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Resistance to chemotherapy of pancreatic ductal adenocarcinoma (PDAC) is largely driven by intratumoral heterogeneity
(ITH) due to tumor cell plasticity and clonal diversity. To develop alternative strategies to overcome this defined
mechanism of resistance, tools to monitor and quantify ITH in a rapid and scalable fashion are needed urgently. Here, we
employed label-free digital holographic microscopy (DHM) to characterize ITH in PDAC. We established a robust
experimental and machine learning analysis pipeline to perform single-cell phenotyping based on DHM-derived phase
images of PDAC cells in suspension. Importantly, we were able to detect dynamic changes in tumor cell differentiation
and heterogeneity of distinct PDAC subtypes upon induction of epithelial-mesenchymal transition and under treatment-
imposed pressure in murine and patient-derived model systems. This platform allowed us to assess phenotypic ITH in
PDAC on a single-cell level in real time. Implementing this technology into the clinical workflow has the potential to
fundamentally increase our understanding of tumor heterogeneity during evolution and treatment response.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) belongs to the deadliest types of  malignant tumors with an 
overall 5-year survival rate less than 11% despite a low incidence rate compared with other cancers (1). Poly-
chemotherapies, such as FOLFIRINOX or gemcitabine/nab-paclitaxel (2, 3), as well as targeted therapies 
demonstrate limited efficacy in PDAC (4, 5). To improve patient outcomes, in the past decade, research 
has focused mainly on the characterization of  PDAC on the molecular level. Extensive PDAC-subtyping 
efforts based on transcriptomic profiling revealed 2 major subtypes in human tumors, the classical and the 
quasi-mesenchymal/basal-like/squamous subtype, correlating with histopathological gradings and sur-
vival rates (6–8). Similarly, Mueller et al. characterized a large cohort of  murine KrasG12D-mutated PDAC 
cells, which allowed a separation into the C2 and C1 cluster representing epithelial and mesenchymal 

Resistance to chemotherapy of pancreatic ductal adenocarcinoma (PDAC) is largely driven by 
intratumoral heterogeneity (ITH) due to tumor cell plasticity and clonal diversity. To develop 
alternative strategies to overcome this defined mechanism of resistance, tools to monitor and 
quantify ITH in a rapid and scalable fashion are needed urgently. Here, we employed label-free digital 
holographic microscopy (DHM) to characterize ITH in PDAC. We established a robust experimental 
and machine learning analysis pipeline to perform single-cell phenotyping based on DHM-derived 
phase images of PDAC cells in suspension. Importantly, we were able to detect dynamic changes in 
tumor cell differentiation and heterogeneity of distinct PDAC subtypes upon induction of epithelial-
mesenchymal transition and under treatment-imposed pressure in murine and patient-derived model 
systems. This platform allowed us to assess phenotypic ITH in PDAC on a single-cell level in real time. 
Implementing this technology into the clinical workflow has the potential to fundamentally increase 
our understanding of tumor heterogeneity during evolution and treatment response.
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phenotypes as well as biology of  the disease (9). However, Topham et al. investigated the reliability of  
these subtyping methodologies and found that 1 out of  6 patients with PDAC cannot be assigned to either 
the classical or quasi-mesenchymal categories, indicating limitations of  the approach for clinical practice 
(10). A possible explanation constitutes the pronounced intratumoral heterogeneity (ITH), which is not 
captured when using these common bulk subtyping approaches. ITH, however, is a key feature of  PDAC 
and might be a leading cause of  treatment failure and relapse after chemotherapy due to selective and 
plastic processes occurring. Single-cell technologies, such as single-cell RNA sequencing (scRNA-Seq), 
bypass this problem, as they allow researchers to analyze inter- and particularly intratumoral heterogene-
ity. Based on single-cell transcriptomic profiling, Peng et al. found various subpopulations in the malig-
nant cell cluster of  PDAC with differentially activated signaling pathways as well as transcription factors, 
resulting in a diverse proliferative and migratory behavior of  the tumor (11). Additionally, scRNA-Seq of  
15 PDAC patient specimens was performed, and classical and basal-like tumor cells were found to coexist 
within 13 out of  15 samples, suggesting an extensive degree of  ITH in PDAC (12). In line with this study, 
Lin et al. detected epithelial and epithelial-mesenchymal transition (EMT+) tumor cells intratumorally 
in PDAC specimen and showed a strong correlation between EMT+ tumor cells and poor survival (13). 
Single-cell technologies are substantial contributions for understanding the tumor evolution and allow an 
in-depth molecular analysis of  ITH. However, the considerable processing and analysis time as well as 
financial strains represent a relevant challenge implementing these procedures into clinical routine, not to 
mention the lack of  a uniform and standardized analysis pipeline (10). Generating information about the 
tumor differentiation and detailed composition instantly has the potential in the future to make a deep 
impact upon clinical decision-making. Therefore, we established digital holographic microscopy (DHM) 
for high-content characterization of  PDAC heterogeneity (static) and plasticity (dynamic). DHM is based 
on the interference of  a reference and an object beam, resulting in recorded holograms, from which quan-
titative phase information is reassembled, providing abundant intracellular information (14). Coupling the 
DHM to a microfluidic system allows us to record and analyze individual tumor cells in suspension not 
in a stationary but in a high-throughput manner (15, 16). By processing the acquired images using our 
specifically developed analysis pipeline, we were able to cluster PDAC cells from distinct transcriptional 
subtypes according to their individual phenotypes and ITH. Importantly, we employed this technology to 
detect alterations in morphology by induction of  EMT or in response to chemotherapy in a translational 
setting characterizing PDAC patient-derived organoids (PDOs). Overall, we present a technology that can 
be applied to virtually any kind of  tissue sample or tumor model in single-cell resolution, harboring great 
potential to translate the rapidly evolving knowledge of  ITH in PDAC into clinics.

Results
DHM-based phenotyping of  distinct states of  PDAC tumor cell differentiation. The aim of  this study was to 
establish DHM for a detailed phenotypic characterization of  PDAC on a cellular level in a label-free, 
high-throughput fashion (Figure 1A). We used a customized setup, including a DHM that is coupled 
to a microfluidic system, allowing us to focus cells in suspension in flow for parallelized single-cell 
imaging. We dissociated PDAC cell cultures into a single-cell suspension and acquired single-cell–phase 
images in flow. The images were then subjected to a computational analysis pipeline. In the first step, 
we pre-processed the obtained phase images by subtracting the background to remove noise and arti-
facts. Then, using binary thresholding, we performed cell segmentation to find regions of  interest. For 
feature extraction and filtering, we combined morphological features, partly derived from OpenCV (17) 
and partly in-house–created, with a lightweight residual neural network with 18 convolutional layers 
(ResNet18). In a classification step, we applied the commonly used classification tools random forest, 
support vector machine, K-nearest neighbors, and neural network in order to discriminate experimental 
samples and found the random forest classification to perform best throughout this study. Finally, we 
applied hierarchical clustering to demonstrate relationships between experimental samples and uniform 
manifold approximation and projection (UMAP) clustering to further visualize all single data points in 
a spectrum ranging from epithelial to mesenchymal.

To use DHM as a tool to investigate the phenotype of  an unknown sample, it is key to identify dif-
ferent morphological subpopulations within one sample. Thus, we first performed a spike-in experiment, 
mixing a characterized epithelial (9591) as well as a mesenchymal cell line (16992) (9), both derived from a 
KrasG12D-driven PDAC mouse model, in defined ratios (Figure 1, B and C). The algorithm was trained using 
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pure populations of  both lines, and the mixed populations were tested afterward. The results of  the DHM 
measurement substantially correlated with the calculated concentrations with a maximum deviation of  3% 
in the sample consisting of  25% epithelial and 75% mesenchymal cells (Figure 1D).

These data clearly demonstrate the robustness of  this technique to identify subpopulations of  varying 
morphologies within one sample. This in turn is an important factor, as ITH is highly abundant in PDAC, 
which can be determined on a single-cell level using our DHM approach. In addition, the approach is 
applicable to samples previously unseen by the algorithm.

Single-cell phenotyping of  PDAC tumor cells upon induction of  EMT. As an experimental system to detect 
the whole spectrum of tumor cell dedifferentiation, we used TGF-β–induced EMT. Specifically, we exposed 
epithelial murine PDAC cells (8442, 9591, and 53631) to TGF-β for 14 days. As expected, when exposed to 
TGF-β, adherent epithelial tumor cells grown on culture dishes 2-dimensionally (in 2D) underwent EMT 
visible in classical phase contrast microscopy (Figure 2A) by losing cell-to-cell contacts and acquiring a spin-
dle-shape morphology to a varying degree (Supplemental Figure 1A; supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.169105DS1). In addition, we assessed EMT markers of  
untreated as well as TGF-β–treated cells on mRNA as well as protein levels. In line with changes in morphol-
ogy, a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin 
and vimentin were observed (Supplemental Figure 1, A and B, and Supporting Data Values sheet 1). Notably, 
compared with PDAC cell lines 9591 and 53631, PDAC cell line 8442 did not respond to TGF-β treatment 
markedly, neither morphologically as depicted in the phase contrast images nor on mRNA and protein levels 
of  indicated EMT markers (Supplemental Figure 1, A and B).

We next applied DHM to analyze single-cell EMT phenotypes (Figure 2B). As indicated in Figure 2C, 
we clearly detected differences in the respective DHM phase images. For cell lines 9591 and 53631, the algo-
rithm was able to distinguish untreated controls and TGF-β–treated cells with an accuracy of  81% and 85%, 

Figure 1. Establishing DHM-based single-cell phenotyping to detect tumor cell differentiation. (A) Schematic illustration of the established workflow 
and computational analysis pipeline. (B) Schematic illustration of the spike-in experiment setup. (C) Phase contrast images of epithelial (9591) and 
mesenchymal (16992) cells used in the spike-in experiment. Scale bar indicates 400 μm. (D) Accuracies obtained using random forest classification when 
trained with 100% epithelial and 100% mesenchymal PDAC cells.
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respectively (Figure 2C and Supporting Data Values sheet 2). In contrast, line 8442, which showed only subtle 
changes upon TGF-β exposure, showed an accuracy of  75% on a single-cell phenotypic level (Figure 2C and 
Supporting Data Values sheet 2). Using UMAP clustering, a clear right shift (E to M) was identified in 9591 
and 53631, whereas 8442 showed a minor transition with a massive overlap of  control and TGF-β–treated 
cellular phenotypes (Figure 2D). This, in turn, recapitulated our observations of  line 8442 in the validation 
experiments, assessing EMT by immunofluorescence, and was taken as an internal quality control for the 

Figure 2. DHM-based identification of TGF-β– and genetically induced EMT. (A) Phase contrast images of control and TGF-β–treated epithelial PDAC 
cells. Scale bars represent 200 μm. (B) Representative DHM phase images in false colors of control and TGF-β–treated PDAC cells in suspension. Scale bar 
represents 10 μm. (C) Accuracy for separating control and TGF-β–treated PDAC cells individually for every cell line using different classification methods: 
random forest (RF), support vector machine (SVM), k-nearest neighbors (K-NN), and neural network (NN). Shown are the median and upper and lower quar-
tiles. (D) Unsupervised clustering of control and TGF-β–treated PDAC cells based on DHM phase images and visualized using UMAP plots. (E) Representative 
phase contrast (left) and DHM phase images in false colors (right) of cells with p120catenin wild-type (p120+/+) or homozygous (p120–/–) deletion. Scale bars 
represent 200 μm (left) and 10 μm (right). (F) Accuracy for separating p120+/+ and p120–/– cells using different classification methods as in C. Shown are the 
median and upper and lower quartiles. (G) Unsupervised clustering of p120+/+ and p120–/– cells based on DHM phase images and visualized using UMAP plots.
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algorithm we used in this study. To further test the transferability of  our system, we trained and tested the 
algorithm across different cell lines. We limited the training of  the algorithm to images of  the cell line 53631 
and evaluated its performance in discriminating treated and untreated cells of  the unknown cell lines 8442 and 
9591 (Supplemental Figure 1C). Using UMAP clustering, we obtained highly similar results as when trained 
on the identical cell line, showing the applicability of  this technology for unknown samples. To validate the 
observed broad-range accuracy in DHM analyses (Figure 2C) and the shift in UMAP clustering (Figure 2D) 
as indicators of  intra–cell line heterogeneity and EMT program induction, we conducted fluorescence-activat-
ed cell sorting (FACS) analysis to quantify the distribution of  EMT markers N-cadherin (M), vimentin (M), 
E-cadherin (E), and EpCAM (E) in both control and TGF-β–treated conditions across 3 PDAC cell lines: 
8442, 9591, and 53631 (Supplemental Figure 2). EMT induction was verified after 14 days of  TGF-β exposure 
through changes in cell morphology observed in bright-field microscopy (Supplemental Figure 2A) and global 
marker protein expression (Supplemental Figure 2, B–D). Notably, UMAP visualizations of  the FACS data 
revealed that subsets of  tumor cells within each sample altered their marker expression in response to EMT 
induction, while a substantial subpopulation retained the marker profile indicative of  their pretreatment state 
(Supplemental Figure 2D). This demonstrates inherent intra–cell line heterogeneity and the broad spectrum 
of tumor cell differentiation along the EMT axis within each PDAC line, supporting our DHM results.

In a complementary approach to study EMT, we used genetically engineered murine KrasG12D-mutant cells 
with either a wild-type p120-catenin (p120ctn) or homozygous deletion of p120ctn. Biallelic depletion of p120ctn 
leads to endocytosis and degradation of E-cadherin and thereby induces the loss of epithelial identity accom-
panied by acquired morphological features related to EMT (18). Consequently, genetically modulating epithe-
lial plasticity via p120ctn was used as an alternative model system to train DHM for detecting different stages of  
EMT and plasticity important for PDAC characterization. The differences in phenotype upon p120ctn ablation 
were clearly visible in phase contrast microscopy (Figure 2E) as well as immunofluorescence (IF) staining of  
cells in an adherent condition, with the p120ctn–/– cells showing spindle-like structures (Supplemental Figure 
1D). Thus, indirectly removing E-cadherin from the adherens junctions without an increase of the mesenchy-
mal marker vimentin was enough to remodel cellular morphology (Supplemental Figure 1D). These mor-
phologically different lines were subjected to DHM analysis as well (Figure 2E). Random forest classification 
allowed a separation of 80% between wild-type and knockout cells with a clear right shift of  the cells harboring 
a p120ctn deletion shown in UMAP analysis (Figure 2, F and G, and Supporting Data Values sheet 3). Thus, 
solely by removing p120ctn without the increase of mesenchymal markers, a morphological shift could be 
detected in the majority of cells using DHM-based phenotyping.

Using DHM, we were able to detect TGF-β– and genetically induced EMT in murine PDAC cells 
in suspension. Importantly, our results indicate the ability of  DHM to quantify the EMT spectrum of  
PDAC cells on a single-cell level.

Detection and quantification of  inter- and intratumor cell heterogeneity in murine and human models of  PDAC 
subtypes. After assessing single-cell phenotypes upon EMT induction, we focused on distinct transcriptional 
PDAC subtypes. To this end, we used molecularly characterized murine PDAC cells recently grouped into 
the C2b and C1 cluster representing epithelial and mesenchymal cell morphology, respectively (9). Hier-
archical clustering based on their bulk transcriptomes (2,000 most differentially expressed genes) clearly 
separated them according to their defined transcriptomic cluster (Supplemental Figure 3A). Strikingly, we 
found a rather hybrid-like phenotype in 8442 with a large number of  cells showing mesenchymal features 
and 8028 exhibiting a considerable subpopulation of  epithelial cells in an adherent cell culture condition 
(Figure 3A). The other cell lines showed a subpopulation of  the opposite phenotype as well but not to the 
same extent as 8442 and 8028. This, in turn, emphasizes the presence of  tumoral heterogeneity detected 
by DHM, even though these lines clustered as clearly epithelial and mesenchymal based on bulk RNA 
sequencing, suggesting that bulk sequencing is not sufficiently detecting heterogeneity. To quantify tumor 
heterogeneity, we implemented a DHM-derived tumor heterogeneity score by measuring the single-cell 
distance to cluster centroid in UMAPs derived from each sample.

As expected, measuring these lines with DHM and analyzing it using morphological combined with 
ResNet18-based features did not predict a clear separation of  phenotypes (Supplemental Figure 3, B and C). 
Random forest classification of  epithelial (C2b cluster) versus mesenchymal (C1 cluster) cells showed a dif-
ferentiation accuracy of  only 72%, with a great overlap in UMAP clustering (Supplemental Figure 3, C and 
D, and Supporting Data Values sheet 4). However, cell line–specific UMAP clustering revealed a continuum 
of  cellular phenotypes within each cluster as well as cell lines demonstrating high inter- and intratumoral 
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Figure 3. Single-cell phenotyping identifies heterogeneity in murine and human PDAC models. (A) Phase contrast images of epithelial and mesenchymal 
PDAC cells. Arrows indicate subpopulations of the opposing phenotype. Scale bars represent 200 μm. (B) Unsupervised clustering of individual cell lines 
based on DHM phase images visualized using UMAP plots. (C) Hierarchical clustering of DHM phase images derived from epithelial and mesenchymal PDAC 
cells based on the most different ResNet18 and morphological features. (D) Evaluation of intra–cell line heterogeneity using single-cell distance to cluster 
centroid. Kruskal-Wallis test, P < 0.0001. Shown are the median and upper and lower quartiles. Ø, mean tumor heterogeneity score. (E) Phase contrast images 
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heterogeneity (Figure 3B). While the vast majority of  9591 and 53631 clustered on the epithelial side of  the 
spectrum (left), 8442 covered the whole spectrum, with the majority of  cells being located in the middle, 
indicating a hybrid phenotype. Similar to this, 8028 showed a strong overlap with the epithelial phenotype, 
while 9091 and 16992 clustered mainly on the mesenchymal side of  the spectrum (Figure 3B). Additionally, 
hierarchical clustering based on DHM showed a closer relationship between 8442 and 8028 than each cell 
line had to the members of  their transcriptomic subtype, further strengthening the hybrid-like EMT state of  
both lines (Figure 3C). When assessing the tumor heterogeneity score of  these lines, we indeed found 8442 
and 8028 exhibited the highest heterogeneity score compared with the other members of  their respective 
transcriptomic clusters (Figure 3D, Supplemental Figure 3E, and Supporting Data Values sheet 5). These 
data strongly indicate that even though cells are grouped into a defined tumor subtype based on their bulk 
transcriptomic profile, they can be composed of  a highly heterogeneous cell population, which can be ana-
lyzed in detail using only single-cell technologies, such as DHM.

In parallel, we performed the same approach using human established and well-characterized PDAC cell 
lines. When cultured in 2D, PatuS and HPAC exhibited an epithelial morphology with colony formation and 
cell-cell contact, while PSN-1, DanG, and PatuT showed a spindle-like single-cell growth pattern (Supple-
mental Figure 4A). When applying the well-known PDAC subtyping methodologies to these cell lines, we 
did not obtain definite subtypes for all cell lines (Supplemental Figure 4B). While PatuS as well as PatuT and 
DanG were clustered into the classical and the quasi-mesenchymal PDAC subtype, respectively, HPAC and 
PSN-1 failed to be assigned to either subtype, suggesting either a hybrid-like phenotype or a failure of  subtyp-
ing approaches as Topham et al. demonstrated (10). However, when we measured these cells with DHM, we 
obtained a clear separation of  the cells with epithelial and quasi-mesenchymal morphology (Supplemental 
Figure 4C). Hierarchical clustering based on DHM phase images clearly separated HPAC and PatuS from 
PatuT, PSN-1, and DanG, similar to the morphology observed in adherent cell culture (Supplemental Figure 
4D). Random forest classification and UMAP clustering further verified this grouping, as the epithelial and 
quasi-mesenchymal cells could be separated with an accuracy of  almost 90% (Supplemental Figure 4, E and 
F, and Supporting Data Values sheet 6). Interestingly, levels of  intra–cell line heterogeneity differed inde-
pendently of  cellular morphology, with PatuS and PatuT showing the lowest and PSN-1 showing the highest 
tumor heterogeneity score (Supplemental Figure 4, G–I, and Supporting Data Values sheet 7).

In the past decade, 3D model systems, such as PDO cultures, have been extensively studied, since 
they more closely recapitulate human physiology and better depict heterogeneity compared with 2D 
cell cultures (19). Indeed, Juiz et al. performed scRNA-Seq of  6 PDAC PDO lines and grouped their 
transcriptomic profiles into 4 clusters illustrating different levels of  EMT. Interestingly, these clusters 
were found throughout the whole cell line panel. However, the cell count of  each cluster was different 
between the PDO lines, representing a high degree of  ITH in these organoids (20). Therefore, we used 
in the next step 6 different PDO lines in order to identify inter- and intratumoral heterogeneity using 
DHM in a clinically relevant setting. While ID188, ID203, ID208, and ID226 showed a lumen-filling 
organoid growth pattern, ID211 and ID250 grew with hollow lumen (Figure 3E). Transcriptional 
subtyping clustered them into 2 groups; however, a clear classical subtype was present only in ID211 
and a quasi-mesenchymal subtype only in ID250. For the rest of  the lines, no definite subtype could 
be assigned (Figure 3F). DHM-based phenotyping did not predict a clear separation of  the PDO lines 
into classical and quasi-mesenchymal using hierarchical clustering (Supplemental Figure 5, A and B), 
but rather demonstrated high inter- and intratumoral heterogeneity in organoid line–specific UMAP 
analysis (Figure 3G). Indeed, when quantifying the intra–cell line heterogeneity, we found significant-
ly different levels in the 6 lines. While ID211 and ID226 showed the lowest heterogeneity within their 
respective cluster, ID208 showed by far the highest tumoral heterogeneity (Figure 3H, Supplemental 
Figure 5C, and Supporting Data Values sheet 8).

Next, to expand our research beyond pure tumor cell populations, we conducted a series of  exper-
iments mixing PDAC tumor cells and cancer-associated fibroblasts (CAFs). Analyzing mixtures of  
murine epithelial or mesenchymal PDAC cells and murine CAFs, we observed a wide range of  accura-
cy. Specifically, mesenchymal PDAC cells were almost indistinguishable from CAFs, a limitation also 

of patient-derived PDAC organoids. Scale bar represents 200 μm. (F) Molecular subtype classifier gene sets applied to transcriptomic profiles of PDOs. (G) 
Unsupervised clustering of individual PDAC organoid lines based on DHM phase images and visualized using UMAP plots. (H) Evaluation of intra–organoid line 
heterogeneity using single-cell distance to cluster centroid. Kruskal-Wallis test, P < 0.0001. Shown are the median and upper and lower quartiles.
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apparent in single-cell RNA data sets (Supplemental Figure 6A). However, in a patient-derived setting, 
analyzing PDOs with CAFs from the same patient, we achieved nearly 94% accuracy using random 
forest classification. This was accompanied by a substantial phenotypic shift in the UMAP analysis 
(Supplemental Figure 6, B–D, and Supporting Data Values sheet 9).

Our findings underscore the pronounced inter- and intratumor cell heterogeneity in both murine and 
human PDAC models, emphasizing the complexity of  pancreatic cancer biology. Importantly, advanced 
imaging techniques, like DHM, reveal diverse cellular phenotypes within defined tumor subtypes and 
detect different cell lineages, particularly in patient-derived contexts.

Monitoring dynamic changes in tumor heterogeneity upon chemotherapeutic treatment. Previously, it has been 
shown that chemotherapeutic treatment such as FOLFIRINOX (FFX) or gemcitabine plus nab-paclitaxel 
can induce changes in PDAC subtype of  primary tumors and metastasis by various processes, such as 
clonal selection or cellular plasticity (12, 21, 22). Here, we sought to track morphological changes upon 
FFX administration in distinct PDAC subtypes and PDOs using our DHM-based phenotyping approach.

First, we treated murine epithelial and mesenchymal PDAC cells for 72 hours with their respective IC50 
of FFX, obtained by drug-response curves (Supplemental Figure 7A), and surviving cells were recovered for 
an additional 72 hours in a washout phase to differentiate temporary and prolonged effects. Transcriptom-
ics, proteomics, as well as DHM-based phenotyping were performed in order to obtain detailed insight into 
FFX-induced molecular and phenotypic adaptations (Supplemental Figure 7B). Based on phase contrast imag-
es, epithelial cells responded phenotypically more strongly compared with mesenchymal cells, as they lost their 
cell-cell contact and acquired an EMT-like morphology (Supplemental Figure 7C). In contrast, mesenchymal 
cells retained their phenotypic characteristics (Supplemental Figure 7C). Hierarchical clustering based on DHM 
phase images revealed acquired similarities as well as differences between the cell lines upon FFX induction 
(Figure 4, A and B). We have already shown a close relationship between 8442 and 8028 with a rather hybrid-
like phenotype in the control setting (Figure 3C); however, upon FFX treatment, both cell lines phenotypically 
drifted apart and acquired further phenotypic characteristics of the opposing transcriptomic subtype. While 8442 
was tightly related to the mesenchymal line 9091 upon FFX treatment, 8028 behaved morphologically similarly 
to the epithelial lines 9591 and 53631, again validating them as outliers of their transcriptomic cluster (Figure 
4B). Additionally, DHM enabled a differentiation between untreated and FFX-treated cells with an accuracy of  
roughly 87% when compared in a cell line– and phenotype-independent fashion using random forest classifica-
tion (Supplemental Figure 7D and Supporting Data Values sheet 10). When they were visualized using UMAP 
clustering, we observed a clear right shift in the FFX and the FFX washout cells, indicating a certain degree of  
EMT occurring upon FFX treatment (Supplemental Figure 7E). Next, we performed a cell line–specific UMAP 
clustering to illustrate the single-cell behavior and EMT status of individual lines upon FFX administration (Fig-
ure 4C). While we detected a clear right shift toward a more mesenchymal phenotype for the lines 8442, 9591, 
53631, and 8028 in the treated and washout condition, half of the population of 9091 and 16992 remained rath-
er unaffected by FFX treatment. To validate these DHM results, we compared the single-sample EMT (ssEMT) 
score of the HALLMARK gene set retrieved from transcriptomic and proteomic profiling between the control, 
FFX, and FFX washout conditions. Individual cell lines exhibited different levels of EMT upon FFX treatment 
(Supplemental Figure 7F and Supporting Data Values sheet 11). On the mRNA level, 53631 showed the highest 
change in the EMT score of the epithelial lines, which was detected in the cell line–specific UMAP clustering, 
as well. Interestingly, the mesenchymal line 16992 showed a significant increase in the EMT score upon FFX as 
well, which, however, cannot be fully confirmed on a single-cell level, as half of the population remained rather 
unaffected. On a protein level, the effects of FFX treatment on the EMT score were augmented in all lines. 
Nevertheless, 53631 and 16992 were the lines with the most significant change in the ssEMT score upon FFX in 
their respective transcriptomic cluster. Interestingly, when analyzing the ITH score by calculating the single-cell 
distance to the cluster centroid, we found a subtype-dependent change in ITH upon FFX administration (Figure 
4D and Supporting Data Values sheet 12). While the ITH significantly decreased in the epithelial lines 9591 
and 53631 in the FFX and the washout cells, it significantly increased in the mesenchymal lines 9091 and 16992 
upon chemotherapy. Again, the line 8442 behaved similarly to the mesenchymal lines, showing an increase in 
ITH upon FFX compared with its untreated controls, again proving its outlier character.

To validate the phenotypic changes induced by FFX exposure, we conducted scRNA-Seq on a repre-
sentative epithelial (53631) and mesenchymal (9091) PDAC cell line under both control and FFX treatment 
conditions (Figure 4E). Consistent with the DHM results, UMAP plots displayed pronounced reorganiza-
tion of  cell clusters when treated with respective FFX-IC50 concentrations. Specifically, epithelial PDAC cells 
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showed the emergence of  a new and consolidated cluster, characterized by upregulated expression of  genes 
such as mouse double minute 2; prostaglandin-endoperoxide synthase 2, also known as COX-2; and cyclin 
G1, which are involved in cell cycle regulation, apoptosis, and inflammation (Figure 4E and Supplemental 

Figure 4. Monitoring single-cell phenotypes and heterogeneity in response to treatment. (A) Representative single-cell DHM phase images of untreated, 
FFX-treated, or FFX washout murine PDAC cells in suspension. Scale bar indicates 10 μm. (B) Hierarchical clustering of DHM phase images derived from 
murine PDAC cells in untreated, FFX-treated, or FFX washout condition based on the most different ResNet18 and morphological features. (C) Unsupervised 
clustering of different conditions in the individual cell lines based on DHM phase images and visualized using UMAP plots. (D) Evaluation of intra–cell line 
heterogeneity upon FFX treatment using single-cell distance to cluster centroid. Kruskal-Wallis test: *P < 0.05 and ****P < 0.0001. Shown are the median 
and upper and lower quartiles. (E) Kernel density of untreated and FFX-treated epithelial (53631) and mesenchymal (9091) cells analyzed using single-cell 
RNA-sequencing data. (F) Representative single-cell DHM phase images of pre– (ID188) and post– (ID211) FFX-treated PDOs in suspension. Scale bar indi-
cates 10 μm. (G) Accuracy for separating organoids before and after FOLFIRINOX treatment using different classification methods: RF, SVM, K-NN, and NN. 
Shown are the median and upper and lower quartiles. (H) Unsupervised clustering of ID188 and ID211 organoids based on DHM phase images and visualized 
using UMAP plots. (I) Evaluation of intra–organoid line heterogeneity of ID188 and ID211 using single-cell distance to cluster centroid. Mann-Whitney test, 
****P < 0.0001. Shown are the median and upper and lower quartiles.
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Figure 8A). In contrast, and in alignment with DHM-based UMAP clustering, FFX treatment in mesenchy-
mal PDAC cells induced a subtle shift in the relative proportions of  cells within preexisting clusters. This was 
accompanied by increased expression of  genes like tolloid-like 1 and cadherin 9, associated with extracellu-
lar matrix remodeling and cell-cell adhesion (Figure 4E and Supplemental Figure 8B).

To apply this technology in a clinically relevant setting, we compared the PDO lines ID188 and ID211 
in more detail as they were derived from the same patient with PDAC before and after neoadjuvant FFX 
therapy. While ID188 was established from a treatment-naive fine-needle biopsy (FNB), ID211 was isolated 
from a surgical resection after 4 cycles of  FFX. Recently, we have performed an in-depth characterization of  
this matched pair of  PDOs on a molecular and functional level (22). Specifically, both lines were classified 
as classical PDAC subtype according to PurIST subtyping; however, we identified a certain degree of  redif-
ferentiation in ID211 upon FFX treatment, which was accompanied by a downregulation of  pathways that 
are associated with the basal-like subtype such as KRAS and TGF-β signaling, cell cycle, hypoxia, as well as 
inflammation (22). When subjecting these lines to a 1-to-1 DHM comparison, we were able to phenotypically 
separate the 2 lines with an accuracy of  90% using random forest classification, though they were derived 
from the same patient (Figure 4, F and G, and Supporting Data Values sheet 13). Additionally, we could 
observe a left shift toward a more epithelial phenotype in the ID211 after FFX administration compared with 
ID188, verifying the previously shown process of  redifferentiation (Figure 4H) (22). Importantly, we were 
able to identify a chemotherapy-induced reduction of  ITH in ID211 compared with ID188 (Figure 4I and 
Supporting Data Values sheet 14), similar to what we observed in the murine epithelial PDAC cells upon 
FFX administration. In summary, by DHM-based phenotyping we are able to capture dynamic changes in 
differentiation occurring under chemotherapy on a single-cell level. Importantly, the sample acquisition and 
analysis pipeline are able to provide detailed information on the cellular heterogeneity of  tumor samples, such 
as PDAC cell lines and PDOs and suspension of  multiple cell lineages (PDOs and CAFs), in real time.

Discussion
Identifying transcriptional subtypes of tumors and their EMT differentiation status was a main focus of PDAC 
research in the past decade, as these features correlate with treatment response and overall survival (6–8, 12, 23, 
24). Multisampling of individual tumors as well as scRNA-Seq revealed a coexistence of distinct PDAC sub-
types within the same tumor and a high degree of ITH (11–13). Importantly, ITH — genetic or epigenetic — is 
considered a major driver of therapy resistance in human cancer (25–27), and the pronounced ITH found in 
PDAC might be a leading cause for the lowest survival rate of PDAC compared with other cancers.

At the same time, single-cell profiling technologies, such as scRNA-Seq, remain challenging to be 
implemented in a scalable and clinically meaningful setting (28, 29).

Therefore, we established DHM as a tool for label-free phenotyping of  PDAC cells, including detection 
of  EMT on a single-cell level and quantification of  inter- and intratumoral heterogeneity in real time using 
machine learning algorithms. Capturing the single-cell phenotype, which is the sum of  different cellular 
processes occurring, for instance, on the genomic, transcriptomic, proteomic, and posttranslational levels, 
allows us to perform an unbiased and standardized phenotyping. Also, by introducing the ITH score, we 
provide a quantitative biomarker to study ITH in immediate and dynamic conditions in PDAC.

As a first step, we tested our system by genetically and pharmacologically inducing EMT in PDAC cells 
to correctly identify distinct stages of cellular differentiation. Using DHM allowed us to further phenotype 
numerous characterized epithelial and mesenchymal PDAC cells of human and murine origin regarding their 
EMT status on a single-cell level, which revealed a high degree of ITH. Applying this technique to primary 
patient-derived models such as PDOs enabled to characterize intratumoral heterogeneity in a clinically relevant 
model system. Importantly, the presence of heterogeneity within different PDO lines was recently demonstrated 
using single-cell transcriptomics (20, 30). In line with our results, both of these studies demonstrate that PDOs 
assigned to the classical subtype, indeed, harbor cell clusters of the basal-like phenotype (20, 30). Importantly, 
basal-like differentiation is associated with increased resistance toward chemotherapy (24, 30). Therefore, real-
time single-cell phenotyping harbors great potential for monitoring response to treatment in a clinical setting, 
especially in highly plastic and heterogeneous tumors, such as PDAC.

In this study, we focused on EMT plasticity and quantification of  cellular heterogeneity within the tumor 
cell compartment of  PDAC. This technology offers a wide range of  future applications in PDAC research and 
clinical care and can be expanded to additional cellular compartments within the tumor microenvironment. 
For example, CAFs display remarkable plasticity, which substantially affects PDAC biology (31). Similarly, 
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distinct subregions within the TME harbor distinct tumor-promoting and chemoprotective functions and are 
correlated with patient outcome (32). Therefore, gaining immediate insight into the cellular composition of  
tumors by single-cell phenotyping has the potential to change current diagnostics in PDAC and bridge the 
implementation gap of  complementary single-cell technologies, such as scRNA-Seq.

In addition, we and others have previously shown that tumor cells in PDAC display remarkable plasticity 
under chemotherapeutic pressure (22, 33). Indeed, in murine model systems, we identified a phenotypic shift 
from baseline upon FFX treatment to a different extent depending on the cell line and its baseline morphology 
using DHM. These results could be confirmed on a global gene expression level via scRNA-Seq. Additionally, 
PDOs derived from the same patient with PDAC before and after FFX treatment display a phenotype switch, 
in this case mesenchymal-epithelial transition and reduced ITH. Importantly, the phenotype of posttreatment 
organoids was linked to a specific therapeutic vulnerability toward MEK inhibition (22).

In summary, capturing tumor cell differentiation and dynamic cell fate decision in a scalable fashion 
on a single-cell level offers the unique opportunity to learn how to perturb and therapeutically exploit these 
adaptive biological processes conferring resistance in PDAC.

Methods

Sex as a biological variable
Our study examined PDOs from both male and female patients with PDAC. The same applies to the 
murine PDAC cell lines, which were derived from male and female mice. However, the sex was not 
considered as a biological variable.

Generation and culture of PDOs
PDOs were generated from EUS-guided fine needle aspiration/biopsy and surgical resection as 
described (34). Briefly, biopsies were minced and surgery specimens were incubated rotating for colla-
gen digestion using a digestion buffer: DMEM-F12 (31330095, Thermo Fisher Scientific), 1× Primo-
cin (ant-pm-2, InvivoGen), and 6 mg/mL collagenase II (17101015, Thermo Fisher Scientific). Tissue 
pellets were incubated for 3–10 minutes with RBC lysis buffer (A1049201, Thermo Fisher Scientific) 
and further digested using TrypLE (12604039, Thermo Fisher Scientific). Cell pellets were resuspended 
in 50 μL of  Matrigel/well (354230, Corning Life Sciences), and PDO medium was added 10 minutes 
later after Matrigel was solidified: DMEM-F12; 5 mg/mL d-glucose (G8270, Sigma-Aldrich); 0.5% ITS 
Premix (354350, Thermo Fisher Scientific); 5 nM 3,3,5-triiodo-l-thyronine (T0821, Sigma-Aldrich); 
1 μM dexamethasone (D175, Sigma-Aldrich); 100 ng/mL cholera toxin (C9903, Sigma-Aldrich); 1% 
penicillin/streptomycin (15140122, Thermo Fisher Scientific); 5% NU-Serum IV (355500, Thermo 
Fisher Scientific); 25 μg/mL bovine pituitary extract (P1167, Sigma-Aldrich); 10 mM nicotinamide 
(N3376, Sigma-Aldrich); 100 μg/mL Primocin (ant-pm05, InvivoGen); 0.5 μm A83-01 (2939, Tocris); 
10% RSPO1-conditioned medium (R-spondin-1–overexpressing cell line HEK293T, provided by the 
Hubrecht Institute, Utrecht, the Netherlands); 100 ng/mL Recombinant Human Heregulin-1 (100-03, 
PeproTech); and 10 μM Rho Kinase Inhibitor (TB1254-GMP, Tocris). For passaging, media were aspi-
rated, and 250 μL Cell Recovery Solution (11543560, Thermo Fisher Scientific) was added to wells for 
5 minutes. Mixture was dissolved in 1 mL ice-cold PBS (14190144, Thermo Fisher Scientific) supple-
mented with 0.1% BSA (11930, Serva). After 30 minutes on ice, organoids were centrifuged at 1,000 
rpm at 4°C for 5 minutes, washed, and centrifuged again. Cell pellets were resuspended in 50 μL Matri-
gel/well, and medium was added 10 minutes later.

2D cell culture
Murine PDAC cells with KrasG12D mutation sourced in-house were cultured as described (9). Human 
PDAC cells sourced in-house were cultured in DMEM (41966052, Gibco) or RPMI medium 
(11875085, Gibco) supplemented with 10% fetal calf  serum (10270106, Gibco) and 1% penicillin/
streptomycin (1741838, Gibco) depending on cell line: DMEM: PaTu8988T (RRID:CVCL_1847), 
PaTu8988S (RRID: CVCL_1846); RPMI: DanG (RRID: CVCL_0243), HPAC (RRID:CVCL_3517), 
PSN-1 (RRID:CVCL_1644). Cells were authenticated regularly (October 2019) by Multiplexion 
GmbH or Microsynth AG. Passaging was performed using 0.05% trypsin-EDTA (15400054, Gibco), 
and cells were maintained at 37°C and 5% CO2.
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For the TGF-β experiment, cell lines 8442, 9591, and 53631 were treated with a final concentration of  
5 ng/mL recombinant TGFb1 (PeproTech, 100-21) for 14 days. Medium was changed every 2–3 days, and 
cells were split when reaching a confluence of  maximum 80%.

For spike-in experiments, epithelial and mesenchymal PDAC cells as well as fibroblasts were cul-
tured separately until DHM analysis. For measurement, cells were split, then precisely counted, and a 
final number of  1 × 106 cells was mixed in the indicated ratios. After cell mixing, samples were analyzed 
on a single-cell level using DHM.

In vitro FFX treatment
The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT; M5655, Sigma-Aldrich) assay was 
used to determine cell viability after drug administration by measuring metabolic activity of  cells. Therefore, 
1,000 cells/well were seeded in 96-well plates as triplicates. For the in vitro FFX treatment, a mixture of  
5-fluorouracil (Cmax = 50 μM), irinotecan (Cmax = 22.5 μM), and oxaliplatin (Cmax = 10.6 μM) was prepared 
and added in a 7-point drug dilution for 72 hours. For MTT measurement, 10 μL of MTT reagent was added 
per well and incubated for 4 hours at 37°C. Afterward, cell medium was removed, and 200 μL of an etha-
nol-DMSO mixture (1:1) was added. After 15 minutes of  shaking at room temperature (RT), absorption was 
measured at a wavelength of  595 nm using the Multiscan FC spectrophotometer (Thermo Fisher Scientific).

IF staining
For IF staining, cells were washed and fixed with 4% paraformaldehyde (PFA) for 10 minutes at RT and 
treated with 0.15% glycine for 5 minutes followed by 2 minutes of  permeabilization using 0.2% Triton X-100 
in PBS. After washing, cells were blocked for 1.5 hours in 10% donkey serum and 0.1% BSA diluted in PBS. 
Primary antibodies were incubated overnight at 4°C in 0.1% BSA diluted in PBS. After washing, secondary 
antibodies were incubated for 2.5 hours at RT in the dark. Thereafter, cells were treated for 2 minutes with 
DAPI (0.03 μL/mL, D9542, Sigma-Aldrich), washed, and mounted. Slides were kept at 4°C until further 
imaging using the Leica TCS SP8 Confocal Microscope. Antibodies used are in Table 1.

Quantitative real-time PCR
Cellular RNA was harvested using RLT buffer supplemented with 2-mercaptoethanol, and RNA isolation 
was done using RNeasy Mini Kit according to manufacturer’s protocol (74106, QIAGEN). A total of  1 μg 
RNA was transcribed into cDNA using SensiFast cDNA Synthesis Kit (BIO-65053, Bioline), and quantita-
tive real-time PCR was performed with the SensiFast SYBR Hi-Rox Kit (BIO-92005, Bioline) on a StepO-
nePlus System (Applied Biosystems) following manufacturer’s instructions. Analysis was performed using 
the 2-ΔΔCt method. Primers are listed: mE-cadherin FW: 5′-TCAAGCTCGCGGATAACCAGAACA-3′ 
and RV: 5′-ATTCCCGCCTTCATGCAGTTGTTG-3′, mN-cadherin FW: 5′-ATGGCCTTTCAAACA-
CAGCCACAG-3′ and RV: 5′-ACAATGACGTCCACCCTGTTCTCA-3′, hE-cadherin FW: 5′-GCCTCCT-
GAAAAGAGAGTGGAAG-3′ and RV: 5′-TGGCAGTGTCTCTCCAAATCCG-3′, hvimentin FW: 
5′-AGGCAAAGCAGGAGTCCACTGA-3′ and RV: 5′-ATCTGGCGTTCCAGGGACTCAT-3′, mβ-ac-
tin FW: 5′-GTCGAGTCGCGTCCACC-3′ and RV: 5′-GTCATCCATGGCGAACTGGT-3′, hβ-actin FW: 
5′-CACCATTGGCAATGAGCGGTTC-3′ and RV: 5′-AGGTCTTTGCGGATGTCCACGT-3′.

Flow cytometry
Cell lines 8442, 9591, and 53631 were treated with recombinant TGFb1 for 14 days as described above. On 
day 14, cells were stained and analyzed by flow cytometry. In detail, single-cell suspensions were prepared 
and stained with Zombie UV fixable live-dead dye (BioLegend, 423107, 1:1,000) for 20 minutes. After wash-
ing with FACS buffer (1% BSA in PBS, 2 mM EDTA), cells were stained with antibody solution for cell 
surface marker staining for 30 minutes. After washing with FACS buffer, cells were fixed and permeabilized 
with eBioscience Intracellular Fixation & Permeabilization Buffer Set (Thermo Fisher Scientific, 88-8824-00) 
according to manufacturer’s instructions. Next, cells were stained with antibody solution for intracellular 
staining for 30 minutes. After washing with FACS buffer, cells were resuspended in FACS buffer and analyzed 
on a BD FACSAria Fusion. Compensation controls were prepared using Invitrogen UltraComp eBeads Plus 
Compensation Beads (Thermo Fisher Scientific, 01-3333-42). Live/dead controls were prepared using ArC 
Amine Reactive Compensation Bead Kit (Thermo Fisher Scientific, A10346). For analysis, samples were 
acquired using indicated marker combinations on a custom FACSAris Fusion cell sorter. Further downstream 
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analysis of  the data was performed using FlowJo V10 and OMIQ. Antibodies used were CD324 (E-Cadherin, 
DECMA-1; 1:50; Thermo Fisher Scientific 53-3249-82), Alexa Fluor 488 CD326 (EpCAM, G8.8-PE; 1:200; 
Thermo Fisher Scientific 12-5791-82), N-cadherin (13A9, Alexa Fluor 750; 1:20; Novus Biologicals NBP1-
48309AF750), and vimentin (W16220A Alexa Fluor 647; 1:100; BioLegend 699307).

RNA sequencing
RNA of  murine PDAC cells and patient-derived 3D organoids was harvested for RNA sequencing using the 
RNeasy Mini Kit (QIAGEN) and RNeasy Micro Kit (QIAGEN) according to the manufacturer’s protocol. 
Library preparation for bulk sequencing of  poly(A)-RNA was done as described (35). Barcoded cDNA of  
each sample was generated with a Maxima RT polymerase (Thermo Fisher Scientific) using oligo-dT primer 
containing barcodes, unique molecular identifiers (UMIs), and an adaptor. Ends of  cDNAs were extended 
by a template switch oligo (TSO), and full-length cDNA was amplified with primers binding to the TSO 
site and the adaptor. New England BioLabs Ultra II FS kit was used to fragment cDNA. After end repair 
and A-tailing a TruSeq adapter was ligated, and 3′-end fragments were finally amplified using primers with 
Illumina P5 and P7 overhangs. In comparison with Parekh et al. (35), the P5 and P7 sites were exchanged 
to allow sequencing of  the cDNA in read1 and barcodes and UMIs in read2 to achieve a better cluster rec-
ognition. The library was sequenced on a NextSeq 500 (Illumina) with 67 cycles for the cDNA in read1 and 
16 cycles for the barcodes and UMIs in read2. Data were processed using the published Drop-seq pipeline 
(v1.0) to generate sample- and gene-wise UMI tables (36). Reference genome (GRCh38) was used for align-
ment. Transcript and gene definitions were used according to GENCODE version M25.

Proteomics
Sample preparation. Triplicates of  each line and condition (control, FFX treated, FFX washout) were lysed 
using 200 μL lysis buffer (2% SDS in 40 mM Tris-HCl, pH 7.6). To hydrolyze DNA and reduce viscosity, 
sample was boiled at 95°C for 10 minutes, and trifluoroacetic acid was added to a final concentration 
of  1%, incubated for 1–2 minutes at 95°C, and subsequently quenched with N-methylmorpholine (final 
concentration of  2%) to obtain a pH of  7.5–8. Protein concentration in cell lysate was determined using 
the Pierce BCA Protein Assay Kit according to manufacturer’s protocol. In order to remove detergent 
from samples, protein lysate was processed via protein aggregation capture sample workup as described 
with minor modifications (37). Therefore, a bead suspension was prepared by mixing magnetic SeraMag-A 
(GE45152105050250, GE Healthcare, now Cytiva; c = 50 mg/mL) and SeraMag-B (GE65152105050250, 
GE Healthcare, c = 50 mg/mL) beads in a ratio of  1:1 and immobilized on a magnet and supernatant was 
removed. Beads were washed twice with 1 mL double-distilled H2O and resuspended in double-distilled 
H2O in the original volume. A total of  150 μg protein lysate was mixed 1:10 (protein/beads weight) with 
the bead suspension. Acetonitrile (ACN) was added to a final concentration of  70% and incubated at RT 
(18 minutes, 800 rpm). After discarding the supernatant, beads were washed twice using 1 mL 80% eth-
anol and once more with 1 mL of  100% ACN. For reduction and alkylation, beads were resuspended in 
100 μL digestion buffer without trypsin [100 mM HEPES, 2 mM CaCl2, 55 mM 2-chloracetamid, 10 mM 
Tris-(2-carboxyethyl)-phosphin] and incubated for 1 hour at 37°C and 800 rpm. Proteins were digested 

Table 1. IF antibodies

Antibody Dilution Manufacturer
Anti-CDH1 1:200 R&D Systems, #AF748, RRID:AB_355568

Anti-vimentin 1:50 R&D Systems, #MAB2105, RRID:AB_2241653
Anti-CK19 1:250 DHSB, #TROMA-III, RRID:AB_2133570
Anti-Zeb1 1:100 Cell Signaling Technology, #70512
Anti-SMA 1:200 Sigma-Aldrich, #A5228, RRID:AB_262054

Phalloidin-Atto 647N 1:250 Sigma-Aldrich, #65906
Donkey anti-mouse AF488 1:250 Invitrogen, #A21202, RRID:AB_141607

Donkey anti-goat AF488 1:250 Invitrogen, #A11055, RRID:AB_2534102
Donkey anti-rat AF594 1:250 Invitrogen, #A21209, RRID:AB_2535795

Donkey anti-rabbit AF680 1:250 Invitrogen, #A10043, RRID:AB_2534018
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overnight at 37°C and 1,000 rpm by adding trypsin 1:50 (trypsin/substrate weight) resuspended in 100 mM 
HEPES in a volume of  10 μL per sample. Digestion was quenched by adding formic acid (FA) to a final 
concentration of  ~1%. Samples were sonicated 3 times for 30 seconds, centrifuged (5 minutes, 13,000g), 
and bead-immobilized on a magnet to collect the supernatant. Beads were washed with 50 μL double-dis-
tilled H2O, sonicated 3 times for 30 seconds, and centrifuged (5 minutes, 13,000g), and supernatants were 
combined with previous supernatants. Samples were frozen at –80°C and dried in a SpeedVac. Peptides 
were reconstituted in 500 μL 0.1% FA, desalted using tC18 RP solid-phase extraction cartridges (Waters 
Corp.; wash solvent: 0.1% FA; elution solvent: 0.1% FA in 50% ACN), frozen at –80°C, and dried in a 
SpeedVac. After desalting, samples were ready for measurement and stored at –20°C until liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS).

LC-MS/MS. For microflow LC-MS/MS analysis, samples were analyzed on a microflow LC-MS/
MS system as previously described using a Dionex UltiMate 3000 RSLCnano System equipped with a 
modified Vanquish pump (Thermo Fisher Scientific) coupled online to a Q Exactive Orbitrap HF-X mass 
spectrometer (Thermo Fisher Scientific) (38). Chromatographic separation was performed via direct 
sample injection onto a 15 cm Acclaim PepMap 100 C18 column (2 μm particle size, 11 mm inner 
diameter × 150 mm, Thermo Fisher Scientific) at a flow rate of  50 μL/min. Solvent A was 0.1% FA, 3% 
DMSO in double-distilled H2O, and solvent B was 0.1% FA, 3% DMSO in ACN. Samples were dissolved 
in 0.1% FA, and the equivalent of  50 μg of  the protein digest was injected into the system.

Samples were separated with a gradient of  1% to 24% B in 105 minutes followed by an increase of  B to 
35% in 15 minutes. The HF-X was operated in data-dependent acquisition and positive-ionization mode using 
an optimized 28 Hz method (38). Full MS resolution was set to 120,000, and full MS automatic gain control 
(AGC) target was 3 × 106 with a maximum injection time of  100 ms. Mass range was set to 360–1,300. MS2 
spectra were recorded at 15,000 resolution. AGC target value for fragment spectra was set to 1 × 105 with a 
maximum injection time of  22 ms. The dynamic exclusion duration was set to 40 seconds. The TopN algo-
rithm value (39) was set to 50. For MS2 spectra, the minimum AGC target was kept at 2 × 103. The isolation 
width was set to 1.3 m/z, and the first mass was fixed at 100 m/z. The normalized collision energy was set to 
28%. MS1 and MS2 spectra were acquired in profile and centroid mode, respectively (38).

Data analysis. Protein/peptide identification and quantification were performed using MaxQuant 
(v1.6.2.10) (40) by searching MS2 data against all protein sequences (canonical and isoforms) as annotated in 
the SwissProt reference database (mouse proteins only, 25,333 entries, downloaded December 17, 2020) using 
the embedded search engine Andromeda (41). All treatments and replicates were searched together. Carba-
midomethylated cysteine was set as fixed modification. Oxidation of  methionine and N-terminal protein 
acetylation were set as variable modification. Trypsin/P was specified as the proteolytic enzyme, and up to 
2 missed cleavage sites were allowed. The FDR was set at 1% on peptide-spectrum match and protein levels. 
The match-between-runs feature and label-free quantification were enabled (42). All other settings were set to 
standard MaxQuant default settings.

Bioinformatic analysis of transcriptomic and proteomic data
High-throughput mRNA gene expression data from indicated conditions were analyzed using R environ-
ment for statistical computing (v4.0.4). Proteomic data analysis was performed using the Perseus software 
(v1.6.14.0) and R (v 4.0.02) on identified and quantified protein groups using label-free quantification 
intensity values, which were filtered for contaminants and reverse hits. The data were normalized using 
median centering after log2 transformation.

For selected human PDO cultures and human 2D cell lines, respectively, molecular subtype classifier 
gene sets (6–8, 12) were scored per sample using analytic rank-based enrichment analysis (aREA) (43) after 
computing transcriptome-wide expression single-sample signatures first rank transforming and rescaling 
first each column (cell line sample) and then each row (gene) between 0 and 1. The resulting normalized 
enrichment score (NES) matrix with classifier sets in rows and individual cell lines in columns was illustrat-
ed using the pheatmap R package (44).

To determine single-sample NES regarding EMT, aREA was applied on normalized RNA-sequenc-
ing count and protein expression data, respectively, using HALLMARK_EPITHELIAL_MESEN-
CHYMAL_TRANSITION gene set without rescaling genes before single-sample enrichment analysis. 
ssEMT scores were rescaled between 0 and 1 for better comparability between results from RNA-Seq 
and protein expression samples, respectively.
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scRNA-Seq
For scRNA-Seq, lines ID53631 and ID9091 either as controls or after 72 hours of  FFX treatment were 
used (45). Cells were trypsinized and counted after performing a dead cell removal (dead cell removal 
kit, Miltenyi Biotec). We loaded 30,000 single cells on a 10x Genomics Chromium Next GEM Chip G 
to create gel beads-in-emulsion. For barcoding and library preparation the Chromium Single Cell 3′ v3.1 
chemistry was used according to manufacturer’s instructions (10x Genomics). Quality/size analysis of  
cDNAs and libraries was performed on an Agilent Bioanalyzer 2100 using HS DNA Kit (Agilent).

After quality control, libraries were pooled equimolarly and sequenced following standard con-
figuration of  28/10/10/90. Libraries were sequenced in a NovaSeq X + 10B-100 flow cell (Illumina) 
following standard protocol.

ScRNA-Seq alignment was performed using 10x Genomics Cell Ranger v7.1.0 with mm10 as reference 
genome. Starting from the Cell Ranger output, analysis was performed using the SCANPY toolkit (46). 
Data were quality controlled. Specifically mean absolute deviation (MAD) was calculated for both number 
of  detected transcripts and detected genes according to recently published single-cell best practices (47). 
Cells with MAD value above 5 were discarded, together with cells having more than 25% of  mitochondrial 
gene counts. Doublets were detected and discarded using scrublet (48).

After quality control, 48,884 cells remained, with average count per cell of  30,355 transcripts and 4,308 
genes. Raw counts were normalized and log-transformed.

Keeping cell lines separate, dimensionality reduction was performed using principal component analysis, 
computing the neighborhood graph over the first 10 principal components accounting for most of the variability, 
and then UMAP was computed (49).

DHM
Image acquisition. To distinguish between mesenchymal and epithelial cells, an imaging technique provid-
ing sufficient contrast is required. Thus, DHM from Ovizio Imaging Systems was customized based on a 
Mach-Zehnder off-axis interferometer setup. The microscope is equipped with a Nikon CFI LWD objective 
with 40× magnification and a numerical aperture of  NA = 0.55, an Oslon PowerStar SLED (Osram) with a 
wavelength of  λ = 528 nm, and a PointGrey Grasshopper GS3U332S4 camera, which takes 105 frames per 
second with an exposure time of  5 μs. The light beam from the SLED transmits the sample located in the 
back focal plane of  the microscope objective. Afterward the beam is split with a grating filter into diffraction 
parts and a nondiffraction part. The diffracted part is further shifted in x and y direction compared with 
the reference. By recombination of  the shifted parts and the reference, they can be interfered, resulting in 
a hologram, which is recorded on the camera. Finally, phase and amplitude images can be extracted from 
the hologram using common off-axis interferometer reconstruction algorithms (50, 51). A more detailed 
description of  the setup and the working principle has been described before (15, 52, 53).

Microfluidic chip. To measure cells in high throughput, DHM was used as an imaging flow cytometer 
by combining an imaging setup with a microfluidic chip. The channel has a height of  50 μm, a width 
of  500 μm, and a total length of  50,000 μm fabricated of  poly(methyl methacrylate) (Fraunhofer ICT-
IMM). Two microfluidic focusing methods were combined for precise alignment of  a submonolayer of  
cells, thus eliminating the need for further adjustment of  the focus after an initial setup. Hydrodynamic 
focusing could be achieved by using 5 inlets, containing 1 sample flow, 2 side flows (y-sheaths), and a 
top and a bottom flow (z-sheaths). Here, the flow rates were adjusted so that the lateral streams were 
fixed at 0.5 μL/s and all other streams (sample, top and bottom) at 0.2 μL/s. This leads to a total flow 
rate of  1.6 μL/s, which was adjusted with a neMESYS Base 120 syringe pump system with 5 modules 
(cetoni GmbH). Each slot was equipped with a 2.5 mL gas tight syringe (VWR). Furthermore, 0.9% of  
the polymer polyvinylpyrrolidone (PVP, 360 kDa) diluted in PBS was used as media for each of  the 5 
inlets to achieve viscoelastic focusing of  the sample. Overall, the maximum Reynolds number during 
the measurements is in the single-digit range (Re ≈ 6.5), which implies that all measurements were per-
formed in the laminar flow regime at low shear rates. Due to the stability of  the method, no realignment 
of  the focus during measurement is needed.

Sample preparation. 2D cells and organoids were processed to a single-cell suspension, and cell pellets were 
thoroughly resuspended in 500–1,000 μL 0.9% PVP solution depending on pellet size. The solution containing 
single cells was repeatedly injected into the microfluidic chip in volumes of approximately 100 μL.
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Computational analysis
Pre-processing. Capturing 105 hologram images per second, a single measurement contains roughly 10,000 
shots. The commercial OsOne Software (Ovizio) reconstructs phase information from these holograms 
using Poisson integration (15, 53). The software provides 512 pixel (px) by 384 px phase images (typically 
within an interval [-2,6 rad]) containing multiple cells. These images were preprocessed to obtain usable 
single-cell patches. Background subtraction was performed to remove noise and artifacts of  the micro-
fluidic channel. The background was estimated by median of  n = 50 images. Due to the fixed alignment 
of  lens, camera, light, and microfluidic channel, background is not changing during a single capture and 
is assumed as static, allowing us to perform the computation only once based on the first images. Cell 
segmentation was carried out to find regions of  interest by applying binary thresholding to phase images 
with a threshold value of  0.8. From resulting binary images contours for each cell were extracted using 
the OpenCV findContours implementation of  the algorithm proposed by Suzuki et al. (54). Each contour, 
which covers more than 30 px, was stored with its corresponding 96 px by 96 px image patch around the 
center. For feature extraction and filtering, each digitized cell was morphologically analyzed (15, 16) by 
employing established functions from OpenCV completed with in-house–created methods (Table 2). A 
lightweight ResNet18 was used for feature extraction (55). The network was pretrained on an ImageNet 
dataset and thereby extracting the most prominent structures within images.

Classification. For classification, we applied 4 commonly used methods: random forest classification, 
support vector machine, k-nearest neighbor, and neural network.

Random forest is an ensemble classification method based on a multitude of  decision trees automat-
ically constructed using different fractions of  given dataset (56). Here, the average of  all trained decision 
trees was used, and the algorithm was limited to 100 individual decision trees without setting a bound for 
maximum depth of  a single tree.

Support vector machine is a binary linear classification technique, which divides data into 2 classes 
using the best hyperplane decision boundary (57, 58). This decision boundary is obtained by maximizing 
the margin between the class border and data samples using kernel-trick to enable nonlinear separation. 
Soft margin was used, allowing some data points to violate the margin condition, resulting in penaliza-
tion. Here, best performances were achieved with the one-against-one training procedure using a penalty 
parameter C = 1 and radial basis function as a kernel.

A k-nearest neighbor classifier assumes that classes can be represented as distinct clusters. Unknown 
data points are classified by evaluating the membership of  the k-nearest neighbors based on a distance 
measure, such as Euclidean distance (59). The algorithm is based on the idea that similar samples lie closer 
together in the feature space. To achieve results that are more robust to noisy data or imperfect training sets, 
k was set in this study as k = 5.

(Artificial) neural networks, based on the biological concept of  neurons, are formed by a multi-
tude of  interconnected artificial neurons (60) taking multiple inputs and outputting the weighted sum 
after applying an activation function (61). The learning ability is achieved by adapting the neuron’s 
weights (axons) based on a sequence of  training samples during a learning phase. Here, a multilayer 
neural network was created that contains a single hidden layer with 100 neurons and utilizes the Adam 
optimizer (62) and a cross-entropy (63) loss function for optimization. The training was performed in 
batches of  256 samples.

Here, affected datasets were balanced, and training and evaluation were performed using 5-fold 
cross-validation.

Visualization. Classification accuracies are represented in violin plots showing values of  individual 
cross-validation runs, including median and upper and lower quartiles.

The dendrogram uses the 26 most important features selected by random feature importance, and 
hierarchical clustering was performed using single linkage (64). Unsupervised UMAP (49) algorithm was 
applied to visualize the similarity of  all data points between different groups as labeled in the respective 
experiments. Contour lines visualize bivariate kernel density estimation of  the underling UMAP samples 
representing continuous probability density of  each cell population in the 2D embedding.

The tumor heterogeneity score is implemented as an indicator for homogeneity/heterogeneity of  a 
cluster calculated by distance of  the data points to their respective cluster center. For an individual data 
point xi, it was calculated as di = || xi – c ||2 with c being the center of  the cluster.
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Statistics
Shapiro-Wilk normality tests were carried out to check datasets for normal distribution. SD where appro-
priate is indicated in figure legends, and data are shown as mean ± SD or as median with upper and lower 
quartiles. Unpaired 2-tailed t tests and ANOVA were carried out as indicated in figure legends (P values are 
indicated). P < 0.05 was considered statistically significant. Dunn’s multiple comparisons test was used to 
compare the tumor heterogeneity score between different cell lines.

Study approval
The PDOs were established according to the Declaration of  Helsinki and approved by the local ethics 
committee of  TUM School of  Medicine and Health (Project 207/15, 946/07, 330/19, and 80/17S). 
Written informed consent from patients for research was obtained prior to investigation.

Data availability
Underlying data points are available in the Supporting Data Values document. ScRNA-Seq data are made 
publicly available via Zenodo at https://doi.org/10.5281/zenodo.14996687 and bulk RNA sequencing 
data via Zenodo and https://doi.org/10.5281/zenodo.15310375.

 

Table 2. Overview of morphological features, their calculations, and applied filter boundaries used in 
this study.

Feature Equation Filter

Aspect ratio (max[width, height])/(min[width, height]) -

Cell area N × 0.345 μm2 [50, 500]

Circularity [0.85, 1]

Optical height max -

Optical height min -

Optical height mean -

Solidity cell area/(convex × hull area) -

Sphericity Correlation to f(x) = –x2 + 1 -

Biconcavity Correlation to f(x) = –4x2 + 4x2 + 0.5 -

Radius variance  var(r) × 0.345 μm -

Homogeneity -

Correlation with -

Contrast -

Solidity calculated per ref. 17. N = number of pixels assigned to the cell in the image, λ = wavelength of the coherent 
light source, vi,j = intensity value of the pixel at the 2D index (i,j), r = radius estimation for each point of the cell contour.
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