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ABSTRACT  

Neonatal chronic lung disease (nCLD), also known as bronchopulmonary dysplasia (BPD), is 

the most common complication of premature birth, affecting up to 30% of very low birth 

weight infants. Improved medical care has allowed for the survival of the most premature 

infants, and significantly changed the pathology of BPD from a disease marked by severe 

lung injury, to the “new” form characterized by alveolar hypoplasia and impaired vascular 

development.  However, increased patient survival has led to a paucity of pathologic 

specimens available from infants with BPD. This, combined with the lack of a system to 

model alveolarization in vitro, has resulted in a great need for animal models that recapitulate 

key features of the disease. To this end, a number of animal models have been created, by 

exposing the immature lung to injuries induced by hyperoxia, mechanical stretch, and 

inflammation, and most recently by the genetic modification of mice.  These animal studies 

have: (i) allowed insight into the mechanisms that determine alveolar growth; (ii) delineated 

factors central to the pathogenesis of nCLD; and (iii) informed the development of new 

therapies.  In this review, we will summarize the key findings and limitations of the most 

common animal models of BPD, and discuss how knowledge obtained from these studies 

has informed clinical care. Future studies should aim to provide a more complete 

understanding of the pathways that both preserve and repair alveolar growth during injury, 

which might be translated into novel strategies to treat lung diseases in both infants and 

adults. 

 

 

Key words: neonatal chronic lung disease, bronchopulmonary dysplasia, BPD, animal 

models, preterm neonates, lung development, transgenic models 
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INTRODUCTION  

 Infants born prematurely frequently develop respiratory failure secondary to 

biochemical and structural immaturity of their lungs, and insufficient respiratory drive. While 

mechanical ventilation (MV) and oxygen rich gas are life-saving treatments, these therapies 

also promote lung injury. Thus, greater than 30% of preterm babies born prior to 30 weeks 

gestational age develop neonatal chronic lung disease (nCLD), also known as 

bronchopulmonary dysplasia (BPD), a disease with significant morbidity and mortality.  

Infants with BPD are at increased risk for long-term hospitalization and recurrent respiratory 

ailments in early infancy, as well as life-long consequences from impaired pulmonary and 

neurologic development (1-8).  Affected infants may remain oxygen dependent for months, 

and although few remain oxygen dependant beyond two years of age (4, 9), respiratory 

symptoms, reflecting disturbed lung growth, are often evident for many years (5, 9-14). 

Extreme prematurity even in the absence of BPD appears to have long-term effects on lung 

function, with the majority of VLBW infants without a history of BPD demonstrating evidence 

of airway obstruction and diffusion defects years later (15). How BPD or prematurity itself 

alters pulmonary aging, and whether this results in early lung function decline, or increases 

the risk for adult lung diseases such as COPD is an ongoing discussion (8).  

 During the past two decades, advances in medical therapy have greatly improved the 

survival of premature infants. The use of antenatal steroids to accelerate lung maturation, the 

development of surfactant replacement therapy for acute respiratory failure, the institution of 

lung protective strategies of ventilation, and an optimization of nutritional support have all 

contributed to an overall decrease in the mortality of very low birth weight (VLBW) infants.  

Accompanying this increase in survival, the clinical, radiographic, and pathological features 

of BPD have changed significantly. The lung pathology of infants with the “old form” of BPD 

originally described by Northway et al., was characterized by evidence of severe lung injury 

including inflammation, protein-rich lung edema, extensive airway epithelial metaplasia, 

peribronchial fibrosis, and marked airway and pulmonary vascular smooth muscle 

hypertrophy (16-18).  In contradistinction, birth of VLBW infants during the canalicular and 

saccular stages of lung development appears to disrupt the normal program of alveolar and 

vascular development, resulting in the “new BPD”, characterized by alveolar simplification, 

dysmorphic capillaries, and increased in vascular and airway smooth muscle cells (19-22). 

Abnormal deposition of the extracellular matrix (ECM) components (e.g. elastin and 

collagen), and interstitial fluid accumulation are also observed (23-25).  

 Although of great clinical relevance, elucidating the pathophysiology of nCLD in the 

post-surfactant era has become increasingly challenging. With the reduction in BPD-

associated mortality, the availability of pathologic specimens has decreased. Furthermore, 

Page 3 of 32
 AJRCMB Articles in Press. Published on 11-September-2013 as 10.1165/rcmb.2013-0014TR 

 Copyright © 2013 by the American Thoracic Society 



 4 

there is a paucity of in vitro systems that effectively model the complex 3-dimensional 

processes of alveolar formation and vascularization. Thus, defining the pathophysiology of 

BPD has relied, to a large extent, on the detailed observations made in animal models that 

recapitulate many features of this condition. Knowledge gained from these animal models 

has contributed great insight into the pathophysiology of both the ‘old’ and ‘new’ BPD, and 

led to changes in the clinical treatment regimen. 

 This review details some of the most extensively utilized animal models of BPD, and 

summarizes the information learned from these models including knowledge regarding the 

key molecular pathways, including growth factor signaling, that direct alveolarization, 

vascular development and ECM composition, and how inflammation, mechanical ventilation 

and oxygen treatment adversely affect these processes.  This is followed by a discussion of 

how data obtained from animal studies have been translated into current treatment strategies 

for the care of premature infants.  
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OVERVIEW OF ANIMAL MODELS OF BPD 

 Numerous animal models have been developed to study the impairments in lung 

development that characterize BPD.  Many of the commonly used models induce lung injury 

by: (i) altering the amount of inspired oxygen; (ii) applying stretch through mechanical 

ventilation; or (iii) inducing pre- or postnatal inflammation.  Further, the recent development of 

genetically modified murine models, have allowed the identification of key molecular 

pathways that direct the individual components of alveolarization.  Figure 1 schematically 

summarizes key findings from animal studies, relating the effects of hyperoxia and 

mechanical stretch to the characteristic inflammatory changes reproduced by different 

models of BPD. The resulting remodeling of the ECM and alteration in growth factor signaling 

alters epithelial, endothelial and (myo)fibroblast survival and proliferation, culminating in 

disruptions in pulmonary capillary development and distorted alveolarization. 

 

Hyperoxia 

 The recognition that high levels of inspired oxygen are detrimental to the lung was 

made by investigators over one half century ago.  Following the seminal publication by 

Northway et al, first describing the radiographic and histologic features of BPD, these same 

authors demonstrated that exposure of newborn guinea pigs to hyperoxia resulted in 

radiographic abnormalities that resembled the early stage of BPD in premature infants (26, 

27).  The injurious effects of oxygen can be replicated in many species; however, rodents are 

particularly well-suited to model BPD given that the newborn rodent is born during the 

saccular stage of lung development.  Exposure of newborn mice to 100% oxygen for 7 days 

was shown to result in an initial phase of acute injury (including pulmonary edema and 

hemorrhage), followed by a chronic repair phase, characterized by fibroblast proliferation and 

collagen deposition (28). Further studies then demonstrated that hyperoxia not only induces 

lung injury, but also disrupts lung structure, affecting both alveolarization and vascularization.  

Exposure of newborn rats to 100% oxygen during the first week of life causes airspace 

enlargement that remains evident weeks later (29). Subsequent experiments demonstrated 

that even more moderate amounts of oxygen (60-85% FiO2) cause durable impairments in 

lung structure (30), alter growth factor expression and decrease lung cell proliferation (31), 

schematically depicted in Figure 1. 

 These detrimental effects of hyperoxia on lung cells have been replicated in vitro. 

High levels of oxygen suppress alveolar epithelial type II proliferation via posttranscriptional 

mechanisms (32). Oxygen levels above 50% also impair endothelial proliferation, in part via 

the inactivation of fibroblast growth factors (33), reduce the numbers of endothelial progenitor 
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cells (EPC) in the blood, lung, and bone marrow in neonatal mice (34), and alter the function 

of side population of resident lung cells believed to have endothelial potential (35).  

 Many of the pulmonary responses to hyperoxia are developmentally regulated. 

Chronic oxygen exposure induces opposite apoptotic and proliferative responses in neonatal 

and adult lung cells in rats (36). In mice hyperoxia reduces EPC in the developing lung but 

not in adult animals (34), and in clinical studies, hyperoxia impairs the growth of endothelial 

colony-forming cells obtained from preterm but not from term infants (37). Furthermore, 

oxygen induced pulmonary vascular disease is age-dependant in mice, and neonatal 

exposure to hyperoxia appears to influence adult cardiopulmonary function and life-span in 

adults (38), and to durably alter pulmonary immune and oxidative stress responses (39, 40). 

Some of these sustained effects may be the results of epigenetic changes, related to the 

ability of oxygen to alter histone deacetylase activity in the neonatal mouse lung (41), with 

evidence suggesting that DNA methylation mediates neonatal programming of oxygen 

sensitivity in adulthood (42).  

 In summary, models exposing the immature lung to hyperoxia are clinically relevant. 

However, it must be recognized that the oxygen concentrations used in most of the above 

mentioned studies exceed the levels of oxygen supplementation currently applied to the 

preterm infant. In addition, animal models of hyperoxia lack the fluctuations in oxygen 

concentrations that are clinically observed in preterm infants, which could potentially induce 

differences in molecular signaling not reproduced in the experimental setting. Nonetheless, 

the ability to standardize these models, the good reproducibility, and the ability to perform 

studies addressing long-term follow up after neonatal hyperoxic injury, make the model 

attractive to many researchers in the field, and have allowed for its significant contributions to 

our current understanding in BPD.  

 

Mechanical Stretch of the Premature Lung 

 The short-term mechanical ventilation of premature lambs and baboons were models 

initially developed to explore hyaline membrane disease (HMD) (43, 44).  Subsequently the 

application of chronic mechanical ventilation resulted in the creation of novel animal models 

of BPD.  An early study reported the effects of mechanically ventilating a small group of 

premature baboons with levels of oxygen ranging from 95-100%, for 8-17 days, all of which 

developed histopathologic evidence of BPD (45, 46).  Further studies in this preterm baboon 

model reinforced the notion that hyperoxia is damaging to the immature lung, by 

demonstrating the universal appearance of BPD in premature baboons ventilated for up to 11 

days with an FIO2 of 1.0, in contrast to the absence of BPD in animals ventilated with oxygen 
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supplemented only on a ‘prn’ basis (47). This premature baboon model, originally developed 

in the pre-surfactant era, has been subsequently modified, including antenatal exposure to 

maternal glucocorticoids, postnatal surfactant treatment, and assisted ventilation with more 

modest inflating pressures and concentrations of inspired O2, allowing it to better recapitulate 

the ‘new BPD’ (48). A similar strategy of mechanical ventilation with O2 -rich gas also induces 

lung pathology consistent with BPD in premature lambs (48-59). These studies in larger 

animals were integral in allowing mechanistic insight into the pathology of BPD, and 

permitting the testing of therapeutic strategies currently used in the care of premature infants, 

including surfactant replacement therapy (60), high-frequency oscillatory ventilation (HFOV) 

(61), and nitric oxide (54).  

 While the clinical condition and postnatal management of these premature animals 

closely resembled infants with BPD (48, 58), the costs and structural demands of these 

experiments using large animal models are substantial. Thus, additional models of BPD were 

developed by applying similar strategies to smaller animals. Mechanical ventilation of 

preterm rabbits was used to study HMD (62), and to evaluate therapeutic interventions such 

as surfactant replacement and inhaled glucocorticoids.  Mechanical ventilation of newborn 

rats induces airspace enlargement and decreases alveolar numbers by 24h (63), and a 

similar effect occurs with the mechanical ventilation of newborn mice (64).  This latter model, 

while technically challenging given the small size of the mouse pups, has the great benefit of 

allowing investigators to take advantage of genetically modified mice to more mechanistically 

explore key molecular targets (65-67). However, limitations of these murine models include 

the application of these injuries in pups born at term, and the inability to maintain these 

smaller animals for chronic, ventilation experiments.  

 Figure 1 summarizes the inflammatory changes and disruption of the ECM that result 

from mechanical stretch on the developing lung, leading to alterations in growth factor 

signaling that affect both endothelial and epithelial cells. 

 

Infection, inflammation and their role in BPD 

 Evidence suggests that both pre- and postnatal inflammation contribute to the 

pathogenesis of BPD. Clinical studies demonstrate an imbalance in pro- and anti-

inflammatory cytokines in tracheal aspirates from infants who later acquire BPD, which has 

been reviewed in detail (68, 69).  The association between chorioamnionitis with the 

subsequent development of BPD (72) led further support to the notion that in some cases, 

BPD may either have a prenatal inflammatory origin, or may be aggravated by early 

inflammation (19, 73, 74). The cellular inflammatory response observed in experimental and 
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clinical BPD is dominated by the influx of neutrophils and macrophages into the lungs, and 

heightened neutrophil-derived elastase activity BPD (67-71).  Neutrophils are activated in 

response to mechanical ventilation (71), and neutrophils are persistently elevated in the BAL 

fluid obtained from premature infants that develop BPD (72). LPS disrupts lung branching in 

early saccular mouse lung explants, an effect that depends upon NFκB activation in 

macrophages (73). Additional inflammatory cells also appear to play a role in BPD.  

Connective tissue mast cells accumulate in the lungs of preterm infants with BPD(74), and 

data suggest that autoreactive T-cells may contribute to the premature baboon model of BPD 

(75).  

 Given that clinical studies cannot discriminate between the specific impacts of 

individual contributors to the pathogenesis of BPD, animal models using antenatal infection, 

endotoxin exposure, and/or transgenic mice have been developed to explore the link 

between lung inflammation and BPD.  Antenatal endotoxin administration in rats (76) arrests 

alveolarization, and in preterm lambs, this effect appears to be time and dose-dependent 

(77).  Studies in the premature baboons suggest that the efficacy of the immune response 

plays an important role in determining the ultimate outcome of perinatal inflammation of lung 

development.  Animals that remain colonized with Ureaplasma urealyticum (Uu) require more 

O2 and ventilatory support, and show more severe lung inflammation at necropsy (53).  In 

contrast, lung function and O2 need was less in preterm baboons that eradicate Uu.  Even 

inflammation in the absence of infection leads to structural remodeling of the lung, including 

altered organization of ECM components, and impaired alveolarization and angiogenesis.  

The combination of hyperoxia and MV, a stimulus that impairs alveolarization, induces airway 

inflammation and cytokine expression in premature baboons (48), rodents, and rabbits (78-

82). These inflammatory processes have been shown to be completely independent from the 

presence of pulmonary infections (83, 84). Moreover, the combination of these stimuli 

potentiates lung injury in sheep and mice (85, 86). 

 Additional animal studies have begun to elucidate the signaling molecules mediating 

these pathologic processes.  Over-expression of IL-1β in lung epithelial cells disrupts 

postnatal lung morphogenesis in the mouse (87, 88).  In this model, MMP-9 plays a 

protective role, with MMP-9 deficiency further exaggerating the alveolar hypoplasia (89). In 

mice, cytokine production induced by ante- or perinatal endotoxin directly correlates with toll-

like receptor 4 (TLR4) expression (90). Intra-amniotic endotoxin increases the levels of IFN-

gamma-inducible protein-10 (IP-10) and monokine induced by interferon-gamma (MIG) in 

preterm lamb lungs, leukocyte chemoattractants that are angiostatic (91).  In contrast, intra-

amniotic exposure of mice in the early saccular stage of development stimulates 

angiogenesis, and increases the expression of angiogenic cytokines (MCP-1 and MIP-1α in 
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fetal lung explants (92).  Figure 1 underlines the critical role of inflammatory cells such as 

activated macrophages and neutrophils in the production of cytokines, proteases and other 

injurious factors that remodel the ECM and disrupt alveolar and vascular development.   

 

DISRUPTION OF MOLECULAR PATHWAYS CONTROLLING ALVEOLARIZATION 

 The introduction of genetically modified mouse models has allowed the elucidation of 

numerous signaling pathways that are essential for lung development.  As an example, the 

dependency of alveolarization on pulmonary vascular development was first revealed by 

studies examining vascular endothelial growth factor signaling in mice (93). A comprehensive 

discussion of the molecular pathways contributing to alveolarization can be found in a 

number of excellent recent reviews (94, 95).  Here we will focus on how animal models have 

contributed to our understanding of key components of alveolar development and its 

pathology: (i) the development of the pulmonary capillary bed; (ii) remodeling of the ECM, 

and iii) the role of (altered) growth factor signaling. Here, the transforming growth factor 

(TGF) -β/bone morphogenic protein (BMP) family serves as an excellent example given that 

it plays a central role in both vascular development and matrix remodeling, and is altered by 

hyperoxia, stretch and inflammation.   

Pathways Directing Vascular Development  

 Pathologic examination of lung tissue from animal models and patients with BPD 

reveals fewer small arteries and an abnormal distribution of vessels within the distal lung (96-

98).  These and other data lead to the formation of the vascular hypothesis of BPD, wherein 

disruption of pulmonary angiogenesis induces the impaired alveolarization characteristic of 

BPD (19).  In contrast, some studies have suggested that the pulmonary vascular network 

may be increased in BPD. Analysis of postmortem lungs from preterm and near-term infants 

exposed to short-term or long-term ventilation found that mechanical ventilation was 

associated with an expansion of the distal pulmonary circulation. However, this expanded 

network was abnormally formed, retaining the primitive dual capillary network characteristic 

of the saccular stage of development, with simplified non-branching vessels(99). Data from 

LPS-treated mouse lung explants suggest that inflammation may simulate abnormal 

angiogenesis in the developing lung via the up-regulation of angiogenic CC chemokines such 

as macrophage inflammatory protein-1α (MIP-1α) and monocyte chemoattractant protein-1 

(MCP-1) (92).  

 Nonetheless, extensive experimental evidence derived from animal models has 

provided support for the notion that vascular development is an essential component of 

normal alveolarization, and that stimuli that block pulmonary angiogenesis disrupt secondary 
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septation.  Administration of an antibody against platelet endothelial cell adhesion molecule -

1 (PECAM-1) in neonatal rats inhibits endothelial cell function and disrupts alveolarization 

(100).  Chronic ventilation of preterm baboons prevents the physiologic increase in PECAM-1 

protein and capillary density normally observed in utero, in keeping with human studies that 

demonstrate that the capillary network fails to expand in patients with BPD.  Additional 

studies using a variety of models have begun to identify the specific signaling pathways that 

drive angiogenesis in the developing lung.  Two of the predominant and best-studied 

pathways are discussed in detail below.   

Hypoxia-Inducible Factor (HIF) 

 Members of the HIF family of transcription factors are tightly regulated by oxygen 

tension, and are key mediators of angiogenesis during development and disease. Under 

conditions of low oxygen tension, HIF is stabilized, translocates into the nucleus, and binds to 

hypoxia-responsive elements (HRE) located within the promoters of target genes, thus 

activating genes that increase oxygen delivery and allow for the metabolic adaptation to 

hypoxia.  The transition of the pulmonary circulation from the hypoxic, fetal environment to 

the relatively hyperoxic postnatal state, likely results in rapid molecular changes mediated via 

oxygen sensitive pathways. HIF molecules play a key role in mediating the initial pulmonary 

adaptation and further lung maturation, in part by regulating the expression of the HIF 

downstream target, VEGF.  

 A role for the HIF pathway in regulating developmental angiogenesis was 

demonstrated by the targeted deletion of HIF family members in mice. Loss of HIF1α in mice 

results in embryonic lethality at E10.5, with null embryos demonstrating multiple cardiac 

malformations and abnormally dilated blood vessels, perhaps due to the death of supporting 

mesenchymal cells (101). Targeted deletion of ARNT, the dimerization partner for both HIF-

1α and HIF-2α, also results in embryonic lethality at E10.5, with affected embryos displaying 

defective angiogenesis of the yolk sac and branchial arteries (102).  Interestingly, while 

embryonic lethality resulting from the absence of HIF-1α appears to be independent of 

VEGF, loss of HIF-2α in mice decreases alveolar epithelial cell expression of VEGF and 

causes fatal RDS due to insufficient surfactant production by alveolar type II cells (93), and a 

similar phenotype is induced by deleting the HRE located within the VEGF promoter.  

 In keeping with this data, preterm lambs suffering from RDS have decreased levels of 

both HIF-1α and HIF-2α, in association with diminished VEGF mRNA expression, and a 

corresponding increase in the expression of the HIF inhibitor, PHD-2 (103). In newborn mice, 

HIF-2α gene expression increases during early alveolarization, but hyperoxia suppressed 

this increase (104). However, in that study, HIF-2α levels did not correlate with VEGF levels 
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in the hyperoxia exposed group, suggesting that additional factors may regulate VEGF in 

hyperoxia, and suggest that some effects of disrupted HIF-2α signaling may be independent 

of VEGF.  Interestingly, over-expression of an oxygen-insensitive form of HIF-2α in alveolar 

type II cells, also disrupts alveolarization, resulting in an abnormal accumulation of type II 

cells, decreased numbers of type I cells, and abnormalities in the pathways directing 

surfactant synthesis (105).  These data suggest that HIF-2α may play a role in alveolar 

maturation, and that tight spatial and temporal control of HIF-2α is essential for normal lung 

development.  Stabilizing active HIF with the pharmacologic PHD inhibitor, FG-4095, 

enhances angiogenesis of human lung microvascular endothelial cells in vitro (106). Further, 

augmenting HIF signaling in vivo by PHD inhibition ameliorates the physiologic 

consequences of BPD in preterm baboons, increasing alveolar surface area and improving 

oxygenation and lung compliance (107).   

Vascular endothelial Growth Factor (VEGF) 

 VEGF, a key endothelial cell mitogen and down-stream target of HIF, is a regulator of 

angiogenesis and fetal lung maturation.  Studies in embryonic mouse tissue demonstrated 

that VEGF expression is temporally and spatially restricted, and suggest that VEGF links 

airway and blood vessel formation by stimulating neovascularization at the leading edge of 

branching airways (108). Dysregulation of this temporal and spatial control of VEGF is 

detrimental to lung development.  Over-expression of VEGF in alveolar epithelial cells 

causes embryonic mortality, increasing the growth of the pulmonary blood vessels but 

disrupting branching morphogenesis and alveolar type I cell differentiation (109). However, 

intrauterine administration of anti-VEGF-R2 antibodies later in embryonic development 

induces RDS, perhaps by blunting alveolar type II surfactant production (93). Administration 

of similar antibodies in the perinatal period disrupts early alveolar development in mice (110).  

Inhibiting constitutive activation of nuclear factor-κB, a direct regulator of VEGFR-2 during 

alveolarization, impairs pulmonary angiogenesis and disrupts alveolarization in neonatal mice 

(111).  Moreover, VEGF signaling appears to be important in maintaining lung structure even 

outside of lung development, as chronic treatment of adult rats with the VEGF receptor 

blocker, SU5416, induces alveolar septal cell apoptosis and causes airspace enlargement 

consistent with emphysema (112).  

 Decreased VEGF signaling may be one mechanism leading to the reduced 

pulmonary capillary volume and impaired alveolarization observed in very preterm baboons 

(51), and numerous studies have demonstrated an essential role for VEGF in murine 

embryonic vasculo- and alveologenesis.  The expression of both VEGF and one of its 

receptors VEGF-R1, are decreased in the preterm baboon model of BPD.  Mechanical 
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ventilation of 2- to 4-day-old mice with 40% O2 reduces gene and protein expression of 

VEGF-A and VEGF-R2 in the lung, and results in lung structural abnormalities consistent 

with evolving BPD (113). These studies suggested that enhancement of VEGF may have 

therapeutic potential for BPD.  In contrast to the effect observed during embryonic 

development, over-expression of VEGF in newborn rats increases survival, promotes lung 

angiogenesis and prevents hyperoxia-induced alveolar damage (114). Furthermore, VEGF 

preserves endothelium-dependent vasodilation in fetal sheep, potentially by up-regulating 

eNOS expression, data that may be particularly important given that a sub-group of infants 

with BPD develop pulmonary hypertension.  

 

The Role of Extracellular Matrix in Secondary Septation 

 The process of secondary septation, whereby secondary crests outgrow into the 

surrounding mesenchyme and allow for the division of the alveolar ducts into alveolar sacs, 

as well as the formation of the capillary bed significantly depend on the formation of a 

scaffold by the ECM, comprised of collagen, glycoproteins and elastin (115, 116).  

Elastin Fiber Assembly 

 The onset of septa formation is heralded by the deposition of elastin at specific sites 

in the walls of the developing saccules, a paradigm that was informed in large part from data 

obtained from animal models.  The essential role for elastin in lung development was 

established by studies showing that deletion of the Eln gene in mice leads to neonatal death 

from cardiorespiratory failure, reducing terminal airway branching, and impairing pulmonary 

vasculogenesis (117, 118).  The role of elastin in BPD was also outlined in the premature 

lamb model, where impaired alveolar and microvascular development is associated with an 

accumulation of excessive and disordered elastin (56). A similar abnormal accumulation of 

elastin is noted on lung pathology from premature infants who have died from BPD (21-23). 

Cyclic stretch of the lung during postnatal growth, induces tropoelastin gene expression, thus 

leading to increased elastin deposition (56, 119-122). The abnormal abundance and 

distribution of elastin is especially notable in blunted secondary crests, areas where focal 

deposits of distal elastin normally define loci of future alveoli. Ventilation of newborn mice 

disrupts elastin deposition, increases elastase activity, and reduces the expression of 

proteins critical for elastic fiber assembly (113). Moreover, in this model, the alterations in 

elastin breakdown and deposition are associated with increased lung cell apoptosis and 

defective septation, similar to that observed in infants suffering from BPD (65). Interestingly, 

these changes to the ECM appear to be primarily induced by cyclic stretch in the absence of 
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hyperoxia, as similar studies demonstrated that ventilating mice with air (21%) induces the 

same pathologic effects (64).  

 In contradistinction, animal models of BPD using severe and prolonged hyperoxia to 

induce lung injury showed varying results with respect to pulmonary elastin and collagen 

expression. Hyperoxia inhibits fetal rat lung fibroblast proliferation, type I collagen gene 

expression, and net collagen production in vitro (123).  However, other studies in neonatal 

mice and rats showed that hyperoxia increases pulmonary type I collagen, tropoelastin, and 

connective tissue growth factor (CTGF), a fibroblast mitogen that promotes collagen 

deposition (124, 125).  

 Data from clinical studies supports the notion that increased degradation of elastin is 

associated with lung injury and the development of BPD. Pulmonary inflammation increases 

elastase activity in the tracheal aspirates of premature infants, which likely impairs elastin 

deposition and alveolar formation by enhancing elastin breakdown (72, 126, 127). This idea 

is reinforced by the observation that infants with BPD, and mice and lambs exposed to cyclic 

stretch with oxygen-rich gas, exhibit elevated levels of urine desmosine, a sensitive marker of 

elastin breakdown (56, 128-130).  

Extracellular Matrix Remodeling 

 Remodeling of the ECM is primarily driven by serine proteases (e.g. neutrophil 

proteases and trypsin), matrix metalloproteinases (MMPs), and the papain familiy of 

proteases (cathepsin B, H, K, L and S). MMP-1, MMP-2, and MMP-9 are strongly expressed 

during alveolarization in both humans and mice (131, 132), and degradation of the ECM is 

necessary for angiogenesis.  However, enhanced proteolytic activity appears to be 

detrimental to the developing lung.  Increased lung levels of MMPs (133), cathepsins, and 

cathepsin activity in bronchoalveolar lavage (BAL) fluid are found in baboon models of BPD 

(134, 135). Moreover, the balance of matrix proteases and their inhibitors may have a 

broader effect on lung function outside of influencing ECM remodeling. For example, the 

serine protease inhibitor B1, expressed by neutrophils and macrophages, protects against 

the degradation of surfactant proteins by neutrophil elastase in baboon models of BPD (135).  

Further studies are necessary to clarify how proteolytic activity in the lung is tightly regulated 

during normal development, and the mechanisms that alter this regulation during BPD. 

 

The Transforming Growth Factor-ββββ/Bone Morphogenic Protein Superfamily in Normal 

and Abnormal Lung Development  
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 The transforming growth factor beta (TGF-β) superfamily, including the bone 

morphogenic proteins, plays an important role in lung development by influencing the cellular 

composition of the lung via the regulation of endothelial and epithelial cell survival(136), as 

well as regulating ECM production and remodeling.  

 The expression and localization of TGF-β/BMP family members change significantly 

during lung development in both mice and humans (137, 138). TGF-β is activated in the 

vascular and airway smooth muscle, as well as the alveolar and airway epithelium throughout 

late lung development, and active TGF-ββββ signaling is required for normal late lung 

development (94). Similarly, BMP signaling is also increased during the saccular and alveolar 

stages of lung development, suggesting a role for BMP in septal and vascular development 

(138).  BMP family members stimulate the proliferation and migration of EC by increasing the 

expression of angiogenic factors such as VEGF-R2(139), and stimulate pulmonary EC 

angiogenesis by activating the Wingless (Wnt) signaling pathway(140). 

 Studies in murine models where key components of TGF-β/BMP signaling were 

disrupted have highlighted the importance of these pathways on alveolar development.  The 

absence of latent TGF-β binding protein-3, a modulator of TGF-β secretion and activation, 

transiently decreases TGF-β activity in the lung at postnatal days 4-6, altering cell 

proliferation, inhibiting septation, and inducing emphysematous changes in the lung 

parenchyma (141).  Epithelial cell-specific abrogation of Alk3-mediated BMP signaling in the 

prenatal lung disrupts distal airway formation in mice (142). The functions of TGF-β in the 

lung are cell specific, with disruption of TGF-β type II receptor in epithelial cells delaying 

postnatal lung alveolarization, while disruption in mesenchymal cells resulting in mildly 

abnormal lung branching and organ defects such as diaphragmatic hernia (143).  Over-

expression of TGF-β1 in the newborn rat lung induces pathologic changes consistent with 

BPD (144), which are prevented by adenoviral-mediated gene transfer of decorin, a natural 

inhibitor of TGF-β activity (145, 146). In contrast, null mutation of Smad3, a key downstream 

effector of the TGF-β pathway, initially results in a subtle lung phenotype characterized by 

failure of normal organization of the EC.  However, this early phenotype culminates in the 

development of pulmonary emphysema in association with excessive MMP activity (147, 

148). Thus, the balance of TGF-β signaling appears to be critically important to alveolar 

development, with both excessive and insufficient TGF-β activity detrimental to distal lung 

growth. 

 TGF-β signaling is disrupted in animal models of BPD. Ventilation increases the 

expression of TGF-β in preterm lambs as early as one day after initiation of MV (149). The 

impaired alveolarization and decreased respiratory compliance observed in neonatal mice 
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exposed to hyperoxia is associated with potentiated TGF-β, but diminished BMP signaling, 

and a similar imbalance in TGF-β/BMP signaling is observed in murine lung epithelial cells 

and primary lung fibroblasts exposed to 85% oxygen in vitro. As a counter player to fibroblast 

growth factor-β and interleukin-1β, factors that lower elastin mRNA in human lung fibroblasts, 

TGF-β increases elastin by both transcriptional and post-transcriptional mechanisms (150).  

Exposure of primary lung fibroblasts to 85% O2 enhances the TGF-β-stimulated production of 

tropoelastin, as well as type I collagen-α, tissue inhibitor of metalloproteinase-1 (TIMP-1), 

and tenascin-C (138).  Exposure of primary alveolar type II (ATII) cells to 85% O2 increases 

the susceptibility to TGF-β-induced apoptosis, whereas primary pulmonary artery smooth 

muscle cells are unaffected (138).  Combined with evidence showing that TGF-β impairs 

keratinocyte growth factor-stimulated proliferation of ATII cells, these data suggest that 

increases in TGF-β induced by hyperoxia may contribute to the alveolar hypoplasia 

characteristic of BPD by enhancing apoptosis and decreasing proliferation of ATII cells (151). 

 

FROM BENCH TO BEDSIDE: THE UTILIZATION OF ANIMAL MODELS TO DISCOVER 

AND IMPLEMENT NEW TREATMENT STRATEGIES 

 Numerous therapeutic strategies currently in use or being investigated to reduce the 

incidence of BPD in premature infants have evolved, in large part, from data derived from 

animal studies.  Important trials tested the feasibility and effectiveness of nasal continuous 

positive airway pressure (nCPAP) in premature baboons and sheep as a means of 

minimizing the need for MV, decreasing lung inflammation, and reducing or preventing 

chronic lung injury(55, 152). Surfactant replacement therapy was first demonstrated to be 

efficacious in animal models of RDS (153), improving alveolar expansion and reducing 

hyaline membrane disease in premature primates (154), and improving oxygenation and 

ventilation in premature lambs (155). These and similar studies provided the rationale for 

clinical trials of surfactant replacement therapy including reports of short-term increases in 

oxygenation in preterm infants following surfactant replacement (156, 157), and finally a 

randomized controlled trial demonstrating significantly reductions in mortality (158), and in 

the development of  moderate to severe BPD (159, 160). Similarly, animal models of RDS 

were also integral in establishing the beneficial effects of antenatal glucocorticoids, including 

improvements in lung function, decreases in lung water content, increases in mean alveolar 

volumes, and maturation of the surfactant system (161-163). Conversely, experimental 

studies also highlighted the detrimental effects of postnatal glucocorticoid administration on 

cerebral development and myelination (164, 165), cardiac and renal function, and lifespan 

(166, 167) (168). Thus, corroborating results from clinical studies that demonstrated both 

short-term (e.g. hyperglycemia, hypertension, growth failure) and long-term (e.g. cerebral 
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palsy, developmental delay) adverse effects of postnatal steroids (169, 170).  Data derived 

from animal studies also supported a key role for retinoids in lung development and repair 

after injury (171-178), in keeping with results from randomized, controlled trials that showed 

that retinol treatment in VLBW infants significantly decreases the incidence of BPD (179, 

180).  

 The role of nitric oxide (NO) in the regulation of perinatal pulmonary vascular tone has 

been well established, and animal models helped to inform the notion that decreased NO 

synthesis contributes to the development of BPD (181, 182). Prolonged MV of premature 

lambs and baboons diminishes NOS activity and eNOS expression (181) (59) (52), and 

deficiency of eNOS exaggerates the adverse effects of hypoxia on alveolarization (183). 

Further, administration of iNO to mechanically ventilated preterm lambs and baboons 

improves lung function and increases alveolar counts (54, 184), and reduces endothelial cell 

apoptosis in neonatal rats after VEGF inhibition (185). However, while data from these 

experimental studies suggested that inhaled NO (iNO) may decrease the incidence of death 

and BPD in premature infants (184, 186), results from clinical trials failed to demonstrate a 

clear benefit of iNO on the development of BPD (187, 188). 

 Finally, animal models remain essential for the investigation and testing of novel 

strategies to prevent or treat BPD. Currently, there is great interest in studying whether cell-

based therapies could be an effective treatment for BPD, including mesenchymal stem cells 

(MSCs), human amniotic fluid stem cells (hAFSCs) and endothelial progenitor cells (EPCs), 

comprehensively detailed in a recent review (189). Either intravenous or intratracheal 

administration of bone marrow-stromal cells (BMSCs) or the conditioned media (BMSC-CM) 

from these cells blunts the adverse effects of hyperoxia on the immature mouse lung (190, 

191). In both studies, engraftment was low, and the beneficial effects of the BMSC-CM 

comparable or better than that of the BMSC, suggesting that the importance of a paracrine-

mediated mechanism. Further experimental studies will be essential to delineate the 

appropriate dose and timing of administration, and to provide long-term safety and efficacy 

data prior to translating these exciting studies to the clinic. 
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CONCLUSION – WHAT HAVE WE LEARNED? 

 During the past quarter-century, advances in medical care of premature infants, 

including the widespread use of antenatal steroids and surfactant has greatly improved the 

survival of VLBW infants. However, with this increase in survival, the main focus of perinatal 

care is now on the prevention of long-term complications of prematurity. Neonatal CLD, the 

result of lung injury induced by oxygen, mechanical stretch and inflammation, superimposed 

upon functionally and structural immature lung, still accounts for one of the most important 

causes of impaired long-term outcome in the preterm infant. The increasing paucity of human 

tissue available from patients with BPD, and the absence of models that can recapitulate 

alveolarization in vitro have resulted in the development of numerous animal models that 

have been used to interrogate the pathogenesis of BPD.  To date, information obtained using 

these models have permitted the identification of stimuli such as oxygen, stretch, and 

inflammation that are highly disruptive to the normal program of alveolar development. The 

development of genetically modified mice have permitted the elucidation of numerous 

molecular pathways that direct key components of secondary septation including the 

expansion of the pulmonary vascular bed via angiogenesis, and the remodeling of the ECM 

as well as how alterations in growth factor pathways, such as TGF-β/BMP, influence alveolar 

development. Moreover, these models have been integral in the development and/or 

implementation of therapies currently part of the standard of care for VLBW infants, including 

antenatal glucocorticoids, surfactant replacement, lung protective and non-invasive strategies 

of ventilation, and retinol therapy.  

 Data from animal studies have been integral in highlighting that secondary septation 

requires the complex interplay between multiple cell types within the lung, allowing for 

coordinated development of the pulmonary capillary bed and terminal airspaces, 

orchestrated in part by the deposition and remodeling of ECM. Distinct molecular pathways 

direct the individual components of secondary septation, and abrogation of a single pathway 

is often sufficient to disrupt the entire process of alveolarization.  To this end, a number of 

injuries, including hyperoxia, mechanical stretch and inflammation impair alveolarization and 

contribute to BPD by altering one or more of these molecular pathways, resulting in impaired 

lung development by altering the differentiation, proliferation and migration of epithelial cells, 

endothelial cells, and myofibroblasts. Further, these injuries alter central growth factor 

signaling cascades that not only affect cell survival and fate, but also impact ECM 

composition. 

 Moving forward, the challenge will be to not only to understand the mechanisms 

regulating normal lung growth, but also to begin to clarify the pathways that mediate lung 

repair and regeneration after injury. Focus is needed on understanding how the separate 
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molecular pathways regulating alveolarization interact in a cell-specific manner at each stage 

of development, as well as during injury and repair, given that the global augmentation or 

inhibition of these signaling cascades (e.g. HIF and TGF-β/BMP) may negatively affect 

physiologic developmental and regenerative processes. Here, the identification of biomarkers 

that might herald the onset of BPD at early stages of the disease will be critical for the design 

of personalized treatment regimens. The mechanisms by which clinical variables, such as 

intrauterine growth retardation (192-194), and gender (195), influence the risk for BPD, need 

to be better addressed in animal studies. Similarly, a better understanding of the impact of 

the genetics on this heterogeneous disease, as suggested by twin (196), and genetic 

association studies (197, 198), is critical, and hold the promise of developing individualized 

treatments to more successfully prevent or treat BPD.  

 Further refinement and modification of the current animal models to better 

recapitulate the human condition would also be important in the future.  This would include 

limiting the levels of oxygen used to cause lung injury in animals to those currently used in 

preterm infants, as well as models in which fluctuations of oxygen saturation are 

experimentally induced.  In addition, a comparison of the structural abnormalities induced 

observed in animal models (i.e. sheep or baboons) at different stages of gestation treated 

with therapies more similar to current standard of care (steroids, surfactant, etc) might allow 

a better understanding whether the ‘new’ BPD is more the result of the greater immaturity of 

the infant at birth, or a reflection in the changes in medical care of premature infants that has 

occurred over the past 2 decades. Similar studies may also be helpful in understanding why 

late preterm infants (32-36 weeks gestational age) present with more long-term pulmonary 

and neurologic complications than anticipated. Finally, as the earliest survivors of BPD are 

now reaching adulthood, evidence is emerging that suggests that early injuries during 

alveolar development may represent the childhood antecedent of adult lung disease.  Thus, 

the creation of “double-hit” animal models of disease could be integral in understanding 

whether mild injuries during lung development modulate physiologic aging of the lung, or 

alter the susceptibility to additional injuries later in life. 
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Figure Legend 

Figure.1: Pathophysiologic changes to the developing lung following exposure to oxygen and 

shear stress. Normal lung development is depicted on the left, abnormal processes on the 

right hand side. 
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