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Quantitative mass spectrometry has revolutionized proteomics by 
enabling simultaneous quantification of thousands of proteins. Pooling 
patient-derived data from multiple institutions enhances statistical power 
but raises serious privacy concerns. Here we introduce FedProt, the first 
privacy-preserving tool for collaborative differential protein abundance 
analysis of distributed data, which utilizes federated learning and additive 
secret sharing. In the absence of a multicenter patient-derived dataset for 
evaluation, we created two: one at five centers from E. coli experiments and one 
at three centers from human serum. Evaluations using these datasets confirm 
that FedProt achieves accuracy equivalent to the DEqMS method applied to 
pooled data, with completely negligible absolute differences no greater than 
4 × 10−12. By contrast, −log10P computed by the most accurate meta-analysis 
methods diverged from the centralized analysis results by up to 25–26.

The expansion of proteomics data is an invaluable resource, unlock-
ing substantial potential for large-scale biomedical research. While 
genomics provides a static view of an organism’s potential capabilities, 
mass spectrometry (MS)-based proteomics offers detailed insight into 
dynamic protein composition, interactions and modifications not 
readily inferred solely from genomics or transcriptomics data1,2. The 
MS-based proteomics enhances our understanding of the proteome’s 
dynamic nature, composition, structure and function.

Techniques such as data-independent acquisition (DIA) MS 
allow simultaneous quantification of thousands of proteins3 with 
wide proteome coverage and low missing values4,5. By systematically 
fragmenting all ions within predefined mass ranges, DIA ensures 
broad and unbiased peptide identification6. This allows novel pep-
tide identification and provides a deep understanding of protein 

abundance and posttranslational modifications, crucial in clinical  
proteomics7.

In parallel, data-dependent acquisition (DDA), when combined 
with methods for peptide labeling with tandem mass tags (TMT), has 
evolved as a versatile clinical proteomics technique8. This approach 
allows simultaneous comparison of peptide abundances across mul-
tiple samples in a single MS run. However, it comes with high costs and 
strict experiment design requirements9.

Typically, DIA is usually performed without peptide labeling, 
termed label-free quantification (LFQ). This method is cheaper and 
requires fewer sample preparation steps, but the accurate quantifica-
tion of low-abundance proteins is limited10. Thus, both label-free DIA 
and DDA with labeling provide unique strengths and are recognized 
methods in clinical proteomics.
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approach of federated learning29 and additive secret sharing30, similar 
to Flimma27. The FedProt workflow overview is shown in Fig. 1.

Federated learning is a machine learning paradigm that increases 
data privacy by allowing multiple parties to collaboratively train a 
model without revealing their sensitive data to each other29. In this mul-
tistep workflow, each participant runs the same application instance 
(client) that accesses only the participants’ local data. Clients compute 
model parameters based on their local data and exchange them with a 
central trusted server (coordinator) orchestrating the computations. 
The coordinator collects local results from clients, aggregates them 
into global results, and returns them to clients for a new step. The key 
point is that the local model parameters or intermediate results are 
constructed to minimize the risk of data reconstruction.

To further enhance privacy and protect local data from reconstruc-
tion attacks, we use additive secret sharing30. In this method, each client 
generates multiple noise masks and communicates these masks and 
masked data to the other parties, ensuring no single party can recon-
struct the unmasked data (Fig. 1, right, blue arrows). Each data piece 
is encrypted with the recipient’s public key and summed by receiving 
parties before being sent to the coordinator. The coordinator receives 
summarized data and computes and broadcasts the global model to 
all clients (Fig. 1, black arrows). This scheme allows global aggregation 
of local results without revealing any local values, thereby enhancing 
privacy compared with a pure federated learning scheme (see Methods 
for further details).

To make this decentralized approach and its complex infrastruc-
ture available to a broad community, we implemented FedProt as a 
web-based app with a user-friendly graphical interface. FedProt is 
published as a certified app in the FeatureCloud34 app store with docu-
mentation and quick-start guidelines (https://featurecloud.ai/app/
fedprot). The coordinator sets up a workflow and invites participants. 
All parties should be registered at https://featurecloud.ai/ and run the 
FedProt app. While this implementation relies on an internet connec-
tion for FeatureCloud coordination, it is fully adaptable. FedProt can 
be reconfigured to operate on secure, private networks or preapproved 
communication channels34, ensuring that all data communications 
remain within controlled institutional environments.

In the standard configuration, the coordinator configures analy-
sis parameters, for instance, expected number of participants and 
filtering parameters. Each participant should specify paths to three 
input.tsv files containing (1) patients’ protein intensity profiles, (2) 
design matrices featuring class labels and covariates and (3) matri-
ces of minimal peptide count across all samples for each unique  
protein group.

The FedProt federated workflow starts when all invited clients join 
and provide correctly formatted inputs (Methods). Upon its successful 
completion, each client receives a table with expression fold changes 
(FCs), confidence intervals and adjusted P values in the same format 
as the DEqMS output. The FedProt approach allows us to obtain the 
same result as centralized pooled data analysis while implementing 
strong privacy-preserving measures, ensuring no patient-level data are 
shared and exchanged parameters are hidden from other participants.

Evaluation approach
Due to privacy regulations and data sharing restrictions, finding pub-
licly available multicenter patient-derived data suitable for evaluat-
ing FedProt, given the need for data pooling in centralized analysis to 
establish the baseline, was challenging. Therefore, specifically for this 
benchmark, we created two real-world test datasets, one quantified 
using DIA-LFQ and the other using DDA-TMT (Table 1).

The LFQ-based dataset included 118 Escherichia coli colonies 
cultured under two growth conditions, simulating case and control 
groups. Of these samples, 98 were unique and uniformly distributed 
between five independent labs, and four quality control samples were 
measured by all laboratories (Supplementary Fig. 1).

To maximize clinical proteomics’ potential, analyzing larger mul-
ticenter patient cohorts is necessary to increase statistical power and 
achieve more robust results, especially for identifying rare disease 
subtypes11,12. However, integrating patient-derived MS data and prot-
eomics profiles distributed across multiple research institutions can 
be problematic due to privacy concerns, as they are legally classified 
as confidential and must be handled accordingly13. Similar to tran-
scriptomics, proteomics data can uncover rare sequence variants14 or 
be subject to genotype reconstruction attacks15.

Currently, the only way to collectively analyze distributed prot-
eomic data without compromising patient privacy due to direct data 
sharing and pooling is to combine individual study outcomes using 
meta-analysis techniques16. Different methodologies present unique 
advantages and limitations. Meta-analysis performance improves 
with an increase in sample sizes and number of studies17 or with the 
availability of raw data for combined reanalysis18, which is challenging 
in proteomics. Common meta-analysis techniques include Fisher’s 
method16,19, Stouffer’s method16,20, the random effects model (REM)21,22 
and RankProd23,24.

A consistent limitation of most meta-analyses is that the underly-
ing assumptions about P value or effect size distributions might not 
hold. In addition, meta-analyses face challenges related to hetero-
geneity from variations in experimental design, sample characteris-
tics and equipment for peptide separation and MS data acquisition25. 
They cannot fully account for cohort differences, such as target class 
imbalance or covariate distribution variations26,27. Differences in data 
processing steps, such as normalization, may also substantially impact 
the results28.

To enable privacy-preserving analysis of distributed proteomic 
data owned by multiple institutions while prioritizing data privacy 
and ensuring robust results despite data heterogeneity, we suggest 
applying federated learning29 combined with privacy-enhancing tech-
nologies such as secure multiparty computation (SMPC) or additive 
secret sharing30. Recently, the power of a hybrid approach based on 
federated learning and SMPC to protect privacy during data integration 
in transcriptomics has been demonstrated by Flimma27, a privacy-aware 
tool for differential gene expression analysis of decentralized data. 
However, Flimma cannot be applied to proteomics data owing to its 
inability to handle inputs with missing values and the lack of filtering 
and normalization procedures necessary for MS data. Missing values 
are intrinsic to proteomics data owing to instrument sensitivity and 
method design31 or the stochastic sampling nature of MS, resulting in 
inconsistent detection of low-abundance proteins32.

To fulfill an unmet need for a privacy-aware approach tailored  
for MS-based proteomics, we designed FedProt—a federated learning- 
based tool for collaborative differential protein abundance analysis of 
distributed data. FedProt is based on DEqMS, a state-of-the-art limma 
modification for estimating variance that enhances overall perfor-
mance33. Unlike DEqMS and other tools requiring data centralization, 
FedProt, by design, preserves patient privacy because the protein 
abundance profiles always remain in the local environments of the 
collaborating parties and are never shared externally.

To evaluate FedProt, we used the two most commonly used 
approaches, LFQ and TMT, and created two multicenter datasets: an 
LFQ bacterial dataset from five independent centers and a TMT human 
serum dataset from three. We also used simulated data to test FedProt’s 
behavior under data imbalance. Our results demonstrate that, regard-
less of data imbalance or batch effects, FedProt always delivers exactly 
the same results as the original DEqMS workflow.

Results
FedProt overview
FedProt represents the mathematical equivalent of DEqMS33, the accu-
rate variance estimation workflow for MS-based proteomics data. To 
protect the privacy of patient-derived data, FedProt utilizes the hybrid 
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The TMT-based dataset consisted of three cohorts, each including 
ten serum samples from individuals with focal segmental glomerulo-
sclerosis (FSGS) and ten control samples. Within each cohort, samples 
were randomly distributed between two TMT batches, with five sam-
ples from each group.

To evaluate FedProt, each center’s raw mass spectra were 
separately quantified using MaxQuant (for the TMT dataset)35 and 
DIA-NN (for the LFQ dataset)36 with the same settings and FASTA 
files as a database. We assumed that collaborating parties could 
agree on using a uniform data preprocessing protocol. Although 
FedProt can tolerate minor variations in preprocessing if a strictly 
uniform protocol is not feasible, our evaluations on balanced data-
set (Supplementary Results) indicate that results from nonuniform 
preprocessing are similar to those obtained by centralized DEqMS 
analysis. Nevertheless, we strongly recommend that all parties 

use the same quantification software for preprocessing whenever  
possible.

After quantification, pooled data were centrally analyzed using 
the DEqMS method33 to establish a baseline (ground truth). We then 
compared the results of FedProt and four meta-analysis methods: 
Fisher’s18, Stouffer’s20, the REM21 and RankProd23,24 against this base-
line. An illustration of the workflows is given in Supplementary Fig. 2.

When analyzing proteomics data from different sources, we 
encounter incomplete overlap of quantified protein groups between 
cohorts (Supplementary Fig. 3). The centralized DEqMS method ana-
lyzes most features in the aggregated dataset, except those failing 
the filter on the number of available measurements per target class. 
Because of privacy concerns, FedProt additionally excludes protein 
groups with only one measurement per cohort to prevent reconstruc-
tion attacks27. The R implementations of the Stouffer and RankProd 
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Fig. 1 | FedProt workflow overview. a, Federated workflow overview. (1) Data 
preparation: data owners collect and preprocess MS data, obtain protein 
intensity and peptide count matrices, and define design matrices before 
participating as clients. Personal-level information (proteomics profiles) is 
contained in the client’s servers and are never shared (dashed lines around 
clients highlight different physical locations). (2) Federated learning: clients 
communicate with the central server (coordinator) to collaboratively train 
a global model without revealing their individual datasets, but through the 
exchange of local model parameters. The clients protect their local parameters 
using additive secret sharing (blue arrows). In case the data are not numeric, such 
as protein group names, they are sent to the coordinator without additive secret 
sharing (green arrows). The coordinator returns updated global parameters to 
clients (black arrows). (3) Result: after all federated computations, all clients 

receive the results mathematically equivalent to the results of centralized 
analysis of pooled dataset with DEqMS formatted as a table with abundance FCs, 
confidence intervals and adjusted P values. b, Overview of data communication 
using SMPC (additive secret sharing) inside FedProt. The clients protect their 
local parameters using additive secret sharing. Each client data point is masked 
with a noise mask. The noisy data and the noise masks are splitted into n 
encrypted parts (n > 2). These parts are exchanged among clients (blue arrows) 
via a relay server, ensuring that no single party receives more than one piece 
of the data from each of the other clients. After decrypting the received parts, 
clients sum the data, and send the reencrypted sums to the coordinator, who 
decrypts and aggregates the sums to compute the global result. For details, see 
Methods and Supplementary Methods. Created with BioRender.com.
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methods can aggregate the results only for protein groups presenting 
in all cohorts; Fisher’s method requires presence in at least two cohorts. 
The REM can use all input protein groups, although, as we will observe 
in the later analysis, this does not improve the quality of its results.

Supplementary Fig. 4 illustrates this limitation and quantifies the 
features lost due to decentralization for the bacterial and human serum 
datasets. We evaluated the results of differential abundance analysis 
considering only the features that all the methods could process.

In addition, to investigate the effect of data imbalance on the 
results of decentralized methods, we created simulated data with 
increasing levels of imbalance across cohorts (Methods).

Deviations in the results of decentralized methods
FedProt produced results that matched the results of the centralized 
DEqMS workflow in all tests for both datasets. This was evident in the 
consistency between the mean absolute difference for adjusted P values 
and logFC values, as the maximum absolute differences were negligible 
(no greater than 4 × 10−12; Table 2 and Supplementary Table 1).

By contrast, the meta-analysis showed notable deviations from 
the ground truth, with mean differences in log-transformed P values 
ranging from 3.35 to 15.61 for the LFQ dataset and 0.50 to 1.1 for the 
TMT dataset (Table 2 and Fig. 2a). Similarly, the logFC results from the 

meta-analyses demonstrated larger differences, with maximal absolute 
differences up to 0.2 (Supplementary Table 1 and Supplementary 
Fig. 5). To compare logFCs, we used the results of REM and Fisher’s 
method since Fisher’s method calculates it using the same approach 
as Stouffer’s method and RankProd.

Furthermore, we addressed batch effects, which can con-
found results if not properly managed. For both datasets, FedProt 
showed perfect correlation in logFCs with DEqMS results applied to 
batch-corrected data, despite differences in handling batch effects 
(see Supplementary Results for more details).

This superior consistency of FedProt and centralized DEqMS 
results proves that the federated approach can achieve the same results 
as the centralized model but with the considerable advantage of privacy 
protection.

The consistency of differentially abundant protein lists
Averaged absolute differences quantify the discrepancy between the 
centralized and decentralized methods for all protein groups, given 
that the errors computed for both differentially and nondifferen-
tially abundant proteins are treated equally during statistical analysis 
(Table 2 and Supplementary Table 1). However, in many studies, the exact 
 P values and effect sizes are not as crucial as accurate identification and 

Table 2 | Performance metrics of FedProt and selected meta‑analyses using bacterial and human serum datasets

Dataset Method Mean difference Maximal difference FPa FNa Jaccard similarity coefficienta

Bacterial dataset

FedProt 4.45 × 10−13 3.56 × 10−12 0 0 1

Fisher 3.86 25.24 0 1 0.998

Stouffer 3.35 25.00 0 1 0.998

REM 15.61 259.80 8 14 0.964

RankProd 13.42 79.42 0 108 0.820

Human serum dataset

FedProt 1.36 × 10−13 6.59 × 10−13 0 0 1

Fisher 0.50 2.79 2 6 0.922

Stouffer 0.57 2.59 2 13 0.854

REM 0.59 11.64 1 13 0.863

RankProd 1.07 8.98 1 33 0.667

Mean and maximum absolute differences in negative log-transformed BH-adjusted P values, Jaccard similarity coefficients, and error rates (FPs and FNs) for the results of FedProt and selected 
meta-analysis approaches compared with centralized DEqMS results. The lowest differences are shown in bold font. aThresholds of |log2FC| >0.5 and adjusted P value <0.05 (bacterial dataset) 
and |log2FC| >0.25 and adjusted P value <0.05 (human serum dataset) were used for Jaccard similarity coefficients, FPs and FNs. Metrics use each method’s own |log2FC| and BH-adjusted P 
values.

Table 1 | Characteristics of datasets for FedProt evaluation with LC–MS/MS measurement overview

A. Bacterial dataset

Groupsa Sample type Setup

M9 pyruvate M9 glucose

Lab A 10 10 Cell pellet Evosep One – Exploris 480

Lab B 10 9 Cell pellet nanoElute – timsTOF Pro

Lab C 9 10 Cell lysate Ultimate3000 – Orbitrap Fusion Lumos

Lab D 10 10 Cell lysate EASY-nLC 1200 – Exploris 480

Lab E 10 10 Cell lysate Ultimate3000 – QE-HFX

B. Human serum dataset

Groups Sample type Set-up

Control FSGS

Center 1 10 10 Serum EASY-nLC 1200 – QExactive HF

Center 2 10 10 Serum Ultimate3000 nano – Exploris 480

Center 3 10 10 Serum EASY-nLC 1200 – Orbitrap Fusion Lumos

M9 is the medium used to grow E. coli. aThe number of samples in each cohort in each condition.

http://www.nature.com/natcomputsci
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Fig. 2 | Comparative analysis of adjusted P values and ranking consistency 
between centralized and decentralized methods for real and simulated 
datasets. a,c, The comparison of negative log-transformed BH-method adjusted 
P values (−log10(adjusted P value)) computed by FedProt or meta-analysis 
methods (y axis) with the centralized DEqMS analysis (x axis), for bacterial and 
human serum datasets (a) and for simulated datasets (c), for one out of the 50 
runs per scenario. The thin black line is the diagonal. b,d, The dependency of the 

Jaccard similarity coefficient on the number of top-ranked proteins identified by 
the centralized DEqMS and decentralized approaches, showing the results for 
the bacterial and human serum datasets (b) and for the simulated datasets (d). 
Proteins were ranked on the basis of their decreasing negative log-transformed 
BH-adjusted P values and not filtered by log2FC. The simulated data generation 
and the subsequent analysis were repeated 50 times, with aggregated results 
reported (mean values ± s.d.).
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consistent ranking of differentially abundant proteins. Therefore, we 
compared the lists of the most strongly and significantly differentially 
abundant protein groups detected by decentralized methods.

As before, we compared these lists with the ground truth from  
the centralized DEqMS method. We applied ||log2FC|| > 0.5  and  
adjusted P value of 0.05 thresholds for the bacterial dataset, and for 
the human serum dataset 0.25 and 0.05, respectively. The ||log2FC|| 
thresholds were selected on the basis of their distributions in the data-
sets. Method performances in terms of false positives (FPs), false nega-
tives (FNs) and Jaccard similarities are presented in Table 2. In addition, 
we evaluated a range of ||log2FC|| and adjusted P value thresholds to 
examine how different cutoffs affect FedProt and meta-analysis meth-
ods’ performance (Supplementary Results).

Out of all tested methods, only FedProt identified exactly the same 
differentially abundant protein groups as centralized DEqMS. Regard-
less of the method used, the outputs of all meta-analysis methods 
always contained FPs and FNs, with the deviation from ground truth 
being higher in the human serum dataset despite its smaller number 
of protein groups. FedProt maintained robust performance even under 
varying thresholds, although the meta-analyses showed greater dis-
crepancies, especially for smaller ||log2FC|| cutoffs, as for the human 
serum dataset (Supplementary Figs. 6–8).

In addition, by ranking proteins on the basis of the adjusted  
P values, we assessed how method performance shifted with changing 
the number of top differentially abundant protein groups (Fig. 2b). 
Identifying a limited number of significantly differentially abundant 
protein groups is often a key objective in studies such as biomarker 
discovery. Like in previous tests, FedProt consistently matched the 
results of the centralized approach in both test scenarios, outperform-
ing all meta-analysis methods.

Robustness against data imbalance
We further tested FedProt’s results reliability even when faced with 
the challenge of data imbalance using simulated data. We generated 
intensity matrices for three scenarios (balanced, mildly imbalanced, 
and strongly imbalanced data), each with 6,000 proteins and 600 
samples from two conditions using the same approach as described 
in ref. 37 (Supplementary Table 2). Batch effects were introduced 

using the ComBat model38, and missing values were added per  
ref. 39. In addition, we simulated a confounder in condition B, with 
varying frequencies across cohorts. As our focus was to investigate the 
effect of data imbalance on the results, the analyses were concluded 
without count adjustment. Each simulation and analysis was repeated  
50 times.

Regardless of data imbalance, FedProt produced results that 
closely matched those from the centralized DEqMS workflow in all 
scenarios, with exceptionally small differences. The maximum abso-
lute difference of adjusted P values and logFC values did not exceed 
6.7 × 10−13 (Table 3 and Supplementary Table 3).

As the degree of data imbalance increased, the maximum and 
mean absolute differences for meta-analyses consistently increased 
(Table 3, Fig. 2c and Supplementary Table 3). Data imbalance substan-
tially affected not only P values obtained by meta-analyses but also 
logFCs (Supplementary Table 3 and Supplementary Fig. 9). By contrast, 
FedProt stably demonstrated robust, error-free performance.

Furthermore, we analyzed how the data imbalance affects the list 
of differentially abundant proteins using ||log2FC|| > 1 and Benjamini–
Hochberg (BH)-adjusted P value of 0.05 thresholds. Regardless of the 
method used, all meta-analysis outputs contained FPs and FNs, and 
their counts grew with an increasing degree of data imbalance (Table 3). 
By contrast, FedProt’s results remained stable under varying degrees 
of imbalance.

Regarding the dependence of the Jaccard similarity index on the 
number of top-ranked protein groups, again, meta-analyses showed 
higher discrepancy at the top of the list; it grew with the increase of 
data imbalance (Fig. 2d). At the same time, FedProt’s results com-
pletely match the results of the central analysis, regardless of dataset 
or imbalance.

In addition, we evaluated FedProt’s scalability using simulated 
datasets with 66, 660 and 6600 samples (Supplementary Results). 
The results confirmed that FedProt consistently replicates centralized 
analysis results across varying cohort sizes, whereas meta-analyses, 
even with larger sample sizes, do not fully reproduce the central results, 
especially under data imbalance. These findings further highlight the 
robustness and scalability of FedProt over standard meta-analysis 
approaches.

Table 3 | Performance metrics of FedProt and selected meta‑analyses using simulated datasets

Dataset Method Mean difference Maximal difference FP FN Jaccard similarity coefficient

Balanced

FedProt 3.22 × 10−15 ± 3.52 × 10−16 1.85 × 10−13 ± 8.71 × 10−14 0.0 ± 0 0.0 ± 0 1.00 ± 0.00

Fisher 0.12 ± 0.01 12.50 ± 4.14 2.3 ± 1.5 2.2 ± 1.4 0.95 ± 0.02

Stouffer 0.14 ± 0.01 8.99 ± 3.39 2.3 ± 1.5 2.6 ± 1.4 0.94 ± 0.02

REM 0.15 ± 0.01 18.90 ± 4.79 6.2 ± 2.7 7.4 ± 2.5 0.84 ± 0.04

RankProd 0.78 ± 0.02 27.60 ± 4.00 11.1 ± 3.4 1.0 ± 0.9 0.87 ± 0.03

Mild imbalance

FedProt 6.00 × 10−15 ± 6.22 × 10−16 2.67 × 10−13 ± 7.30 × 10−14 0.0 ± 0 0.0 ± 0 1.00 ± 0.00

Fisher 0.14 ± 0.01 13.70 ± 4.65 18.2 ± 3.9 17.1 ± 4.6 0.64 ± 0.04

Stouffer 0.20 ± 0.01 8.70 ± 2.18 17.8 ± 3.9 17.6 ± 4.5 0.64 ± 0.04

REM 0.19 ± 0.01 23.50 ± 4.06 8.1 ± 2.6 10.3 ± 3.8 0.79 ± 0.04

RankProd 0.84 ± 0.02 32.10 ± 3.93 38.9 ± 6.7 16.0 ± 4.3 0.54 ± 0.04

Strong imbalance

FedProt 1.33 × 10−14 ± 1.69 × 10−15 6.63 × 10−13 ± 2.74 × 10−13 0.0 ± 0 0.0 ± 0 1.00 ± 0.00

Fisher 0.15 ± 0.01 13.20 ± 4.67 40.0 ± 5.9 29.4 ± 4.7 0.45 ± 0.04

Stouffer 0.41 ± 0.06 29.20 ± 8.11 33.4 ± 4.1 36.3 ± 5.6 0.41 ± 0.05

REM 0.22 ± 0.01 26.20 ± 4.94 7.8 ± 2.8 15.3 ± 3.3 0.75 ± 0.04

RankProd 0.91 ± 0.02 34.40 ± 5.62 147.0 ± 11.8 28.2 ± 4.8 0.25 ± 0.02

Mean and maximum absolute differences in negative log-transformed BH-adjusted P values, Jaccard similarity coefficients and error rates (FPs and FNs) for the results of FedProt and selected 
meta-analysis approaches compared with centralized DEqMS results. The values corresponding to the best performance between all methods are highlighted in bold font. Mean and standard 
deviation are reported for n = 50 of simulation and the subsequent data analysis runs. Jaccard similarity coefficients and error rates were computed with |log2FC| > 1 and adjusted P value <0.05 
thresholds. Metrics use each method’s own |log2FC| and BH-adjusted P values.
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Robustness against preprocessing variability
FedProt effectively integrates heterogeneous protein quantification 
data from multiple centers despite variations in liquid chromato
graphy–mass spectrometry (LC–MS) setups, software versions and 
preprocessing protocols, achieving performance equivalent to central-
ized DEqMS analysis while outperforming meta‐analysis approaches 
when raw data reanalysis is unfeasible. Using a bacterial dataset pro-
cessed with different quantification software (Supplementary Table 4), 
FedProt delivered results comparable to centralized analysis (Supple-
mentary Results and Supplementary Fig. 10).

Furthermore, integration of publicly available proteomics datasets 
for clear‐cell renal cell carcinoma40–42 (Supplementary Table 5) using 
gene names as the common identifier further confirmed FedProt’s 
high consistency with centralized DEqMS, as indicated by negligible 
differences in log2FC and negative log-transformed adjusted P values 
(Supplementary Results). This evaluation demonstrates FedProt’s 
capability of handling nonuniform preprocessing and its potential 
utility for multicenter studies, particularly in scenarios where access 
to raw data is limited.

Discussion
In this study, we introduce FedProt—a privacy-preserving tool for 
federated differential protein abundance analysis. The results from 
FedProt and centralized DEqMS analysis are nearly identical because 
the federated approach uses the same linear modeling and variance 
estimation steps as centralized DEqMS, with additive secret sharing 

enabling the secure aggregation of local intermediate statistics. The 
minor differences observed are attributable solely to floating-point 
arithmetic variations between R (limma/DEqMS) and Python  
(FedProt).

However, our study is not devoid of limitations. First, the current 
version of FedProt supports only LFQ and TMT proteomics data and 
two normalization methods. However, FedProt’s design is inherently 
adaptable, and the current workflow can be concluded without count 
adjustment. It allows future extensions to other data types such as 
phosphoproteomics43 or metabolomics44, and to multi-omics data 
analysis45.

Second, the federated learning approach enables privacy- 
preserving analysis of distributed data but cannot guarantee absolute 
privacy alone. By using additive secret sharing30,34, FedProt enhances 
privacy protection compared with pure federated learning, ensuring 
the local parameters’ original values remain hidden from the central 
server. In addition, it includes built-in checks and alerts for client-side 
data anomalies, which will stop the computation if the number of 
clients involved exceeds the total number of samples. Besides, such 
scenarios are very unlikely, and the likelihood of reconstruction attacks 
is extremely low46,47.

Overall, FedProt provides enhanced privacy protection compared 
with traditional centralized analysis at the cost of negligibly small errors 
compared with errors of meta-analyses. It is a promising approach with 
the potential to facilitate larger-scale, privacy-preserving multicenter 
collaborations in clinical proteomics.
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Fig. 3 | Scheme of the FedProt workflow. Steps that involve federated 
computations are shown in green. The corresponding stages of DEqMS workflow 
are shown on the right. Median normalization from the PRONE58 R package was 
used. The validation, filtering, normalization and design mask creation steps 
involving three clients (C1, C2 and C3) are shown on the left. PG denotes protein 
groups, j are sample numbers, and A and B are target classes compared during 
the analysis. On step 1, the PG3 value for sample j5 is replaced with NA (only one 
not-missing value in the client data). On step 2, the PG5 value for sample j5 is 
replaced with NA (one not-missing value for this PG in the target class for this 
client). After that, the whole PG5 group is removed from all clients because of too 

few nonmissing values (here, less than f = 0.75). On the design mask creation step, 
client 3 for PG1 is excluded because it has no data, same for PG4 of client 2; and, 
the client 3 became the new reference client and also excluded from computation 
(PG3 is missing in client 1). See Methods and Supplementary Methods for more 
details. *The normalization step is optional and could be turned off by the 
coordinator. In case of TMT data, for filtering out decoys, contaminant and 
reverse protein groups are required. The normalization by median across all 
centers and IRS inside each center can be performed during a FedProt run. **The 
step is for the federated approach only. Created with BioRender.com.
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Methods
FedProt workflow
FedProt is based on the accurate variance estimation workflow of 
DEqMS33 for MS data and uses the hybrid approach of federated learn-
ing and additive secret sharing30 in a manner similar to Flimma27. Fed-
erated learning is a machine learning paradigm in which models are 
trained on multiple devices (clients) without centralizing data, enabling 
collaborative learning with increased data privacy. Clients securely 
store and analyze their local data and exchange intermediate results 
with the trusted server (Coordinator) that aggregates local results to 
global.

Before the federated analysis, each participant preprocesses its 
local dataset independently and is responsible for ensuring the quality 
and consistency of the data provided to the client app. We assume that 
all the participants used the same protocol to quantify and preprocess 
their local data.

The FedProt’s federated analysis workflow is divided into six (or 
seven if normalization is needed) steps, of which four (or five) involve 
federated computations and require one or several rounds of com-
munication between client and server (Fig. 3).

In the first step, k > 2 FedProt clients join the analysis initialized 
by the coordinator and validate their data. From each client ci, where 
i = 1,… , k, FedProt requires two tab-separated (.tsv) files:

	(1)	 A protein intensities matrix Yiraw containing the intensities of ni 
proteins or protein groups (rows) detected in mi samples 
(columns). Protein groups detected only in a single sample in 
the cohort are replaced with NA (missing value), to avoid 
exchanging individual-level data in the next steps and protect 
data privacy.

	(2)	 A design matrix Xi specifying which columns of the intensity 
matrix belong to which experimental conditions or groups.  
In the design matrix, each experimental condition or  
group should be coded as a binary variable, with 1 if the sample 
belongs to the group and 0 if not. For example, if we compare 
conditions A and B, the design should contain both A and B 
columns with 0 or 1 for each sample. Optionally, the design 
matrix can contain columns representing the covariates. The 
names of target class columns and covariates in local design 
matrices must match the names specified by the coordinator 
during the initialization of the study.

	(3)	 An optional file—a matrix with the number of quantified 
precursor peptides for each protein group Primin. For each client, 
one value per protein group is required. For example, it can be 
found in the Precursor.Ids column in the DIA-NN report, or in 
the Peptide.IDs column in the MaxQuant report. If the clients  
do not have Primin, the computation will be completed after the 
sixth step, with no precursor peptide count adjustment.

Clients join the server, and during the first step FedProt ensures 
that all the clients provide all necessary inputs. Each client sends to the 
server information about the number of samples mi, the peptide-to- 
protein minimal counts Primin and the list of protein groups Pi  they  
have. The server uses each client’s Primin matrices to get the global 
minimal number of quantified precursor peptides across all samples 
from all clients for each protein group, Primin; this is needed for the  
last step.

For each client ci, the server updates the set of all detected protein 
groups P  across all clients participating in the analysis. After that, cli-
ents receive from the server the set of all protein groups P, and the list 
of variables v accounted for in the model (target classes, list of cohorts 
and, optionally, covariates). If the protein group is not in the client data, 
it is created and filled with NAs in the Yiraw.

The list of variables v is used to update the design matrix Xi and 
include columns representing batches to account for batch effects. 
Each client updates the design matrix Xi and adds cohort effects to it 

based on the list of variables v. The cohort effects are added as binary 
columns, where the first client c1 represents the reference batch, as in 
limma, and the corresponding column is not included in the design 
matrix. If the coordinator participates in the computation as a client, 
it becomes the first client c1.

In the second step, FedProt applies filters. One of them is to filter 
out protein groups with too many missing values. Each client ci calcu-
lates the number of samples with missing values per target class for 
each protein group and shares it with the server. The server computes 
global fractions of missing values per protein group and target class 
and the protein groups not detected in more than f  fraction of each 
target class samples in any target classes are removed from P. The value 
of f  is set to 0.8 by default and can be adjusted by the coordinator. The 
next optional filter removes protein groups supported by only one 
peptide precursor; this filter can be enabled by the coordinator. 
Another filter converts rows to missing values (NA) if all but one value 
are missing in samples for a given design column; this protects sensitive 
data sharing during computations and is done before the first 
above-described filter.

The next step is the normalization step; this step is optional and 
depends on the coordinator settings. Currently, two types of normali-
zation are implemented. The first one is median normalization. For 
that, each client calculates the median intensity across all protein 
groups for each sample j in their dataset, Medij. Clients’ median average 
Med

i
 is sent to the coordinator. The coordinator then calculates the 

global weighted mean of clients’ sample medians:

Med =
∑k
i=1Med

i
×mi

∑k
i=1mi

.

Once the global median mean is computed, the coordinator broad-
casts it to clients. Each client’s jth sample intensity values are adjusted 
on the basis of this value:

Y inorm, j =
Y iraw, j
Medij

×Med.

The second normalization is internal reference scaling (IRS) using 
in silico references. This normalization is suitable when one client has 
multiple TMT plexes and is conducted within each cohort. For each 
TMT plex, an in silico reference sample Refplex is created taking the mean 
value for each protein group across all samples in the TMT plex. Then, 
the geometric mean for each protein across all clients’ in silico refer-
ences is computed as

GM = (exp 1
d

d
∑
1
log (Refplex)) ,

where d  is the total number of plexes in the ith client.
Using Refplex, the scaling factor SFplex is calculated for each protein 

in each TMT plex as the ratio of the geometric mean to the in silico refer-
ence for that plex:

SFplex =
GM

Refplex
,

and normalized intensities are computed by multiplying with the 
scaling factor.

Both implemented normalization methods should be done on 
non-log-transformed data, so after this step, log2(x + 1) log transforma-
tion is applied if required by the coordinator in the analysis settings.

To make possible the analysis of all protein groups available, we 
used a design matrix mask D for the next steps. The mask has the num-
ber of columns equal to the design matrix and rows for each protein 
group. The mask creation is described in more detail in Supplemen
tary Methods.

http://www.nature.com/natcomputsci


Nature Computational Science

Resource https://doi.org/10.1038/s43588-025-00832-7

In the fifth step, for each protein group in P, FedProt fits a linear 
model in a federated fashion, following the approach described by  
Karr et al.48, assuming that protein group intensity Y  can be modeled as

Y = Xβ + ϵ,

where X  is the global design matrix and ϵ is random noise. The coeffi-
cients β defining the impact of each variable in the design matrix X  on 
the observed intensities can be estimated as

β̂ = (XTX)−1XTY,

and the unscaled standard deviations st.devunscaled or the coefficients 
β̂ can be estimated as

st.devunscaled =√diag ((XTX)−1).

To avoid sharing X i and Y i containing sensitive patient-level data 
that would be necessary to obtain X  and Y , XTX  and XTY  terms of the 
equation can be computed through the summation of local (X i)TX i, 
and (X i)TY i computed by clients:

XTX =
k
Σ
i=1

(Xi)TXi

XTY =
k
Σ
i=1

(Xi)TYi,

(X i)TX i and (X i)TY i do not reveal any patient-level data and can be shared 
with the server. To minimize the rare risk of data exposure, clients 
independently detect and resolve issues during the data validation 
step (protein groups detected in only one cohort sample are replaced 
with NA; Fig. 3, step 1).

On this step design mask D is used to exclude columns and rows 
corresponding to missing values from XTX  and columns from XTY . This 
is necessary to exclude from the calculations for a particular protein 
the values belonging to a particular column from the design X , because 
these cohorts do not have values (all are NAs). D usage allows us to 
simulate behavior of the lmFit function from the limma R package when 
working with missing values in data.

To minimize the risk of reconstruction attack, (X i)TX i, (X i)TY i and 
any local computation result shared with the aggregating server are 
protected by additive secret sharing30. In brief, each client generates 
n randomly sampled noise masks, r1,… , rn, as equally distributed ran-
dom values and calculates corresponding noisy data as (M − r1 −…− rn). 
This noisy data, alongside the noise masks (divided into n pieces in 
total), is communicated with other computational parties via a relay 
server, ensuring that no party receives more than one piece (one data 
piece and one noise piece) from any specific client. The data pieces are 
encrypted with each party’s public key to ensure the data cannot be 
intercepted. Once the encrypted pieces are received, each party 
decrypts and sums the received data, then sends the reencrypted 
received sums to the coordinator again via the relay server. The coor-
dinator gets the summed parts and, in case of sending (X i)TX i  and 
(X i)TY i, obtains the global coefficients β̂.

During the additive secure aggregation process, the noises cancel 
out due to their additive nature, resulting in the correct global aggre-
gation of local parameters without any noticeable impact on the final 
outcome compared with nonsecure aggregation. This cancelation 
mechanism preserves data privacy, as the individual intermediate 
results that remain are not revealed to the coordinator or any other 
parties. By increasing the number of parties, the risk of collusion to 
reconstruct the clients’ intermediate results will be further reduced. To 
simplify the technical aspects of communicating data, FeatureCloud34 

passes all data through the relay server that cannot decrypt the data 
(see details in Supplementary Methods).

Global estimated coefficients β̂ are shared with the clients, who 
use it to calculate the local sum of squared errors SSEi = ∑mi

j (yij − ̂yij)
2

, 
where ̂yij is the jth component of ̂Y

i
= Xiβ̂. The server aggregates local 

sum of squared errors SSEi to the global sum of squared errors SSE,

SSE =
k
Σ
i=1

SSEi

and computes the residual standard deviations σ  as follows:

σ =
√

SSE
m − |v| ,

where m = Σ
k
i m

i  is the number of samples with detected protein  
group and |v| is the number of variables in the design matrix except 
masked with the design matrix mask. In this step, a design mask is 
applied to ensure that missing values are handled correctly.

The sixth step is performed solely on the server side. Given a set 
of target classes, the contrast is defined as linear combinations of 
conditions or target classes in a design matrix X  and represented as a 
contrast matrix K . The fitting of these contrasts implies the application 
of the contrast matrix to the regression coefficients β̂ and covariance 
matrix of these coefficients C  as follows:

β̂′ = β̂K

C′ = KTCK.

The standard deviations st.dev for the coefficients are also updated 
during this step. Specifically, the covariance matrix C′ is scaled by its 
diagonal to become the correlation matrix, on which the Cholesky 
decomposition is performed, and the result is then used to transform 
and scale the st.dev and get the st.dev′. This replicates the implemen
tation of the contrasts.fit function from the limma R package49.

Further computations performed on the server side replicate 
eBayes from limma50 and require only global β̂′, σ2 and st.dev′. This step 
starts with moderated t-statistic calculation. For that, variance shrink-
age is performed to stabilize the variance estimates across genes. Given 
a vector of sample variances σ2 and their associated degrees of freedom 
dfresidual, the empirical Bayes approach fits an F distribution to estimate 
the parameters of the prior distribution.

Using the estimated priors (variance σ2
prior and the degrees of free-

dom dfprior), the posterior variances σ2post were calculated as a weighted 
average of the prior and sample variances as follows:

σ2
post =

dfresidualσ2 + dfpriorσ2
prior

dfresidual + dfprior
.

After this, the moderated t-statistic t and B-statistic B are com-
puted as

t = β′

st.dev′
× 1

√σ2post
,

where β′ represents the estimated coefficients (logFCs) and st.dev′ 
denotes the unscaled standard deviations of the coefficients, and

B = log ( p
1 − p ) −

log(r)
2 + k,

where p is the proportion of differentially expressed genes, r  is the 
ratio of the variance of the gene to the prior variance and k  is a function 
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involving the moderated t-statistics and the degrees of freedom. The 
B-statistic represents the log-odds of differential expression.

Finally, the BH procedure51 is applied to compute adjusted P val-
ues. In the result of this step, a feature table that provides moderated 
t-statistics, logFCs, confidence intervals and adjusted P values is gener-
ated. The FedProt workflow can be completed after this step without 
precursor peptide count adjustment.

The last, seventh step replicates spectraCounteBayes from the 
DEqMS method33, which estimates different prior variances for proteins 
quantified by different numbers of peptide precursors and calculates 
peptide count-adjusted moderated t-statistics and P values. The server 
uses the minimal number of quantified precursor peptides across all 
samples for each protein for estimating the variance of log-counts 
and fitting a regression model. As a result, the system outputs a final 
table with statistical measurements for each feature corrected to the 
number of precursors.

The resulting table is saved on a server and sent to the clients. This 
approach in FedProt allows us to obtain the same result as what cen-
tralized pooled data analysis would yield while implementing strong 
privacy-preserving measures.

The FedProt user-friendly implementation is accessible as a 
FeatureCloud app (https://featurecloud.ai/app/fedprot), making 
privacy-preserving differential protein abundance analysis available 
to a broad community of biomedical experts. In addition, the Fea-
tureCloud platform supports the integration of multiple applica-
tions into workflows. This allows FedProt to be combined with other 
privacy-preserving analysis tasks (for example, federated singular 
value decomposition52 and clustering techniques such as k-means 
clustering53 available as FeatureCloud apps).

Meta-analysis approaches
To evaluate FedProt’s accuracy in comparison with meta-analyses, we 
used three classes of meta-analyses: effect size combination methods 
(the REM54,55 from the metaVolcanoR package56 v.1.12.0), P value combi-
nation methods (Fisher’s method19 from the metaVolcanoR package56 
v.1.12.0 and Stouffer’s method20 from the the MetaDE55 package v.2.2.3) 
and nonparametric rank combination methods54,57 (Rank Product 
method from the RankProd24 R package v.3.24.0).

For all chosen meta-analysis methods except REM, the global FC 
was calculated as the mean of local FCs, producing the same values. 
Consequently, only Fisher’s method and REM results were utilized for 
the evaluation of logFCs.

Human serum data
Sample preparation. For FedProt evaluation, we were using a TMT 
dataset of 60 independent human blood serum samples, comprising 
30 from patients with primary FSGS and 30 from healthy controls. Writ-
ten consent for anonymized data retrieval and storage was obtained. 
The local ethics committee of the Friedrich-Alexander Universität 
Erlangen–Nürnberg provided approval for the nephrological biobank 
of the Klinikum Bayreuth (ethics approval code 264_20 B) and the 
proteomics analysis (ethics approval code 221_20 B). Approval to per-
form MS of serum samples was given by the ethics committee of the 
Friedrich-Alexander Universität Erlangen–Nürnberg (ethics approval 
code 182_19 B).

The samples were separated into three groups, each containing ten 
healthy and ten FSGS samples, blinded and distributed to three studies 
centers by the clinical partners (Supplementary Methods). The samples 
were prepared and measured by independent researchers (that is, in 
three different LC–MS/MS locations on different days) in a blinded 
manner using the same protocol until complete data collection. Patient 
group allocations were disclosed for data analysis.

Sample preparation and LC–MS/MS measurement. Samples were 
prepared by three independent scientists applying a harmonized 

protocol. TMT-labeled samples were combined into six sets, each 
containing five healthy, five FSGS and one common reference sample.

MS data were acquired in three independent research centers 
using their preferred instruments and corresponding parameter setups 
(Table 1B). More details on the LC–MS/MS measurement protocols are 
provided in Supplementary Methods.

Raw data analysis. Raw mass spectra were uniformly preprocessed 
and quantified using MaxQuant (v.2.4.2) software35 separately for each 
center. The analysis was conducted with default settings unless other-
wise specified. Experimentally acquired mass spectra were searched 
against a human reference proteome (Uniprot, v.2023_05, reviewed/
Swiss-Prot entries only, 20,418 protein sequences). Trypsin/P was set as 
protease (specific mode) allowing a maximum of two missed cleavages. 
Carbamidomethylation of cysteine was set as a fixed modification, 
while oxidation of methionine and acetylation of protein N-terminus 
were allowed as variable modifications. A minimum of two peptides 
including one unique peptide were required for protein inference 
controlling the false discovery rate to <0.05 in target/decoy mode. 
Match between runs (MBR) was enabled.

Data filtering and preprocessing. For protein intensity matrices, Max-
Quant reports were independently preprocessed filtering out decoy, 
contaminant and modification site-only entries. The column ‘Majority.
protein.IDs’ was used for protein group names, and within a group, 
proteins were sorted alphabetically. This additional sorting allows a 
better intersection of independently processed data. As FedProt uses 
in silico references in the TMT analysis workflow, six reference samples 
were removed from the dataset before analysis.

Protein groups supported by a single peptide were removed dur-
ing the central DEqMS analysis. Raw intensities were normalized to 
the median across all data (from PRONE58 R package v.1.0.4, https://
github.com/daisybio/PRONE), followed by IRS within each center 
with an in silico reference—the mean of all samples for each pool in the 
center (modified IRS from PRONE). Similar filters and normalizations 
are also implemented in FedProt. Quality control was performed in R 
(Supplementary Figs. 1 and 10B).

Bacterial dataset creation
Sample preparation. We evaluated FedProt using a LFQ dataset of 118 
samples generated from E. coli MG1655 (DSM 18039) cultures. Samples 
were shipped on dry ice either as lysates or as cell pellets (Table 1A; for 
more details, see Supplementary Methods).

Laboratory A and laboratory B received cell pellets, while others 
(C, D and E) received already lysed cells. Each laboratory received 20 (19 
for laboratories B and C) unique and 4 shared (quality control) samples, 
12 (11) samples per condition. One sample was lost during shipment, 
and one more was excluded during quality control of MS results. Each 
of the four quality control samples was generated by aliquoting one 
starting sample, meaning they are technical replicates.

Sample preparation and LC–MS/MS measurement. Laboratories 
A, B and C performed bacteria cell lysis separately, and laboratories 
E and D used cell lysates prepared by laboratory C, sent and diluted. 
Each laboratory used slightly different protocols for protein digestion, 
peptide purification and preparation for MS.

MS data were acquired in five independent research centers using 
their preferred sample preparation (in case of cell pellets), MS meas-
urement protocols, instruments and corresponding parameter setups 
(Table 1A). More details on the LC–MS/MS measurement protocols are 
provided in Supplementary Methods.

Raw data analysis. Raw mass spectra were uniformly preprocessed and 
quantified using DIA-NN36 (https://github.com/vdemichev/DIA-NN), 
v.1.8.1 in a separate run for each laboratory. The analysis was conducted 
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with default settings unless otherwise specified. When analyzing the 
robustness against preprocessing variability, Spectronaut v. 17.5 and 
v.17.2 and DIA-NN v.1.8.0 and v.1.8.1 were used (Supplementary Table 4). 
An in silico spectral library was generated in each DIA-NN and Spec-
tronaut run from the E. coli MG1655 (taxID 83333) protein sequence 
database (Uniprot UP000000625, 4,448 entries) provided via a FASTA 
file (no preexisting spectral library was utilized).

The analysis was carried out in ‘any LC (high-accuracy)’ mode. Two 
missed cleavages and a maximum of two variable modifications per 
peptide were allowed: acetylation of protein N-termini and oxidation of 
methionine. Minimum precursor m/z was set to 360. MBR was enabled. 
The data were reanalyzed utilizing a deep-learning-generated spectral 
library to refine the results. For specific parameters on the setup of the 
DIA-NN searches, see Supplementary Table 6.

Data filtering and preprocessing. Protein quantities were obtained 
from the MaxLFQ59 algorithm implemented in DIA-NN v 1.8.1 and 
extracted from reports using the diann v.1.0.1 R package. For protein 
intensity matrices, DIA-NN outputs were filtered using the following 
criteria: Lib.Q.Value ≤0.01 and Lib.PG.Q.Value ≤0.01. As MaxLFQ protein 
quantities are already normalized, no additional normalization was 
executed during preprocessing or implemented in FedProt.

Quality control was performed in R (Supplementary Figs. 1 and 
11), one sample from laboratory C’s dataset was excluded after quality 
control due to being an outlier (Supplementary Fig. 12).

Simulated data
To generate simulated data, we used the approach proposed in ref. 37:

ypj ≈ {
𝒩𝒩 (μp,σ2p) w.p. (1 − πp)

𝒩𝒩 (μp + Δμ,σ2p) w.p. πp
,

where ypj represents the intensity for pth protein, p = 1,… ,n, from jth 
sample, j = 1,… ,m.

Protein intensity ypj is modeled from mixture distribution, where 
πp ∈ [0,0.5) is the outlier proportion. Outliers could be differentially 
abundant proteins or technical errors. We did not add a sample effect 
to our model because we simulated data after the MaxLFQ method59, 
which contains the normalization step eliminating it. The protein 
population distribution parameters were generated separately for 
each protein, means μp were from N(0, 2) and variances σ2p were from 
an inverse gamma distribution.

We adapted the sim.dat.fn function from the RobNorm package37 
v.0.2.0, with modifications to the inverse gamma distribution param-
eters (the shape parameter of 2 and scale parameter of 3). Parameter 
Δμ was used to represent a shift in a differentially regulated block, to 
generate up- or downregulated proteins. The protein in the block has 
a chance, derived from a binomial distribution with a success probabil-
ity of 0.8, of undergoing a shift. Δμ was used to represent a shift in a 
differentially regulated block, to generate up- or downregulated 
proteins.

We generated the data without batch effects first, with 6,000 
proteins and 600 samples, 300 each in conditions A and B. The block 
consisting of 200 proteins differentially abundant between conditions 
A and B was obtained using Δμ = 1.25 . To simulate the effects of 
unknown covariate, a block of 150 proteins each was generated, with 
Δμ = 1.25, and randomly assigned to samples in class B. The proportion 
of samples in class B with unknown covariate is presented in Supple-
mentary Table 2.

To simulate a multicenter study, we then randomly split the data 
into three cohorts (C1, C2 and C3) and added batch effects. To investi-
gate the effect of data imbalance on method performances, data were 
split into cohorts twice: once with equal cohort sizes and frequencies of 
conditions A and B, and once with unequal cohort sizes and condition 
frequencies (see Supplementary Table 2 for details).

To simulate batch effects in our data, we utilized the ComBat 
model38 designed for removing batch effects:

ypji = ypj + γpi + δpiϵpji,

where i = 1,… , k , and k  is the total number of batches, errors ϵpji  are 
normally distributed N(0, 1), additive batch parameter γpi is drawn from 
normal distribution and multiplicative batch parameter δpi is drawn 
from inverse gamma distribution. For simulation, we used γp1 ≈ N(0, 1) 
for additive batch effects and δp1 ≈ IG(3, 2)  for multiplicative batch  
effect for the first batch, γp2 ≈ N(0.2,0.5) and δp2 ≈ IG(2.5, 1) for the sec-
ond batch, and γp3 ≈ N(−0.2, 1.5) and δp3 ≈ IG(4,0.5) for the third batch.

Missing values were introduced to the data using the approach 
described previously39, with a missing value rate of 0.2 and a missing- 
not-at-random rate of 0.5, resulting in a total of 20% missing values in 
the dataset.

Data analysis
Data after quantification and preprocessing were analyzed in R v.4.2.0. 
Batch effects correction and plots were done using the following R 
packages: limma v.3.54.2, data.table v.1.14.8, gridExtra v.2.3, patch-
work v.1.1.2, reshape2 v.1.4.4, matrixStats v.1.3.0 and tidyverse v.2.0.0 
(includes ggplot2 v.3.4.2, dplyr v.1.1.4, purrr v.1.0.2, readr v.2.1.4 and 
tidyr v.1.3.1).

Filtering based on the number of missing values per class was done 
using the 80% threshold, the same as the FedProt default value. For  
bacterial datasets, the transformation of rows with only one non-NA 
value per subset of samples for a design column to NA is disabled 
for evaluation. For the TMT dataset, median normalization from  
the PRONE58 package v.1.0.4 was used (https://github.com/daisybio/
PRONE).

Differential protein abundance in centralized analysis was tested 
with a two‑sided moderated t‑test (with empirical Bayes and with BH 
adjustment for P values) using DEqMS v.1.16.0 (R 4.2.0). We used log2FC, 
exact BH‑adjusted P values and full output tables for the bacterial and 
human serum datasets (provided in Supplementary Table 7). FedProt’s 
adjusted P values used for evaluation using the bacterial and human 
serum datasets are count-scaled BH-adjusted P values, similar to what 
DEqMS calculates. Before log transformation of adjusted P values, a 
small value (1 × 10−300) was used to replace 0 in REM results for the bacte-
rial dataset. For evaluation using the simulated dataset, BH-adjusted 
P values were not scaled using counts, because we did not simulate 
spectra counts data.

FedProt implementation on the FeatureCloud platform was  
evaluated using Python library FeatureCloud v.0.0.32, with rpy2 v.3.5.11 
Python library inside the app Docker container (Docker v.27.1.2). For 
the meta-analyses, we used MetaDE55 v.2.2.3, metaVolcanoR56 v.1.12.0 
and RankProd24 v.3.24.0 R packages. The results of DEqMS runs in 
each center or laboratory separately were used as input data for 
meta-analysis methods.

Evaluation was done using Python using pandas v.2.2.2, numpy 
v.2.0.0, scipy v.1.14.0, scikit-learn v.1.5.0 and statsmodels v.0.14.2 librar-
ies. For upset plots, Python upsetplot library v.0.9.0 was used (https://
upsetplot.readthedocs.io/en/stable/). For other plots, matplotlib 
v.3.8.4 and seaborn v.0.13.2 packages were used. SMPC was enabled 
during the evaluation.

To investigate the impact of including batch effects in the design, 
the data were preprocessed in the same way, depending on the data-
set. The difference lay in incorporating batch information into the 
design during the analysis or correcting the data beforehand (after 
preprocessing) and then performing the analysis without including 
this information in the design.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
The MS proteomics data have been deposited to the ProteomeX-
change Consortium via the PRIDE60 partner repository with the 
dataset identifiers PXD053812 (the bacterial dataset, https://www.
ebi.ac.uk/pride/archive/projects/PXD053812) and PXD053560 (the 
human serum dataset, https://www.ebi.ac.uk/pride/archive/projects/
PXD053560). Uniprot human reference proteome version 2023_05 
(Uniprot UP000005640, reviewed/Swiss-Prot entries only, 20,418 pro-
tein sequences, https://www.uniprot.org/proteomes/UP000005640) 
and Escherichia coli (strain K12) reference proteome (Uniprot 
UP000000625, 4448 entries, https://www.uniprot.org/proteomes/
UP000000625) were used for the human serum and bacterial datasets, 
respectively. Three datasets (clear-cell renal cell carcinoma) were used 
for studying robustness against preprocessing variability from the 
PRIDE60 repository (https://www.ebi.ac.uk/pride/) with the dataset 
identifiers PDC000127 ref. 41, PXD042844 ref. 42 and PXD030344 
ref. 40. Data to obtain them are available via Zenodo at https://doi.
org/10.5281/zenodo.15370419 (ref. 61) or at the FedProt repository via 
GitHub at https://github.com/Freddsle/FedProt (inside the data and 
evaluation folders). The example datasets (bacterial, human serum 
and three simulated scenarios used in the Resource) can be found in 
the same repository inside the data folder. Source data are provided 
with this paper.

Code availability
The code used for the data preprocessing, quality control and the 
simulated dataset generation, together with the code for running and 
evaluating FedProt, is available via GitHub at https://github.com/Fred
dsle/FedProt, via FeatureCloud App Store at https://featurecloud.ai/
app/fedprot or via Zenodo at https://doi.org/10.5281/zenodo.15370419 
(ref. 61).
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