, this prohibits fairly evaluating pre-trained 

models of the methods on these publicly available databases 

pairs to avoid leakage between test and training data. While all 

tools required the CDR3β amino acid sequence as input, several 

methods also used the CDR3α sequence, the full TCR se-

quences, CDR1 and CDR2, or MHC type as well. As two 

exceptional cases, DLpTCR36 additionally offers a separate 

CDR3α-alone model, and ERGO-II1 takes the α-chain sequence 

and trainable embeddings for categorical V- and J-gene infor-

mation, MHC type, and cell type as optional input. Based on 

the used databases, the publication date, and the required 

filtering, the amount of used training data varied drastically be-

tween 3,924 and 209,799 positive TCR-epitope pairs. Experi-

mentally validated non-binders are typically not captured in pub-

lic databases. However, all methods except TULIP-TCR 

explicitly require negatively annotated pairs during the model 

training, which is a crucial design choice of the developers as 

shown by Dens et al.23 Negative pairs were either created by 

randomly shuffling the TCR-epitope combinations from the pos-

itive pairs (internal), by matching epitopes to repertoires of TCRs 

with unknown specificity (external), or both at ratios from 1:1 to 

1:30 between the positive pairs from the databases and these 

negative combinations.

The majority of models encoded the amino acid sequence 

either via trained embedding layers or through different physico-

chemical properties (PCP), while one-hot encodings or other 

representations were less common. Most of the deep learning 

models employed a multilayer perceptron (MLP) to classify bind-

ing vs. non-binding, which was often preceded by a feature-ex-

tracting network. Here, all common network styles and combina-

tions of them have been tested with attention-based neural 

networks and convolutional neural networks (CNNs) outnumber-

ing recurrent neural networks (RNNs). As two exceptions, ep-

iTCR employed random forests (RFs) and TCRGP a Gaussian 

process (GP) instead of deep neural networks. Interestingly, 

TULIP-TCR was not directly trained for classification but in an 

unsupervised fashion to learn the implicit dependencies among 

TCR, epitope, and MHC, thereby completely avoiding the need 

for generating negative training pairs. In a similar direction, 

several models employed autoencoding (AE)- or masked lan-

guage model (MLM)-styled pretraining to learn a TCR represen-

tation from a large corpus of TCRs with unknown specificity.

Strong biases prevail between different viral targets

We investigated to what degree TCR-epitope predictors can 

annotate repertoires from sequencing studies. Therefore, we 

simulated the annotation of a single-cell dataset of 638 TCRs spe-

cific to viral epitopes with all 21 predictors through ePytope-TCR. 

This repertoire was obtained by combining the severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2) vaccine study 

from Kocher et al.28 (n = 595 TCRs, m = 14 epitopes) with the sam-

ple datasets of the BEAM-T pipeline of 10x Genomics29 (n = 43 

TCRs, m = 5 epitopes). As a ground truth, we utilized the speci-

ficity assigned via multimer staining to one of 14 epitopes from 

influenza A virus (IAV), Epstein-Barr virus (EBV), cytomegalovirus 

(CMV), and SARS-CoV-2 bound to five different MHC alleles. The 

original study28 conducted strict quality control and validation, 

surpassing most single-cell specificity assignments, which limits 

the amount of false annotation in this evaluation data (see STAR 

Methods). As expected in repertoires from sequencing samples, 

the distribution of TCRs binding to the different epitopes is 

skewed (Figure 2A) as the four most represented epitopes bind 

to 76.2% of the TCRs (n = 486) while five epitopes are represented 

fewer than 10 times. We predicted the binding score between 

each TCR-epitope pair while considering the assigned epitope 

for each TCR as positive samples. For classification metrics, we 

additionally required negative pairs during this evaluation, for 

which we used the 13 other epitopes for each TCR. While this re-

sembles internal shuffling as used by most methods during their 

training phase (Table 1), none of these negative TCR-epitope 

pairs were detected as positive binders in the underlying 

sequencing studies and are, therefore, more likely to be true 

negatives.

In the first step, we evaluated the performance based on area 

under the curve (AUC) as a common metric for general classifica-

tion and TCR-epitope prediction. The metric was calculated 

across the dataset and for each epitope separately (Figures 2B 

and S1A; Table S2). Only four general and two categorical 

methods achieved an average AUC greater than 0.6, with 

MixTCRpred performing best at a score of 0.63 ± 0.17 (n = 14 

epitopes). Eight methods were less than 5% points off the 

threshold of 0.5. While this average at first glance resembles 

the random prediction baseline, all eight models achieved an 

AUC value greater than 0.7 on at least one epitope for which 

more than 40 CDR3β sequences are currently contained in pub-

lic databases (Table S3). Overall, the best-performing predictors 

remained similar across other classification metrics with a 

maximal average precision score (APS) of 0.25 ± 0.28 and an 

F1 score of 0.23 ± 0.26 (Table S2). When a method provided mul-

tiple models due to cross-validation or testing different design 

choices, we reported the version with the highest AUC in this 
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Table 1. Overview of TCR-specificity predictors

Name Date Training data # Samples Pretraining CDR3 V-, J-genes Representation MHC Network type Negative pairs General

ATM-TCR33 07/2022 IEDB, VDJdb, 

McPas

128,142* ⨯ β ⨯ embedding ⨯ attention internal (1:1) ✔

AttnTAP34 08/2022 VDJdb* 38,134* ⨯ β ⨯ embedding ⨯ RNN, MLP, 

attention

internal (1:1)* ✔

BERTrand35 06/2023 VDJdb, McPas, 

Others

32,523 ✔ β ⨯ embedding ⨯ attention external (1:3) ✔

DLpTCR36 08/2021 VDJdb, Others 5,710* ⨯ β* ⨯ 1-hot+PCP ⨯ MLP,CNN external (1:1) ✔

epiTCR37 04/2023 IEDB, VDJdb, 

McPas, Others

106,576* ⨯ β ⨯ PCP ⨯* RF internal (1:30) ✔

ERGO19 07/2019 VDJdb* 35,201* ✔* β ⨯ 1-hot* ⨯ MLP* internal (1:5) ✔

ERGO-II1 04/2021 VDJdb* 34,886* ⨯* β(,α) (✔) 1-hot* (✔) MLP* internal (1:5) ✔

ImRex20 12/2020 VDJdb 14,188* ⨯ β ⨯ PCP ⨯ CNN internal (1:1) ✔

iTCep38 05/2023 IEDB, VDJdb, 

McPas

10,759 ⨯ β ⨯ PCP ⨯ CNN external (1:1) ✔

MixTCRpred18 09/2023 IEDB, VDJdb, 

McPas, Others

17,715 ⨯ α,β embedding ⨯ attention both (1:5) ⨯

NetTCR-2.239 10/2023 IEDB, VDJdb 9,065 ⨯ α,β PCP ⨯ CNN internal (1:5) ✔

NetTCR-Cat39 10/2023 IEDB, VDJdb 9,065 ⨯ α,β PCP ⨯ CNN internal (1:5) ⨯

PanPep40 03/2023 IEDB, VDJdb, 

McPas, Others

32,080* ⨯ β ⨯ PCP ⨯ attention internal (1:1) ✔

pMTnet41 09/2021 IEDB, VDJdb, 

McPas, Others

32,607 ✔ β ⨯ PCP ✔ CNN,LSTM internal (1:10) ✔

STAPLER42 04/2023 IEDB, VDJdb, 

McPAS, Others

3,924 ✔ embedding ⨯ attention internal (1:5) ✔

TCellMatch21 08/2019 IEDB* 9,697* ⨯ β* ⨯ PCP* ⨯ MLP* internal (1:1) ✔

TCRGP16 02/2019 VDJdb, Others 14,469 ⨯ β* ⨯* PCP ⨯ GP internal (1:1) ⨯
TEIM43 03/2023 VDJdb, McPas, 

Others

45,481 ⨯ β ⨯ embedding ⨯ CNN internal (1:5) ✔

TEINet44 10/2022 VDJdb, McPas, 

Others

44,682* ✔ β ⨯ embedding ⨯ CNN, 

attention

internal (1:1)* ✔

TITAN45 04/2021 VDJdb, Others 23,145 ⨯ β SMILES, 

PCP

⨯ attention internal (1:1) ✔

TULIP-TCR46 07/2023 IEDB, VDJdb, 

McPas

209,779 ⨯ α,β ⨯ embedding ✔ attention ⨯ ✔

The predictors supported by ePytope-TCR are listed with date of publication, model, and training characteristics. The first occurrence in a journal, conference, or preprint is considered the pub-

lication date. The table indicates the characteristics of the model version with the highest area under the curve (AUC) in the viral benchmark. If alternative options were additionally available or 

presented in the publication, the corresponding entry is marked with a star. Optional model inputs are listed in round brackets. # Samples refers to the number of positive training samples. Rep-

resentation can be either physicochemical properties (PCP), one-hot encoding (1-hot), learned embeddings (embedding), or SMILES representation (SMILES).47 Network type refers to the back-

bone architecture of the predictor without the classification head, consisting of multilayer perceptron (MLP), convolutional neural networks (CNN), recurrent neural networks (RNNs) such as 

LSTMs or GRUs, and attention- or transformer-based networks (attention). Negative data for training is formed either using the sequences from the matching TCR-pMHC pairs (internal) or 

by using an additional reference set (external) at a positive-negative ratio of (1:n). General indicates whether the epitope is treated as a model input (✔) or as a category (⨯). See also Table S1.
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test and kept this version for the remainder of the benchmark. As 

this selection slightly favors methods reporting multiple models, 

the achieved performance should be considered an optimistic 

estimate for each model family, especially for cross-validated 

methods. Regarding design choices, the most prominent differ-

ence between models of the same method was the data filtering 

strategies and the training dataset, with models trained on the 

VDJdb typically outperforming models trained on McPAS-TCR 

(Figure S1B).

In practice, the models do not directly classify a TCR-epitope 

pair as binding or non-binding but provide a continuous predic-

tion score with high values indicating a high binding probability. 

To assign specificity, practitioners would be required to define 

thresholds on this prediction score to decide whether a T cell 

is specifically binding to an epitope. However, suggestions for 

binding score thresholds are often not provided in the original 

publication. Rank-based metrics offer a more intuitive evaluation 

in this setting (Figures S1C and S1D; Table S2) as thresholds are 

difficult to estimate as the score profile between binders and 

non-binders overlaps strongly (Figures S2A–S2U). For each 

TCR, the prediction scores for the 14 epitopes were ordered, 

and the position (average rank) of the correct match was evalu-

ated with 7.5 as the middle between 1 and 14, indicating random 

prediction. The recall at K (R@K) indicates how often the correct 

A

D E F

CB

Figure 2. Benchmark on viral epitopes 

(A–C) (A) The dataset contains 638 TCR-epitope pairs stemming from 14 epitopes, five MHC types, and four diseases. The epitopes are ordered based on the 

amount of matching CDR3β sequences in public databases in high (n ≥ 500), medium (n ≥ 4), and low (n < 4) abundance. The best eight predictors measured by 

the area under the curve (AUC) (B) and recall at 1 (R@1) (C) calculated per epitope. Categorical models are marked with boldface names. The mean indicates the 

average metric score measured for each epitope individually, while the error bars indicate the 95% confidence interval over the scores (n = 14 epitopes). The 

dashed black line marks random predictions. 

(D) AUC scores per epitope of the five best-performing predictors (n = 5 models). The boxplot indicates the data quartiles, while the median is indicated as a 

horizontal line. Outliers are marked separately. 

(E) Pearson correlation between the average AUC score of the predictors from (D) and the amount of unique CDR3β-epitope pairs available in the combined 

databases IEDB,13 VDJdb,14 and McPas-TCR15 over all epitopes (n = 14). 

(F) Pearson correlation between the AUC scores averaged over the epitopes and the initial publication date of the method. The line represents the mean of the 

data with the 95% confidence interval as an error band. See also Figures S1–S6 and Tables S2 and S3.
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epitope occurred within the K highest scores (random for R@1: 

1/14 = 0.071). The three methods with the highest score— 

MixTCRpred, TULIP-TCR, and NetTCR-Cat—achieved an R@1 

between 0.24 and 0.26 and R@3 between 0.38 and 0.40 

(Figure 2C). While these predictors exceed the random predic-

tion threshold of 0.071, applying them for annotation would 

lead to correct annotation of TCRs in only one-fourth of cases, 

which is insufficient for downstream analysis.

These shortcomings were caused by large discrepancies in 

performance between the different epitopes, as indicated by a 

large standard deviation in R@1 greater than 0.25 and in AUC 

greater than 0.15 of the best five predictors (Figures 2B and 

2C; Table S2). For five epitopes, at least one predictor reached 

an AUC greater than 0.75 with a maximum of 0.98 for TEIM on 

the YLQPRTFLL epitope (Table S3). Notably, four of these five 

epitopes were reported with 500 or more matching CDR3β se-

quences (high abundance) in public databases and were bound 

by HLA-A*02:01 (Figure 2A), one of the most extensively studied 

human HLA alleles (Figure 2D). However, for five epitopes, no 

predictor reached an AUC greater than 0.7. These comprised 

all previously almost unobserved epitopes occurring in public 

databases with three or fewer TCRs (low abundance), but also 

two out of seven epitopes with an abundance of four to 500 

CDR3β sequences (medium abundance). Naturally, the three 

categorical methods did not provide any model for the almost 

unobserved epitopes but demonstrated higher performance 

than general models on four epitopes from other classes, indi-

cating that general models fail to utilize synergistic effects across 

epitopes. While MixTCRpred provided models for more epitopes 

and, thereby, achieved the highest average score, the categori-

cal version of NetTCR-2.2 performed slightly better on most epi-

topes with available models (Table S3).

As shown previously,18,26,50 differences in performance be-

tween epitope classes were caused by the over-representation 

of some epitopes in public databases as indicated by a strong 

significant Pearson correlation of r = 0.69 between the average 

AUC score of the five best predictors and the logarithmized 

amount of CDR3β-sequences in public databases per epitope 

(Figure 2E). Interestingly, the average AUC score correlated 

even stronger (r = 0.74) with the logarithmized amount of 

αβ-paired CDR3 sequences (Figures S3A and S3B), as four out 

of the five best-performing methods utilized both TCR chains 

in their prediction. While the availability of paired sequences 

was statistically significantly related to the number of CDR3β se-

quences (r = 0.79), RLQSLQTYV and KCYGVSPTK form two 

notable exceptions (Figure S1C). Despite 94 and 223 observed 

CDR3β sequences, only six and zero were recorded with corre-

sponding α-sequences, respectively, explaining the low predic-

tive performance on these two epitopes. This bias toward epi-

topes with a large number of TCRs available for training was 

also prevalent in the average predictive performance within 

each group: While for high abundance the best predictor 

achieved an AUC of 0.85, the scores decreased to 0.57 and 

0.59 for medium and low, respectively. Interestingly, ERGO— 

one of the first published methods—achieved the highest 

average AUC in the low abundance setting. Presumably, much 

of the performance increase in recent years (Figure 2F) can be 

attributed to the rise of publicly available TCR-epitope pairs 

(Figures S4A and S4B), especially through SARS-CoV-2 epi-

topes forming the majority of this dataset, while choices in 

method design had less influence on the performance (Figure 

S4C). While these performance differences between epitopes 

clearly hinder the applicability of predictors toward less- 

observed epitopes, this shortcoming may often be overlooked 

when calculating metrics across the whole dataset or weighting 

them by epitope frequency, which will bias the evaluation toward 

highly studied epitopes.

Besides large differences in performance, we additionally 

observed strong biases in the prediction scores between the epi-

topes. For 14 of 21 methods, we observed a decrease in perfor-

mance when the AUC was calculated for all epitopes simulta-

neously compared with the averaged AUC calculated for each 

epitope individually (Figure S5). This indicates that the predictors 

were better at ordering TCRs within epitopes, but the prediction 

scores of the models are not comparable between the different 

epitope targets. This becomes even more apparent when inves-

tigating the average prediction score per epitope across the 

whole dataset (Figure S6A). An ideal predictor would assign a 

score of 1 to all correct binders and 0 otherwise and, thereby, 

match the epitope frequencies of the dataset. However, 12 pre-

dictors have mean binding scores greater than 0.50 for at least 

one epitope compared with a maximal epitope frequency of 

0.20. This indicates that predictors overestimated binding to 

certain epitope classes, while presumably less-observed epi-

topes are always predicted as non-binders. This is further dis-

played by the fact that some predictors show low standard devi-

ation in the prediction scores of all TCRs against an individual 

epitope, with an average smaller than 0.10 for four predictors 

(Figure S6B). This indicates that these predictors always provide 

highly similar prediction scores for a given epitope, regardless of 

the TCR sequence. Presumably, epitopes frequent in the training 

data were always classified as binding, while others were pre-

dicted as non-binding. TULIP-TCR could not be considered in 

this analysis, as the binding score is not scaled between 0 and 

1. However, the remaining best-performing methods in AUC 

and R@1 except MixTCRpred all had an overall mean prediction 

score below 0.2, leading to a profile resembling the true fre-

quencies (Figure S6A). Such a comparison between epitopes 

may be overlooked when evaluating metrics only per epitope. 

However, prediction scores are required to be comparable 

across epitopes when annotating repertoires, as otherwise, 

epitope-specific thresholds need to be defined. Potentially, 

these shortcomings could be avoided by normalizing against 

the prediction score of suitable background TCRs, which are 

presumably unspecific to the epitope in question and can 

thereby be used to estimate the prediction score level.

In summary, our findings suggest that current TCR-epitope 

prediction tools struggle to accurately assign specificity to viral 

epitopes in TCR sequencing repertoires in a global manner. 

While several methods show strong performance for commonly 

observed epitopes in public databases, their generalizability to 

less-represented or unobserved epitopes is limited, with predic-

tion results resembling random chance. Categorical methods 

often performed on par or better compared with general 

methods, if a pre-trained model was provided for an epitope, 

indicating that general methods failed to utilize synergetic effects 
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across different targets. Additionally, significant biases exist be-

tween the prediction scores of different epitopes, complicating 

their comparability between targets. As a result, we recommend 

using these predictors primarily for epitopes that are well-repre-

sented in the common databases and defining distinct thresh-

olds for each target.

Epitope mutations are challenging for general 

specificity predictors

As a second test, we utilized two deep mutational epitope scans 

from our previous study30 generated via high-confidence, low- 

throughput experiments. This dataset comprised continuous acti-

vation scores of six TCRs against 132 single amino acid mutations 

of the neo-epitope VPSVWRSSL, and 172 mutations of the hu-

man CMV epitope NLVPMVATV (Figure 3A). All selected TCRs 

recognized the corresponding wild-type epitope with high func-

tional avidity but vary in reactivity toward their mutations. Predic-

tions on mutational effects could depict potential immune escape 

of pathogens or identify cross-reactive TCR candidates for can-

cer immunotherapies. However, estimating reactivity against 

epitope mutants represents one of the most challenging tasks 

for TCR-epitope predictors, as the model must be highly sensitive 

A

D E F

C

B

G

Figure 3. Benchmark on TCR reactivity against epitope mutations 

(A–C) (A) The dataset consists of two deep mutational scans of TCRs reactive to mutations of the neo-epitope VPSVWRSSL and the human CMV epitope 

NLVPMVATV. Prediction performance for this dataset is shown for the best eight predictors, measured by the area under the curve (AUC) (B) and Spearman 

correlation coefficient (Spearman) (C) calculated per TCR. The mean indicates the average metric score measured for each TCR individually, while the error bars 

indicate the 95% confidence interval over the scores (n = 26 TCRs). 

(D–G) Pearson correlation (n = 26 TCRs) between the average AUC (D) or Spearman coefficient (E) and the activation score to the wild-type epitope. Each point 

represents one TCR with the performance scores averaged for the best predictors (n = 5) on the corresponding metric from (B) and (C), respectively. Spearman 

correlation between the prediction score of iTCep and the activation score for all epitope mutations for two selected TCRs with the highest (F, n = 133 epitopes) 

and the lowest (G, n = 172 epitopes) correlation score. The line represents the mean of the data with the 95% confidence interval as an error band. See also 

Figures S7–12 and Tables S4–6.
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toward single amino acid changes in the epitope input. Again, we 

predicted binding with ePytope-TCR for all epitope-TCR combi-

nations and evaluated the AUC calculated per TCR (Figure S7A; 

Table S4) based on the activation score threshold of the original 

publication30 to define activating and non-activating TCR-epitope 

pairs. As the categorical models did not provide a model for the 

epitope mutations, we focused solely on general methods in 

this test. The three best-performing predictors were iTCep at an 

AUC of 0.61 ± 0.15 (n = 26 TCRs) (Figure 3B), a method that did 

not achieve top eight performance on the viral dataset 

(Figures 2B and 2C), TULIP-TCR (0.59 ± 0.11), and TITAN 

(0.57 ± 0.10).

The data on mutational epitope scans additionally provide a 

continuous score for each TCR-epitope pair relating to the frac-

tion of T cells from this clonotype that were activated by a 

mutated epitope peptide. As a next step, we, therefore, evalu-

ated to what degree the models’ prediction scores correlate 

with the respective activation scores in order to investigate to 

what degree continuous T cell activation was captured by the 

predictors. The overall performance largely followed the classi-

fication setting (indicated by AUC in Figure 3B) on this dataset 

and was with a maximum of 0.21 ± 0.22 in Spearman rank co-

efficient close to the random prediction boundary of 0.0 

(Figures 3C and S7B; Table S4). Interestingly, a variant of TCell-

match—one of the first general epitope-TCR predictors— 

achieved the highest AUC (0.62 ± 0.11) and Spearman coeffi-

cient (0.29 ± 0.16) on this dataset (Figures S8A and S8B) but 

is not listed in the results as it is not the version selected in 

the previous evaluation (Figure S2). These findings suggested 

that none of the methods so far is suitable for predicting the ef-

fect of point mutations in epitopes.

As in the viral dataset, we observed large differences in 

performance between the different TCRs and targets. We 

observed a significant negative Pearson correlation (r = 

− 0.51) between the average performance scores of the best 

five general predictors in AUC (Figure 3B) to the activation 

score of the TCRs (n = 26) against the wild-type epitope 

(Figure 3D). The correlation (r = − 0.19) of the best five models 

(Figure 3C) was not significant for the Spearman coefficient 

(Figure 3E). Predictive performance for TCRs of both subsets 

varied greatly. Only iTcep performed within the best five models 

measured by AUC for the CMV and the neo-epitope, and four 

methods had an AUC greater than 0.5 (Figures S9A–S9C) or 

Spearman correlation greater than 0.0 (Figures S9D–S9F) on 

both subsets (Table S5). Further, we did not observe any corre-

lation of the evaluation metrics between both datasets 

(Figures S9C and S9F). To validate performance difference be-

tween base epitopes, we conducted this test on a deep muta-

tional scan of murine TCRs reactive toward the model epitope 

SIINFEKL (Figure S10A). We excluded this dataset from our 

initial benchmark to keep the evaluation set constant, as four 

of the 18 models could not be applied due to restrictions 

regarding epitope length and murine MHCs or TCRs. As in 

the previous test, the overall performance was limited, with 

STAPLER achieving a maximum AUC score of 0.58 ± 0.16 

and TULIP-TCR having the highest Spearman correlation of 

0.15 ± 0.16 (Table S6). Interestingly, methods trained on human 

and murine TCRs surpassed most models developed on only 

human data (Figures S10B and S10C), even when they showed 

limited performance in previous tests. This indicates that the 

models vary strongly between different base epitopes and, 

therefore, no conclusive performance estimations can be 

made regarding the predictions for other deep mutational 

scans.

Again, we observed a strong bias between the different 

target epitope variants with regard to the continuous prediction 

scores that the models provide as an output to indicate binding. 

Even for the two leading methods, iTCep and TULIP-TCR, the 

prediction scores between both base epitopes separated into 

a clear bimodal distribution (Figures S11A–S11R). Fourteen of 

the 18 tested methods yielded lower average prediction scores 

for the tumor epitope mutations (Figures S12A and S12B) 

despite them surpassing the activation threshold by 38.9% 

more often than the CMV epitopes. As NLVPMVATV is one of 

the epitopes with the most recorded TCRs in public databases, 

prediction methods were inherently biased to assume binding 

with a higher probability compared with the unobserved 

VPSVWRSSL neo-epitope, which is reflected by a higher level 

of prediction scores. This can be illustrated well in the example 

of the best-performing method, iTCep. The TCR with the high-

est Spearman coefficient of 0.56 (R25, tumor) showed variable 

prediction scores between 0 and 1 (Figure 3F). While many mu-

tations would be incorrectly classified as non-binding based on 

low prediction scores, several epitopes show higher scores, 

indicating that the model successfully incorporated the epitope 

sequence into its prediction. In contrast, all mutations are pre-

dicted to bind for the TCR with the lowest coefficient of − 0.33 

(CMV81-14, CMV) at a prediction score greater than 0.95 with 

a standard deviation of 0.005 (Figure 3G). Apparently, the 

model correctly predicted the binding of the TCR toward the 

base epitope but failed to take the negative effects of mutations 

into account, resulting in high prediction scores for all muta-

tions. This again shows the biases that different epitope targets 

imprint on the prediction score based on their prevalence in 

public databases.

In summary, general TCR-epitope predictors cannot reliably 

predict the effect of epitope mutations. This highlights the 

need for specialized datasets and prediction models such as 

P-TEAM, which was proposed by us recently.30 We observe 

strong biases between different target classes, highlighting the 

data dependencies of current predictors. Of the best models in 

the viral dataset, TULIP-TCR is also ranked high in the mutation 

dataset. While no current model can be utilized for practical use 

in this setting, we hope that this benchmark sparks research in-

terest, and we expect a large potential for predicting epitope re-

activities in future works.

DISCUSSION

In silico binding prediction of a TCR toward pathogen-, tumor-, 

or self-derived epitopes will signify a pivotal step in computer- 

aided vaccine and immunotherapy development, as well as for 

the investigation of TCR repertoire evolution. While several 

methods have been proposed to predict specificity based on 

the TCR and epitope sequences, they have not yet found wide 

application in immunological research. On the one hand, these 
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proposed approaches widely lack interoperability among them-

selves and with standard repertoire data formats. On the other 

hand, their predictive performance in applied use cases has re-

mained unknown. Despite notable efforts by the ImmRep work-

shop,24–26 many pre-trained models of the predictors have not 

been systematically evaluated under benchmark conditions, 

and no defined testing rules and datasets exist to guide the 

development of new methods.

To alleviate these shortcomings, we here introduce ePytope- 

TCR as a TCR-epitope prediction extension of the vaccine 

design and immuno-prediction framework ePytope (formerly 

FRED227). We incorporated a unified interface to 18 general 

and three categorical previously published pre-trained TCR- 

specificity predictors and import utilities to three common data-

bases and three standardized repertoire data formats. We show-

case the capabilities of ePytope-TCR by applying the predictors 

to two benchmarking datasets, which test their ability to anno-

tate single-cell datasets with specificity toward viral epitopes 

and to predict the cross-reactivity of TCRs against epitope 

mutations.

Despite overall low metric scores for classification and ranking 

when averaged across targets, we found sufficient performance 

for epitopes with large support in public databases, with AUC 

scores greater than 0.75 on five of the tested epitopes. These re-

sults are in agreement with previous findings that TCR-epitope 

prediction is still limited by the lack of diverse training data, lead-

ing to failures of predictors on unseen targets.22,51 Evidently, 

general models did not benefit from synergistic effects between 

epitopes, as further shown by often lower performance than cat-

egorical models for more abundant targets. However, we 

observed increasing performance in recent models, which may 

partially be attributed to the rise in available TCR-epitope pairs. 

Therefore, we advise applying these predictors only for target 

epitopes covered in the methods’ respective training data.

While the predictors were capable of annotating specificity for 

selected epitopes, they were not able to reliably predict the ef-

fect of mutations in known or unknown wild-type epitopes on 

T cell function. We hope this benchmark encourages further in-

terest in this use case as one of the most challenging tasks in 

TCR-epitope prediction.

In both datasets, we observed a strong bias in the prediction 

scores dependent on the target epitope. This further compli-

cates applying the predictors for annotation as they therefore 

require epitope-specific classification thresholds. Both the 

different performance between epitopes and the bias in predic-

tion scores highlight important aspects for the evaluation of 

TCR-epitope predictors. On the one hand, the metric scores 

are skewed toward frequently observed epitopes, so low perfor-

mance on rare epitopes might not be discovered when metrics 

are evaluated across datasets or weighted by class support. 

On the other hand, biases in prediction score levels might not 

be discovered when evaluating only within epitope classes. 

Therefore, we advise performing both evaluations separately to 

allow a holistic view of the models’ performance.

Our contribution to TCR-epitope prediction in this work is 

2-fold. First, we make TCR-epitope prediction methods available 

for the applied community by providing an interoperable inter-

face with ePytope-TCR, which allows researchers to apply the 

predictors to their own repertoire data. Through the benchmark, 

we further guide them in which settings the models can be 

applied, which mainly reduces them to settings where the epi-

topes have been well-researched. Second, we provide the basis 

for accelerating future method development by defining evalua-

tion datasets and metrics and allowing fast benchmarking to 

other methods through ePytope-TCR. Ultimately, we believe 

that enhanced evaluation methods and improved interoperability 

will bridge the gap, making TCR-epitope predictors more appli-

cable in immunological studies of large-scale TCR repertoires, 

vaccine development, and the identification of therapeutic TCR 

candidates for pathogens and tumors.

Limitations of the study

This evaluation provides an overview of the performance of 

currently available general TCR-epitope predictors. However, 

our tests are—similar to the methods themselves—limited by 

the data at hand. First, we only evaluated predictions for CD8 

+/MHC-I epitopes as this is the major focus of current research. 

To enable a complete evaluation between all predictors, we 

disregard all non-9-mer epitopes, leading to a limited amount 

of 638 TCRs in the viral dataset and two scans in the mutation 

dataset. Further, the epitopes were bound by only five different 

MHC classes, which did not allow us to observe strong biases 

between alleles independent of the number of reported TCRs. 

Additionally, most epitopes of the viral dataset were observed 

in public databases at least once. An improved benchmark 

would ideally contain several epitopes without any reported 

binding TCRs to evaluate generalization for out-of-target predic-

tions. Despite our best efforts, we also cannot rule out a small 

amount of wrongly annotated TCRs in the viral benchmark, as 

multimer staining and the resulting annotation may be suscepti-

ble to background noise. Finally, in this work, we evaluated the 

performance of pre-trained models and did not retrain any model 

ourselves. Therefore, we cannot separate whether differences in 

performance were caused by the methods’ design choices or by 

their underlying training data. A standardized test of different ar-

chitectures, training paradigms, data filtering, TCR information, 

and pretraining strategies remains open for future research.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will 

be fulfilled by the lead contact, Benjamin Schubert (benjamin.schubert@ 

helmholtz-munich.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

• All datasets used in this manuscript have been deposited at Zenodo: 

https://doi.org/10.5281/zenodo.15025579 and are publicly available 

and provided through the benchmarking suite. The DOI is listed in 

the key resources table. The unprocessed data of the SARS-CoV-2 

study can be accessed via Zenodo: https://doi.org/10.5281/zenodo. 

15691612. The raw sequencing data of four samples from 10x Geno-

mics can be obtained on the company’s homepage (S1, S2, S3, S4). 

The unprocessed data from the mutation dataset can be accessed in 

the supplementary material of the original publication.30
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• The software package ePytope-TCR, including tutorials, has been 

deposited at Zenodo: https://doi.org/10.5281/zenodo.15497114 and 

is available at https://github.com/SchubertLab/epytope. The bench-

marking suite, including the source code to reproduce the results and 

figures of the evaluation from Data S1–S6, has been deposited at Zen-

odo: https://doi.org/10.5281/zenodo.15497114 and can be accessed 

at https://github.com/SchubertLab/benchmark_TCRprediction. The 

DOIs are listed in the key resources table. The repositories of the indi-

vidual predictors are linked in Table S1.

• Any additional information required to reanalyze the data reported in this 

paper is available from the lead contact upon request.
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STAR★METHODS

KEY RESOURCES TABLE

METHOD DETAILS

Tool selection

We conducted a literature review by examining ERGO,19 NetTCR,17 TCellmatch,21 and TITAN45 as examples of the first generation of 

general TCR-epitope predictors. Next, we reviewed the references of each publication to identify prior work on this topic. Based on 

this initial list, we included all prediction-related publications that referenced any of these methods through an iterative process. After 

composing this comprehensive list in November 2023, we excluded models that did not meet the requirements of this benchmark. 

Specifically, we removed predictors that treated the epitope as a category or performed atlas-query mapping, as these approaches 

are not suited for general TCR-epitope prediction. All models were required to make predictions at the sequence level without relying 

on structural information or modeling. Additionally, the source code and pre-trained model weights had to be released under a license 

open for academic use. Further, we selected three categorical models as baselines, which represent one of the earliest TCR-epitope 

predictors and two more recent methods.

Predictors

If not stated otherwise, the predictors were integrated into ePytope-TCR based on their original implementation as described in their 

code repository (Table S1). However, several predictors required minor adjustments listed in the following for reproducibility.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Generated Datasets In house Zenodo: https://doi.org/10.5281/zenodo.15025579

Software and algorithms

Python Conda python = 3.8

Numpy Conda numpy = 1.20.2

Pandas Conda pandas = 1.2.5

SciPy Conda scipy = 1.6.2

Custom Code In house Zenodo: https://doi.org/10.5281/zenodo.15075019

ATM-TCR GitHub https://github.com/Lee-CBG/ATM-TCR

AttnTAP GitHub https://github.com/Bioinformatics7181/AttnTAP

BERTrand GitHub https://github.com/SFGLab/bertrand

DLpTCR GitHub https://github.com/JiangBioLab/DLpTCR

epiTCR GitHub https://github.com/ddiem-ri-4D/epiTCR

ERGO GitHub https://github.com/louzounlab/ERGO

ERGO-II GitHub https://github.com/IdoSpringer/ERGO-II

ImRex GitHub https://github.com/pmoris/ImRex

iTCep GitHub https://github.com/kbvstmd/iTCep

MixTCRpred GitHub https://github.com/GfellerLab/MixTCRpred

NetTCR-2.2 GitHub https://github.com/mnielLab/NetTCR-2.2

NetTCR-Cat GitHub https://github.com/mnielLab/NetTCR-2.2

PanPep GitHub https://github.com/bm2-lab/PanPep

pMTnet GitHub https://github.com/tianshilu/pMTnet

STAPLER GitHub https://github.com/NKI-AI/STAPLER

TCellMatch GitHub https://github.com/theislab/tcellmatch

TCRGP GitHub https://github.com/emmijokinen/TCRGP

TEIM GitHub https://github.com/pengxingang/TEIM

TEINet GitHub https://github.com/jiangdada1221/TEINet

TITAN GitHub https://github.com/PaccMann/TITAN

TULIP-TCR GitHub https://github.com/barthelemymp/TULIP-TCR
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pMTnet

In contrast to the other models, pMTnet is trained to indicate a high binding probability by a low score instead of a high score. We, 

therefore, subtracted the resulting score from one to keep the score direction uniform within ePytope-TCR, with high scores indi-

cating a high binding probability.

MixTCRpred

For a robust prediction score across epitopes, we utilized the percent rank as described in the original publication. Similarly to 

pMTnet, we subtracted its score from one to correct its direction.

ERGO-II

To execute the predictor, the original implementation was slightly modified by ePytope-TCR. The model was changed to automat-

ically select the available execution device, and the path to the pre-trained models was changed to point to the correct directory.

TULIP-TCR

Similar to ERGO-II, the execution device was adjusted, and unspecified program arguments were exchanged. Additionally, the quan-

titative score and the used MHC were appended to the output of the predictor.

STAPLER

STAPLER requires full TCR sequence information. ePytope-TCR, however, provides the CDR3 sequence in addition to the categor-

ical label of V-, D-, and J-gene, as this is the format provided by most databases. Therefore, Stitchr52 was used to recreate the full 

TCR sequence.

NetTCR2.2

The full TCR sequence was obtained as described for STAPLER. Following, the CDR1 and CDR2 sequences for α- and β-chain were 

identified with ANARCI53 as described in the publication.39

DLpTCR

The α-β version of DLpTCR was excluded from the benchmark as it does not provide a continuous prediction score, but rather a bi-

nary label, which is not suitable for the performance metrics chosen in this benchmark.

Datasets

The two datasets utilized in this benchmark were publicly available but not yet incorporated into public databases, which was impor-

tant to avoid data leakage to the models’ training data. The initial data were preprocessed by the benchmarking suite to facilitate a 

standardized evaluation. Generally, we eliminate TCRs with unknown specificity and missing annotation of CDR3 sequences, V-, or 

J-genes on α- and β-chain. To maintain consistency in the evaluation set, TCRs with CDR3 length greater than 19 were excluded, 

along with non-9-mer epitopes, as some predictors are restricted to 9-mer epitopes.

Viral datasets

We combined two single-cell datasets stemming from a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccine 

cohort study by Kocher et al.,28 and the BEAM-T pipeline example datasets provided by 10x Genomics on their company’s website. 

Both datasets include TCR sequencing and staining with DNA-barcoded peptide-MHC multimers to assign epitope specificity. The 

vaccine cohort contains TCRs reactive to SARS-CoV-2 epitopes as well as other viral controls to Human Herpes Virus 1 (HHV-1), 

Influenza A Virus (IAV), and Epstein-Barr virus (EBV) from 14 donors, including a hypervaccinated individual, who at that point has 

received 215 separate vaccinations.54 Peripheral blood mononuclear cells (PBMCs) were sequenced for transcriptome, TCRs, 

and partially surface protein markers. The specificity was identified through absolute and relative thresholds on UMI counts of pep-

tide-loaded MHC-dextramers separate for each epitope and sample. This annotation was further validated through TCRdist-based 

sequence similarity within the antigen-specific repertoires.7 Additionally, 106 clones were re-expressed in primary human cells and 

tested for their specificity with a hit rate of 92%. The underlying annotated data object can be obtained from Zenodo, from which we 

collected clonotypes for all 9-mer epitopes described in the publication. For the BEAM-T data,29 the raw sequencing data for four 

samples were downloaded from the 10x Genomics website (accessed April 2024), which contain single-cell transcriptome, TCR, 

and multimer-staining against eleven viral epitopes from human Cytomegalovirus (CMV), EBV, IAV, and SARS-CoV-2. The raw 

data were processed using the ’cellranger multi’ command with cellranger (7.1.0). All cells without identified TCRs were removed, 

and specificity was assigned based on the BEAM algorithm’s score at a threshold of 92.5% as suggested by 10x Genomics. 

Cross-reactive TCRs based on this definition, either on a cell- or on a clonotype-level, were removed from the dataset. Non-9- 

mer epitopes and epitopes bound by fewer than five TCRs in the joint dataset were removed. Additionally, we removed 48 TCR- 

epitope pairs due to overlaps with the IEDB,13 VDJdb,14 or McPAS-TCR,15 which further increases confidence in the accuracy of 

the annotation. Finally, the combined viral dataset resulted in a total of 638 TCRs, which were reactive to one of 14 epitopes bound 

to one of five different MHC alleles. Overall, the quality control and validation conducted in the original study surpass the acceptance 

criteria of public databases and most single-cell analyses. While a small portion of TCRs might still be falsely annotated, the impact of 

the underlying benchmark test is likely minimal and cannot be avoided in any form of evaluation.

Mutation dataset

This dataset originated from our previous publication,30 in which we studied and predicted the effect of epitope mutations on T cell 

activation. The dataset comprises three TCR repertoires with annotated activation scores toward deep mutational epitope scans, i.e., 

each epitope residue was systematically exchanged by all 19 other amino acids. Details on data acquisition can be found in the orig-

inal publications.30,55 In short, for each repertoire TCRs with high avidity toward the wildtype epitope were expressed in Jurkat triple 
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parameter reporter cells (JTPRs) and co-incubated with peptide-pulsed splenocytes. For each combination of mutated epitopes and 

TCRs, a continuous activation score was assessed through NFAT reporter expression in flow cytometry. While such low-throughput 

experiments are limited to a small number of TCRs tested simultaneously, they allow the quantification of such functional avidity with 

high confidence. Many predictors were predominantly trained on human TCRs and MHCs, and both DLpTCR and STAPLER accept 

only 9-mer epitopes as input. Therefore, we selected the two human datasets, which contain TCRs against the neo-epitope 

VPSVWRSSL and the human CMV epitope NLVPMVATV. Following the original publication, the activation score was binarized by 

the thresholds of 66.09% and 40.0% for the neo-antigen and CMV datasets, respectively, representing active T cell recruitment 

and activation. TCR-pMHC pairs of the TCR R27 were excluded from the neo-antigen dataset as no peptide surpassed the binariza-

tion threshold. The corresponding HLA alleles HLA-B*07:02 for the neo-epitope and HLA-A*02:01 for the CMV epitope were added 

as an annotation to each TCR-epitope pair. As all peptides stem from single point mutations of the 9-mer epitopes and the TCR CDR3 

sequences lie within the allowed ranges of all predictors, no additional TCR-pMHC pairs were filtered.

Over time, these datasets may be added to public databases of TCR-epitope pairs. For the viral dataset, we made sure that no 

CDR3-epitope pair was present in the database during the development of the predictors. Although some TCR-wildtype epitope 

pairs from the mutation dataset may have been part of a training dataset for the selected prediction model, none of the CDR3 

and mutated epitope pairs are included in any of the commonly used TCR-specificity databases. We propose that other methods 

evaluated with the benchmarking suite carefully filter their training and validation sets for TCR-epitope pairs following the rules out-

lined here.

Metrics

All predictors provide a continuous score to indicate the binding of a TCR to an epitope, where higher scores imply a higher chance of 

binding. To evaluate the models, we employed classification metrics (AUC, APS, F1-Score), rank-based metrics (Recall at K [R@K], 

Average Rank), and correlation-based metrics (Pearson correlation, Spearman rank coefficient). For the classification metrics, a 

binding TCR-epitope pair was considered as a positive sample. For the viral dataset, all other possible combinations of TCR-epitope 

were considered negative samples. All samples not exceeding the binarization thresholds in the mutation dataset were considered 

non-binding. If not indicated otherwise, we refer to the metrics calculated within groups, i.e., per epitope in the viral dataset and per 

TCR in the mutation dataset. Additionally, we report the metrics macro-averaged across the whole dataset, i.e., each class in the 

group has equal weight.

AUC, APS

The Area Under the Receiver Operating Characteristic (AUC) and Average Precision Score (APS) both summarize the prediction qual-

ity across all classification thresholds, indicating how well the predicted value separates positive from negative pairs. While the AUC 

calculates the area beneath the curve of Recall vs. False positive rate, the APS utilizes the Precision-Recall curve.

F1-score

The F1-Score represents the harmonic mean between recall and precision. To determine the classification boundary, the F1-score on all 

prediction values was evaluated individually for each predictor and dataset, and the threshold resulting in the highest value was chosen.

R@K

Given a repertoire of TCRs that are known to bind to a limited set of epitopes, rank-based metrics describe how well the correct 

epitope can be identified for each TCR. Following its definition as described by Oh Song et al.,56 we consider the R@K as the average 

of how often the correct epitope is contained in the top K predictions for an individual TCR.

Average rank

In the same setting as for R@K, the set of epitopes is ordered by prediction value. The Average Rank corresponds to the mean po-

sition of the cognate epitope within this order over all TCRs.

Pearson and Spearman correlation

While the other metrics evaluate the predictors’ classification capability, correlation-based metrics indicate whether the prediction 

score is also quantitatively associated with TCR binding or activation. While the Pearson coefficient measures the linear relationship 

between prediction and the true score, the Spearman rank coefficient describes their potentially non-linear monotonic relationship, 

i.e., comparing the orders within both scores.

Metrics computed over the full dataset cannot be competitively compared between general and categorical models as they 

depend on all epitopes. Further, no categorical models exist for the epitopes contained in the mutational dataset. We used a metric 

score resembling random prediction in the case of epitopes for which categorical methods did not provide a model. For classification 

metrics, the AUC was assigned a value of 0.5, and APS and F1-Score the frequency of the epitope in the dataset. As unavailable 

classes can never be detected in repertoire annotation, we assumed an R@K value of 0.0 and an average rank of equal to the 

mean of the maximum rank and the lowest unassigned rank (i.e., the first rank beyond the available models). This negative effect 

for unobserved classes was balanced by the reduced number of candidates for available epitopes.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in Python (version 3.8.20) using the libraries SciPy (version 1.10.1), Numpy (version 

1.24.3), and Pandas (version 2.0.3). The sample size n and its description can be found in the corresponding figure legends. 
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All boxplots indicate the data quartiles while the whiskers extend to the extreme values, excluding outliers outside the 1.5 in-

terquartile range. The median is indicated as a horizontal line. Regression plots show the linear regression fit indicating the 95% 

confidence interval as an error band. Bar plots represent the data mean and their error bars the 95% confidence interval. Sig-

nificance was defined by a p-value less than 0.05. For Spearman and Pearson correlations, a t-test against the null hypothesis 

that the data is uncorrelated was performed. The present study utilized all samples, excluding data points described in the 

Method section.
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