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Abstract

The present thesis deals with multiscale amplitude and sign decompositions of functions by com-
plex wavelets and their applications to signal and image processing.

We introduce conditions for reasonable complexifications of real-valued wavelet transforms
and reconsider various classical complex wavelet constructions with respect to this aspect. We
derive a new class of directional wavelets, called monogenic curvelets, by replacing the complex-
ification of the classical curvelet transform by the monogenic signal, which is better compatible
with the rotation operations of the curvelet transform. In contrast to the classical curvelets, mono-
genic curvelets allow for a reasonable decomposition into amplitude and sign over the entire range
of scales. Furthermore, we show that monogenic curvelets maintain important properties, such
as Calder6n reproducing formula and Parseval formula, and that they converge to the classical
curvelets at the fine scales.

We develop two image analysis applications of the wavelet amplitudes and the wavelet signs.
In the first application, we exploit the duality of curvelet amplitudes and the wavefront set for
a new algorithm to separate crossing edges in x-ray images. We develop a suitable edge model
based on manifolds with corners which allows for a detailed analysis of the method. In the latter
application, a directional statistics approach to the wavelet signs is used for a novel signal and
image analysis tool, called the discrete signature. We show in various experiments the edge
detection capabilities of the discrete signature.

Eventually, we transfer the findings on amplitude and sign decompositions to a complex wavelet
model of mammalian vision, which we extend by a quantization of the wavelet amplitudes. We
show in a series of experiments that this extended model accounts for brightness illusions such as
the Hermann grid.
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Chapter 1
Introduction

The wavelet transform has become an essential tool for signal and image processing. Its mul-
tiscale structure allows for macroscopic and microscopic views on signals, which enables us to
independently process coarse structures and fine details of a signal. Over the last decades, a large
variety of wavelets have been developed, and the performance of the different wavelets mainly
depends on the desired application. For example, real-valued orthonormal wavelets such as the
Daubechies wavelets turned out to be suitable for signal compression. For signal analysis, the
analyzing functions are classically complex wavelets. A complex wavelet « is the combination of
a real-valued wavelet ¢ and its Hilbert transform 7y as imaginary part, that is,

K=y +iHY.

Complex-valued analyzing functions of this type have been introduced in the context of time-
frequency analysis already by Gabor who applied them to the analysis of hearing [Gab46]. The
importance of complex wavelets for signal analysis has been observed by Grossmann and Morlet
in their pioneering paper in wavelet theory [GM84]. The great advantage of complex wavelets
over real-valued wavelets is that they yield a natural decomposition of the wavelet coefficient
functions into a slowly varying envelope, the amplitude, and an oscillatory part, the sign (or
phase!). The strengths of complex wavelets have been exploited in various applications such as
denoising, deconvolution [Kin(01], and the detection of singularities [THHOS].

In recent years, there has been an increasing interest in generalizations of complex wavelets to
higher dimensions, mainly for image processing. Whereas in one dimension the construction of
complex wavelets by the Hilbert transform is in some sense unique, there are several reasonable
ways to construct multivariate complex wavelets. In fact, there is a variety of different approaches
for example the dual tree complex wavelet transform [Kin99], complex curvelets [CD05a], com-
plex shearlets [LLKWO05], and monogenic wavelets [OM09, USvdV09, HSMF10, Hel12], which
all have proven their usability in image processing.

Although many of those multivariate complex wavelet transforms have found applications in
image processing, the roles of the amplitude and the sign of the wavelet coeflicients have not
been studied systematically. Especially the signs of the wavelet coefficients are poorly under-
stood despite their importance for images. Furthermore, it has not been investigated under which
conditions a complex wavelet transform yields a reasonable decomposition into amplitude and
sign. The main goals of this work are to study the construction of multivariate complex wavelets
for amplitude and sign decompositions and to investigate the use of wavelet amplitude and sign
decompositions for image analysis.

'In this work, we denote the argument of a complex number z as phase and its representation as complex unit vector
as sign, i.e., sgn z = 5
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Construction of complex wavelets for amplitude and sign decompositions

In contrast to the one-dimensional setting, there is no unique way of constructing multivariate
complex wavelets. On the one hand, there are several different generalizations of the Hilbert
transform, and on the other hand, there is a high degree of freedom in the construction of real-
valued wavelets. Our first goal is to investigate which combinations of real-valued wavelet trans-
forms and (generalized) Hilbert transforms yield reasonable complex wavelets with respect to
multiscale amplitude and sign decompositions.

Higher dimensional generalizations of the Hilbert transform Whereas in one dimension
the Hilbert transform is the only bounded, translation and dilation invariant, and selfinvertible
operator on L2, this is not the case in higher dimensions [Ste70]. Indeed, there are various multi-
dimensional generalizations of the Hilbert transform for instance the partial Hilbert transform,
the total Hilbert transform and the Riesz transform [Ste70, BSO1, Kin09a]. Recently, the Riesz
transform has gained a lot of interest in image analysis whose induced complex signal is called
monogenic signal [FS01, LBOO1, USvdV09, HSMF10, Hel12].

In this work (Chapter 2), we consider a generalized Hilbert transform as an operator gene-
ralizing the most important operator properties of the Hilbert transform, namely boundedness,
translation and dilation invariance, and self-invertibility. Since the self-invertibility induces a
quadrature relationship we call this class quadrature operators. This point of view allows us to
treat the frequently occurring generalizations, the partial Hilbert transform and the Riesz trans-
form, in a common framework.

Multiscale amplitude and sign decompositions by complex wavelets In one dimension, a
complex wavelet is constructed canonically from a real-valued wavelet by adding its Hilbert
transform as imaginary part. In higher dimensions, there is a much higher degree of freedom
for the construction of complex wavelets, and in fact there is a large variety of different ap-
proaches. For instance, the dual-tree complex wavelet transform is a separable construction of
one dimensional complex wavelets [Kin99, SBK05]. Monogenic wavelets, which are based on
the Riesz transform, have been proposed in [OMO09, USvdV(09, HSMF10, Hel12]. Complex
curvelets [CD05a, CD05b] and complex shearlets [LLKWO0S5] are by construction implicitly com-
plex wavelets based on the partial Hilbert transform.

In this work (Chapter 3), we construct multivariate complex wavelets from a real-valued wavelet
and a quadrature operator. We introduce two requirements for reasonable combinations. First the
quadrature operator should preserve the integrability of the real-valued wavelet, and second the
quadrature operator should yield an amplitude which is invariant to the group operations of the
generating wavelet family. We show that many classical complex wavelet constructions, such as
isotropic and anisotropic monogenic wavelets or complex shearlets, are compatible in this sense.
However, we observe that the classical complex curvelets, which can be written as combination
of real-valued curvelets and the partial Hilbert transform, do not fulfill our second condition.
To overcome this, we introduce monogenic curvelets where the complexification is obtained by
the Riesz transform instead of the partial Hilbert transform. Since the Riesz transform covaries
with rotations the monogenic curvelet amplitude is invariant to the rotation group operation of
the curvelet transform. The monogenic curvelet transform preserves important properties of the
classical curvelet transform such as Calderdn resolution of identity, cf. Theorem 3.7. We show



that the monogenic curvelets converge at the fine scales to the classical curvelets, cf. Theo-
rem 3.10. Thus they behave at the fine scales essentially like the classical curvelets. A further
advantage of the monogenic curvelet transform is that we may continue it to the coarse scales
by isotropic monogenic wavelets, which leads to a consistent amplitude and sign decomposition
over all scales.

The results about the monogenic curvelet transform have been published in

e M. Storath. The monogenic curvelet transform. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), Hong Kong, pages 353-356, 2010,

e M. Storath. Directional multiscale amplitude and phase decomposition by the monogenic
curvelet transform. SIAM Journal on Imaging Sciences, 4:57-78, 2011.

The use of wavelet amplitude and sign decompositions for image analysis

Having constructed complex wavelets, we in the further course investigate the roles of the ampli-
tudes and the signs of the wavelet coefficients. Complex wavelet coefficients already have proven
their usability in a large variety of signal and image processing applications; for example, edge
detection [Kov99], image fusion [FvdVB*04], denoising, image rotation [SBK05], demodulation
[USvdVO09], equalization of brightness, and descreening [HSMF10]. In this work, we focus on
the usability of the amplitudes and the signs of complex wavelet coefficients for image analysis,
and we eventually draw a connection between amplitude and sign decompositions in mammalian
vision and the perception of optical illusion.

The role of the wavelet amplitudes The amplitudes of the wavelet coefficients are closely
connected to the local regularity of a signal in terms of order of differentiability, see e.g. [Mal09]
and the references therein. It has been recently shown that the amplitudes of “microlocalizing”
wavelet transforms, such as the complex curvelet [CD05a] and the complex shearlet transform
[KLO09], characterize the wavefront set, which is the classical approach to directional smoothness
[H603, H685]. Due to this connection to the well-established theory of the wavefront set, we can
consider the theory behind the amplitudes of the wavelet coefficients as quite well understood.
First applications which exploit this connection are edge detection [YLEKO09] and geometric
separation curvilinear from point-like singularities [KL12].

In this work (Chapter 4), we use the correspondence of the curvelet amplitudes and the wave-
front set for developing and analyzing a new method for the separation of overlaying edges in
x-ray images. The main idea is to lift the problem of separation of crossing edges to the phase
space of locations and orientations R? x P, where the wavefront set lives in.> The key observation
is that the wavefront sets of two crossing edges are disconnected whereas each single edge is
connected. Therefore, the separation of edges can be achieved by connected component analysis
of the wavefront set of the image. For the theoretical analysis of our method, we develop a model
for edges in x-ray images based on manifolds with corners. To set up a corresponding analytic
edge model, we show that the (geometric) normal space of a manifold with corners equals the
wavefront set of a distribution acting on test functions as integration over that manifold, cf. The-
orem 4.39. Based on this equality we consider a distribution to define an edge if its wavefront

2The symbol P denotes the real projective space.
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set coincides with the (geometric) normal space of some manifold with corners. Using this edge
model, we can show the functionality of our separation of edges algorithm, cf. Theorem 4.39.
We obtain the numerical estimate of the wavefront set via regression on the amplitudes of the
curvelet coefficients and show in numerical experiments that the proposed algorithm applies to
practice.

Some preliminary results on the separation of edges in x-ray images have been announced in

e M. Storath. Separation of edges in x-ray images by microlocal analysis. Proceedings in
Applied Mathematics and Mechanics (PAMM), 11(1):867-868, 2011.

The role of the wavelet signs Classical results of Fourier and wavelet analysis suggest that the
signs of the wavelet coefficients carry a great portion of the information about a signals struc-
ture [LJ77]. In fact, images can often be reconstructed from the sign of their Fourier or wavelet
coeflicients, but not from their amplitude [OL81]. Despite their high information content, the
signs of the wavelet coefficients have received much less attention for signal and image analysis,
because their rigorous mathematical analysis is often difficult. In contrast to the wavelet ampli-
tudes, no theoretical framework has been established for the wavelet signs. First indications for
the usability of wavelet signs in signal analysis have been given by Kronland-Martinet, Morlet,
and Grossmann [KMMG87]. They observed that the lines of constant sign in the wavelet domain
converge towards the singularities. In [MOS87], phase congruency was proposed as a heuris-
tic approach to signal analysis by Fourier signs. Kovesi [Kov99] extended phase congruency by
complex wavelets. He applied this modification successfully to edge detection, but the algorithms
involve many heuristics and empirical parameters.

In this work (Chapter 5), we propose a novel approach for signal and image analysis based on
complex wavelet signs, called discrete signature. The discrete signature uses directional statistics
to measure how much the wavelet signs are aligned over the scales. We illustrate in various
experiments that the discrete signature is capable of detecting salient points of a signal, such
as steps and cusps and that the results are sharply localized. We further generalize the concept
to higher dimensions using monogenic wavelets, and derive a new sign-based method for edge
detection for two- and three-dimensional images. In contrast to phase congruency, our method
does not require any further heuristics or extra parameters while it shows a comparable edge
detection performance.

Amplitude and sign decompositions in mammalian vision There is an interesting connection
between mammalian vision and complex wavelet transforms. It is a classical result of vision
science that the mammalian visual cortex expands an observed scene into a family of oriented
wavelets [HW59, DVAT82, Pal99]. It has been shown by Daugman and Lee that this process can
be modeled by a family of complex Gabor wavelets [Dau85, Lee96]. It is remarkable that the
amplitudes and the signs of the complex wavelet coefficients are represented in separate ways in
the visual cortex [Lee96, Pal99], thus we are given a natural amplitude and sign decomposition.
In this work (Chapter 6), we set this amplitude and sign representation in connection with the
perception of optical illusions. To this end, we model a quantization of the amplitudes of the
wavelet coefficients which is naturally induced by the unary representation in terms of neuronal
discharges. We shall see that this quantization of the wavelet amplitudes leads to small errors for
natural images, but introduces visible distortions if applied to brightness illusions. We show in a



1.1 Organization of the thesis

series of experiments that our model accurately simulates the illusory effects of many brightness
illusions, such as the Hermann grid, the Mach bands, and White’s illusion.

1.1 Organization of the thesis

The thesis consists of two major parts. In the first part (Chapters 2 and 3), we deal with the con-
struction of multivariate complex wavelets and the resulting amplitude and sign decompositions.
In the second part (Chapters 4, 5, and 6), new applications of both the wavelet amplitude and the
wavelet sign for image analysis are presented and analyzed.

In Chapter 2 we recall important facts about one and multidimensional complex signals and in-
troduce the generalizing class of quadrature operators. Chapter 3 is devoted to the investigation of
complex wavelet transforms and, in particular, to the introduction and analysis of the monogenic
curvelet transform. In Chapter 4, we recall the role of the wavelet amplitudes for the microlocal
analysis of images, and, based on that, derive and analyze a new algorithm for the separation of
edges in x-ray images. In Chapter 5, we illustrate the importance of wavelet signs in images, and
we develop a new method for signal and image analysis, which exploits the sign information. In
Chapter 6, we draw a connection of the amplitude and sign decompositions to mammalian vision
and the perception of brightness illusions. Each of these chapters is closed by further references
to related works. At the end of the thesis (Chapter 7), we draw a short conclusion and give an
outlook to further directions of research.

1.2 Basic notation

We introduce some basic notations and definitions. The modulus or amplitude of a complex
number z € C is defined by

lzl = V(Rez)? + (Im z)?

and its sign by

% forz#0
_ |Z|’ s
sgn z = 1.1
g {0, forz =0. (.1)

For z # 0, the complex sign can be represented by the phase angle arg z € (—m, n], defined by
Rez

+arccos =, for Imz > 0,
argz = <

— arccos %, for Imz < 0.

We will use the phase representation of the sign only for the purpose of visualization.

Further, O denotes an open subset in R". We write x - y or {x,y) for the inner product of
vectors x,y € R". We write (f, ¢) or (¢, f) for the evaluation of a distribution f € 9 () versus a
testfunction ¢ € D(Q). We define a bilinear form on L*(R", C) by

fog) = fR 800 dx.
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We denote the modulation by ez(x) = ¢*™¢* and define the Fourier transform for f € L'(R") by

fO=Ff& = fxe?dr

R

We write 7! f or f¥ for the inverse Fourier transform of f. For a distribution with compact
support f € & (R") the Fourier transform f is a function and we may write

f@ =(f.ee).
The Fourier transform for general tempered distributions f € 8’(R") is defined by duality
(f.0) = (f.9), for ¢ € SR").

The convolution of two integrable function f and g is given by

feg) = f Fx = y)g(y) dy.

For y € R we define the unit step function u, by

) 1, forx>y,
u,(x) =
Y 0 else.

If y = 0 we shortly write u = uy.

If f € D'(Q), then the singular support of f, denoted by sing supp f, is the set of points in Q
having no open neighborhood to which the restriction of f is a C* function.

We denote the translation by b € R" by 7,x = x + b and the (positive) homogeneous dilation
by a € R* by §,x = ax. The corresponding translation operator is defined by

T f(x) = f(x - D).
and the positive homogeneous dilation operator by
Saf(x) = a‘”/zf(g).
We say that a function f on R” is homogeneous of degree t € R if
fx) = A f(x)

for every x € R" \ {0} and every 4 > 0.



Chapter 2

Amplitude and sign decompositions of
multivariate signals

Our goal is to decompose a multivariate function or a signal into a positive part, the amplitude,
and a normed (hyper-)complex-valued part, the sign. The amplitude shall represent the signal’s
local intensity whereas the sign shall encodes the oscillatory part of f. In one dimension, the
classical way to achieve such a decomposition into amplitude and sign is the complex signal’,
introduced by Gabor in his seminal article Theory of Communication [Gab46]. The complex
signal is the complex-valued function which arises when doubling the positive frequencies of the
frequency spectrum and setting the other frequencies to 0. The complex signal induces the natural
decomposition of a signal f into amplitude and sign by

f(x) = 1g(x)| Re(sgn g(x)),
amplitude sign

where g denotes the complex signal of f. Classical applications of the complex signal are for
example the analysis of hearing [Gab46] or the demodulation of signals [Bed62].

The key observation for a higher dimensional generalization is that the real and the imaginary
part of the complex signal form a so called quadrature pair, i.e., they are Hilbert transform of each
other. Thus, the way to go for higher dimensional complex signals is to generalize the Hilbert
transform. In recent years, several reasonable multidimensional generalizations of the complex
signal have been proposed, most prominently the complex signal in the sense of the partial Hilbert
transform (cf. [BSO1] and the references therein) and the monogenic signal, based on the Riesz
transform [FSO1, LBOO1].

This chapter is devoted to the introduction of the Hilbert transform, the one-dimensional com-
plex signal and the induced amplitude and sign decompositions (Section 2.1), as well as to the
classical generalizations partial Hilbert transform and Riesz transform (Section 2.3). Apart from
the classical results, we provide the following point of view on these generalizations, cf. Sec-
tion 2.2. At first glance, the classical generalizations extend the Fourier multiplier of the Hilbert
transform to higher dimensions. But we can regard the partial Hilbert transform and the Riesz
transform also as operators generalizing the characterizing operator properties of the Hilbert
transform, namely invariance to translations and dilations, boundedness, and self-invertibility.
This observation gives rise to consider the partial Hilbert transform and the Riesz transform as
instances of a class of operators having those properties. Here, we call that class quadrature op-
erators because the self-invertibility leads to a symmetric quadrature relation. This point of view
enables us to treat the different generalizations of the Hilbert transform in a common framework.

"The complex signal is also called analytic signal.



Chapter 2 Amplitude and sign decompositions of multivariate signals

2.1 Amplitude and sign decomposition by the complex signal

We give a short introduction to the Hilbert transform, the complex signal, and the induced am-
plitude and sign decomposition. We refer to [Ste70, Hah96, Kin09a, Kin09b] for exhaustive
discussions of the topic and the applications to signal processing.

2.1.1 The Hilbert transform

We start with an important fact about continuous linear translation and dilation invariant opera-
tors. It is well known that every continuous linear translation invariant operator T on L? is the
convolution with a proper tempered distribution, cf. [GraO4, Chap. 2.5]. If T additionally com-
mutes with homogeneous dilations, then the corresponding convolution kernel is a homogeneous
function. More precisely, the following is true, cf. [Ste70, pp. 28, 391f].

Proposition 2.1. Let T be a bounded linear transformation mapping L*(R", C) to itself, which
commutes with translations and homogeneous dilations. Then there exists a bounded measurable
function M, homogeneous of degree 0, such that

77(5) = M) f(&), almost everywhere,

for all f € L*(R",C). One has then ||T|| = ||M|| . J

Notation 2.2. Let T be as in Proposition 2.1. The Fourier multiplier M associated to T is called
the multiplier or the symbol of T. We denote the multiplier of a linear translation invariant operator
T by M(T). Conversely, we denote the operator associated to the multiplier M by Op(M). 4

One of the most important linear translation and dilation invariant operators is the Hilbert trans-
form, which is defined as follows.

Definition 2.3. The operator H : L*(R,C) — L*(R, C), defined by

—_—

Hf:=—-isgn-f, forfelL*R,C), (2.1)
is called Hilbert transform. 4

Remark 2.4. The Hilbert transform can be written as the convolution with the tempered distri-
bution 71? P.V. (%) , where P. V. denotes the Cauchy principal value, thus

Wf=%P.V.(%)*f. 4

We say that an operator on L*(R", C) is real-valued if it maps real-valued functions into real-
valued functions. It follows directly from the fact that the Fourier transform of a real-valued
function is Hermitian that the symbol of a real-valued operator is Hermitian. That is, a linear
translation invariant operator 7 is real-valued if and only if

M(T)(&) = M(T)(=¢), almost everywhere, £ € R". (2.2)

Let us recall the following elementary properties of the Hilbert transform, cf. [Ste70, p. 55].



2.1 Amplitude and sign decomposition by the complex signal

Lemma 2.5. The Hilbert transform has the following properties:
(1) H is a bounded linear operator on L*(R, R).

(2) H commutes with translations.

(3) H commutes with homogeneous dilations.

(4) i‘H is selfinverting, that is, (i H)* = id.

(5) H is anti-selfadjoint, that is, H* = —H.

(6) H anti-commutes with reflections, that is, H[f(—e)] = —H f(e), for f € L>(R,R). ¥

Proor. For the proof of (1 — 3), we refer to [Ste70, p. 55].
(4) From M(H)? = (—i sgn)? = —1 we get H? = —id. Hence (i H)? = id.

(5) The claim follows from

i M(H) = —i?sgn = sgn =i M(H).

(6) See [Ste70, p. 55]. [

It is worth mentioning that the Hilbert transform 7 is up to a constant the only operator on
L*(R,R) with the properties (1 — 3) and (6) of Lemma 2.5. For a proof of this fact we refer to
[Ste70, p. 55]. Remarkably, the Hilbert transform is — up to sign — also characterized by the
properties (1 — 5):

Lemma 2.6. Let T be an operator on L*(R, R) with the properties (1 — 5) of Lemma 2.5. Then
T==xH. |

Proor. Let T be an operator with the properties (1 — 5) of Lemma 2.5. By virtue of Proposi-
tion 2.1, it follows from (1 — 3) that its multiplier M(T') is homogeneous of degree 0. From the
selfinvertibility condition (4) we derive that the multiplier satisfies (i M(T))? = 1, hence

M(T)(¢) € {—i,i}, almost everywhere. (2.3)

Since T is real-valued, the multiplier is Hermitian, cf. (2.2). Together with (2.3) and the homo-
geneity of M(T") we arrive at

M(T)(&) = +i sgn & = M(zH)(é), almost everywhere,

which proves the claim. ]

2.1.2 The complex signal

We say that two square-integrable functions f and g are in in quadrature if they are the Hilbert
transform of each other, i.e., if
g=iHf. (2.4)
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The quadrature relation is symmetric, since the selfinvertibility Lemma 2.5(4) yields that
g=iHf = i(Hg=iHIHf=]F.

The complex signal of a square integrable function is the combination the function itself and its
quadrature counterpart.

Definition 2.7. Let f € L?>(R, C). The function

h=f+iHf (2.5)
is called the complex signal of f. We call the operator H” : L*(R,C) — L*(R,C), defined by
H =id+iH,
the complex signal operator. 4

Remark 2.8. The complex signal is often called analytic signal because h = H’ f is the boundary
value of a complex function H(x + iy), i.e.,

h(x) = lim H(x +iy),
y—0+
where H is holomorphic in the upper halfplane {z = x + iy : x € R,y > 0} and satisfies

f |H(x + iy)l2 dx < C, for y > 0 and some constant C > 0,

o0

cf. [Tit48, Theorem 95]. a

The complex signal operator has the following important properties, which derive directly from
the properties of the Hilbert transform (Lemma 2.5):

Corollary 2.9. For the complex signal operator it holds that
(1) H' is a bounded linear operator from L*(R, C) to L*(R, C).

(2) H’' commutes with translations.

(3) H’' commutes with positive dilations.

(4) H' is quasi-idempotent, i.e., (H')*> = 2H'.

(5) H’' is self-adjoint. ¥

It further follows directly from the selfinvertibility of the Hilbert transform that the complex
signal is invariant under the action of the Hilbert transform i #, that is,

iHH f=iHf +iHf) = (Hf+iHiHS) = (Hf + f) = H'f.

A further important property of the complex signal is that it has a purely one-sided frequency
spectrum [Kin09b, Chap. 18.4]; that is, for a square-integrable function f it holds that

H f (&) = {Zf(f)’ for >0, almost everywhere. (2.6)
0, else,

10
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The complex signal induces a natural decomposition of a function f € L*(R, R) into a product
of a non-negative amplitude function

[H fOl =/ f(0)* + H f(x)?

and a complex-valued sign function

H' f(x)
[H ol

That is, f can be decomposed into amplitude and sign by

sgn(H'f(x)) =

J(x) = H’ f(x)] Re[sgn (H' f(x)]. (2.7)

The amplitude function is a slowly varying positive envelope of f, whereas the sign function
encodes the oscillatory part of f. This effect is illustrated in the following example.

Example 2.10. Let a > 0 and b € R. The Hilbert transform of the modulated Gaussian
f(x) = ¢ cos bx

is given by

Hf(x) = ¢~ Im {eibxerf[\/a(zﬂ + ix)

a

2

where erf denotes the complex error function, cf. [Kin09b, p. 487]. Figure 2.1(a) depicts the
functions for @ = 1 and b = 4. In Figure 2.1(b), we see that the plain real modulus |f] oscillates
and that the plain real sign, here depicted as phase angle arg f, is a piecewise constant function.
The modulus of the complex signal, on the other hand, is a smoothly varying function without
oscillations which corresponds to the Gaussian factor of f. The phase of the complex signal,
corresponding to the sign, is a piecewise linear function, encoding the oscillatory cosine factor of
f, see Figure 2.1(c). 4

2.2 Higher dimensional amplitude and sign decompositions

Having introduced the Hilbert transform and the complex signal in one dimension, we describe
in this section generalizations to higher dimensions. In the literature, we find three reasonable
approaches for generalizations of the complex signal to n-D. A first possible way is the general-
ization of the one-sided frequency spectrum property of the complex signal (2.6), that is, to cut
off the frequencies in a halfspace or a quadrant; examples for this are the partial and the total
Hilbert transform, respectively [BSO1]. The most common approach is the generalization based
on the Fourier multiplier of the Hilbert transform. This leads to the partial Hilbert transform and,
if a tuple of operators is admissible, the Riesz transform [Ste70, FSO1]. A third possibility is to
generalize the Hilbert transform as operator on L2, In [Kin08], a generalization is proposed based
on the boundedness, and the translation and dilation invariance of the Hilbert transform.

In this work, we follow the latter approach to a generalization of the Hilbert transform. We
generalize the characterizing properties (1 — 5) of Lemma 2.5, where the selfinvertibility (4) may

11
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(a) Modulated Gaussian and its Hilbert transform.
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(b) Plain real amplitude and sign (phase) decomposition.
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(¢) Amplitude and sign (phase) decomposition by the complex signal.

Figure 2.1: Amplitude and sign (or phase) decomposition of the function f(x) = e cosdnx. (b) The plain real
amplitude contains oscillations and the plain real sign (or phase) reduces to a jump function. (c) We
nicely see the envelope effect of the analytic signal’s instantaneous amplitude |’ f|. Note also that the
instantaneous amplitude varies slowly, whereas the sign sgn H’f(x) € C, displayed here as the phase
angle arg (sgn H’ f(x)) € (-, n1], contains the oscillatory part of f.
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be fulfilled by a tuple of operators. We denote this type of generalization as quadrature operator
since the selfinvertibility yields a symmetric quadrature relation as in (2.4). To write up this
approach conveniently, we need hypercomplex numbers, so we start with a short introduction
into this topic.

2.2.1 Hypercomplex numbers

This introduction to hypercomplex numbers mainly follows [GM91, Chapter 1] and [HSMF10].
In this section, we write K for R or C. Let {ey, . . ., €,,} be the standard orthonormal basis of K!'*,
where m € N. We equip K'*” with a vector multiplication such that it holds

e,e, = —€p, forallv=1,...,m,

€,€, = —€,e,, forallv,u=1,...,m, v=#u

We also write 1 for the multiplicative identity e, so any v € K!*" has the representation

m
vV=yv+ Z €.V,
p=1

where vy, ..., v;; € K. In this notation, the complex numbers read
C={a+eb:abelR}

Note that K'*" is not closed with respect to multiplication for m > 1. In general, for v, w € K!*",
the product vw is an element of the Clifford algebra K,,, which is the closure of K!*” under the
given multiplication. K,,, consist of the 2™ elements ey, . . ., eon_;. For example, the multiplicative
closure of R!*! is the complex numbers C, and for R!*? the quaternions H. However, in this work
we only consider powers of 2 of v € K!*" which does not lead outside K!*" because

m 2 m m
vo + Z ey | =vg - Z v + 2vg Z e, €K™
y:] /1:1 [1:1
In analogy to the complex numbers, we call the ey component the real part of v and the com-
ponents ey, ..., e, the imaginary parts of v, so for v € K!*" we write
m
Rev = vy, and Imv = Z e,V,.
v=1

Notice here the slight difference of the hypercomplex imaginary part to the classical complex
imaginary part. The classical imaginary part of a complex number is a real number, whereas
the imaginary part of a hypercomplex number is a hypercomplex number as well. Further, the
hypercomplex conjugation is defined by

m
V=vo- Y e forve KM
p=1

13
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The integral of a hypercomplex-valued function f : R” — K!*™ is defined component-wise, that
is, if f =20 eufu with f, € L'(Q, K), then

dx = d
lﬁmx ;%anx

If ¢ is a K'*"-valued testfunction, that is, ¢ = ZZ‘:O e, ¢, where ¢, € D(Q, K), then we write

m

(fo#) =) eulfid) €K

u=0
for the evaluation of a distribution f versus ¢. Likewise, we define the vector-valued K-bilinear
form for f € L>(R",K) and g € L*(R", K'*™) by

m

(o) =) eulfie) €K™

#=0

We write f for the component-wise Fourier transform
m
f=2, e
u=0

For any vector in v € K'*" we define the real non-negative amplitude by

W = VIVol? + ... + [Vl

an the sign by
ﬁ, forv # 0,

2.8
0, else. 28)

sgn (v) = {

Further, for v € R1*™\ {0} we call the angle ®(v) € [0, 7] between the imaginary part and the real
part the phase

Rev
O(v) := arccos —.
vl
With these notations, we can decompose a vector v € R!* into amplitude and sign by

v =v| sgn(v),

In particular for v # 0, we get an amplitude and phase representation of the real part by

vo = |v| Re(sgn v) = |v| cos @(v).

2.2.2 Quadrature operators

Now we are able to introduce quadrature operators as generalization of the Hilbert transform
based on the properties (1 — 5) of Lemma 2.5, namely invariance to translations and positively ho-
mogeneous dilations, boundedness on L*(R"), real-valence, selfinvertibility and anti-selfadjoint-
ness.

14



2.2 Higher dimensional amplitude and sign decompositions

Definition 2.11. Let m € N and @Qq,...,Q,, an m-tuple of linearly independent operators from
L*(R",R) to itself. We call the operator

Q= Zml e,Q,
u=1

quadrature operator if the following conditions are fulfilled:
(1) Q, is a bounded linear operator from L*(R",R) to L>(R", R) for everyu=1,...,m.

(2) Q, is invariant under translations for every u = 1,...,m.
(3) Q is invariant under positively homogeneous dilations for every u = 1,...,m.
(4) Qis selfinverting, i.e., @ = id.

(5) Qy is anti-selfadjoint for every p = 1,...,m, thatis, @, = -Q,,.

We call m the order of the quadrature operator. We define the only quadrature operator of order
m = 0 to be the identity. J

The properties (1 — 3) of Definition 2.11 will allow for reasonable combinations of quadrature
operators with wavelet transform. Property (4) yields the quadrature relation

g=Qf = Qg=QQf=/f.

The name quadrature operator comes from this relation. Property (5) assures that the multipliers
are all purely imaginary.

We still need to specify a reasonable domain of a quadrature operator Q. The domain of Q
ought to contain all real-valued, square-integrable functions, and should be invariant under the
action of Q. Therefore, the natural choice is the space

Xq={f+Qg: f.g e PR R)| c AR",R"*™). (2.9)

From the calculation

Qh=Q(f+Qg) =Qf +Qg=g+Qf
we see that QXg = Xg, so indeed Xg is invariant under the action of Q.

Example 2.12. Let n = 1. From Lemma 2.6 follows that +e; % is the only quadrature operator
on X4/(R) = L*(R, C) of order 1. J

The following two propositions characterize the partial multipliers of a quadrature operator.

Proposition 2.13. Let Q : Xq — Xgq be a quadrature operator of order m > 0. Then the mulit-
pliers M(Q,,) are homogeneous of degree 0, purely imaginary, Hermitian and it holds

- Z M(Q,J)(f)2 =1, almost everywhere. (2.10)
u=1

15



Chapter 2 Amplitude and sign decompositions of multivariate signals

Proor. It follows from the anti-selfadjointness (Definition 2.11(5)) that Q;; = —Qy,, hence

M@, = -M(Q,), forallu=1,...,m.

Thus the symbols M(Q,) are purely imaginary. Since all Q, are real-valued operators it follows
with (2.2) that M(Q,,) is Hermitian for every u = 1,...,m. The last claim (2.10) can be seen
as follows. First we notice that the operators Q, commute which each other, since they are of

convolution type. From e,e, = —e, e, we get that the mixed terms in @? cancel out. Hence we
have
m m m m m
id=@=>eQ > Q=) ) ee,QQ=-) @,
v=1 p=1 v=1 p=1 u=1
thus on the Fourier side
m
- Z M(@,)% = 1 n
u=1

Proposition 2.14. Let m € N and let M, € L*(R",C), u = 1,...,m, be a tuple of linearly inde-
pendent multipliers which are homogeneous of degree 0. If M, is purely imaginary and Hermitian
foreveryu=1,....m, and if

m
- Z M(Q,l)(f)2 =1, almost everywhere (2.11)
u=1
then .
Q= Z e, Op(M,) 2.12)
pu=1
is a quadrature operator of order m. J

Proor. Let u € {1,...,m}. Op M, is indeed a bounded linear translation invariant operator on
L*(R", C) to itself since M, € L*(R",C), see [Gra04, Theorem 2.5.10]. Then, Op(M,,) is real-
valued since M), is Hermitian. As M, is purely imaginary Op(M,,) is anti-selfadjoint. The invari-
ance to homogeneous dilations follows from the homogeneity of the multiplier M,,. From (2.11)
we get the selfinvertibility of Q. [

From Proposition 2.13 and Proposition 2.14 we see that the partial multipliers of a quadrature
operator are sign-functions on every line passing through the origin, which sum up quadratically
to —1, and in particular,

My(t€) = sgn (DM, (é).

for almost every £ € R" \ {0} and t € R \ {O}.

2.2.3 Complex signals

Having defined generalizations of the Hilbert transform, we now introduce in analogy to the one-
dimensional complex signal operator (Definition 2.7) a complex signal operator for multivariate
signals.

16
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Definition 2.15. Let Q : Xq(R") — Xo(R") be a quadrature operator of order m € N. We define
the Q-complex signal operator, denoted by @', as

Q=id+Q 4

We also say shortly complex signal operator. The complex signal operator @ commutes with
homogeneous dilations and translation because Q does so. Further, like the one-dimensional
complex signal, the complex signal operator is quasi-idempotent and invariant under the action
of the associated quadrature operator.

Lemma 2.16. Let Q : Xo(R") — Xgq(R") be a quadrature operator. Then
QA =QQ=qQ

and Q' is quasi-idempotent, that is,
Q*=24q. 4
Proor. The claim follows directly using @* = id by
QR =Qid+Q=Q+Q =Q+id=Q

and
Q%*=id+2Q+Q*=2id +2Q=2Q. -

The assertions of Lemma 2.16 can be illustrated by the following commutative diagrams, where
f € L>(R",R) and Q a quadrature operator of order m € N.

Q

L2(R",R) Q(L*(R",R)) f Qf
S N/
’ ’ Q Q
C Tewrwiry © Qf
@) @)
Qi@ Q3@

We recall that the goal of this chapter was the generalization of the one-dimensional amplitude
and sign decomposition (2.7). We now define such a decomposition in higher dimension as
follows.

Definition 2.17. Let Q be a quadrature operator of order m € N and let f € L>(R",R). We define
the Q-amplitude of f by

QF( = \FW2 +QFG + ... + Quf(0)? 2.13)
and the Q-sign of f by
QI i@ f(x)] # 0
sgn (Q f(x)) = § Q7P ’ (2.14)
0, else.

17



Chapter 2 Amplitude and sign decompositions of multivariate signals

We occasionally omit the quadrature operator Q and shortly say amplitude and sign. With these
definitions, we can decompose a signal f into Q-amplitude and @-sign by

f=1Q f] Resgn(@Q f)

of a real-valued signal f € L*(R,R). In the Chapters 4, 5, and 6, we shall see that both the
amplitude and the sign are useful in signal and image analysis.

2.3 Two important quadrature operators

In this section we study the two most frequently used generalizations of the Hilbert transform,
namely the partial Hilbert transform and the Riesz transform. We in particular point out that
the first commutes with shearings whereas the latter intertwines with rotations. These properties
are important for the subsequent chapter, where we investigate the compatibility of quadrature
operators with the group operations of wavelets.

2.3.1 The partial Hilbert transform

The partial Hilbert transform acts as a one-dimensional Hilbert transform with respect to some
fixed direction &.

Definition 2.18. Let & € R" \ {0}. The partial Hilbert transform with respect to & is defined for
f e L>(R",R) by
He, f(€) = —i sgn (&, EoNf (), (2.15)

almost everywhere. 4

It follows directly from the characterization in Proposition 2.14 that e;Hp, is a quadrature op-
erator of order m = 1. The partial Hilbert transform occurs naturally in the context of functions
whose Fourier transform is supported in one halfspace, compare also [Mal09, Ch. 4].

Lemma 2.19. Let & € R" \ {0} and denote E = {£ € R" : (&9, &) = 0} the halfspace defined by
&. Let f € L*(R",C) such that supp f C E. Then there is a real-valued function g € L*(R",R)
such that

f=g+iHzs. (2.16)

Proor. We define g in the Fourier domain by g(¢) = %( f &+ f (—£)), almost everywhere. As g is
Hermitian, it follows that g is real-valued. To see (2.16) we observe that

28(8), for<£o,&) 2 0,

1 = {0, else,

and calculate
F(g + i Hg,8)(€) = 8(&) + i M(Hg)g(&) = [1 - i? sgn (€, &)1 8(&) = f(&).

The claim follows by taking inverse Fourier transforms. ]

18
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For the partial Hilbert transform, we have an intertwining relationship with linear invertible
mappings. For its formulation, we require some notation. Let A : R* — R” be a linear invertible
mapping. We write (A,,) for the matrix realization of A. We denote the induced operation on
functions f on R"” with the same symbol A, that is,

Af(x) = f(A ).

Lemma 2.20. Let & € R" \ {0} and let A : R" — R" be a linear invertible mapping. Then for
any f € L*(R",R) it holds that

A(Hz, f) = Hagy (AD). 2.17)

Proor. By the intertwining relations of A with the Fourier transform, cf. Appendix A.1, we get
that

FAHe, P)E) = ﬁ@m%
= —i sgn (%0, AT&)) | det A| f(AT€)
= —i sgn (A, &) |det A| f(A"¢)
= —i sgn ((Aéo, ) Af (&)
= F(HagAf)(E),

almost everywhere. The assertion follows by taking the inverse Fourier transform on both sides.m

Since for any A > 0 the operators H, and H¢, are equal, the following assertion follows from
Lemma 2.20.

Corollary 2.21. Let & € R"\ {0} and A : R" — R" a linear invertible mapping such that &y is
an eigenvector to a positive eigenvalue A > 0. Then

A(H, ) = He (AD). ’

A particular interesting case of Corollary 2.21 are shearings in the plane. A shear matrix S
with respect to the x;-axis, leaving the x,- coordinate invariant, is of the form

S:((r) j) where s, € Rand r > 0.
The vector & = (0, 1)7 is an eigenvector to the eigenvalue r of S, so from Corollary 2.21 follows
that the shear operator S commutes with the partial Hilbert transform with respect to &, that is,
He,S = S Hg,. We will come back to this case in Section 3.1, when we deal with the compatibility
of wavelet group operations and quadrature operators.
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2.3.2 The Riesz transform

The Riesz transform is a tuple of n partial transforms, thus it is a quadrature operator of order
m=n.

Definition 2.22. The partial Riesz transform with respect to the v-th coordinate axis, denoted by
R,, where v = 1,...,n, is defined for f € L*(R™",R) by

R (€)= i . @.18)
almost everywhere. The Riesz transform is the vector of all n partial Riesz transforms, that is,
Rf =efRif+...+e,R.f. (2.19)

The R-complex signal R’ f of a square-integrable real-valued function f is called monogenic
signal, see [FSO1].

It was proven by Stein [Ste70] that the Riesz transform covaries with orthogonal transfor-
mations and that this is the only n-tuple of linear, bounded, translation and dilation invariant
operators on L? with this property. We formulate the analogous statement in terms of quadrature
operators.

Lemma 2.23. Let f € L>(R",R) Let Q be a quadrature operator of order n satisfying

n
UQU™f=> UpQuf,  forallv=1,..n, (2.20)
u=1

and for any linear orthogonal mapping U : R" — R". Then
Q=R a

Proor. We first check that R indeed satisfies (2.20). To this end we calculate in the Fourier
domain using (A.2)

&y

FUQU ™' f)(¢) = U(-i |§—|(U‘1f)>(§)
Yt Uy ) n ) n
=i ST @ = )i %UV,#f(gf) = 3 U F@Quf€)
p=1 u=1

almost everywhere. The transformation law (2.20) follows by taking inverse Fourier transforms.
To see the opposite direction, we use the following result of [Ste70, p. 58]: If a n-tuple
Qq, ...,Q, of translation and dilation invariant, bounded operators on LZ(R", R) which satisfies
(2.20) for every linear orthogonal mapping U, then Q, = ¢R, for every u = 1,...,n, and some
non-zero constant ¢. With this results, it only remains to show that ¢ = +1. Since Q = ¢Ris a
quadrature operator the squared multipliers sum up to —1 by virtue of Proposition 2.13, so

N 2 C 2-26/% 2 - g/% 2
—1= ) MR)E) = Y it = Y B =

p=1 pu=1 |§|2 u=1 |§|2
for almost every & € R". Since R, is a real-valued transform for every u = 1,...,n, we get that
¢ € R, hence ¢j;» = £1. So we have proved that Q = +R. ]

20



2.3 Two important quadrature operators

The covariant transformation law of the Riesz transform (2.20) has the consequence that the
R-amplitude is invariant under orthogonal transformations.

Lemma 2.24. Let f € L>(R",R) and let U : R" — R" a be a linear orthogonal mapping. Then
we have that

|[URU™ f| = [RfI.

In particular,

[UR' U™ f| = R f]. J

Proor. Since U is orthogonal, we may apply Lemma 2.23 to get

URU™'f = Z e, URU'f = Z e, Z Uy Ruf.
v=1

v=1 p=1
This can be considered as matrix vector multiplication if Rf is considered as row vector, i.e.,

URU™'f=Rf-UT.

Since the linear orthogonal mapping U preserves the modulus it follows that
[URU™' I = IRf - UT| = IR, (2.21)
which is the first claim. The second claim is a direct consequence. ]

Remark 2.25. The Riesz transform formally can be seen as the weak gradient of the Riesz po-
tential of order 1. Let /; denote the Riesz potential of order s, where s < n, defined by

Lf©) = Qrig) f&),

for a sufficiently smooth function f on R", see [Ste70, Chapter V.1]. Further, let D be the Dirac

operator
n

D= Z e,D,,

v=1
where D, denotes the derivative with respect to the v-th component (cf. [GM91, Chapter 2]).
Then, since Bv\f(f) = 27i &, f(£), we get by a simple manipulation in the Fourier domain the
formal identity
va =-R, I—lf,

for any v = 1, ..., n. So we formally may rewrite the Riesz transform as the Dirac operator applied
to the smoothed function /; f, that is,

Rf =-DI,f. (2.22)

Furthermore, the transformation law (2.20) coincides with the covariant transformation law of
the Dirac operator D, which reads as

n

UD U™ f = Z Uy Dy f,
u=1

foreveryv =1,...,n. a

21
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We conclude from the findings of this section, that the partial Hilbert transform is espe-
cially well compatible with shearing due to the commutator relationship. In particular, the He,-
amplitude is invariant under shearings with respect to &. On the other hand, Lemma 2.24 shows
that the Riesz transform is adequate for linear orthogonal transformations, such as rotations, since
the R-amplitude is invariant to orthogonal transformations. This observation will become of im-
portance in the next chapter, where the compatibility of these quadrature operators with wavelet
transforms is studied.

2.4 Further references

The results about the Riesz transform that we have used here are mainly due to Stein [Ste70].
Note that Stein uses a vectorial notation of the Riesz transform instead of the hypercomplex
formulation. We here followed the hypercomplex formulation of [GM91, FSO1, HSMF10, Hel12]
because it allows for convenient and compact notations.

The Riesz transform has simultaneously been introduced to image processing by Felsberg and
Sommer [FSO01] in the context of digital signal processing and by Larkin et. al. [LBOO1] in the
context of optics. The term monogenic signal for the complex signal based on the Riesz transform
was coined by Felsberg and Sommer [FSO1].

The partial Hilbert transform was investigated in [Hah96] and, in the context of image process-
ing, in [BSO1]. However, there has been probably earlier works on the topic in other contexts,
since the partial Hilbert transform naturally appears at functions whose frequency spectrum lies
in one half-plane.

The generalization of the Hilbert transform based on its operator properties is inspired by the
work [KinO8]. There, King proposes to generalize the Hilbert transform based on its important
operator properties, namely the linearity, the boundedness, and the invariance to translations and
dilations. The main difference to our notion of quadrature operator is that we allow an m-tuple
of operators instead of a single operator, which enables us to treat the Riesz transform in that
framework.
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Chapter 3

Directional multiscale amplitude and sign
decomposition by the monogenic curvelet
transform

In one dimension, complex wavelets! are constructed from a real-valued wavelet by adding its
Hilbert transform as imaginary part, cf. [SBKO0S5, Mal09]. In two and higher dimensions, the
construction of complex wavelets is not that canonical. On the one hand, as we have seen in the
last chapter, there are several reasonable generalizations of the Hilbert transform to n-D. On the
other hand, we have much more freedom in the choice of the wavelet, since dimensions higher
than one allow for anisotropic wavelets as well. As a consequence, there is large variety of
different complex wavelet constructions, based on different combinations of generalized Hilbert
transforms and wavelets; for example dual-tree complex wavelets [Kin99], complex curvelets
[CDO05a], complex shearlets [LLKWO0S] or monogenic wavelets [OM09, USvdV09, HSMF10].
In this work, we consider complex wavelet constructions « of the type

K=y +Qu=QYy,

where i is a real-valued primal wavelet and Q a quadrature operator (Section 3.1). However, not
every arbitrary combination of quadrature operator and wavelet leads to a reasonable complex
wavelet. For example if the quadrature operator introduces step singularities to the spectrum of
the wavelet, then the complex wavelet fails to be integrable. Thus our first requirement is that the
quadrature operator should preserve the integrability of the wavelet. The second condition, con-
cerns the group operations of the wavelet system. Here, we postulate that the wavelet amplitude
shall be invariant under the group actions of the wavelet transform. Since quadrature operators by
construction commute with translations and homogeneous dilations, this constraint only affects
anisotropic operations like rotations and shearings. Most classical complex wavelets fulfill these
constraints, for example complex wavelets based on isotropic wavelets and the Riesz transform
[HSMF10, OMO09, USvdV(09] or the complex shearlet transform [LLKWO05, KLO7]. However, we
shall see that the classical complex curvelet transform [CDO05a] does not satisfy the conditions.
The atoms of the curvelet transform are complex wavelets in the sense of the partial Hilbert
transform, but the amplitude of the curvelets is not invariant respect to their anisotropic group
operations, the rotations. The observation that the Riesz transform yields a rotation-invariant am-
plitude, cf. Lemma 2.23, motivates a modification of the classical curvelet transform based on the
Riesz transform, called monogenic curvelet transform. We introduce this new quaternion-valued
transform in Section 3.2 and we show some remarkable properties. First, the monogenic curvelet

'Complex wavelets are sometimes called analytic wavelets.
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Chapter 3 Amplitude and sign decomposition by the monogenic curvelet transform

transform can be continued to the coarse scales by an isotropic monogenic wavelet transform. In
this way, the monogenic curvelet transform is a complex wavelet over the entire range of scales.
Second, the monogenic curvelet transform yields a Calderén resolution of identity and a Parseval
formula (Theorem 3.3). In Section 3.3, we establish that the monogenic curvelet transform con-
verges at fine scales to the classical curvelet transform, cf. Theorem 3.10. We provide a proper
discretization (Section 3.4) and illustrate in numerical experiments the advantages of the ampli-
tude and sign decomposition by monogenic curvelets for the estimation of directional regularity
(Section 3.5).

The major part of this chapter has been published in the SIAM Journal on Imaging Sciences
[Stolla].

3.1 Construction of complex wavelets

In this chapter, we describe the construction of complex wavelet from a real-valued wavelet,
called primal wavelet, and a quadrature operator. We first introduce compatibility conditions and
then look at classical wavelet transform with respect to these conditions.

3.1.1 Compatibility conditions for complex signal operators and wavelets

We now introduce two conditions which allow for a reasonable combination of a wavelet and a
quadrature operator. We first recall that a real-valued wavelet ¢ is a function in L' N L2(R",R)
which satisfies the admissibility condition

f "/A’@Z'z dé < oo, 3.1)
oy €l

The integrability, the square-integrability, and the admissibility of the wavelet are important in
order to obtain Calderdn resolutions of identity. Our first condition for a complex wavelet consists
in the preservation of these wavelet properties.

Definition 3.1. Lety € L'nL?(R", R) be a real-valued wavelet and let Q be a quadrature operator
of order m. We call the R"*"-valued function Q¢ a Q-complex wavelet if Q. is a wavelet for
every u = 1,...,m, thatis, if Q. € L! NL*(R",R) and if Q. satisfies the admissibility condition
(3.1). 4

Since the Fourier multiplier of a quadrature operator is homogeneous of degree 0, the admissi-
bility of the primal wavelet v implies the admissibility of the complex wavelet. Furthermore, as
quadrature operators are bounded in L2, the components Qi of the complex wavelet are in L? as
well.

The only condition which is not trivially satisfies the integrability of Q. A simple necessary
condition for the integrability is as follows. Since the Fourier transform of an integrable function
is continuous, we get that the Fourier multiplier M(Q,,) -  is necessarily continuous for yu =
1,...,m. Further, we can also give the following simple sufficient condition for the integrability.

Lemma 3.2. Let € S(R",R) be a real-valued wavelet and let Q be a quadrature operator of
order m € N. If
sing supp M(Q,) Nsuppy =0 foreverypu=1,...,m,
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3.1 Construction of complex wavelets

then Q' is a complex wavelet. 4

Proor. Let y € {1,...,m}. The condition sing supp M(Q,) N suppy = 0 implies that M@,) is
in C* on a neighborhood of the support of i, so M@, - Y is smooth. Then, since M(@Q,) is
positively homogeneous of degree 0 it follows that M(Q,) - i is of rapid decay, thus M@,) - o
is a Schwartz function. In consequence Q. € S(R",R), and in particular Q¢ € L'. From the
homogeneity of M(Q,) we obtain that @,y satisfies the admissibility condition. Hence Q'y is a
complex wavelet. ]

Let us illustrate this compatibility condition by some examples. First, let & € R" \ {0}. The
multiplier of the partial Hilbert transform H, has a step singularity at the subspace {&)}*. Hence,
He, is applicable for wavelets whose Fourier spectrum does not intersect {£p}*; that is, supp %N
{&}* = 0. In contrast, if ¢ is an isotropic wavelet, then the complex signal 7—(5’()1& is not a He,-
complex wavelet, because H, f’ov,l/ fails to be integrable. In that case the Riesz transform is more
suitable. As the multipliers of the partial Riesz transforms M(R,), v = 1,...,n, are smooth on
R™ \ {0}, we get by Lemma 3.2 that the Riesz transform R is applicable for any wavelet whose
Fourier spectrum vanishes in a neighborhood of the origin. In particular, the Riesz transform
maintains the integrability for both isotropic and anisotropic wavelets.

The first condition for combination of complex signal operators and wavelets assures that filter
properties of the mother wavelet are preserved by the quadrature operator. Our second constraint
concerns the group operations of the wavelet system. Here, we postulate that the amplitude is
invariant to the group operations in the sense that

IAQ Ay = Qv (3.2)

where A denotes a group operation of the wavelet system such as dilation, translation, rotation,
and shearing. By construction, a quadrature operator is invariant to translation and homogeneous
dilations, thus condition (3.2) only affects anisotropic operations such as rotations and shearings.
Constraint (3.2) assures that it does not matter for the wavelet amplitude whether we first com-
plexify the primal wavelet wavelet and then apply the group operations or the other way round.

In the next subsections, we present several important classical complex and hypercomplex
wavelet transforms, arising from different combinations of real-valued wavelets and quadrature
operators. We first look at isotropic and then at anisotropic constructions.

3.1.2 Complex wavelets based on isotropic primal wavelets
Probably the most simple way of constructing an isotropic wavelet i is to take the inverse Fourier
transform of a non-negative, radial window function W : Rj — R, satistying

00 d
f War? 2 = 1, forall > 0, (3.3)
0 a

cf. [FIW91]. Then, the formula
g€ = W(l) (3.4)

defines an isotropic wavelet y. For these types of wavelets, we have a Calderén decomposition of
unity, cf. [FJWO1].
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Chapter 3 Amplitude and sign decomposition by the monogenic curvelet transform

Theorem 3.3. Let y € L'(R",R) be real-valued and radial, satisfying
<. d

f G@eP L =1, forall¢ eR"\ (0).
0 a

Then, for f € L>(R™),
00 d
) = fo W s Ya s N (3.5)
where Yro(x) == a”"Y(3). a

Remark 3.4. Equation 3.5 has to be understood in the following L? sense: if 0 < € < § < co and

0 d
fs,&(x) = f Wa * g * f)(x);a’

then ||/ = fus], 20y = 0if € = 0:and 6 — 0, cf. [FIWOL]. ,

The selfinvertibility of quadrature operators, cf. Definition 2.11(4), allows us to derive a
Calder6n resolution of identity for isotropic complex wavelets. To this end, we need the fol-
lowing relation for the convolution with complex wavelets.

Lemma 3.5. Let s be a real-valued wavelet on R", let Q be a quadrature operator of order m € N
such that Q' is a Q-complex wavelet. Then

Qu+Quxf=2w*y=+Qf (3.6)
for every f € L*(R",R) in the L*-sense. 4
Proor. Since  and Q¢ € L'(R",R) for any y € 1,...,m the convolutions are well defined and

the left and right hand side of (3.6) are in L>(R”, R'*™). Since Q,, is of convolution type for every
u=1,...,m,it follows that

Qy=f=y=Qf. (3.7)
It remains to show that Q¢+ @'y = 24 xQ'yr. To this end, we first calculate in the Fourier domain
F(= D Qur+Qu) = - ) M@Q)-i-M@Q)-§ =07 ) -M@Q) =,
p=1 u=1 u=1

SO
m
—ZQ,;I,//*Q#'J/ =Yy
p=1
Then, since the mixed coefficients of e e, cancel out for u, v > 1 and u # v, we get that

Qu Q¢ = Zm: Zm: eyev(au'/’ * Q)

n=0 v=0

=Yy Y Q- Y Qb Qup
u=1 u=1

=2+ 2 ) Q=20+ QY
pu=1
The claim now follows by (3.7). [
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3.1 Construction of complex wavelets

It follows from Theorem 3.3 and Lemma 3.5 that a complex wavelet arising from the isotropic
wavelet in (3.4) has a Calderén decomposition of unity.

Corollary 3.6. Lety € L' N L*(R") be a wavelet satisfying the conditions of Theorem 3.3 and let
Q be quadrature operator. If Q is a hypercomplex wavelet, then it holds for f € L*(R")

1 > d
Q=3 [ @uu@uis 0 (8

Formula (3.8) has to be understood in the sense of Remark 3.4.

3.1.3 Complex wavelets based on anisotropic primal wavelets

We now look at anisotropic complex wavelet constructions, in particular the classical complex
shearlets and the classical complex curvelets, and investigate if their group operations, shearings
and rotations, are compatible with the complexification.

Let us first introduce some notation. We denote a counter-clockwise rotation by the angle 6 by
pg and its the matrix realization by

(cos 6 —sin 0)
Po = .

sinf cos@

Throughout this chapter, we write (r, w) € Rg X [-n, ] for the polar coordinates in RZ. We write
also shortly Hj for the partial Hilbert transform with respect to the direction indicated by the
angle 6, thus Hy := Hcos ,5in )-

A simple method of constructing anisotropic wavelets is to multiply the frequency spectrum of
an isotropic wavelet by a suitable angular window V. This angular window typically is a smooth
function supported in [—1, 1] which satisfies

1
f V(u)? du = 1. (3.9)

1

When using the rotation group we can construct directional wavelets by using the radial and
angular windowing

_ N
Y100 w) = W(r) - V(2—;)) (3.10)

The associated wavelet family consists of the translation, dilations, and rotations the mother
wavelet 1,00
Vaboé) = Tobapaioo€).  a€R',beR?0€[0,2m).

Anisotropic wavelets based on the shearlet group can be constructed in an analogous way.

Although this construction gives us a certain level of anisotropy, the angular resolution remains
limited since the level of anisotropy does not increase as the scale parameter decreases. To gain
a higher angular resolution, “microlocalizing” wavelet transforms have been proposed in recent
years, most prominently curvelets [CD04] and shearlets [LLKWO5]. These types of wavelet in-
crease their anisotropy as the scales becomes finer. This way, they are able to resolve orientations
more exactly than the wavelet transforms with a fixed degree of anisotropy. Because of these
advantage over the simple anisotropic wavelets of (3.10) we focus in the following on curvelets
and shearlets.
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Chapter 3 Amplitude and sign decomposition by the monogenic curvelet transform

Complex shearlets Let us start with an observation about shearlets [LLKWO0S5]. The mother
shearlet is given by

oolér &) = W(fl)v(%)

The frequency spectrum of the mother shearlet is supported in the halfplane {£y}*, where & =
(1,0). Hence, by Lemma 2.19, the mother shearlet is a complex signal with respect to the partial
Hilbert transform Hp, i.e.,

S _ S . S
Yloo = Reyigg +iHg Reyyy.
The shearlet family consists of the atoms

U, () =T VasTo (), a€RY.beR%sER,

where V, is the operator induced by the shearing matrix
vo_[e - Vas
as — 0 \/a .

Since the partial Hilbert transform commutes with the shearings, cf. Corollary 2.21, the shearlet
amplitude is invariant with respect to the group operations of the shearlet transform. Furthermore,
shearlets are Schwartz-functions, so in particular integrable. Hence, the complex shearlets are by
construction compatible combinations of the partial Hilbert transform and real-valued shearlets.

Complex curvelets Now let us turn to the construction of curvelets [CD05a]. The curvelet
family is constructed by the set of basic atoms

Vaoo(r,w) = aiW(ar)V(%), (.11)

where the scale parameter a is smaller than a fixed coarsest scale @y > 0, for example ¢ = 1.
Again from Lemma 2.19 it follows that the directional mother curvelets (3.11) are by construction
H,-complex wavelets with & = (1, 0). Thus the complex-valued mother curvelets can be written
as

Ya,00 = Ba,0.0 + i HeyBa0,05 (3.12)

for every admissible parameter a where 5,00 denotes the real-valued curvelet defined by

Ba00 = Reya,0. (3.13)

Up to now, everything is analogous to the shearlets. The difference now comes from the different
stearing operation. The curvelet family is set up from rotations instead of shearings, that is,

Yap.0 = TbP0Ya,0,0s a < ag,b € R*,0 €[0,2n),

and the curvelet transform, denoted by I'z, is defined by

Lr(a,b,0) = f,Yabo)- (3.14)
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3.2 The monogenic curvelet transform

But the partial Hilbert transform does not commute with the rotations. Indeed, H(1,0)840.5 is in
general not even integrable, since the multiplier M(H(1,0)) has a step singularity at R x {0}. Thus,
if we apply the rotation to the mother curvelet vy, 00, we have to adjust also the orientation &y of
the partial Hilbert transform according to Lemma 2.20; so we have only

Yab,o = Bapo + i Hoyeoab.os (3.15)

where B, 0(&) = TppeBa0,0(€). So we need in principle a different quadrature operator for every
angle. We will remedy this by replacing the partial Hilbert transform in the curvelet construction
by the Riesz transform, which is better compatible with rotations, see 2.23.

3.2 The monogenic curvelet transform

We have pointed out in the last section that the partial Hilbert transform is not compatible with the
rotations of the continuous curvelet transform (CCT). Moreover, there is the following issue with
the partial Hilbert transform construction. To get a full decomposition of a function into curvelet
coeflicients over all scales, one has to continue the curvelet transform to the coarse scales as well.
This can be achieved by purely isotropic wavelets as those in (3.4), so we set

- aiWan\V(<), ifa < ao,
Ya00(r, w) = W(ar)
a Vi’

(3.16)

if a > ay.

However we have seen that the partial Hilbert transform is not applicable to isotropic wavelets,
cf. Section 3.1, thus there is no reasonable complex continuation to the coarse scales. In contrast,
we have seen in Section 2.3 and in Section 3.1 that the Riesz transform is compatible with both
the rotations and the isotropic wavelets. This motivates to replace the partial Hilbert transform by
the Riesz transform in the construction of the curvelets. Thus we construct monogenic curvelets
R'Bave as R’-complex wavelets from the real-valued curvelets of (3.13), that is,

R'Bave = R (Bave) = Lavo + €1R1 Bavg) + €2Ro(Barp)- (3.17)

Here, 5,0, is the real part of the curvelet y, 0 for the fine scales a < @¢ and a purely radial
wavelet at the coarse scales a > «ag; in the Fourier domain

3
—_ aiW(ar)V(%), ifa < ay,
Baoo(r,w) = W(ar) Va
(,17,

. (3.18)
if a > .

Ilustrations of some monogenic curvelets can be found in Figure 3.1 for a fine scale monogenic
curvelet and in Figure 3.2 for a coarse scale monogenic curvelet. The monogenic curvelets yield
a new quaternion-valued transform, called monogenic curvelet transform (MCT). We define the
monogenic curvelet transform M by

R* X R? x [0, 2 H,
f:{ 0,20 = (3.19)

(a’ b’ 9) = <f’ R,ﬂab9>9
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Baoo = Revao  Hofaoo = Imyano R1Baoo RoBaoo
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Figure 3.1: Comparison of the atoms of the continuous curvelet transform (CCT) and the monogenic curvelet trans-
form (MCT) at a fine scale. The difference between HoB,00 and R;B.00 can be hardly recognized and the

values of R,B,00 are small in comparison to R;SB,0. This indicates that the monogenic curvelets and the
classical curvelets behave very similar at the fine scales.
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Figure 3.2: Comparison of the atoms of the CCT and the MCT at a coarse scale. The partial Hilbert transform is not
reasonable for the isotropic functions thus the classical curvelets are not complex wavelets at the coarse
scales. The Riesz transform in contrast is applicable to isotropic functions, hence the monogenic curvelet
transform has a reasonable continuation to the coarse scales by complex wavelets. In this figure, we used
for reasons of displayability a different scaling than in Figure 3.1.
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3.2 The monogenic curvelet transform

where

(f R Bavo) = {fBavo) + €1{f, R1(Bape)) + e2{f, Ro(Baro))-

Here, the analyzed object f can be a tempered distributions, because B9 and R,B.p9, Where
vy = 1,2, are Schwartz-functions.

Like the classical curvelet transform, the monogenic curvelet transform has a reproducing for-
mula and a Parseval formula for square-integrable functions, which have to be understood in the
L?-sense of Remark 3.4.

Theorem 3.7. Let f € L*(R?,R). The monogenic curvelets have a Calderén-like reproducing
formula

0o 21 d
R f(x) = f f f (fs R'Bavo)R Bavo(x) db d@—;l (3.20)
0 0 R2 a

in the L*-sense and a Parseval formula

00 27
2 da
||f||§=f0 fo fRz |My(a,b,6)| dbdo—. (3.21)

Proor. We mainly follow the argumentation of [CD05b] with the necessary modifications. Let

Gao() = fR T RBaa R Buso)db

in L*(R2, R). We have to show

00 21 1
R f(x) = fo fo gao(x)— d6da (3.22)

in L>(R%,R). Let ~ denote the reflection. As R'Bupe(x) = R’Baos(x — b) we have

et = [ Ruax=0) [ Rpants = 0110y b
= [ bt =) [ Ras = Dof ) dys

= fR . R Baoe(x — b)R'Bygg * £)(b) db

= R Baos * R'Bagg * (%)
= R/ﬁaOH * R/ﬁaOG * f(x),

because ang is symmetric with respect to the origin and real valued and hence @aog(x) =
R Baoo(—x) = R'Buos(x). From Lemma 3.5 follows that

2ut(&) = F (R Baoo * R Bavs * )E) = 2Baog(€)* R’ F(£).
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Plugging this into (3.22) we get

—_— 00 277’\ 1 . 00 27 - 1
K7€ = [ [ T s a0da=2R7@ [ [ Bante? s doda
0 0 a 0 0 a

So it remains to show that

271 1
f ﬁaoe(f) —= dG da = X (3.23)
0

We split the integral into the coarse and the fine scales

271

00 2”,\ 1 271 00 - 1
f Baoe(¢)* = dfda = f ,Baoe(f) — de da + f Baoo(€)— d6 da.
0 0 a 0 0 a

@g

As ang is defined in polar coordinates, we rewrite the equation via & = r(cos w, sin w) to get

0
Baoo(é) = —W(ar)V( \/a) 3,

thus

() ZITA 1 0 21 1 w—0 2 1
f f Baoe(€)?— doda = fa —W(ar)2a3/2V(—) — dfda. (3.24)
0o Jo a’ o Jo 2 Va | @

The admissibility condition for V yields

2. 2
fﬂ'v(a)—e) dgzal/z’
0 Va

1 [ 1
— f W(ar)z— da.
2 0 a

so (3.24) reduces to

For the second part we have

2711 2

27 o) 1 o | |
f .Baoe(f) —= d9 da = f —W(ar)za——3 d9da = ~W(ar)*~ da.
o) 4 T a @ 2 a

@ 0

After summing up the coarse and the fine scale integrals we get from the admissibility condition

(3.3) that
f W(ar)*- da— f W(t)z——dt f " W(z)%dr:
0

which completes the proof of (3.20).
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Now we prove the Parseval formula. To this end, we first calculate

fR IR'Baoo f(b)*db = fR 1Baos SO + [(RiBave) * fFBIP] + [(Rofage) * f(b)I* db

=[1Baos * I3 + I(R1Bave) * £I13 + I(RafBave) * f13
=|Baoe 13 + IR Bave 12 + ||R%9f||%

- f m(aﬂafd& [

df

: f (1+ﬁ+ 4 )Iﬁaoa(f)f(§)| a
AN e

= [ ool o

d§

&1 —
€1

With this identity we get

d — —~ d
[l Rpun avaos = [ 2[pamce] [Fe] deaos

- [|fef ( [ e ans)

-2 [|fef 5z =18,

where the last line follows from (3.23). [

3.3 Relations between the classical and the monogenic curvelet
transform

The goal of this section is to point out the differences and similarities between the classical
continuous curvelet transform (CCT) and the new monogenic curvelet transform (MCT). To this
end, we first compare the function plots of the classical curvelets and the monogenic curvelets.
At the fine scales, one immediately recognizes the similarities between the imaginary part of y,q0
and R 8,00 (Figure 3.1). At the coarse scales on the other hand, there is a big difference, because
va00 lacks an imaginary part for a > ag (Figure 3.2). In Figure 3.3, the amplitude and sign (or
phase) of the CCT and the MCT are compared.

3.3.1 Uniform convergence of the monogenic to the classical curvelets at fine scales

The MCT is quaternion-valued whereas the CCT is complex-valued, hence they cannot be com-
pared per se. To make them comparable, we isometrically embed the complex values of the
curvelets into the quaternions. We define the embedded curvelets Y9 by
Yabo :=Re Yapp + €1 c0s(0) Imyapg + €2 sin(0) Im yapp
=Bavo + €1 cos(O)HgBavo + €2 sin(O)HeBaveo- (3.25)
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Fine Scale (Anisotropic) Coarse Scale (Isotropic)
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Figure 3.3: Comparison of amplitude and phase responses of the filters in Figure 3.1 and Figure 3.2. There is no visible
difference at the fine scale between CCT and MCT. At the coarse scale the CCT-amplitude oscillates and
the CCT-sign (phase) is discontinuous whereas the MCT-amplitude decays monotonously and the MCT-
sign (phase) is smoother. For reasons of displayability, the sign is depicted as phase angle.

The corresponding embedding of the curvelet coefficients is denoted by
T(a,b,6) = (f. Vabe).

The canonical embedding C — H,a + ib — a + e|b is not suitable here, because it is not
compatible with the covariant transformation law of the Riesz transform in this setting. With
the embedding (3.25) we are able to prove the uniform convergence of the CCT and the MCT
(Corollary 3.11). To this end, we need some preliminary lemmas.

Lemma 3.8. Let Q, = ( —%, —Zl—a] U [zl—a,% ) X [— Va, \/E] and Buoo a real curvelet at scale a,

where 0 < a < ag. Then the following statements hold:

(1) The support of,/B\aoo lies in the rectangle Q,, that is, suppﬁaoo c Q.

(2) The measure of supp,ano has the upper bound ,u(supp(ﬁaoo)) < u(Qy) = 6a~'%, where u
denotes the Lebesgue measure.

(3)

\Ea&)” = a’/* . Cyyy with a constant Cy,y depending only on the choice of the window
functions W and V.

(4) Forall ¢ € Q, we have the inequalities

€1
and
sgn (§1) — &1 <24°2,
€1
which are related to the Fourier multiplier of the Riesz transform. 4
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Proor. (1) Holds by construction of ano-

(2) u(Qa) =22 = 3)2Va) = (55 — ) Va = 455 Va = 6a"'a'? = 6a™112.

3) ‘E&,”OO = SUP(uyer-xi-1.1 E WAV (W) = a* sup W() swp V(w).
reR* wel[-1,
=ZCWV

(4) The first inequality follows from |£;| < +a and |£] > % For the second we have |£] — €] <
é1l + &2l = |€1] = €21 = Va, thus it follows

sgn &) —%

sgn &1 |6 - &1
€1

Yo

2a

=2a°?. []

) ’|§| - &l
4

In the next lemma, we compute the norm difference between a curvelet and a monogenic curvelet.

Lemma 3.9. Let 0 < a < ap, b € RZ, and 6 € [0, 2r). For the [*-distance of the embedded
curvelets y ,p9 and the monogenic curvelets R’ Bapg we have that

— 2 2 2
|Faveo — R Bavell;, = 1HoBaoo — RifBavoll3 + 1R2Baooll3 - 4

Proor. First we calculate

|Fare — RlﬁabQ“i = |Bave + €1 cos(O)HaB e + €2 sin(0) HoBavs — Bavs — €1R1Bave — €2RoBaboll3
= |le1(cos(@)HoBaps — RiBabe) + €x(sin()HyBups — RoBave)l3
= Icos(O)HoBaps — RiBapolls + Isin(@)HoBaps — RaBavall3 -

Using the intertwining relations of the partial Hilbert transform (2.17) and the Riesz transform
(2.20), we compute for the first term

llcos(@)HyBavy — RiBavell3 = llcos(@)HapaBaso — RipeBaoll3
= llcos(@)psHoBabo — cos(@)peR1Baso — sin(@)peRaBapoll3
= 10glcos(B)(HoBubo — RiBapo) — sin(@)RaBapolll3
= llcos(@)(HoBaso — Rifabo) — sin(@)RaBapoll3 »

and analogously for the second term

lIsin(@)HyBavs — RoBavolls = lIsin(@)HopaBaro — RopaBavoll3
= [lsin(@)peHoBao + sin(@)pgR1Baso — cos(@)peRaBasoll3
= llo—g[sin()(HoBaso — R1Bar0) + cos(®)RoBaoll3
= [Isin(@)(HoBaro — RiBavo) + cosORoBaoll3 -
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Summing up both terms, we get

llcos(0)(HoBaso — RiBaro) = sin(@)RoBapo)ll3 + lIsin(@)(HoBaso — RiBaso) + cos@RoBuso)ll3
[, (cosOHusa() = Riflc) = Sin@RaBn(0)°
+ (sin()(HoBapo(x) — R1Bapo(x)) + cos(O)RoBapo(x)))* dx
- fR o) ~ R0 + Roso(00° dx
= [HoBabo — RiBasoll3 + 1RBasoll3 -
where the penultimate equation follows from the trigonometric identity
(cos(Q)u — sin(0)v)? + (sin(@)u + cos(O)v)? = u® + 2.

The claim follows because both the partial Hilbert transform and the Riesz transform commute
with the translations, that is,

[HoBabo = RiBasolls + R2Bavoll2 = 1HoBaoo — RiBaooll3 + R2Baooll> - n

Now we can show that the atoms of the classical curvelet transform and the monogenic curvelet
transform converge to each other.

Theorem 3.10. For every b € R?, every 6 € [0, 21) and every 0 < a < «y it holds
|[Fae - R,ﬁabé’”z < a*4V3Cyyy,

with a constant Cy,y depending only on the choice of the window functions W and V. 4

Proor. From Lemma 3.9 we get

_ , 2
v = R Bava|[, = 1HoBaoo = RiBacoll3 + 1RaBaooll3 - (3.26)

Now we estimate upper bounds for the terms in (3.26), so applying the Plancherel equation and
using Lemma 3.8 we get

1H0Baoo — RiBaoolls = IF (RiBaoo — HoBaoo)ll3

= “@aOO - (]—/[()\BaOO 2

2
d¢

_ f ‘ig—lﬁaoo(-f) — i 5gn &1Ba00(€)
r2 1 €l
&l 1
= 11;2 (— — sgn 51) Baoo(&)* dé

|
< (2a**)*u(supp(Baoo)) L/B\OO“i
|,§a00 Hi

= 4a>u(supp(Bano))
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3.3 Relations between the classical and the monogenic curvelet transform

and

2 &\~
[RBacnld = |[RiB oo, = fR 2 (—) Baoo(€)” dé

1l
< (2a*)*u(supp(Baoo)) LEOOHi
IEaOO“i0 .

Summing up both terms and applying again Lemma 3.8 we get

= 4a>u(supp(Baoo))

[Faon = R Basall, = \IH0Bu00 = RiBaoolls + [Reacol

< \/ 8a3u(supp(Baoo)) I’ﬁ\aoo
< V8a36a112 d*l*Cyy

= V4848 Cwy

= a’4\3 Cwy

|OO

and the proof is complete. ]

As a consequence, we get that the monogenic curvelet coefficients converge uniformly over scales
to the classical curvelets.

Corollary 3.11. Let f € L>(R%,R). The classical curvelet coefficients and the monogenic curvelet
coefficients converge to each other uniformly in b and 0 for a — 0 with the estimate

ICr(a,b,6) - Mp(a,b,0)| < a4 V3Cwy lIfll, - 4

Proor. By the Cauchy-Schwartz inequality we get

[Cy(a, b,60) — My(a,b,0)| = |(f. Yabe) — {f- R Bave)|
= [(f. Favo — R Bavo))|
< |[vave = R Bass|, 11112
< d®4V3Cyy IIfll, - n

Corollary 3.11 shows, that the CCT and the MCT are essentially the same as the scale a is near 0.

3.3.2 Amplitude and sign decomposition by the monogenic curvelet transform

We have seen that the classical curvelet transform and the monogenic curvelet transform are
essentially the same at the fine scales. At the coarse scales, in contrast, the transforms differ
strongly. The concept of the Hilbert-complex signal is not applicable to the isotropic scales, cf.
Section 3.1. Thus, y.¢ remains a purely real-valued function for a > @¢. Hence the amplitude
|Yabgl boils down to the absolute value of the real numbers. In analogy to the one-dimensional
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Chapter 3 Amplitude and sign decomposition by the monogenic curvelet transform

Anisotropy Quadrature operator
Coarse scales  Fine scales Coarse scales  Fine scales

Isotropic  Mono- Low Low Riesz trans- Riesz trans-
genic wavelets form form
[OMO09, USvdV09,
HSMF10]
Shearlets Low High (scale- Partial Hilbert Partial Hilbert
[LLKWO0S5] adaptive) transform transform
Classical curvelets Low High (scale- — Partial Hilbert
[CDO05a] adaptive) transform
Monogenic Low High (scale- Riesz trans- Riesz trans-
Curvelets adaptive) form form

Table 3.1: Comparison between the monogenic wavelets, the classical curvelets, and the monogenic curvelets. Only
the monogenic curvelets posses both the high scale-adaptive directionality and a consistent concept of
analytic signal over all scales.

example in Figure 2.1, the real absolute value |y,pg| Oscillates and is non-smooth, even though
vabe 18 smooth; see Figure 3.3, upper row.

The concept of the monogenic signal on the other hand can be applied to all scales, thus R’Bpg
is a R-complex wavelet also at the coarse scales a > . Following the arguments of Section 2.1,
the amplitude |R'B.p¢| can be interpreted as envelope of S,,9. We observe that |R'Bgpg| is slowly
varying and does not oscillate (Figure 3.3, upper row), whereas the oscillating part is coded in
the sign (or phase), cf. bottom row of Figure 3.3 .

Let us give a remark about the connection of the MCT with other existing transforms. Consider
the case @g = oo. In that case, the angular windowing never applies, so the real parts of the
monogenic curvelets are purely isotropic functions. Thus the monogenic curvelet transform boils
down to the isotropic monogenic wavelet transform of [OMO9] or, after discretization, to the
monogenic wavelet frame of [HSMF10]. Table 3.1 depicts the connections we described in this
section.

3.4 Discretization and frames

The discretization of the monogenic curvelet transform directly derives from the discretization
of the classical curvelet transform, which we shortly recall here. For further details we refer the
reader to [CDO5Db]. First recall the definition of a frame, cf. [Chr03].

Definition 3.12. A sequence {fi};2, of elements in a Hilbert space H is a frame for H if there
exist constants A, B > 0 such that

AlFIP < D KF ol < BIFIP,  forall f € H. (3.27)
k=1

The numbers A, B are called frame bounds. If we can choose A = B then the frame is called tight.
A tight frame with A = B = 1 is called Parseval frame. a
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3.4 Discretization and frames

Figure 3.4: Schematic tiling of the frequency plane by the curvelet frame.

The classical curvelet family vy, is discretized as follows. The continuous parameters a, b and
0 are replaced by the discrete samples

aj:= 2_j, JEZ,

1 .
—1/2 ._ 2 ~-1j/2]
a;” = 7 2 ,

0= gl~2‘U/2J, where 1= 0,...,L;— 1 with L; := 4.2/,

i [peutka 20 ka2, it 20,
ke ™V (g 127,k 129), else,

where (ki, k») € Z2. Notice that the discrete parameters sample the continuous parameters exactly
only at every other scale due to the construction of a;, [CDO5b]. The discrete curvelet frame is
the family
e i oy 7= o
(0ikt = dioolpo, (o bl N l=00 Li=1)

where
—~ W(a ~r)V(_L), if j >0,
$joorw) =1\
Wi(a;r), else.
The curvelet frame yields a tiling of the frequency plane according to the scheme in Figure 3.4.
Note that now W and V have to fulfill slightly different admissibility conditions than in the
continuous case, namely

> W@ =1, Vre(3/43/2),
Jj=—00
DVa-1=1, Vie(=1/2,1/2).
[=—00
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Chapter 3 Amplitude and sign decomposition by the monogenic curvelet transform

In order to obtain a tight frame of monogenic curvelets we proceed in the same way as we derived
the monogenic curvelets from the classical curvelets in Section 3.2. We symmetrize the basic
element ¢ ;o with respect to the origin by

_ 1~ _
Y001, 62) = §(¢j,o,o(€1,§2) + ¢j00(=&1, —62))-

to get a tight frame of real valued functions ¢, cf. [CDO5b]. Because of the symmetry it is
sufficient to discretize the angles in the range from [0, 7r) , thus we modify L; to Zj =2 2002

In [HSMF10, Theorem 5.1] and [Hel12], it has been proven that the Riesz transforms maps a
frame of real-valued elements into a frame of quaternion-valued elements with the same frame
bounds. Thus it follows that the family of monogenic curvelets

{R’l//j,k,l =Yiks+e1Rojs +eRojps: 1=0,...,L; - l}jk1 ez

is a tight frame for L2(R?, R).

3.5 Numerical experiments

It is an important task in image analysis to estimate the local Sobolev regularity at a point b € R?
and in a direction 6 € [0, 7], denoted by s, 9. We will see in the next chapter (Subsection 4.1.2)
that this can be achieved by estimating the decay rates of the moduli of the curvelet coefficients.
To get a stable estimate for the decay rate, the amplitude of the wavelet coefficients must behave
well for all available scales a;; that means, the amplitude should not oscillate. We pointed out
in Section 3.3, that the amplitude of the CCT oscillates at the isotropic scales. (Figure 3.3). The
experiments in Figure 3.5 illustrate that this behavior leads to artifacts in the estimate of the decay
rates. On the other hand, we have seen in Figure 3.3 that the amplitude of the monogenic curvelet
transform does not contain oscillations. Thus the estimation by the MCT does not suffer from
these artifacts, cf. Figure 3.5.

From a theoretical point of view, only the limit a; — 0 matters for the estimation of regularity.
Thus we usually shall compute the decay rates from the finest scales a;, which are anisotropic for
a sufficient small a;. However, there are cases where it makes sense to employ also the isotropic
scales for the estimation. For example, if for some reason, e.g., runtime, the number of directions
at the finest scale is small, say we have only four directions. Then we only have three anisotropic
scales available (one time four directions and two times two directions). Hence the anisotropic
scales provide only three data points for the computation of sp¢, which is not sufficient for a
robust estimate of s, . In that case, the addition of further data points by using the subsequent
isotropic scales leads to a more robust estimation, cf. Figure 3.6.

Let us eventually comment on the window functions W and V. The construction of the curvelet
transform requires compactly supported windows, for example the Meyer windows, cf. Sec-
tion A.2. Despite their good theoretical smoothness properties, these compactly supported win-
dows may not be the first choice in practice. As they are very close to an ideal band-pass filter,
the spatial localization is far from optimal, which often causes Gibbs effects. Therefore in ap-
plications, we prefer to use windows with better space-frequency localizations. In particular, we
here use the radial window defined by

W(E) = HEE7HD (3.28)
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3.5 Numerical experiments
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Figure 3.5: Estimation of the regularity by decay rates of curvelet coefficients. The upper image shows the test
image. The first two rows display the decay rates over two different orientations, that is the functions
I(by,by) = So by for @ = n/8 and § = 57/8. The lower row shows the minimum of the decay rates,
that is, the function (b, by) = infyejo2r) So,5,.6,)- AS also isotropic scales a; > ay are considered for the
estimation, the unstable amplitude of the CCT at the isotropic scales results in artifacts (thin curved lines),
whereas the MCT does not suffer from this problem. Note that these artifacts do not occur if we take only
the anisotropic scales a; < a, for the estimation of 54, 5,)-
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Chapter 3 Amplitude and sign decomposition by the monogenic curvelet transform

g - y

s 0

(a) Estimate of s,/g, by the classical (b) Estimate of s,/3; by the classical (c) Estimate of s;/g; by the mono-

curvelet transform using all three curvelet transform using all three genic curvelet transform using all

anisotropic scales. anisotropic scales and the two sub- three anisotropic scales and the
sequent isotropic scales. two subsequent isotropic scales.

Figure 3.6: Estimate of s,/3, by the curvelet transform with four directions at the finest scales. The estimation by
the classical curvelet transform (a) using only the anisotropic scales oscillates strongly. Using also the
subsequent two isotropic scales (b) results in artifacts as explained in Figure 3.5. The estimation by the
monogenic curvelet transform using the anisotropic and two subsequent isotropic scales is much smoother
than the result of (a) and does not suffer from the artifacts of (b).

where § = %.2 This window behaves like a Gaussian window for high frequencies, so the space-

frequency localization is rather good. Clearly, it lacks the compact frequency support, but is
decays rapidly as |£] — oo and |¢| — 0. As angular window, we used in all our experiments the
classical Meyer window, cf. Section A.2.

3.6 Further references

Monogenic wavelets based on isotropic wavelets and the Riesz transform have been proposed in
[OMO09, USvdV09, HSMF10] and were applied to AM/FM analysis [USvdV09] or descreening
and equalization of brightness [HSMF10]. However, image analysis often requires anisotropy,
e.g., for the analysis of edge orientations. To that end, Olhede and Metikas [OMO09] gain anisotropy
by a directional wavelet transform with a fixed number of orientations. Unser and van de Ville
propose in [UvdV09] higher order Riesz transforms, which lead to an approach similar to the
steerable filters of Freeman and Adelson [FA91]. However, the degree of anisotropy of these ap-
proaches does not increase with scale, thus the resolution of the orientations of the singularities
still has some uncertainty. In terms of microlocal analysis, cf. Chapter 4, these transforms do not
resolve the wavefront set [CDO05a].

Eventually, we provide in Table 3.2 an overview of the reasonable combinations of quadrature
operators and wavelet transforms that we have seen in this chapter.

2This wavelet was communicated by S. Held [Hel10].
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3.6 Further references

Proper quadrature

Primal wavelet type operator Example
Monogenic ~ wavelets
Isotropic R [USvdV09, HSMFI10,
OMO09]
Amsotroplc with shear- H,, Shearlets [LLKWO5]
ing group :
Anisotropic monogenic
Anisotropic with rota- R wavelets [OMO09],
tion group Monogenic  curvelets
(this work)

Table 3.2: Proper quadrature operators for selected wavelet constructions and examples.
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Chapter 4

The wavelet amplitude for image analysis —
Microlocal analysis and application to
separation of edges in x-ray images

It is a classical finding in wavelet theory that the local degree of smoothness of a function can
be determined by the decay rates of the amplitudes of the wavelet coefficients [Mal09, Ch. 6].
The connection between classical microlocal analysis and the amplitudes of curvelet coeflicients
has been established in the work of Candés and Donoho [CDO05a]. They showed that the de-
cay rates of the curvelet coeflicient’s amplitudes |{f, vapg)| W.r.t. the scale a are directly related
to the wavefront set. The wavefront set is the classical approach to the directional analysis of
singularities]lH603]. Analogous results have been shown for the shearlet transform by Kutyniok
and Labate [KL09]. This characterization implies that the information we actually extract from
the amplitudes of “microlocalizing” wavelet transforms (curvelets and shearlets) is coded in the
wavefront set. With this insight, the problem of local image analysis by the amplitudes of (mi-
crolocalizing) wavelet transforms is directly connected to the analysis of the wavefront set.

In this chapter, we derive and analyze an new algorithm for the separation of crossing edges
in x-ray images within the framework of microlocal analysis. In order to analyze our method we
set up a suitable edge model based on the microlocal analysis of manifolds with corners. The
connection to the decay rates of the curvelets amplitude enables us to numerically estimate the
wavefront set. The chapter is organized as follows. In Section 4.1, we give a short introduction to
the wavefront set. We describe its characterization by the decay rates of the curvelet amplitudes,
and provide a least squares method for their estimation. In Section 4.2 we motivate and describe
our method for the separation of edges in x-ray images. There we observe that the wavefront set
of a single edge is connected in the space of locations and orientations (phase space), whereas
two (non-tangential) crossing edges are disconnected. Thus, we can separate overlaying edges
in x-ray images by a connected component analysis of the wavefront set. In Section 4.3, we
mathematically analyze the proposed algorithm. To this end, we introduce an edge model based
on the microlocal analysis of distributions acting on test functions by integration over manifolds
with corners (Theorem 4.39). Loosely speaking, we say that a distribution defines an edge if its
wavefront set has the structure of a (geometric) normal bundle of a manifold with corners (Defi-
nition 4.41). Using this edge model, we prove the functionality of our algorithm in a continuous
setting, cf. Theorem 4.54.

Some preliminary results of this chapter have been announced in the short communication
[Stol1b].
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Chapter 4 The wavelet amplitude for image analysis

4.1 The wavelet amplitude for microlocal analysis of images

The wavefront set is the classical approach to define the orientation of a singularity. The wave-
front set of a distribution f on R” lives in the so called phase space R™ x (R" \ {0}), where the first
component is a location and the second component is a direction.! Loosely speaking, a phase
space vector (x, &) belongs to the wavefront set, if f is locally not smooth at x in the direction of
&

In the first part of this section, a short introduction to the wavefront set and its most important
properties is given. We also recall the more refined notion of the H*-wavefront set which is used
for measuring the directional (Sobolev) regularity. In the second part we provide the connection
to the decay rates of “microlocalizing” wavelet transforms, as established in [CD05a] for the
curvelet and in [KLO9] for the shearlet transform. This duality makes the computation of the
wavefront set algorithmically tractable.

4.1.1 Determination of directional smoothness by the wavefront set

We recall the definition of the wavefront set of a distribution where we mainly follow the text-
books [H603, FJ98, Pet83, Sog93]. We start by introducing some notation. Throughout this
chapter Q and Q" denote open subsets of R”. We say that a set I' ¢ R” \ {0} is conic if for every
¢ eT'and every ¢ > O it holds that t£ € I'. We call I' an open cone if I is conic and open. Likewise,
we call a subset A of QX (R"\ {0}) conic if it is conic in the second variable, that is, if it (x,&) € A
implies that (x,7£) € A for every t > 0. We say that N € R" \ {0} is a conic neighborhood of
B C N if N is conic and if there is an open set O such that BC O C N.

We further say that a function g defined on R" decays rapidly in a conic subset I" of R” if for
every N € N exists a constant Cy > 0 such that

8| < Cy(1 +1&)7", forall £ €T

For (x,&) € Q x (R"\ {0}), we denote the projection onto the first variable by m; and the
projection onto the second variable by x5, that is,

m(x,&) =x and m(x,&) =&

The definition of the wavefront set relies on the frequency set, which describes the set of
singular directions of a distribution.

Definition 4.1. Let f € &'(Q) be a distribution with compact support. The frequency set, denoted
by 2(f) € R”A {0}, is the set of those ¢ € R" \ {0} having no conic neighborhood to which the

restriction of f is of rapid decay. More formally,

& ¢ X(f) :< there is a conic neighborhood I of £ such that flr is of rapid decay. 4

!Since we use the term phase in this work also in a different context we note that the phase space is not related to the
phase (angle) of a complex number.

46



4.1 The wavelet amplitude for microlocal analysis of images

Remark 4.2. Let f € &'(Q) be a distribution with compact support. Since Z(f) is a conic set, its
elements are determined on the unit sphere X(f) N S"~!. Hence we may consider X(f) as a subset
of §"~!. This justifies to call the elements of Z(f) directions.

Now assume that f € &'(Q) is a real-valued distribution, that is, (f,¥) € R for every real-
valued C*-function ¢ € E(Q). Then the absolute value of Fourier transform f is symmetric with
respect to the origin, that is,

IF(=&) = [F(&)l, forall £ € R".

In consequence, the frequency set X(f) is symmetric with respect to the origin, so & € Z(f) if and
only if A& € Z(f) for every A # 0. So we identify all points lying on a line passing through the
origin by the equivalence relation

E~n e +0: n=t£. 4.1)

and consider the frequency set X(f) as a subset of the real projective space P"~! := R"/.. When-
ever we consider £(f) as a subset of P"~!, we implicitly assume that f is real-valued and we
denote this with a tilde as superscript, i.e.,

>(f) c Pl

We call the elements of E( f) also orientations. a

We achieve spatial localization of the frequency set around some point xy € Q by computing the
frequency set in a small neighborhood U of xq. To this end, we multiply f by some smooth cutoff
function ¢ € D(U) centered around xp and examine the frequency set (¥ f). It seems natural
that the multiplication with the smooth function ¢ does not introduce new singularities. Indeed,
the following is true, cf. [H603, Theorem 8.1.1].

Lemma 4.3. Let y € D(R") be a test function and f € & (R") be a distribution with compact
support. Then

(Y f) < Z(f). J

Now we may define the localized frequency set.

Definition 4.4. Let f € D’'(Q) be a distribution and let x € Q. We define the localized frequency
set, denoted by X,(f) c R" \ {0}, by

SH= () ZwH

YeD(Q),y(x)#0 4

The localized frequency set X,(f) contains the singular directions of f at x. It is empty if f is
smooth at x. In fact, x € sing supp f if and only if X.(f) # 0. The wavefront set is the bundle of
all localized frequency sets.

Definition 4.5. Let f € D’(Q). The wavefront set of f, denoted by WF(f) c Q x R" \ {0}, is
defined by

WEH = | Xz ;s

xesing supp f
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Chapter 4 The wavelet amplitude for image analysis

The wavefront set is a closed conic subset of Q x (R" \ {0}) since its complement is a union of
open sets. As mentioned in Remark 4.2 we may consider the localized frequency set Z,(f) of a
real-valued distribution f as a subset of P"~!. Likewise, we may consider WF(f) as a subset of
Q x P!, Whenever we do so, we use the notation

WE(f) c Q x P" 1. (4.2)

A very important property of the wavefront set is that it obeys the transformation law of a
covector. To give the precise statement about the transformation law of the wavefront, we require
the notion of pullbacks.

Definition 4.6. Let Q, Q' be open subsets of R” and ® : Q — Q' a C'-diffeomorphism. The
pullback ®* of a subset U’ of O X R" \ {0} is defined by

QU ={(x,&) € QX R"\ {0} : (D(x), (d@f)_].f) e U'}. 4.3)

The pullback of a function f is given by @*f = f o ®. Its natural extension to distributions is
defined as follows, cf. [Sog93, p. 32].

Definition 4.7. Let Q,Q’ be open subsets of R”, ® : Q — Q' be a C*-diffeomorphism, ¢ €
D) and f € D'(Q’). We define the operator @, : D(Q) — D(Q), called the pushforward

operator of @, by
Q.p(x') = (o @ 1)) | det dD]. (4.4)

The pullback operator ®* : D'(Q) — D' (Q) of ® is defined by the duality
(O f, ) = (f, D). 4.5)

By these definitions, the change of variable theorem for the wavefront set can be formulated in
the following compact form, see [Sog93, Theorem 0.4.6].

Theorem 4.8. Let Q, Q) be open subsets of R" and ® : Q — Q' be a C™-diffeomorphism. Then,
for any distribution f € () it holds that

WE(®* f) = ®* WE(f). 4

Recall that a phase space points (x, &) belongs to the wavefront set of f if f is not smooth (C*)
at x in direction £. In order to differentiate between degrees of directional smoothness, we use the
notion of H*-wavefront, where s € R. Loosely speaking, a phase space point (xg, &p) is not in the
H’-wavefront set of f if f is a H*-function locally at xq and into direction &,. Before going to the
definition of the H®-wavefront, we require some notation. For & € R” we write

@ = +1eP).

We say that f € L2(R", ( ® )*) if

fR ,, IFOIE)PdE < .
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4.1 The wavelet amplitude for microlocal analysis of images

A tempered distribution f € S’(R") belongs to the Sobolev space H*(R") if f is a function and

IR = [ @R de <o
Rn
We denote the space of compactly supported H*-distributions by H{,
H: ={f € H’ : supp f compact}.

Further, we define the space of distributions which are locally in H® by
H; ={feD Q) :¢f cH forall p € DQ)}.

The definition of the H*-wavefront set derives from the definition of the classical wavefront set
by merely replacing the term “rapid decay” by “e L*(R", ( @ )>)”.

Definition 4.9. Let f € &(Q) be a distribution with compact support. The H*-frequency set,
denoted by Z*(f) € R" /\\{0}, is the set of those £ € R” \ {0} having no conic neighborhood to
which the restriction of f is in L>(R", ( e }*%). More formally,

& ¢ T°(f) ;< there is a conic neighborhood T of ¢ such that J?lr € L*(R", (@ )>). J

The HS-wavefront set is defined as follows.

Definition 4.10. Let f € D'(Q). The localized H*-frequency set 3(f) for x € Q is defined by

nH= () Twh
YED (Q)(x)#0
The H*-wavefront set WF*(f) c Q x (R" \ {0}) is the bundle of the localized H*-frequency sets
WE'(f) = ] (xh x Z5(h). ;

xeQ

Remark 4.11. In the literature we also find the following three notations expressing the fact
(x0,&0) € WF*(f), namely “f is in H® at (xo,&0)”, “f € H*(x0,&0)” ([H685, CD05al]) and “f is
microlocally in H* at (xg, &p)” ([Pet83]). a

Petersen [Pet83, Theorem 6.1] gives the following convenient characterization of the H*-wavefront
set.

Theorem 4.12. Let f € D'(Q), (x9,&) € Q X (R* \ {0}), and s € R. Then (xo,&0) ¢ WF(f) if
and only if there exists fi € H® (Q) and fr € D'(Q) such that f = fi + f> and (xo,&0) € WE(f2).

loc

Moreover we may choose fi € H(Q) = H* N E'(Q). J
This characterization has some immediate consequences.

Corollary 4.13. Let ¢ € D(R") be a test function and [ € D' (R") be a distribution. Then

WE' (¥ f) € WE'(). .

49



Chapter 4 The wavelet amplitude for image analysis

Proor. Let (xo,£&0) ¢ WF'(f). By Theorem 4.12 there is fi € H; (Q) and f; € D'(Q) with
(x0,&0) ¢ WF*(f2). such that f = f] + f>. We note that H* is invariant under the multiplication
of a test function (cf. [ES97, Theorem 14]), hence ¢ f| € H*(Q). From Lemma 4.3 follows
(x0,%0) ¢ WE(@ f2). Using again Theorem 4.12, we get that (xo, &) ¢ WE (Y f). m

From Theorem 4.12, Theorem 4.8, and the fact that H; is invariant under smooth diffeomorphisms
(cf. [Pet83, Ch. 4, Theorem 6.9]) follows that also the H*-wavefront set is invariant under smooth
diffeomorphisms, see [Pet83, Ch. 4, Theorem 6.10].

Corollary 4.14. Let Q,Q’ be open subsets of R" and ® : Q — Q' be a smooth diffeomorphism.
Then, for any distribution f € 9'(Q') it holds that

WES(@* f) = ©* WE'(f) J

We will later also use the fact that the classical wavefront set is the closure of the union of all
H*-wavefront sets

WE(f) = |_JWF(p), (4.6)

seR

see [Pet83, Ch. 4, Theorem 6.3].
Following [H685, p. 91], we define a local regularity function indicating for every point

(x0,&0) € Q x R\ {0} the maximal directional smoothness index, that is, the maximal s € R
such that f is in H* at (xg, &p).

Definition 4.15. Let f € 9’'(Q). The directional regularity function s;i. QX (R"\{0}) » RU{oo}
is defined by

$5(5.€) = supls € R : (x,8) ¢ WF'(). .

At this point, expressing s;i in terms of the notation given in Remark 4.11, i.e.,

s}(x,f) =sup{s eR: f e H(x, )},

may give a more intuitive understanding (see [H685, p. 91].)

Since WF*(f) is conic in Q x (R" \ {0}), the regularity function is positively homogeneous of
degree 0 in the second variable, so s;i. can be regarded as a spherical function s;i. QxS 5 RU
{oo}. If we additionally assume f to be real-valued, then s* is even in the second variable, hence

*

S
the domain of s;i can be identified with Q x P"*~!. In that case, we write s;‘, QX P S5 RU{oo)

with
$(x,60) = sup{s € R : (x,0) ¢ WF (f)}.
The directional regularity function s}i contains rich information about the singularities of a dis-

tribution. So for a detailed analysis of signals and images, it is highly desirable to compute an

estimate to s;i, which will be treated in the following.
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4.1 The wavelet amplitude for microlocal analysis of images

4.1.2 Resolution of the wavefront set by amplitude coefficients of parabolic scaling
transforms

Up to now, there is no obvious way to compute the wavefront set or the directional regularity
function for an arbitrary tempered distribution. The difficulty in computing the wavefront set lies
in the several limiting processes involved. The first one is the localization in space, the second
one is the micro-localization with respect to direction, and the third one is the determination of
the decay rate. It was proven in [CD05a] that these three limiting processes can be bundled into
one single limiting processes a — 0 using the curvelet transform, cf. (3.14) for its definition.
Indeed there is a one-to-one correspondence between the decay rates of the curvelet coefficients
and the wavefront set of a tempered distribution, which is stated in the following theorem, cf.
[CDO05a, Theorem 5.2]. Note that the second component of the wavefront set is identified with
the sphere, that is, £ € RZ\ {0} is represented by an angle between [0, 27r), compare Remark 4.2.

Theorem 4.16. Let f be a tempered distribution and
X = {(x0,6p) € R? x [0, 2n) : 'y decays rapidly near (xo,6p) as a — 0}.
Then WE(f) is the complement of Z, that is, WF(f) = (R x [0, 2n)) \ Z%. J

There is even a one-to-one correspondence between curvelet coefficients and the H*-wavefront
set, see [CDO05a, Theorem 5.3]:

Theorem 4.17. Let f be a tempered distribution and let s € R. Let T*(x, ) denote the square
function

o d 1/2
o= IHaxoPa?=| .
0 a’

It holds that (xg, 6y) € WF°(f) if and only if

f (T*(x,0))* dxdf < oo
N
for some neighborhood N of (xg, 6). a

Remark 4.18. Kutyniok and Labate [KL09] showed results analogously to Theorem 4.16 and
Theorem 4.17 for the complex shearlet transform. 4

Theorem 4.17 gives a precise connection between the asymptotic behavior of the amplitude of
the curvelet coeflicients and the local Sobolev regularity. In particular, with the curvelet transform
(or alternatively the shearlet transform) we have a tool at hand to actually compute the directional

regularity function s;; with a reasonable effort.

4.1.3 Numerical estimation of the wavefront set by curvelet amplitude regression

We now describe how we may estimate the directional regularity sj} in the discrete setting using
the curvelet transform. To this end, assume that the curvelet transform is sampled at the discrete
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Chapter 4 The wavelet amplitude for image analysis

values a;, 6;, and by. Since we are in discrete setting we may choose the neighborhood N of
Theorem 4.17 as the discrete point (bg, 6;). Then, the condition of Theorem 4.17 reduces to

’ 2 2y da
|Ff(a, bk,91)| a“F— < 0. (4.7)
0 a?

To estimate s}(bk, 6;), we determine the maximum value s such that (4.7) is true. After the change
of variable u = a~! this is equivalent to

fl ICp(u™!, by, OPu*! du < oo. (4.8)
a0

A sufficient condition for the integral (4.8) to exist is that the integrand decays faster than u~'.

Thus the integral exists if there is uy > aal and C > 0 such that
|Ff(bt_1,bk, 91)|2M2S+1 < C2 X M—l—e
& [Lp b 0f <C?-u™77%
& 0™, by, O < C-u™™' 72
for every u > ug and every € > 0. The resubstitution u = a~! gives
IC(a, by, ) < C - a**1*/2, (4.9)

To estimate s from discrete samples I'y(a;, by, 6), j = 0,...,J, J € N, we adapt wavelet amplitude
regression (see e.g. [AGV09, Chapter 11]) for curvelet coefficients. That is, we estimate the
critical value of s by a least squares approach. To this end, we compute the least squares solution
in C and s of

U ¢(aj, bo, 60)| = C - a’*". (4.10)
Taking logarithms in (4.10) leads to

InTr(aj,br,0) =InC+(s+1) Ina;,
| S— N——
=1y =X
hence the least squares solution of (4.10) is given by
o Xy = NXy

N 2 _ Nn327
=0 Nx

s+1=

and C =exp(y — (s + 1)x),

where X = % Z?’: oXjandy = ﬁ Z;V: oY;j- Overall, an estimate for s;i(bk, 6;) is given by

. o xyj— Nxy
$i(b, 01) ~ == - L 4.11)
ijo xj R

£

Having estimated the directional regularity function s 7

by applying a suitable threshold to s;}.

Using the described curvelet amplitude regression, we encounter the issue that the estimates
for s*f(b, ) are not sharply localized around the actual singularities, cf. Figure 3.5. In order to get
sharply localized edges we use a standard post-processing step called non-maximum suppression.
This eliminates those points in the function b +— s}(b, 6) which are not local maxima into a
direction 6. This technique is used also in classical edge detection methods such as the Canny
method, see e.g. [Can86].

- we may estimate the wavefront set WE(f)
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4.2 A new algorithm for separation of edges in x-ray images

X2

—_——
2 \ )
X1
(a) A synthetic x-ray image f. (b) Wavefront set WE(f) as subset of R? x P.

Figure 4.1: Microlocal analysis of a synthetic x-ray type image consisting of three basic structures. We observe that
each of the three edge structures of the image f (the circle, the line, and the square) corresponds to a
connected subset of the wavefront set WF(f). Furthermore, these connected components do not intersect
each other.

4.2 A new algorithm for separation of edges in x-ray images

We now exploit the connections between the wavefront set and the decay rates of the curvelet
coeflicients for the separation of overlaying edges in x-ray images. In this section, we motivate
and develop our method, an appropriate edge model and a proof of functionality will be provided
in the subsequent section.

Let us first state the problem. Assume we are given an x-ray type image f which is the linear
combination of finitely many building blocks fi, ..., f, € D'(R"), i.e.,

=20

M-

j=1
An example of a simple x-ray type image is depicted in Figure 4.1(a). That image consists of a
circle feircle = 1B,(0), @ square fsquare = 1[—1 372, and an ideal line fiine = dS{\B}XR, where dS{ VAR
denotes the distribution acting on test functions as integration along the line { V3} x R. Given the
image

S = Jeircle + fiine + fsquarea

our goal is to extract the edges of each single building block.

In order to see the difficulties of that task, let us assume that we have an edge detection method
at hand which extracts the edges of the image f, which is the singular support of f in this example.
The example is constructed such that the edges of the three structures intersect in the point p =
(1, V3). In consequence, the intersection of their singular supports is

SINg supp feircle N SINE SUPP fiine N SINg SUPP fsquare ={p} # 0.
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Since each of the singular supports of feircle, fiine and sing supp fsquare is @ connected set, the union
sing supp f = sing supp feircte U Sing supp fiine U Sing supp fiquare

is connected as well. Hence an analysis of the topology of sing supp f gives us just one single
connected component, even though f consists of three different structures.

The idea of our method is to consider the wavefront set instead of the singular support, thus
to lift the problem by one dimension to the phase space R? x P. Inspecting the wavefront set
of the image f, cf. Figure 4.1(b), we observe that the wavefront sets corresponding to each of
the three building blocks are connected, but they do not intersect each other. This is because
the intersecting image structures have different orientations at their intersection points. These
observations give rise to the following method for the separation of edges in x-ray type images.
We compute the wavefront set of the image, extract its connected components and project these
connected components back to the image domain. The method is outlined in Algorithm 1.

Algorithm 1: Separation of edges in x-ray type images

input : X-ray type image f = Zﬁi | i

output: Separate edges E; corresponding to each of the edges of f;,i=1,...,N.

begin
1. Compute the wavefront set V‘Vli( f) € R?2 X P (e.g. by the decay rates of curvelet or
shearlet coefficients);
2. Extract the connected components Wy, ..., Wy of \715( ;
3. Project the connected components W; ¢ R? x P back to the image domain R”. The
edges E; correspond (up to reordering) to the projection to the first component of W, i.e.,
E,’ = 7T1(W,'), i= 1,...,N;

end

We now give a more detailed description of the implementation of the single steps of our al-
gorithm. In the first step of Algorithm 1, we need to estimate the wavefront set. To this end,
we estimate s%(x, 6) and consider (x, 6) to belong the wavefront set, whenever s;i.(x, ) is smaller
than a fixed threshold value 7 € R. As described in Section 3.5 and Subsection 4.1.3, we may
use the curvelet transform to estimate the directional regularity function s’;.(x, 6). In practice, a
discrete estimate of s;(x, 0) is given as a three dimensional array s, ,, where k; and k, are dis-
cretizations of the spatial variable x = (x1, x») and [ is the discretization of the directional variable
6. In our experiments, k; and k; are in {1,2,...,512} and [ is in {0, {%, ..., 115—6”}. We mentioned in
Subsection 4.1.3 that the estimates obtained from curvelet amplitude regression are not sharply
localized. A common method to get sharply localized edges is non-maximum suppression. In
this step, the value oo is assigned to each entry s, i, if (k1, k2) is not a local maximum of s, o
with respect to direction /. In the concrete implementation, we use the function nonmaxsup of
[KovO08]. After the non-maximum suppression, we apply a threshold operation with respect to a
threshold value 7 € R to the array s. The arising binary array w, given by

1 if Skidol < T
Wikt =3 0% for each ky, k», and /,
0, if Sky kol >T.
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(a) (b)

Figure 4.2: (a) A synthetic x-ray image. (b) Result of the separation of edges algorithm, 7 = 5.25. The connected
edges are marked in same color. We see that the crossing of the three structures is nicely resolved.
However, we also see a shortcoming of the numerical approximation. The boundary of the square is
not detected as a single connected edge, but consists of four components.

forms our estimate of the wavefront set. The threshold parameter 7 has to be adjusted empirically.
In the experiments, it turned out that choices between 3 and 8 give mostly satisfactory results.

In the second step of Algorithm 1, we compute the connected components of the wavefront set
in R? x P. This corresponds in the discrete setting to the extraction of the connected components
of the binary array w, which we have computed in the first step. To this end, we use Mat-
lab’s connected component algorithm for binary arrays (bwlabeln) with the following necessary
modification. The third component of w, which codes the orientations, needs to be considered
as periodic, since it expresses the discretization of the real projective space. Thus we link the
corresponding connected components in the third component at the boundaries of w.

As the last step, we assign a random color to each connected component of w and project these
connected components back to the image domain {1, ..., 512}>. As result we get an image where
each connected edge is marked in a different color, see Figure 4.2(b) for instance.

Now let us turn to the numerical experiments. At first, we apply the separation of edges to the
synthetic x-ray type image we considered at the beginning of the section. The results are depicted
in Figure 4.2. We see in Figure 4.2(b) that our algorithm indeed separates all three intersecting
edges. However, we also observe one shortcoming of our numerical estimate. The edge defined
by the square is detected to consist of four single edges, which should in theory be detected as
one single edge (compare Theorem 4.54 of the next section). This issue at the corners mainly
seems to stem from two sources. First, the non-maximum suppression tends to suppress point-
like local maxima. And second, the local regularity s* is lower in the non-compass directions than
in the compass directions (compare Theorem 4.37 of the next section). Thus, the non-compass
directions of the corner points are more likely to fall beyond the threshold 7, and hence, are more
likely to be estimate to lie outside the wavefront set.

Next we look at the x-ray image of a human shoulder, see Figure 4.3(a). In that image, we find
many crossing edges arising from the boundaries of the shoulder and the thorax bones. In most
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(b)

Figure 4.3: (a) A typical x-ray image, taken from [Rad12]. (b) Separation of edges algorithm applied to the x-ray
image, T = 6.75. Connected edges are marked in same color. Most crossing structures, for example the
shoulder bones and the ribs, are separated from each other. As the number of edges exceeds the number
of distinguishable colors, some edges appear to have the same color, even though they are not connected
in the image domain.

cases, the bones intersect non-tangetially, so the separation of edges algorithm is able to resolve
the crossings edges. A particular example are the intersections of the shoulder and the rib bones;
see Figure 4.3(b).

4.3 Edge model and microlocal analysis of the separation of edges
algorithm

Our next goal is the mathematical analysis of our algorithm for the separation of edges in x-ray
images. To this end, we require a suitable mathematical model for edges in x-ray images, which
we will develop in the following. With that edge model we will be able to derive conditions under
which our algorithm works properly.

Edges are classically modeled as those points of an image f where the modulus of the gradient
|V f| attains a local maximum in the gradient direction. The direction of an edge point is then
considered to be the gradient direction |§—§|. This classical edge model is particularly easy to
interpret and has proven its plausibility in many applications, see e.g. [Can86]. However, it
has two major drawbacks. The first one is that it requires the image to be differentiable. This
constraint conflicts with the model of “ideal” edges, for example an ideal step edge f = 10,c0)xR-
The second disadvantage of the classical edge model concerns the resolution of multiple edge
directions. The gradient is in particular a function on the image domain, thus it assigns a unique
direction to every spatial point. Thus if a point possesses multiple edge directions, such as at
corner points or at the intersection of edges in x-ray images, then the gradient returns only an
averaged direction. But this average direction only in rare cases coincides with one of the actually
expected edge directions. The first shortcoming can be resolved relatively easy by a convolution

56



4.3 Edge model and microlocal analysis of the separation of edges algorithm

of the image with a smooth function, at the cost of a some uncertainty with respect to edge
locations. The exact resolution of multiple directions, on the other hand, is much harder to
achieve.

In this section, a novel edge model is presented, which resolves both of the mentioned issues.
It applies to non-differentiable and even to distributional images. Even more important, it allows
for the resolution of arbitrarily many orientations at each spatial point. We motivate our edge
model as follows. First consider a planar geometric figure ¥ ¢ R? such that its (topological)
boundary E := dz2Y is a smooth manifold. The natural edge of f is the boundary E, the natural
orientations of the edge points are the normal vectors to the boundary E. Thus the edge points
and their orientations can be identified with the normal bundle of E, i.e.,

|t x (NE N\ {0p) =: NE\ {0},

xeE

where N.E c R? denotes the normal space of E at x. Now assume that the figure Y is given
implicitly as the function f = 1y, that is, the figure is coded in an image f : R> — R. It is
easy to see that the edge set E coincides with the singular support of f. It is a classical result of
microlocal analysis [H603, Ch. VIII] that the normal bundle of the boundary of Y is equal to the
wavefront set of the indicator function 1y, that is,

WF(ly) = NE \ {0} (4.12)

Our edge model mainly bases on this correspondence between geometric objects and wavefront
sets of the associated function. We will say that a distribution defines an edge if its wavefront set
has the structure of the normal bundle of a manifold, cf. Definition 4.41.

In our example, we have assumed that the boundary of Y is a smooth manifold. In order
to be able to treat corner points, we extend the model to manifolds with corners. Note that
in this case, the equality in (4.12) is not any more valid as it stands. However, we establish
in Theorem 4.39 an equation analogous to (4.12) for manifolds with corners, which employs a
geometrically motivated definition of normal space.

4.3.1 Submanifolds with corners as geometric edge models

We now introduce submanifolds with corners in R”, which will serve as our geometric edge
model. We loosely follow the notations and definitions of [Joy09], [K6504] and [Lee03]. We start
with recalling the definition of a submanifold in R", following [K604, p. 116].

Definition 4.19. Let [ € N U {co}. A non-empty subset M of R” is called d-dimensional C!-
submanifold if for every point p € M there is an open neighborhood U c R”" and a C'-diffeo-
morphism © : U — V onto an open subset V of R" such that

OMNU)=Vn R x{0)9).

We call the diffeomorphism @ chart and M N U its chart domain. A set of charts {®;};e; with
chart domains M N U, is called atlas, if {U,;};c; forms a covering of M. a

In the following, the index [ € N U {oo} denotes the order of differentiability of the manifold and
the integer d, where 0 < d < n, denotes the dimension of the manifold.
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Definition 4.20. Let M be a subset of R". A vector v € R” is called geometric tangent vector to
M at p € M if there is a differentiable curve « : (—€,€) — M, € > 0, such that (0) = p and
a’(0) = v. We call the cone of all geometric tangent vectors to M at p, defined by

GT,M = {v € R" : vis a tangent vector to M at p},

the geometric tangent cone. 1f it is a vector space, we call GT,M geometric tangent space of M
ar p. |

We comment at the end of the subsection on the differences of the geometric tangent vectors to
the tangent vectors which are most frequently used in modern differential geometry.

Since the submanifold M is embedded in R, we can express the tangent space explicitly by
the differential of the charts, cf. [K604, p. 120].

Lemma 4.21. Let M C R”" be a d-dimensional C'-submanifold, and ® a chart for p € M. Then
the geometric tangent space to M at p is an d-dimensional vector space given by

GT,M = (d,) ' (R x {0}"9). J
For subsets of R” we define the geometric normal cone and geometric normal space as follows.

Definition 4.22. Let M be a arbitrary subset of R”. A vector v € R” is called geometric normal
vector to M at p € M if v is orthogonal to all geometric tangent vectors at p, that is, if v L u for
every u € GT,M. We call the space of all geometric normal vectors to M at p, defined by

GN,M := (GT,M)" = {£ € R" : (£,{) =0 forevery { € GT, M},
the geometric normal space. 4

The geometric tangent bundle and the geometric normal bundle are defined as follows.

Definition 4.23. Let M be a subset of R". We define the geometric tangent bundle of M, denoted
by GT M to be the disjoint union of the tangent cones at all points of M, that is,

GTM =] |GT,M = Jip)xGT,M.
pPEM pEM
Analogously, the geometric normal bundle is defined by

GNM = | | GN,M = |_J{p} x GN,M. 4
PEM PEM

Submanifolds with corners are defined analogously to classical submanifolds. The only dif-
ference is that the charts map on quadrants instead of subspaces. In the following, we use the
notation

07 = [0, o) x {0}

for the positive d-dimensional quadrant in R".
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Figure 4.4: Geometric tangent (blue) and normal vectors (red) of the submanifold with corners Q% = [0, c0)?.

Definition 4.24. Let [ € N U {co}. A non-empty subset M of R” is called d-dimensional C!-
submanifold with corners of R" if for every point p € M there is an open neighborhood U c R"
and a C'-diffeomorphism @ : U — V onto an open subset V of R” such that

OMNU)=VnQj. (4.13)

We call the diffeomorphism @ chart with corners and U its chart domain. A set of charts with
corners {®;};c; with chart domains U, is called atlas with corners, if {U;};c; forms a covering of
M. a

We refer to Figure 4.4 for an illustration of a simple manifold with corners and its geometric
tangent and normal bundles. We call a d-dimensional C’-submanifold (with corners) also shortly
manifold (with corners). Note that each manifold is in particular a manifold with corners but not
the other way round. Let us illustrate this in an example.

Example 4.25. 1. The open d-dimensional cube K = (0, 1)? x{0}"~¢ in R" is a d-dimensional
C*-manifold.

2. The closed d-dimensional cube K = [0, 114 x {0} in R" is a d-dimensional C*®-manifold
with corners, but not a manifold. a

Remark 4.26. Definition 4.24 follows the classical constructions of manifolds with corners us-
ing the quadrants of R"” as model spaces, see e.g. [Lee03, Joy09]. We mention that these model
spaces cannot model polytopes in R"?, n > 3, whose vertices have more than n edges. For exam-
ple, a pyramid whose basis is a polygon of 4 or more vertices is not a submanifold with corners
of R, Note that this issue does not occur in two dimensions, thus such restrictions do not apply
for the modeling of two dimensional images. J

In order to distinguish different types of corners, we next define the rank of a point on the
manifold. This allows in particular for the discrimination between corner and non-corner points.

Definition 4.27. Let M be d-dimensional C!-submanifold with corners of R” and ® a chart for
p € M. We define the rank of p, denoted by ranky, p, by

rankys p = #supp ©(p).

We say that p is a non-corner point if ranky, p = d and a corner point if ranky, p < d. 4
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In Definition 4.24, a chart ® may map a point p € M to a rather arbitrary point in Q) =
[0, 00)¢ x {0}"~?. In order to simplify subsequent definitions and proofs, a distinguished type
of charts with corners is now defined, called canonical charts. Such charts map points on the
manifold to a certain subset of points in Q.

Definition 4.28. Let M C R” be a d-dimensional C’-submanifold with corners of R” and ® a
chart with corners for p € M. Further let r = ranky; p. We say that @ is a canonical chart with
corners if the non-vanishing components of g = ®(p) are exactly its first r components, that is, if

CD(p) = (q1,---,Qr,0,---’0)

and g1,...,q, # 0. 4
We show that every manifold with corners possesses a canonical chart with corners.

Lemma 4.29. Let M C R”" be a d-dimensional C'-submanifold with corners of R". For every
p € M there is a canonical C'-chart with corners. 4

Proor. Let p € M, ® be a chart with corners for p and let » = ranky; p. We construct a canonical
chart ¥ for p. Denote iy, ..., i, the non-vanishing indices of g = ®(p), that is, ¢;,,...,q;, # 0.
Leto : {1,...,n} — {1,...,n} be a permutation and define the action of o to a vector x € R",
denoted by ox, by

(0X)i = Xo(i)

for every i € {1,...,n}. We can choose o such that it satisfies o(k) = i, for k = 1,...,r and
ok’) =k fork =d+1,...,n. Weset ¥ = 0! o ®. ¥ is an /-times differentiable map and
Y(U) c [0, 00)? x {0}*~¢. By construction, ¥ satisfies ¥(py) # 0 fork = 1,...,r and ¥(py») = 0
fork” =r+1,...,n. Hence, V¥ is a canonical chart with corners for p. n

Canonical charts allow for a convenient representation of the geometric tangent space of a
manifold with corners by the differential of the chart.

Proposition 4.30. Let M c R" be a d-dimensional C'-submanifold with corners, and let ® be a
canonical chart with corners for p € M. Denote r = rankyy p. Then the geometric tangent space
to M at p is an r-dimensional vector space given by

GT,M = (d®,) (R x {0}"™").
and the geometric normal space to M at p is an r-dimensional vector space given by

GN,M = d®] ({0} x R"™). 4

Proor. The proof is analogous to the case of manifolds without corners in [K504, p. 120]. We
first look at the geometric tangent space of the prototype manifold Q7 = [0, 00)? x {0}" 4. For
q=(qi1,..-,4r0,...,0), where q1,...,q, # 0 and r < d, we observe that

GT,0 = R x {0}"". 4.14)
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Now let U c R” be the chart domain of ®. The diffeomorphism ® maps any differentiable curve
@ : (—€,6) > M N U to a differentiable curve a = ® o « on the quadrant ®(U) N Q7. For any

such curve g : (—€,€) — ®©(U) N Q7 on the quadrant there is a curve S such that ® o 8 = S. So
there is a one-to-one correspondence between the set differentiable curves @ : (—€,€) > M N U
with a(0) = p. By the chain rule, the tangent vectors of such corresponding curves @ and @ are
related by

@'(0) = (@ 0 @)'(0) = d®,(a’(0)),

and, inversely, a’(0) = (dCI)p)‘IE'(O). So it follows
GT,M = (d®,) ' GTe() Q.

Since @ is a canonical chart, it holds that exactly the first » components of ®(p) do not vanish, so
it follows by (4.14) that

GT,M = (d®,) " (GToQ) = (d®,) ' (R" x {0}"™"),
which is the first claim. The computation

GN,M = {£ € R" : (£,0) =0 for every { € GT, M|
= {f eR": (&, dd);ln) =0 foreveryn € R" x {O}"_r}
={eeRr": (D, € (0 xR}
= dO] ({0} x R"™")

proves the second assertion. ]

As a direct consequence, we can compute the geometric tangent and normal spaces for arbitrary
points on the quadrant Q7, thus for p € Q7 the geometric tangent space is given by

GT,Q) = span{e; : i € supp p} (4.15)
and the geometric normal space by
GN, Q) = span{e; : i ¢ supp p}. (4.16)

The geometric tangent and normal bundles of Q% are depicted schematically in Figure 4.4. An-
other immediate consequence of Proposition 4.30 is the following statement.

Corollary 4.31. Let M c R" be a d-dimensional C'-submanifold with corners. For the dimen-
sions of the geometric tangent and normal spaces it holds that

dim(GT,M) =ranky p and dim(GN,M) = n —ranky, p. J

We summarize the most important differences between classical manifolds and manifolds with
corners in Table 4.1.

61



Chapter 4 The wavelet amplitude for image analysis

Classical submanifolds Submanifolds with corners
Charts © mapping to R x {0}"~¢ mapping to Q7 = [0, 00)? x {0}
Classical tangent od ned lrod ned
space T, M do, (R x {0}"™%) dd, (R x {0}"™7)
Geometric tangent d d);l (Rd « { 0}”‘d) d CD;_zl (RrankM P x| O}H_rankM P

space GT,M

Table 4.1: Comparison between classical manifolds and manifolds with corners.

Remark 4.32. Now we can explain why we have chosen the distinct notation GT,M for the
geometric tangent space, instead of the classical notation T, M. In modern differential geometry,
the tangent space is defined by an algebraic property, abstract from the geometric interpretation.
The (algebraic) tangent space T, M of M at a point p is defined as the space of all linear mappings
V: C(M) — R, called derivations, which satisfy the product rule

v(fg) = f(p)v(g) + g(p)v(f)

for all f,g € C!(M). For classical submanifolds without corners, the algebraic and the geometric
definitions lead to the same spaces, that is, there is an isomorphism between T,M and GT,M,
(see [J493, Chapter 2]). For manifolds with corners, in contrast, the algebraic and the geometric
definitions of the tangent space are not equivalent. The algebraic tangent space of a d-dimensional
submanifold of R” leads to the expression given in Lemma 4.21, that is,

T,M = (d®,) (R x {0}"9).

In particular, the dimension of the algebraic tangent T, M space coincides with the dimension d of
the manifold, no matter if p € M is a corner point or not. On the other hand, the dimension of the
geometric tangent space GT, M depends on the locus of the point p. Indeed, from Corollary 4.31
we see that the rank of a point on the manifold determines the dimension of the geometric tan-
gent space. For example, the algebraic and the geometric tangent space do not coincide for the
manifold with corners M = [0, ) X R at p = 0; that is,

GToM = {0} x R C R? = TyM.

We also note that, since the dimensions of the tangent spaces are not constant, the geometric tan-
gent bundle does not necessarily fulfill the so-called local triviality condition. Thus the geometric
tangent bundle of a manifold with corners is not a fiber bundle in general. 4

Let us now turn to the geometric edge model. In the following, we write dr» M for the (topo-
logical) boundary of a submanifold with corners M of R", that is, p € dr-M if and only if for
every neighborhood U of p it holds that UNnM # @ and UN(R"\ M) # 0. The following definition
fixes our geometric model for edges based on manifold with corners.

Definition 4.33. Let M be a C!-submanifold with corners of R”. We call M an C'-edge defining
manifold if M is (topologically) closed in R” and its boundary dg»M is connected. We call the
boundary 9z M a Cl-edge. 4
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4.3 Edge model and microlocal analysis of the separation of edges algorithm

Definition 4.33 may be interpreted as follows. The locus of an edge is considered to be the
topological boundary of a submanifold with corners. (We notice that dg=M 1is in general not a
manifold with corners.) The structure of an edge is determined by the structure of its defining
manifold. In particular, the orientations indicated by the (geometric) normal vectors of the mani-
fold determine the edge orientations. The connectedness of the boundary assures that each edge
defining manifold models exactly one connected edge.

4.3.2 A microlocal edge model

We have just clarified how we understand the geometry of edges in R"*. Since images are not
given as geometric objects, but as functions or distributions expressing light intensities, we have
to formulate an analytic model which fits to the geometric model of Definition 4.33. To this end,
we consider initially the volume forms dS,;, where M is an edge defining manifold. The volume
form dSj, can be considered as distribution which acts on test functions by integration along M,
that is,

(dSy, ) = f $dS,  forall ¢ € DR").
M

We will based our analytic edge model (Definition 4.41) on the equality of the geometric normal
bundle of M and the wavefront set of dSy,. To establish that equality we need some preliminary
results.

In the following we write in a slight abuse of notations

GNM\ {0} == U{P} X (GN,M \ {0})
PEM

for the geometric normal bundle with the zero section removed. To make computations in the
following easier, we introduce the class of separable bump functions.

Definition 4.34. We say that ¢ € D(Q) is a separable bump function centered around xo in R”
if there are functions ¢, ..., ¥y € D(R), satisfying /; > 0 and ¢; = 1 in a neighborhood of xo,
such that

N
o0 = | |wixp.
j=1
We denote the class of separable bump functions centered around xo by Dyep(€2; X0). a

It follows from the next two lemmas that it is sufficient to consider the separable bump functions
for the computation of the localized frequency set.

Lemma 4.35. Let f € D'(R") and y € R". Let ¢ € D(R") such that $(y) # 0. Then there exist an
open neighborhood U of y such that for every y € D(U)

W) c (@) .

Proor. Let € > 0. As ¢(y) # O there exist an open neighborhood U C supp ¢ of y such that
|p(x)| > € for every x € U. Let ¢ € D(U) and define

ﬁw:%,wmﬂ,
0, else.
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Asge C®and ¢f € & we may apply Corollary 4.13 to conclude
W f) =Z(gef) c (@) "

Lemma 4.36. Let f € D'(Q) and x € Q. If ¢ € D(Q) such that $(x) # 0, then there exist
Y € Diep(£2)

W) S Z(@N.
In particular,
nH= () T@H. ;s
¢EDsep(Q;x)

Proor. By Lemma 4.35 there exist a neighborhood U C supp ¢ of y such that for every ¢ € D(U)
W) S 2.

Let [ > 0 so small such that x + [-/,{]" C U. For every j = 1,...,n choose ¢; € D(R) such that
suppy; C xj+ [=LI], ¥;(y) 2 O forall y € R and ¢;(y;) = 1 for all y; in a neighborhood of x;.
Then

n
v = Jwixp
j=1
is in Dyep(U; x) and by Lemma 4.35 holds that Z°(yf) € X*(¢f). The second claim is a direct
consequence. [

Now we are able to compute the frequency sets of the distributions dS¢s.

Theorem 4.37. Let0 <k <dandp € QZ suchthat p = (p1,...,Pr,0,...,0), where py,...,pr #
0. Then & € R" \ {0} belongs to the H*-frequency set X,(dSgn) of the distribution dS g if and only

if
E1=..=6=0 and #l: k+1<I[<d:&#0}<25+n—-d.

In particular,
Zp(dSQz) =GN, 0\ {0}. a

Proor. Let ¢ € Dyep(R"; p) be a separable bump function supported in a sufficiently small ball
around p. Since ¢ is a separable bump function there are ; € D(R) such that

o) =[ w0
j=1

J

where ; > 0 and ¢;(y;) = 1 for all y; in a neighborhood of p;, for all j = 1,...,n. We have to
check for which s € R there is an open cone V such that the integral

LQ@@ﬁwkm<m. @.17)
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Since aj\f is continous, I@\‘ (m)*(n)** is integrable on every ball of radius R > 0 around the origin
so it it sufficient to check for which s the integral

f TRy dn @.18)
V\Bg(0)

exists, where R may be chosen arbitrarily large. To this end, we first compute

¢f () = f ) P(x)e” " 1dS (x) = L ’ l_[ W (x))e” 2™ 1S (x)

Qd d ]:1
= f ...f f f l_le(xj)e_zﬂlenj dxl e dxkdxk+1 dxd H ‘r//_](pl)
—00 —o00 JO 0 J:1 j:d+l _
=1
k 0 ) d 0 ‘
— l_[ f (r//j(xj)e—Zm Xjnj dx]' l_[ f ‘r//j(xj>e_2m Xjn;j de. (419)
j=1 vV j=k1 V0

Now we write & = (&,&”,&") € RF x R* x R""“ and distinguish the two cases ¢ # 0 and
& =0.

We start with the case &’ # 0. In this case, there exists / with 1 </ < k such that & # 0. Then
we find a conic neighborhood V of & such that 17, # O for all n € V. Since all ¢; are compactly
supported and continuous, g is bounded for each 7 € V by

6l < e | | f lwiep| dnj- [ ] fo v iep| dx; < e - ] lwill,-
i ket 7

As y; is smooth, ; is of rapid decay. So ¢/§]\” is of rapid decay on the cone V. In particular, (4.18)
exists for all s € R. In consequence, & ¢ X,(Q)) for every s € R.

Now we come to the second case & = 0, where ¢ is of the form (0,&”,&””). We denote the
number of non-zero elements of £ by m, that is,

m = #supp &”.

Without loss of generality, we may assume that &y, ...,Eq-m = 0 and Eg_p11, ....Eq # 0. The
other cases follow from a permutation of the indices. Furthermore, we may assume that || = 1.
So £ reads as

f = (0, ...,0, é:d—m+1s ,fn) with |§| =1.

We aim for estimating |<?57‘ (n)lz(n)zs and we begin with an estimate for the factor (n)zs. We set

1 )
g = — min H
072 icdemtl... dlle

and define a truncated cone around ¢ of aperture 0 < @ < g by

Va,R={n€R”:‘§—|—nl < aand || > R}.
n
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The cone was chosen so narrow that the maximal entry of each vector n € V, g is within the last
d — m + 1 components, that is,

7o = max il = max |7 = (Fa—ms1s oo M)loo-
=1 i=d-m+1,....d

yeeesll =d-m+1,...,

By the equivalence of the norms in R”, there are constants C, C’ > 0 such that
a=ms 1 s 1)l < Il < C - Mloo = C - 1=t 15 oo M)loo < C" - 1Mazmr1s ooy 1)

Thus, for every s € R, there are R; > 0 and Cy, C, > 0 such that

Cs - (L4 Maemets o 1)) < L+ D < Ch (1 + 1ammts oo I’ (4.20)

for all 77 in the truncated cone Vg, .
We next estimate |¢ f(n7)| by estimating the factors of (4.19) for the indices j =d-m+1,...d.
Integrating by parts gives forall j=d —m + 1,...d that

=2mi xjn; dx; = —27rix_,--r]_,~ —2mi xjn; d
f %(x e Xj = |:¢](xj) i 7 . —27Tl m; f lﬁ (xj)e Xj
i, (¢j(0) + fo e el dxj) 4.21)

Since ¢; = 1 in a neighborhood U; of p;, we have that /(y;) = 0 for all y; in U;. Thus the
remaining integral is the Fourier transform of a the smooth function Il[oioo]gb;.(x 1), hence of rapid
decay in n;. Therefore we obtain

vj(0) + fo W (e))e I y(0) # 0.
and hence asymptotically

forall j=d-m+1,...d. 4.22)

(o)
“2miXx:n;
j(; Yilxpe T dxjl <

nj
For the estimate of the remaining factors of (4.19), i.e., for the indices j = 1, ...,d —m, we note
that there are constants E, E’ > 0 such that for all b > R, and all it holds

b
E< f 1000y < E 4.23)

and

b 00 2
_bfo W j(xj)e > Midx;| dn; < E'. (4.24)

This is because the integrands in (4.23) and (4.24) are square-integrable and non-zero.
By the equations (4.20), (4.22), (4.23), and (4.24) we have estimated each factor of |¢ f (n)|2<n>2s
from above and from below. From these estimates, we conclude that

fv 7Ry dn < oo
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if and only if

1
f (L ey * - 12 A0t -+ dipy < 00, (4.25)
1%

e Ma-met - - Inal?

where V!  denotes the projection of V, g, to the last n — d + m components. Since the angle of
aperture « was arbitrarily small, we may choose it so small that |74-,+1l, ..., [72] > C - @ > 0 on

V! ., for some constant C > 0. Therefore we may transform (4.25) into polar coordinates and

notice that the integral over the angular terms exists and is non-zero. Hence, the integral of (4.25)
exists if and only if

f 2+ )P < oo,
Ry
This integral, in turn, exists if and only if

2m+2s+n—-d+m-1< -1,

which is equivalent to
m>2s+n—d.

Therefore, £ € X)(Q7) if and only if
E1=...=6,=0 and m<2s+n-—d.

Now we come to the second claim. By (4.6), the classical frequency set is the closure of the
union of all H*-frequency sets. Hence, we have

(0 = =50 = (0¥ xR\ (0} = GN, @)\ {0},

seR
where the last equality follows from Proposition 4.30 by noting that here rankg: p = k. ]

We give some particular examples of Theorem 4.37.

Example 4.38. 1. For the Dirac distribution f = dSyo; = ¢ in O’(R") we have for p = 0 that
k =0andd = 0, thus
0, if s € (—o0,-5),
Sh=1_" . 2
R*\ {0}, if s €[-7,00).
2. For the half line f = dSjo,c0) in O'(R?) and p = (1,0), ¢ > 0, we have that k = 1, d = 1, so

ifse (_007 _%)a

=)= {{0}><<R\{0}), ifsell

57_00)'
For p=0,wehavek =0and d = 1, so
0, if 5 € (—o0, - 1),
() = Hoy x R\ {0}, if s € [-3,0),
R2\ {0}, if 5 € [0, ).
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3. For the quadrant f = dSy .y in 7Y (R?) and p=(0),t>0,wehavethatk = 1,d = 2,
hence
0, if s € (00, }).

zs‘ —
r) {{0} X (R\{0}), if s €[3,00).
For p =0, wehave k =0 and d = 2, so

0, if s € (-0, 1),
() = {0, : A€ R\ {0} U{(2,0): A e R\ {0}, ifse[],1),
R\ {0}, if s € [1, o).

For p = (p1, p2), where p1, p» # 0, the H*-frequency set is empty for every s € R, because
p is not in the boundary of Q7. 4

Having computed the frequency set of distinct points of the distributions dS¢y, we now are able
to compute the wavefront set of distributions integrating over a general submanifold with corners.

Theorem 4.39. Let M be a C*-submanifold with corners which is closed R". Then

WF(dS ) = GN M \ {0}. J

Proor. For x ¢ M we trivially have X,(dSy;) = 0 = GN,M. For x € M, we choose a canonical
chart with corners @ for a neighborhood U of x. By the definition of canonical chart, ®(x) = y is
of the form (y1, ..., %, 0, ..., 0) for some k € N, where yy, ..., yx # 0. For ¢ € D(U), we have

@)= [ wasu= [ p@w)ldetan; g, = @'dSg;. .
MU QInaU)

Hence, since the localized frequency set is local, it holds that
2,(dSy) = Zx((I)*dSQZ,).

This allows us to apply Theorem 4.8 (change of variables of the wavefront set) and Theorem 4.37
to obtain

2(dSy) = Z(P*dS ) = dD] (T (dSgn)) = dPL (GNa Q))) = GN. M.

Hence,
WE(dS,,) = U{x} x ¥.(dSy) = U{x} x GN,M = GN M,
xeM xeM

which proves the assertion. ]

Remark 4.40. If we restrict ourselves to classical manifolds, then Theorem 4.39 is a classical
result for the wavefront set, see [H603, p. 265]. a

Theorem 4.39 shows that the geometric normal bundle of a manifold with corners GN M \ {0}
coincides with the wavefront set of its corresponding volume form dS,;. This correspondence
now gives rise to the following edge model. We say that a distribution defines an edge if its
wavefront set has the structure of a geometric normal bundle.
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4.3 Edge model and microlocal analysis of the separation of edges algorithm

Definition 4.41. Let f € 9’ (R"). We say that f is an C'-edge defining distribution if there is a
C'-edge defining manifold M such that

WE(f) = GN M \ {0}.

We call sing supp(f) = drnM the edge set of f. 4

Remark 4.42. e For any given f the edge set is uniquely determined, but the corresponding
edge defining manifold M may be not unique. For example, the wavefront sets of the
corresponding volume forms of the closed unit disk D = {x € R? : |x| < 1} and the torus
T = {x € R? : |x] = 1} coincide, that is, WF (dSp) = WF(dSr).

e We could have used the volume forms dS;, themselves as edge model, but images com-
posed exclusively of such volume forms then we would be “cartoon” images. But we
would like to allow also smooth parts in between the edges, so we only postulate that the
non-smooth part of a distribution has the structure of a volume form. 4

Up to now, we only have seen examples of C* edge defining distributions. The existence of
C'-edge defining distributions, / € N, follows from the fact that we can find for each closed conic
subset S of Q x (R" \ {0}) a distribution f € 9’(Q) such that WF(f) = S, cf. [H603, Theorem
8.1.4].

We see in the following that edge defining distributions are stable under the action of elliptic
differential operators, which are defined as follows, cf. [H603, Section 8.3].

Definition 4.43. Let Q c R” be open and m € Ny. A differential operator P(x, D) of the form
P(x, D)= )" au()D",
|a|l<m
where x € Q and a, € C*(Q), is called differential operator with C*-coefficients of order m. P
is called elliptic its the principal part P, (x, &), defined by

Pu(x,6)= ) aa(x)&",

lal=m
has no zeros on Q X (R” \ {0}). a

The most prominent example of an elliptic differential operator is the Laplacian, denoted by A.
An elliptic differential operator with C*-coeflicients P has the important property that it does not
alter the wavefront set, i.e., for any distribution f holds that

WE(Pf) = WE(f),

see [H603, Corollary 8.3.2]. This property provides us a way of how to construct a large variety
of edge distribution from existing ones, for example from the volume forms dS,,.

Proposition 4.44. Let f € D'(Q) be a C'-edge defining distribution and let P(x, D) an elliptic
differential operator with C*-coefficients. Then Pf is a C'-edge defining distribution as well.

Proor. Since P is elliptic, the wavefront sets of f and Pf coincide, see [H603, Corollary 8.3.2].
In particular, Pf is a C'-edge defining distribution. ]

To conclude this subsection, we summarize the relations between the geometric and the ana-
lytic edge model in Table 4.2.
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Geometric model Analytic prototype
Edge defining objects Submanifold with corners M Volume form dS
Edge locations Topological boundary dr» M Singular support sing supp(dSy,)

Edge orientations at x € @  Geom. normal space GN, M \ {0} Frequency set X,(dSy,)

Table 4.2: Correspondence between a submanifold with corners M and its corresponding distribution dS,,.

4.3.3 Proof of functionality of the separation of edges in x-ray images

In the following, we derive conditions such that the proposed method for the separation of edges
in x-ray images (Algorithm 1) works properly.
In analogy to the notation (4.2), we use the notation

GN,M = (GN,M \ {0})/. c P""!,

when we consider the geometric tangent or normal space as subset of the projective space P!,
and likewise,
GNM = U {p) X (GN,M \ {0})/. C R" x P"~".
PEM
Our first goal is to show that the edges we have modeled are connected in the phase space
R” x P"!. To this end, we need the following preparations. We mention that connectedness is
equivalent to path-connectedness for manifolds, see e.g. [Lee03].

Lemma 4.45. Let M be a d-dimensional C'-submanifold with corners of R". Then GN,M # {0}
if p € OrnM and GN,M = {0} if p € M \ Op» M. 4

Proor. Let p € M and @ be a canonical chart with corners for p. Since @ is a homeomorphism,
p € OrnM if and only if ®(p) € Orn Q). Assume that p € dgn M. Then ®(p) lies on the boundary of
the quadrant Q”, so at least one component of @(p) vanishes. In consequence r = rank; p < n—1.
By Proposition 4.30 it follows that dim(GN, M) = dim({0}" xR"™") > dim({0}""' xR!) = 1. This
implies in particular that GN,M # {0}. On the other hand, if we assume that p ¢ dr» M, then ®(p)
is an interior point of Q. This implies that the tangent space at p equals R", and in consequence,
for the normal space it holds that GN,M = {0}. ]

Noting that 0 € R" does not correspond to a point in projective space we get the following
consequence.

Corollary 4.46. Let M be a d-dimensional C'-submanifold with corners of R". Then, GN oM #0
if and only if p € OrnM. In particular,

GNM= [ ] (p)xGN,M, 4
pEdrn M

Lemma 4.47. Let M be a d-dimensional C'-submanifold with corners of R". Then GN oM is
connected for every p € Orn M. 4
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B(p)

Figure 4.5: Tllustration of the path construction in the proof of Lemma 4.48.

Proor. As p € Og:M it follows that ranky p < n — 1. First assume that ranky p < n — 2. Since
GN, M is a vector space of dimension greater or equal 2, the set GN, M \ {0} is connected. Hence,
the quotient space (GN,M \ {0})/. is connected as well. Next assume that ranky; p = n— 1. Then

GN,M = (GN,M \ {0})/ . consists of single point which is connected. [

Now we can prove that the geometric normal bundle of a manifold with corners is connected.

Lemma 4.48. Let 1 < d < n. For each p € Orn Q) there is a neighborhood U of p such that
GN UNden Q" Q7 is connected as subset of R" X Pl a

Proor. Let (p, 6) be a point in the geometric normal bundle of the quadrant (,}1\%&" 00y fp =0,
let

€= 3 Miliesupp p pis if p 0,
1’ lfp =0.

Then, for each g € V := B.(p) N dr» Q) any straight line between p and g is a subset of V. Choose

any p’ in B¢(p) and any orientation 8’ € GN p Q5. We construct a path from (p, 6) to (p’, ). First,
construct a path I" from p to p’ by the parametrization

y@) =tp+ (1 -1)p’, 0<tr<l,

see also Figure 4.5. Since p and p’ are both in V and since € was chosen sufficiently small, the
path I' is in V. Further, it follows from the choice of € that

supp y(s) = supp p’ for each s € (0, 1].
Hence, it follows from (4.16) that
GN,»M = GN,yM < GN,M, foreach s € (0, 1].
and the same relation holds true for the factor spaces

GT\IY(S)M = E}\N,,/M C (ﬂ}\l\/IpM, for each s € (0,1].

71



Chapter 4 The wavelet amplitude for image analysis

In consequence, 6’ is in GN (,)M for each ¢ € [0, 1], so t — (y(¢),8") describes a path from (p, ')
to (p @) within GNVQ - Since GN M is connected (Lemma 4.47), there is a path from 6 to ¢’
in GNpM. Joining both paths together, we get a path from (p, ) to (p’, 8"). ]

Theorem 4.49. Let M be a d-dimensional C'-submanifold with corners of R". The geometric
normal bundle GN M is connected in R" x P"~! if and only if Og»M is connected in R”. 4

Proor. If OgnM = 0, the statement is trivial, so we assume that dr-M # 0. First suppose that
OrnM is connected in R" and let (p, 9), (p’, &) € CTI(I@R,l muM. Since Ogn M is connected, there is a
path I between p and p’ in Or= M. Let g be an arbitrary point on the path I and let @ be a canonical
chart with chart domain U c R". By Lemma 4.48 we find an open neighborhood V C ®(U) of
®(gq) such that

GNynog, 0,0y
is connected. Now set U’ := ®~!(V) c U. Since the pullback ®* is a homeomorphism, the set

(/‘}\NU'ﬁaRn MM = Q*GFIVHaR” QZ QZ

is connected. Since g was chosen arbitrarily, we find for every g € I" such an open neighborhood
’

U’. These U’ form an open covering of I'. As I is compact there is a finite covering say U}, ..., U},
where N € N. Further, since I is connected, we may assume that the U l’ are ordered such that

U_nU/NT#0, foralli=1,..,N.

So there exists points (¢;,6;) € U._, N U/ NT foralli = 1,...,N. Since all the E}T\IU;mRnMM are
connected, there is a path from (g;-1,6;-1) to (g;, 6;) in GN U!Nden uM foreachi = 1,...,N and
also from (p, 6) to (¢1,6) and from (gy, Oy) to (p’, 8’). Joining these paths together, we get a path
from (p,6) to (p’,6") in (TI%Rn mM. Hence, (FHTI(%RH mM is connected.

For the opposite direction assume that GN M is connected in R” x P""!. Since the projection
onto the first component 7y is continuous, Ope M = m(E}T\I M) is connected. [ ]

Theorem 4.49 in particular implies that the geometric normal bundle of an edge defining mani-
fold, considered as subset of R” x P"~!, is connected.

The key assumption for the functionality of our separation of edges algorithm will be the
transversality of the edges, which we define in the following. First recall the definition of transver-
sality for classical submanifolds. Two submanifolds (without corners) My, M, of R" are said to
be transversal, if for each p € My N M the union of the tangent spaces T,N| and T, N span the
R”, cf. [Lee03, p. 128]. Analogously, we define a geometrically motivated transversality relation
for manifolds with corners as follows.

Definition 4.50. Let M; be a d;-dimensional C’i-submanifold with corners of R”, where 0 < d; <
n,l; € NU {0}, and i = 1, 2. We define the relation

M hM, = GT,M;+GT,M,=R"forevery p e M; N M,.
If My N M,, we say that My and M, are geometrically transversal. If there exists p € My N

M> such that GT,M; + GT,M, # R", we say that M| and M, intersect geometrically non-
transversally. 4
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X2
M,
M;

Figure 4.6: Illustration of the geometrically transversal intersection of the manifolds with corners M, = [-2,2] x {0},
M, =[-3,-1]x[-1, 1], and M3 = {0} X [0, 1]. M; and M, intersect at the set S = {(z,0) : t € [—1, 0]}, but
since GT,M, + GT,M, = R?, for each p € S, M, and M, are geometrically transversal. As M, N M5 = 0,
the manifolds M, and M; are geometrically transversal, as well. M; and M3 do not intersect transversally,
since the geometric tangent spaces at the intersection point (0, 0) do not span the R.

The geometric transversality relation is illustrated in Figure 4.6. Geometric transversality can be
characterized as follows.

Lemma 4.51. Let M; be a d;-dimensional C l"—submanifold with corners of R", where 0 < d; < n,
l; e NU {oo}, and i = 1,2. Then the following statements are equivalent:

(1) My and M, are geometrically transversal.
(2) GT,M + GT,M> = R" for every p € Orn M1 N OrnM>.

(3) The intersection of the geometric normal spaces is the zero-space; that is, for every p €
M N M, holds
GN,M; N GN,M, = {0}. (4.26)

(4) GNM; nGN M, = 0. g}
Proor. (1) = (2). Clear by definition.
(2) = (1). By proposition GT,M|+GT,M, = R" for p € Or« M| NOrnM>. As a consequence of
Lemma 4.45, it holds GT,M; = R" if p € int(M;), i = 1,2. Since M1 N M> C int(M) Uint(M>) U
(Orn My N OrnM3), we get GT,M| + GT,M, = R" for every p € M| N M>, which is the definition

of transversality.
(1) © (3). By definition holds GT,M; + GT,M, = R" for every p € M| N M5, thus

{0} = (R")* = (GT,M, + GT,M»)* 2 (GT,M))* N (GT,M)* = GN,M; N GN,M,.

(3) © (4). The assertion follows by
GNM; n GNM, = (GN,M; N GN,M; \ {0})/~ = 0/ = 0. .

Recalling the equality of the geometric normal bundle of a manifold with corners and the
wavefront set of the corresponding volume form, cf. Theorem 4.39, equation (4.26) gives rise to
the following definition of a transversality relation for distributions.

Definition 4.52. We say that two distributions f, g € '(Q) are transversal, if

WE(f) N WE(g) = 0. 4
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Chapter 4 The wavelet amplitude for image analysis

As last lemma for the proof of the main theorem of this section, we need an elementary asser-
tion about the wavefront set of the sum of distributions.

Lemma 4.53. Let f,g € D'(QY). Then

(WE(f) N WF(g)) U WE(f + g) = WE(f) U WF(g). 4

Proor. It is sufficient to show
E(HNZ(Q)VE(S +g) =Z(f) UX(g)

for compactly supported f and g. The assertion then follows from the definition of the wavefront
set.

First assume that & ¢ Z(f) U X(g). Then there is a common conic neighborhood V of &, such
that both | f] and |2| are of rapid decay in V. Hence If/-l-\gl < |f1+18| is of rapid decay in V, meaning
that &y ¢ X(f + g). Since the relation &y ¢ X(f) N Z(g) is trivial, the inclusion “C” is proven.

Next let & € X(f) U 2(g). For & € Z(f) N X(g) there is nothing to show. So without loss
of generality we may assume that & € X(f) and & ¢ X(g), the remaining case follows from
interchanging f and g. We show that &y € Z(f + g) by contradiction. To this end we suppose that
&0 ¢ Z(f + g). Then there is a conic neighborhood V of &j such that | £|is not of rapid decay and
both |g| and | ml are of rapid decay in V. So we get from

—

fA<If+g-8l<If+gl+l2l

that f is of rapid decay on V. This contradicts the assumption & € Z(f). So & € 2(f + g), which
completes the second inclusion “>”. |

We now use the results obtained so far to prove the functionality of Algorithm 1 under the
geometric condition that the C'-edges M ;j are pairwise transversal.

Theorem 4.54. Let f; be Cl-edge defining distributions with corners for j = 1,...,N, where
N € N. Consider the x-ray type image
N
=25
j=1

and let Wy, k = 1,..., N’ be the N' € N connected components of WE(f). If the f; are pairwise
transversal, then N = N’, and there is a permutation o : {1,...,N} — {1,..., N} such that

Woy = WE(fj)),  forall j=1,...,N.

In particular,
m1(We(j)) = sing supp f;, forall j=1,...,N. 4

Proor. Since f; is an edge defining distribution, j = 1,..., N, there is by definition a manifold
with corners M such that 9g» M is connected and

WE(f;) = GN M.
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From Theorem 4.49 it follows that the geometric normal bundle GN M ; is connected in R*xP"" !,
hence WEF(f;) is connected in R" x P! for all J=1,..,N. Since the f; are pairwise transversal,
ie.,

WE(f) "\WF(f;) =0,  foreachi# j,

it follows from Lemma 4.53 that

N
WE(f) = WF(Z [ =WE(f)U ... UWF(fy),
j=1
where the union is disjoint. Since the wavefront set is a closed subset of R” x P"*~!, we get that
\7\715( Hu \VIE( fr) is not connected whenever j # k. Hence, the wavefront set of f consists indeed
of N connected components. Altogether, the connected components of the wavefront set of f
correspond, up to a reordering, to the wavefront sets of the distributions fi, ..., fi, which is the
first part of the claim.

The second assertion is a direct consequence, because the singular support is the projection of
the wavefront set onto the first component. ]

4.4 Further references

The wavefront set was developed mainly by Hormander for the analysis of linear partial dif-
ferential operators in the 1970ies; see the textbook [H603]. The usability of the wavefront set
for imaging was recognized in the work of Quinto [Qui93] where microlocal analysis is used
to characterize reconstructable image structures in limited angle tomography. A recent applica-
tion in this context are edge-preserving limited angle reconstruction algorithms which exploit the
correspondence of the wavefront set and curvelet coeflicients [Fril2].

The one-to-one correspondence between the wavefront set and the decay rates of curvelet co-
efficients has been established by Candes and Donoho [CD05a], analogous results for the shearlet
coefficients have been shown by Kutyniok and Labate [KL09]. Frequently occurring edge struc-
tures, such as corners, lines and curves, have been investigated in terms of decay rates of curvelet
and shearlet coefficients in [CD05a] and [GL09], respectively.

Edge models have been proposed in various forms. Probably the most widely known is the
Canny-type model [Can86], where edges are considered to be local maxima of the gradient with
respect to the gradient direction. Another approach is to consider an image as the composi-
tion of functions belonging to a class of model functions. For example, in [CD04], images are
considered to consist of functions which are two-times differentiable except on a set of piece-
wise C2-curves. Edge detection based on shearlet coefficients was considered in [GL09] for that
model. Besides these local models, there exist non-local edge models relying on variational anal-
ysis. For example, the Mumford-Shah functional [MS89] seeks for the optimal trade-off between
the approximation error by a function which is smooth except from an edge set and the length of
that edge set. An overview of the mentioned edge models is given in Table 4.3. Note that this list
only contains the most frequently used models and is not exhaustive.

The processing of crossing structures in x-ray images has been investigated by Duits [Dui05]
and Franken [Fra08] who analyze crossing elongated structures by a so called orientation score.

75



Chapter 4 The wavelet amplitude for image analysis

Edge model

Mathematical basis

Canny [Can86] Local maxima of gradient w.r.t. gradi-
ent direction

Image gradient

Donoho/Candes [CD04] C?-functions away from C 2_curves Class of model
functions
Mumford/Shah [MS89] Edges determined by best approxima- Variational ap-
tion piecewise smooth approximation  proach
This work Distributions whose wavefront set Wavefront set
have the structure of a geometric nor-
mal bundle

Table 4.3: Comparison of the proposed edge models to some important classical edge models.

An orientation score is a decomposition of an image into different orientations but only on one

fixed scale. Thus, the orientation score lacks a multiscale aspect.

A geometric separation problem related to the separation of edges has been investigated in the
work of Donoho and Kutyniok [KL12]. There, curvilinear structures are separated from point-

like structures by the joint sparsity of wavelet-shearlet frame.
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Chapter 5

Signal and image analysis based on complex
wavelet signs

We have seen in the last chapter that the amplitudes of the wavelet coefficients are closely con-
nected to the classical theory of microlocal analysis. The signs of the wavelet coefficients, in
contrast, do not correspond to such a well established theory. Although first indications to the
usability of the signs of the wavelet coefficients have been given in [KMMGS87], [Hol95], and
[Mal09], wavelet signs are still poorly understood and thus rarely used for signal and image anal-
ysis. This stands in contrast to the fact that the wavelet signs carry a great portion of the signal
and image structure, which we illustrate in Section 5.1.

In this chapter, we derive a novel method for local signal analysis based on complex wavelet
signs, called discrete signature, which we apply for the detection of salient points or edges. To
this end, we first study the behavior of the wavelet signs for basic one-dimensional signals (Sec-
tion 5.2). We observe that the wavelet signs stay nearly constant at salient points but vary strongly
at non-salient points. These observations motivate to measure the local variation of the wavelet
signs and to consider the points of low variation as salient points. We use directional statistics to
measure the variation of the wavelet signs. We verify in a series of numerical experiments that
our method reliably detects salient points of a signal, such as jumps and cusp. Our experiments
further indicate that the discrete signature distinguishes between locally symmetric and locally
antisymmetric feature points. This gives complementary information to the amplitude-based sig-
nal analysis, which determines the local order of smoothness.

We generalize the discrete signature to higher dimensions using monogenic wavelets and apply
this approach to edge detection (Section 5.3). We shall see that our sign based method competes
with the phase congruency based edge detection methods of [Kov99] and [FS00]. In many of
our experiments, the discrete signature yields a better balance between the detection of the pro-
nounced structures and of the fine details than phase congruency.

In Section 5.4, we point out the main conceptual advantages of the discrete signature over
phase congruency. Whereas phase congruency requires several additional heuristics, which in-
troduce extra parameters, it is remarkable that our discrete signature neither requires pre- or
post-processing nor any further heuristics.

5.1 The importance of wavelet signs in images
The goal of this section is to illustrate the importance of the sign of the wavelet coefficients for

the image structure. To this end, we decompose an image f € L*(R?, R) into its complex wavelet
coefficients and shuffle either their amplitudes or their signs. (See Section 1.2 for the definitions
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Chapter 5 Signal and image analysis based on complex wavelet signs

(a) Original image.

(c) Shuffle of signs (5.2) (d) Shuffle of amplitudes (5.3)

Figure 5.1: The effect of shuffling the wavelet coefficients of an image. (b) A random shuffie of the entire coefficients
totally destroys the image structure as expected. (c) The shuffled sign destroys nearly all the image struc-
ture. Only the locations of the edges can be recognized. (d) After shuffling the amplitudes, the image
appears noisy but the image structure is clearly recognizable. In order to emphasize the described effects
the highpass and lowpass residuals were removed in all three experiments.

of amplitude and sign of a complex number.) We will see that a loss of sign information de-
stroys much more of the image structure than a loss of amplitude information, cf. Figure 5.1.
This indicates that the signs of the wavelet coeflicients are more important for the reconstruction
process.

The concrete experiment is as follows. Let i be a real-valued wavelet such that the family
{¥ .1} jki forms a Parseval frame for LZ(R2, R), and thus the reconstruction formula

F= > uaWins,  in ARLR),

Jikil

is valid. Let cx; = (R'¢ 1, f) be the R-complex wavelet coefficients of f and let 7 be a random
permutation. We compare the following three types of reconstruction. The random permutation
the raw wavelet coeflicients,

Jre = Z C im0 ¥ jkils (5.1)

ikl

78



5.2 The wavelet sign for local signal analysis

the random permutation of the signs of the coefficients

Jis = Zlc ikl sgn (Cj,zr(k),l) Yjkis (52)

Jkl

and the random permutation of the amplitudes of the coefficients,

Jra = Z|Cj,n(k),l| sgn (C j,k,l) Vjk- (5.3)

okl

The outcome of this experiment is presented in Figure 5.1. As expected, the image information
gets completely lost after a shuffle of the wavelet coefficients (Figure 5.1b). In Figure 5.1d we
observe that most of the image structure is preserved if the coefficients’ amplitudes are shuffled
and the signs are kept. The reconstruction appears noisy but the picture is still well recognizable.
On the other hand, a permutation of the coefficients’ signs destroys the structure of the image
almost completely, only slight contours remain visible; see Figure 5.1c. In this experiment, we
chose ¥ to be a directional wavelet of the type (3.10) with N = 8 orientations and the Riesz
transform as quadrature operator. However note that the choice of the wavelet is not critical
for the outcome of this experiment, similar results can be obtained using for example isotropic
monogenic wavelets [Sto08, HSMF10], monogenic curvelets, or shearlets.

To summarize, this experiment illustrates that a great portion of an image’s information content
is coded in the wavelet signs.

Remark 5.1. Analogous observations about the importance of signs in images have been made in
[OL81] for Fourier coefficients, in [Lee96] for Gabor wavelet coefficients, and in [HSMF10] for
steerable wavelets based on the Riesz transform. To the author’s knowledge there is no rigorous
mathematical explanation for these observations. A positive result in that direction has been given
by Logan [LJ77] in a one-dimensional setting. Logan showed that, under mild assumptions,
bandpass signals are determined up to a constant by their sign information.

5.2 The wavelet sign for local signal analysis

We have motivated the important role of the wavelet signs in the last section. We now aim for
exploiting the rich information coded in the wavelet signs for signal analysis.

In what follows we restrict ourselves to those wavelets whose Fourier transforms are real-
valued, smooth, and supported in a compact subset of the positive real-axis. To fix ideas, we
use the Meyer-type complex wavelet k, which is defined by the inverse Fourier transform of the
(one-sided) Meyer window W; that is,

k(x) = FHW)(x). (5.4)

The graphs of xk and W are depicted in Figure 5.2. The exact definition of W is provided in
Section A.2. Because of its one-sided frequency spectrum, « is a complex wavelet of the form

K =+ iHY, (5.5)

where iy = Re « is a real-valued bandpass wavelet; cf. Section 2.1.
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Chapter 5 Signal and image analysis based on complex wavelet signs
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Figure 5.2: The complex Meyer-type wavelet  (left) and its Fourier transform k = W (right).

Behavior of wavelet signs at salient and non-salient points To derive a sign-based signal
analysis tool, we investigate the fine scale behavior of the wavelet signs, sgn (f, k,5), for some
typical salient signal structures such as jumps and cusps. Let us start with the unit step function
u = 1jo,.0). The wavelet coefficients centered around the origin are given by

k" (a&) .Va [ k(aé)
k) = @0y = v [ g = N0 [0 g (5.6)
R i€ nJr ¢
(See Table A.1 for the Fourier transform of the unit step.) As k is one-sided, non-negative and
supported in a compact set away from the origin, the integral is positive. Thus, the sign of the
wavelet coefficient equals i for all scales a > 0, i.e.,

sgn U, Kq0) = i. 5.7

Likewise, we calculate the wavelet signs of a cusp function x — |x|¥, where 0 < y < 1. By the
formula for the Fourier transform of | e |7, cf. [GSS64, 11.2.3, eq. 12], we get that

\
(P, Kao) = (o, (Ka0)” >——sm r( +1) f (I“;;;fg) : (5-8)

Thus, the wavelet signs are equal to
sgn(|e|”,k,0) =—1, foralla>0. (5.9)

Now let us consider the case where the wavelet is not centered around the origin, thus for b # 0.
Then, the translation by b introduces a modulation in the integrals of (5.6) and (5.8), and thus, the
integrals are not any more strictly positive. In consequence, the wavelet signs are not any more
constant with respect to the scale a, that is, the functions a — sgn (u, k. ) and a — sgn{| e |, k, )
are oscillatory.

The discrete signature as measurement of wavelet sign variation In the above examples, the
signs of the wavelet coefficients are constant for all scales a at the singular point b = 0 and non-
constant at the non-singular points » # 0. This observation motivates to consider a point b € R as
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5.2 The wavelet sign for local signal analysis

Im

Re

Figure 5.3: Illustration of the moments of the directional statistics of the wavelet signs w;;, for a fixed location b and
five scale samples a;, where j = 1, ...,5. The signs w;; of all scales j = 1,...,5 are composed head to tail
in the complex plane. The length of the mean resultant vector w;, = é Z;:l wj, equals to one minus the
directional variance, i.e., [w,| = 1 — p,. The directional mean y, is the orientation of the mean resultant
vector, that is, (1, = sgn wp.

a salient point of the signal if the wavelet signs sgn (f, k, ) are constant or only slowly varying in

a. Those points where the signs are far from being constant at are considered to be regular points.

Our next goal is to realize these observations as a numerically tractable indicator to local feature

points. To that end, we switch to a semi-discrete setting, i.e., we take a finite number of scale

samples {a j};\’: , and denote the corresponding wavelet signs by
Wb 1= Sg0{f, Ka;b)-

Following our observations about the basic signals, we aim for measuring whether the wavelet
signs w;, are close to being constant or whether they have strong variations with respect to j. To
achieve this we regard the signs of the wavelet coeflicients as directions within the complex plane
and then utilize the framework of directional statistics to measure their variation. Directional
statistics describes the statistical properties of a sample set of directions; see e.g. [Fis96] for an
introduction to this topic. The basic descriptor of the data set {w j,b}?]: | 18 the ordinary mean value
of the sample set, given by

N
1
wbzﬁjzz;wj,b €C. (5.10)

In the context of directional statistics, the magnitude wy, is called mean resultant vector. The
moments of the data set, the directional mean u; € C and the directional variance pp, € [0, 1],
derive directly from that mean resultant vector. The directional mean is defined by

Up = Sgn Wy
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Chapter 5 Signal and image analysis based on complex wavelet signs

Signal Feature type Wavelet signs at b = 0
Unit step u Step to right +i
Negative unit step —u Step to left —i
Negative power of modulus —| e | Cusp upwards +1
Power of modulus | e |” Cusp downwards -1

Table 5.1: Correspondence of feature types and wavelet signs at location b = 0 for unit steps and pure cusp singular-
ities. For the steps, the wavelet signs are imaginary. For the cusps, the wavelet signs are real.

and the directional variance by
Py =1—lwpl.

The moments of directional statistics are illustrated in Figure 5.3. The directional variance can
be interpreted as a measure for the variation of the orientations in the complex plane. Thus,
we consider the wavelet signs to be slowly varying if their directional variance is low; more
precisely, if the directional variance p;, falls below some threshold 7/ € [0, 1]. In that case, the
directional mean g, can be interpreted as an estimate of the overall orientation of the sample set.
This motivation gives rise to define the quantity

Mb, ifpb<‘!',,
0, else,

af(b) :={

which we call discrete signature. The discrete signature is equal to zero in the case of high
directional variance, and is equal to the directional mean in the case of low directional variance.
We can rewrite this directly in terms of the mean resultant vector wj, as

= i :
Ff(b) = {sgn wp, if [wp| > 1 5.11)

0, else,

where 7 = 1 — 7’. Let us summarize the idea of the discrete signature. The discrete signature is a
complex number of modulus 1 at a salient point of a signal and equal to O at a non-salient point.

So far, we only have an interpretation for the modulus of the discrete signature. However, the
discrete signature gives further information about the local shape of a salient point. To motivate
this, let us again take a look at the wavelet signs of the step and the cusp singularities. We on
the one hand observe that the symmetric cusp singularity has real wavelet signs, see (5.9). At the
antisymmetric step singularity, on the other hand, the wavelet signs are imaginary, cf. (5.7). These
correspondences, which are tabulated in Table 5.1, suggest to interpret the discrete signature as an
indicator of local symmetry. A real discrete signature indicates a locally symmetric feature point,
such as a cusp, and an imaginary discrete signature indicates a locally antisymmetric feature
point, such as a step.

Numerical experiments We confirm by a series numerical experiments that the discrete sig-

nature indeed is in accordance with our interpretations made in the previous paragraphs. Here,
we use the scale sample sequence a; = 273, where j = 1,...,12. The threshold value 7 = 0.7
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turned out to be a reasonable choice. The first experiment (Figure 5.4) shows that the numerical
estimates coincides with our observations for steps and cusps made in the beginning of the sec-
tion. In particular, the directional variance is low at the salient points and high at the regular parts
away from the jump and cusp locations (second row in Figure 5.4). We further observe that the
peaks in the moduli of the mean resultant vector are sharply localized around the salient points,
so no further post-processing, such as non-maximum suppression, is required. Also for a more
complex signal, we observe that the discrete signature has a large absolute value at the salient
points; see Figure 5.5. The experiments also show that the discrete signature clusters around the
imaginary axis for locally antisymmetric step-type singularities and around the real axis for lo-
cally symmetric cusp-like singularities (third rows in Figure 5.4 and Figure 5.5). This backs our
interpretation of the discrete signature as indicator to local symmetry and antisymmetry.

5.3 An extension of the discrete signature to higher dimensions

Our next goal is the generalization of the discrete signature to higher dimensions. To this end, let
us reconsider its one-dimensional definition (5.11). The difficulty of a generalization to higher
dimensions lies mainly in the generalization of the complex wavelet . But recall that we already
know from Chapter 3 several reasonable constructions of higher dimensional complex wavelets.
We here focus for the sake of simplicity on the following isotropic monogenic wavelets, a com-
ment on the use of anisotropic complex wavelets is given at the end of the section. Let s be
real-valued and isotropic bandpass wavelets of the form

Y(x) = FHW( o)), (5.12)

where W is again the Meyer window function, see Section A.2. Recall from Chapter 2 that the
Riesz transform is the natural quadrature operator for isotropic wavelets, so we deal with the
isotropic monogenic wavelet « : R” — R!*" defined by

K=+ Ry.

The isotropic discrete signature Although the wavelet coefficients with respect to  are vectors
in R'*”, the moments of directional statistics in 1+ n dimensions are defined in complete analogy
to the planar case, see e.g. [FLE93]. Thus, we may proceed in exactly the same way as in the one
dimensional case. We choose a scale sampling set {a j}N: , and compute the mean resultant vector
at some point b € R" by

N
— 1 1+n
Wb = j; sgn{f,kq;p) E€R. (5.13)

Then, in analogy to the one-dimensional formula (5.11), we define the discrete isotropic signature
by
sgn wy, if [wp| > 7,
Ty = | e W (5.14)
0, else,
where 7 is a threshold parameter between O and 1. Following the ideas of the one dimensional
case, the isotropic discrete signature is a vector of modulus one at an “edge” and is equal to zero
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Figure 5.4: The discrete signature of two sample signals. We observe that the absolute value of the resultant vector wy,
is close to one at the salient points, here a step and a cusp, and much lower at the remaining points (second
row). We also see that the peaks are sharply localized, so we do not necessarily require a non-maximum
suppression here. In the third row, the discrete signature according to (5.11) is depicted as phase angle
(threshold 7 = 0.7). We see that the orientations in the complex plane of the discrete signature is close to
the angle +7 at the step singularity (right). At the cusp, the signature angles group around the angle 7 (or
—m). Note that the extra points at the interval boundaries are due to the periodization of the signal.
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Figure 5.5: The discrete signature of a sample signal, taken from Wavelab [DMS06]. We observe that the absolute
value of the resultant vector wj, is close to one at the salient points, here a step and a cusp, and much
lower at the remaining points. We also see that the peaks are sharply localized, so we do not require a
non-maximum suppression here. In the third row, the discrete signature according to (5.11) is depicted as
phase angle (threshold 7 = 0.7). We see that the signature is close to the angle +7, at the steps, whereas
at the cusps, the signature angles group around 7 and 0.
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at aregular point of the image. Note that the term “edge” has to be understood in an abstract sense
in this context, since no rigorous characterization of the points of non-zero discrete signature is
known. In particular, an edge detected by the discrete signature need not to be in the singular
support of the image, which was postulated in our microlocal edge model of the last chapter.

Numerical experiments We evaluate the performance of the discrete signature for edge detec-
tion in a series of numerical experiments. The results are presented in the Figures 5.6, 5.7, and
5.8. The set-up for the experiments is as follows. We use again a scale sampling of a; = 273,
where j = 1, ..., 12. If not indicated otherwise the threshold value 7 = 0.7 is used. In Figure 5.6,
we see the edge detection capabilities of the discrete signature. The discrete signature equals
zero at the regular points of the image, whereas is a vector of modulus one at the edges or salient
points. In the color-coded Figure 5.7, we observe that the imaginary part of the discrete signature
dominates the real part at step edges, and that it behaves the other way round at line edges. This
gives rise to the conjecture that the orientation of & f(b) within the R!*? can discriminate between
line-like and step-like edges. The final experiment in Figure 5.8 illustrates that our edge detection
method directly applies to three dimensional images.

Remark 5.2. We also could build a generalized discrete signature on anisotropic complex wavelet
transforms, such as monogenic curvelets or shearlets. We here have focused on isotropic mono-
genic wavelets because these provided the best immediate edge detection results amongst the
complex wavelets construction we have seen in Chapter 3. 4

To summarize, we have seen how the discrete signature can be generalized to higher dimen-
sions by monogenic wavelets. We emphasize that this generalization yields a direct method for
edge detection without any pre- and post-processing, or any further heuristics.

5.4 Comparison to phase congruency

We point out the differences between the discrete signature and the related concept phase con-
gruency, [Kov99, Kov08, FS00], and compare the phase congruency based edge detection to our
method.

The phase congruency PC as proposed in [Kov99] is the modulus of the complex quantity

Z;V:] <f9 Kaj,b>

PC(b) = :
€+ S0 K Kayl

(5.15)

thus
PC(b) = |PC(D)|. (5.16)

Here, « is a complex wavelet and {aj}N

' ascale sampling. The parameter € > 0 prevents division
=
by zero.

Conceptual comparison of phase congruency and discrete signature We compare discrete
signature to phase congruency and begin with a common feature. Both phase congruency and
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5.4 Comparison to phase congruency

(a) Original (b) [wy| (c) [of(b)l.

Figure 5.6: The discrete isotropic signature for a natural (top row) and a synthetic image (bottom row). (b) We nicely
see that the absolute value of the resultant vector [wy| is large at the pronounced edges (e.g. face contours
of the monkey, boundaries of the geometric figures) and also responds to fine details such as the hair of
the monkey. (c) Those points where the discrete signature is of modulus one correspond to the edges of
the image (threshold 7 = 0.7).

the modulus of the discrete signature equal one if all complex wavelet coefficients point into the
same direction within the complex plane.

In contrast, if the wavelet coefficients are not aligned then phase congruency and discrete sig-
nature differ as follows. We first notice that phase congruency does not involve the signs (or
phases) of the wavelet coefficients. In particular, the wavelet coefficients are not normalized be-
fore summation. In consequence, phase congruency is small only if the wavelet coefficients are
not aligned and if they are in the same order of magnitude. If only one single wavelet coefficient
{f, Kajo,b) is much larger in absolute value than the other coefficients, i.e., if

S Kajo 021 > S kap)l,  forallj # jo,

then phase congruency is close to 1, even though the wavelet coefficients may point into com-
pletely different orientations. Since this leads to false positive edges Kovesi [Kov99] tackles this
“frequency spread”-issue by a sigmoidal weight function Wy . depending on ;[ f, k4, 5)| and two
extra real parameters y and c. With these heuristics, the phase congruency reads as

PCyy (b o1 WO K 5.17
O Y ok >
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Chapter 5 Signal and image analysis based on complex wavelet signs

Figure 5.7: The discrete isotropic signature o f in a color code. The points b where the imaginary part is in absolute
value larger than the real part, i.e. |[Im o f(b)| > Rec f(b), have green color. Otherwise, if Rec f(b) > 0,
the color is red, and if Reo f(b) < 0 the color is blue. The points of the image whose discrete isotropic
signature is equal to O remain black. We observe that the green color is dominant at step edges (boundaries
of circle and square in the synthetic image). Bright lines on dark ground corresponds to red color (see
horizontal line in synthetic image), dark lines on bright ground to blue color (see lines in the face of
the monkey). We emphasize that no noise suppression and no post-processing, such as non-maximum
suppression, were required. The left picture was created using a threshold 7 of 0.7 and the right one using
a slightly higher threshold of 0.8.

All in all, the phase congruency proposed in [Kov99] involves three empirical parameters. In
contrast, the discrete signature measures the variation of the wavelet signs. In particular, the
normalization is carried out before summation. This way every wavelet coefficient is weighted
equally, hence we do not need any further heuristics for the handling of dominant wavelet coeffi-
cients. The comparison of phase congruency and discrete signature is tabulated in Table 5.2.

Comparison of edge detection by phase congruency and by discrete signature Before com-
paring the edge detection results of phase congruency and discrete signature, we first look at fur-
ther differences which arise in two dimensions. The two dimensional phase congruency method
of Kovesi [Kov99] uses directional log-Gabor wavelets based on the partial Hilbert transform.
The different orientations are combined by simple summation. The analogous method of Fels-
berg [FSO0] utilizes monogenic wavelets based on isotropic difference of Gaussian wavelets.
Discrete signature is based on monogenic wavelets based on isotropic Meyer-type wavelets.

We eventually compare the edge detection capabilities of the discrete signature and the phase
congruency. The test images are displayed in Figure 5.9. In Figure 5.10, we compare the raw
output of the edge detectors and in Figure 5.11, the thresholded images. In all images, white
corresponds to 1 and black to 0. We here give a short summary of the results, for a detailed
description of the experiments we refer to the captions of the figures. First note that it is in
general difficult to objectively compare the performance of edge detectors because there is no
ground truth for edges of natural images. Thus the following conclusions are based on the authors
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5.4 Comparison to phase congruency
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(a) Function f on a synthetic volume. f is equal to —1 on (b) wp| >7=0.7.

the blue objects, equal to 1 on the red objects, and 0
elsewhere.

(c) MRI-image of a brain. d) wp| >7=0.7.

Figure 5.8: Edge detection by the discrete isotropic signature in 3D of a synthetic image (a) and a tomographic image
(c). We see that all the edges of the synthetic volume are detected (b). Also in the MRI-image (c), most
of the expected edges are detected, e.g., the skull bone (d).

subjective impressions. We may observe the following differences. Kovesi’s method shows best
performance at the overlaying edges of the x-ray image, which is due to the directional filters. The
discrete signature has higher response to small details than Kovesi’s phase congruency. Felsberg’s
method on the other hand overemphasizes fine details. The discrete signature appears to have the
best balance between the detection of pronounced edges and fine details. This can be seen for
example in the results of “Barbara” and “Mandrill”.

To summarize, our discrete signature on the one hand has competitive edge detection capabil-
ities to phase congruency, and on the other hand, does not require heuristics or extra parameters
as phase congruency does.
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Chapter 5 Signal and image analysis based on complex wavelet signs

Phase congruency Discrete signature
Salient Low variation of wavelet signs or pres- . .
. . . Low variation of wavelet signs
point ence of a dominant wavelet coefficient
Regular High variation of wavelet signs and . . .
.g £ . £ . High variation of wavelet signs
point amplitudes of same order of magnitude

Table 5.2: Comparison of phase congruency and discrete signature. The presence of a (in absolute value) dominant
wavelet coefficient leads to false positives in the edge detection process by phase congruency (“frequency
spread”). In contrast, that issue does not occur for the discrete signature because all wavelet coefficients
are weighted equally.

5.5 Further references

The importance of the Fourier coefficients’ signs in images has been described in the work of
Oppenheim and Lim [OL81]. They observed that the important structures of images can be
reconstructed by the signs of the Fourier coefficients without the knowledge of their moduli. The
reconstruction of images from the wavelet signs appears in the context of 1-bit quantization of
wavelet coefficients, see e.g. [Lee96].

It has been indicated by Kronland-Martinet, Morlet, and Grossmann [KMMGS87] that the
wavelet signs may be useful for the analysis of singularities. They observed that the lines of
constant phase in the scalogram (a, b) — (f,6,,) converge towards the singularities as a — 0,
where 6 is a complex Gaussian wavelet. However, to the authors knowledge, these observations
were not realized in a numerical method.

Phase congruency was first introduced by Morrone and Owens [MO87] as descriptor of feature
points in signals and images. It was originally proposed as a measure of how much the Fourier
coeflicients of a signal are in phase. Since a Fourier expansion is poorly localized, Kovesi [Kov99]
refined this idea using complex log-Gabor wavelets which found applications to edge detection.

It was observed by Holschneider [Hol95] that the phase of the wavelet coefficients at fine scale
describe the local shape of a signal. Kovesi [Kov99] uses the orientation of the phase congruency
in the complex plane to distinguish between step and cusp singularities.

A deeper mathematical treatment of signal analysis based on complex wavelet signs will be
given by the author in a forthcoming work with collaborators [DMS12]. There we derive the
discrete signature as discretization of a continuous model without using directional statistics.
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5.5 Further references

Figure 5.9: Original test images used for the experiments in Figure 5.10 and Figure 5.11; in clockwise order, X-ray,
Peppers, Mandrill, and Barbara.
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Chapter 5 Signal and image analysis based on complex wavelet signs

Phase congruency, Monogenic phase Isotropic discrete signature
[Kov99, Kov08] congruency, [FS00] (this work)

Figure 5.10: The phase congruency (first column) has high response to the most pronounced edges, but also misses
several structures, e.g., in the face of the monkey. The monogenic phase congruency gives a high output
at high frequency details, e.g., the hair of the monkey, but does not sufficiently emphasize some very
pronounced edges such as the legs of the woman. The discrete signature responds well to both low and
high-frequency patterns. For instance at the monkey’s face contours are nicely detected, as well as the
single hairs.
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Phase congruency, 7 = 0.1, Monogenic phase Isotropic discrete signature,
[Kov99, Kov08] congruency, T = 0.1, [FS00] 7 = 0.7, (this work)

Figure 5.11: Comparison of phase congruency based edge detectors versus the our sign-based edge detector. The
phase congruency (left column) detects the most pronounced edges and has good performance at the
overlaying edges of the x-ray image, due to the directional filters. The monogenic phase congruency
(central column) highly responds to fine details, such as the clothes of the woman. The edge detection
by the discrete isotropic signature (right column) appears to give the best balance between the most
important edges, e.g., the shape of the woman, and the fine details, such as the face of the woman.
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Chapter 6

Amplitude and sign decompositions in
mammalian vision and the simulation of
brightness illusions

We now set the findings about amplitude and sign decompositions in connection with the per-
ception of brightness illusions. A brightness illusion is a type of optical illusion where our
perception of brightness partially fails. The classical explanation states that filter operations
on a retinal level are the reason for this phenomenon [Bau60]. However, that theory had been
doubted and has recently been disproved by a simple counterexample [GBHSO08]. Currently,
it is conjectured that brightness illusions originate in so called simple cells [SC05]. Simple
cells are neurons in the visual cortex which act on an observed scene as oriented wavelets, cf.
[HW59, DVATS2, Dau85, Lee96, Pal99]. The insight about the oriented wavelet nature of the
simple cells gives rise to computational simulations of the perception process, and there have
been several attempts to reproduce the brightness illusions. The common approach is to ex-
pand an image into wavelet coefficients and to reconstruct from suitably manipulated coefficients
[MM99, BM99, OVAP08, HSMF10]. Although this leads in many cases to successful reproduc-
tions of brightness illusions, the choice of the particular wavelet model and/or the purpose of the
manipulations of the wavelet coefficients for the visual system have not been justified sufficiently.

In this work, we simulate brightness illusions using the complex Gabor wavelet model for sim-
ple cells, established by Daugman and Lee in [Dau85, Dau88, Lee96]. We exploit that the com-
plex wavelet coefficients are represented within the visual cortex by a quadruple of simple cells
and that this induces a natural split into amplitude and sign (Section 6.2). The signs are coded
in the activation of a simple cell component, the amplitudes of the coefficients are transmitted by
the neuronal firing rates [Lee96, Pal99]. In Section 6.3, we argue that the unary representation of
the amplitudes in terms of neuronal discharges causes a quantization of the wavelet amplitudes to
a small discrete set of positive numbers. We derive a suitable function which models this quan-
tization and simulate reconstructions from quantified coefficients. We shall see that our model
yields a very good reconstruction quality for natural images, but that it causes visible distortions
if applied to brightness illusions. These distortions coincide qualitatively and quantitatively with
the illusory effects perceived by the human observer. In our experiments we accurately reproduce
the illusory effects of many classical brightness illusions like the Hermann grid and a series of its
variants, the Mach bands, the White illusion, and the Chevreul illusion. In particular, our model
correctly reproduces the vanishing illusory effect of the counterexample to the classical retinal
theory given in [GBHSOS]. In contrast to related simulations of brightness illusions, we in detail
justify the purpose and the implementability of our model within the visual system.
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Chapter 6 Simulation of brightness illusions

(a) The Hermann grid. (b) The White illusion. (c) The Mach bands.

Figure 6.1: Some famous brightness illusions: (a) Illusory gray circles are seen at the crossings, (b) The right gray
patch appears brighter that the left one, though they have equal gray values, (c) [llusory stripes are seen at
the left and the right of the slope.

6.1 The Daugman-Lee model of Gabor wavelet expansion in the
visual cortex

In their pioneering work, Hubel and Wiesel discovered that the visual cortex of the mammalians
possesses neuronal structures acting as oriented linear filters, called simple cells; see e.g. [HWS59,
Pal99]. In the visual cortex, there is a large set of simple cells, which are tuned to different
orientations and spatial frequencies, cf. [DVAT82] and Figure 6.2. Daugman [Dau85] found that
the impulse responses of simple cells can be modeled by a family of Gabor wavelets. Lee [Lee96]
derived concrete model parameters for these Gabor wavelets and proposed the following wavelet
family. The complex-valued Gabor mother wavelet 1 ¢ is defined in the frequency domain by

D100 &) = Varn (e‘%“f' R HE) _ e‘%@?*“f%”z)) 6.1)

where k = V21n2 (%:J_“%) and w > 0 denotes the bandwidth of the function in octaves. The Gabor
wavelet family, defined by

x=>b

1
(//a,bﬂ(x) = 5(09(//1,0,0)( )’ ace R+9 be RZ’ S [0’ 271-)7 (62)

a

constitutes a wavelet frame' for appropriate discretizations of the scale a, the location b, and the
orientation 6, cf. [Lee96]. In [Lee96], the author establishes the following biologically motivated
conditions on the discretization:

e About 16 to 20 orientations are sampled.
e The human visual system has a spatial frequency range of 3 to 5 octaves.

o The sampling interval of the scale parameter a amounts to % octaves in the cat’s and to %
in the monkey’s visual cortex.

!To avoid possible confusions of the terminology, we notice that the function system (6.2) is a wavelet frame (of
Gabor wavelets), but not a Gabor frame. The latter would employ modulations instead of dilations, cf. [Chr03].
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6.2 Amplitude and sign representation of Gabor coefficients by simple cells

e The bandwidth w of the simple cells ranges from 0.5 to 2.5 octaves and clusters around 1.2
and 1.5 octaves.

Based on these assumptions, the following parameter set was proposed in [Lee96], which we will
use throughout this chapter. The bandwidth is set to w = 1.5 octaves. The scale parameter a
is sampled at five octaves and three voices per octave, i.€., a; = 27713, where j=1,...,15. The
spatial parameter b is sampled at an integer grid, i.e., k € Z2. Further, we expand into the sixteen
orientations § = f—é, where [ = 0, ..., 15. To summarize, we deal with the discrete Gabor wavelet

family
Uiki(x) = 250 1,000 (x = K)). (6.3)

The scale and orientation sampling of the Gabor wavelet system leads to a nearly tight frame
[Lee96]. That is, the lower frame constant, denoted by A, is close to the upper frame constant,
denoted by B; compare Definition 3.12. The modeling of the simple cells by the family of Gabor
wavelets (6.3) is referred in the following as Daugman-Lee model.

Now let us combine the low frequency Gabor functions into a lowpass filter ¢, i.e.,

15 -

bk = Z Z k-

1=0 j=0

According to [Lee96], the Gabor wavelet family has an approximate reproducing formula, i.e.,

15 15

2
f*17B ];ZZ ; ;O‘ kD Y jkd + s BB (6.4)

compare [Lee96]. In the numerical experiment Figure 6.6(b), we may verify that formula (6.4)
indeed gives a good approximate reconstructions.

Let us create the link of the Daugman-Lee model to complex wavelets. From formula (6.1) we
see that the Fourier spectrum of the mother Gabor wavelet 1 o o lies essentially in the half-space
&1 > 0. Therefore, we have the approximate quadrature relationship

Im 00 = Hi0)Re oo,

so the Gabor wavelet can be seen as an approximate complex wavelet in the sense of the partial
Hilbert transform, compare Lemma 2.19 and also [Mal09, p. 111ff].

6.2 Amplitude and sign representation of Gabor coefficients by
simple cells

We have just seen that simple cells can be modeled by complex Gabor wavelets. We now explain
how the complex wavelet coeflicients are realized on a neuronal level, where we follow mainly the
articles [Dau85, Lee96] and the textbook [Pal99]. We shall see that the simple cell representation
of the wavelet coeflicients induces a natural amplitude and sign decomposition.
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Chapter 6 Simulation of brightness illusions

Figure 6.2: Frequency responses of several simple cells in the macaque visual cortex (picture taken from [DVATS82]).
The gray shaded regions each depict the support of the frequency spectrum of a simple cell. We see that
the simple cells are tuned to different scales and orientations. Daugman [Dau85] and Lee [Lee96] model
the impulse response of simple cells by a family of Gabor wavelets.

Natural amplitude and sign decomposition by simple cells In the visual cortex, a complex
Gabor coefficient is represented by a quadruple of simple cells, corresponding to the positive and
the negative parts of the real and imaginary component, respectively. This split representation
is very natural because neurons transmit information by series of subsequent discharges (firing
rates), which are positive quantities [Lee96, Pal99]. The decomposition of the complex Gabor
coefficients is reflected by the following four types of simple cells in the visual cortex. There are

e light line detectors, denoted by L™,

o dark line detectors, denoted by L™,

e dark-to-light step edge detectors, denoted by E*,

o and light-to-dark step edge detectors, denoted by £,

which are approximately proportional to the positive and the negative parts of the real and the
imaginary component of the wavelet coefficients of the Daugman-Lee model, respectively (cf.
[Lee96] and [Pal99, p. 151]). In mathematical terms, a simple cell tuned to some frequency-
space-orientation index u = (J, k,[) is a non-negative functional, acting on an observed scene f
approximately as evaluation versus a Gabor wavelet, i.e.,

Lif ~ ReWy )
L f ~ Rey, )-.
E} f ~ (Im(,, )
L f ~ (I, )-,

(6.5)

where

. x, forx >0, d . x, forx <0,
X)y = an X)_ =
i 0, else, 0, else.
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6.2 Amplitude and sign representation of Gabor coefficients by simple cells

The activation of the (+) and the (—) cells is exclusive; that is, if for a fixed index u the (+)
cell is active, then the corresponding (—) cell is inactive. For example, a wavelet coeflficient
wy = 0.6 —10.2 corresponds to the activation of L; and £, and the deactivation of L, and E;. To
summarize, the Gabor coefficient representation by simple cells is expressed by

o) = ReWy, )+ = Re(y, [))- + i [Amy, )+ — Amy, £))-]
~Lif-L,f+ilE;f-E,f], (6.6)
where at most two of the four summands are non-zero.

Now let us build the bridge to the amplitude and sign decompositions. Recall that the Ga-
bor wavelets are complex wavelets in the sense of the partial Hilbert transform. The split of the
complex wavelet coefficients into the four channels can be interpreted as an amplitude and sign
decomposition. However, the amplitude and sign split of the Gabor coefficients by (6.6) is slightly
different than in the decompositions considered in the previous chapters. The representation of
the wavelet coeflicients by the four cell types L; f LS, E;; f,and E,, f yields a separate decom-
position of the real and the imaginary part into amplitude and (real-valued) sign, i.e., we have one
amplitude and sign decomposition for the real part and one for the imaginary part. Hereby, the
amplitude is transmitted by the firing rate of a simple cell and the sign is implicitly transmitted
by the activeness of the (+) or the (—) cell.

The importance of the sign information In the Oppenheim-Lim type experiments in Sec-
tion 5.1, we have seen that the signs of the complex wavelet coefficients codes the most significant
information about the image structure. We here deal with a slightly different notion of sign than
in Chapter 5 but we will see in the next experiment that the sign, induced by the split representa-
tion of the simple cells, still carries the significant part of the image’s structural information. To
this end, we expand an image into the Gabor wavelet system (6.3). We set the modulus of the real
part of the wavelet coeflicients to one, if they exceed some threshold 7 > 0; smaller coefficients
are set to 0. We deal likewise with the imaginary part and reconstruct from these thresholded sign
coeflicients using formula (6.4), omitting the lowpass component. For the precise formulation of
this procedure, we introduce the thresholded sign function sgn . : R — {—1,0, 1} defined by

sgn w, if jw| > T,
sgn (w) =
0, else.
The sign reconstruction formula then reads as
2 .
g D lsen (Re(wicn) + i sgn (AmOwj)] v jus (6.7)
k.

where wjr; = (f,¥jr)- The action of the sign reconstruction (6.7) to a natural image is de-
picted in Figure 6.3. We observe the image structure is nearly completely preserved by the sign
reconstruction, even small details remain visible.

The sign reconstruction experiments may suggest that the wavelet signs are sufficient for an
almost complete representation of the images structure, and this is in fact the case for many
natural images. However, there are images where the reconstruction from the wavelet signs is
not that good. The next experiment (Figure 6.4) shows that the sign reconstruction (6.7) causes
severe distortions if applied to brightness illusions such as the the Hermann grid. Hence for these
images, the amplitude information does have a great influence on the reconstruction quality.
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Chapter 6 Simulation of brightness illusions

(a) Image f with unbalanced brightness

(c) Sign reconstruction by (6.7), T = 0.01 (d) Sign reconstruction by (6.7), 7 = 0.02

Figure 6.3: The reconstruction from the sign of the Gabor coefficients according to (6.7) for different threshold values
7. We see that nearly all of the structural information is kept. Even more, the originally unbalanced
brightness is balanced in the reconstructions. Note that the details are very well preserved, even in the
originally dark area. For 7 = 0, the image appears very noisy (b), but already for small positive values of
7, the noise disappears in the reconstructions (c — d).

6.3 An amplitude quantization model for the simulation of
brightness illusions

We have just seen that we can achieve good reconstructions of natural images from the sign infor-
mation induced by the simple cell representation. In contrast, we have noted that this procedure
fails when applied to brightness illusions. We further observe in Figure 6.4 that the missing am-
plitude information leads to reconstruction errors which qualitatively resemble the illusory effects
of brightness illusions. This gives rise to the hypothesis that an imperfect amplitude processing
of the wavelet coefficients on a simple cell level is the reason for the brightness illusions.

In the following, we derive an extension of the Daugman-Lee model which takes into account
quantizations of the Gabor wavelet coefficients on a simple cell level. In particular, we express
the approximate relations of (6.5) by a concrete quantization function. We shall see in a series of
experiments that our model reproduces many brightness illusions.
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2228 il M)

(a) Sign reconstruction (6.7), T = 0.02 (b) Sign reconstruction (6.7), T = 0.02 (c) Sign reconstruction (6.7), T = 0.02

Figure 6.4: The reconstruction from the sign of the Gabor coefficients according to (6.7) for the brightness illusions
of Figure 6.1. The threshold parameter was chosen to be 7 = 0.02. We see that the errors in the recon-
structed images qualitatively resemble the illusory effects of the brightness illusions. However, note that
the reconstruction errors are much stronger than the illusory effect perceived by a human observer.

Basic assumptions We model the amplitude processing in simple cells based on the following
three assumptions. First, we assume that a simple cell is active (“fires”) if and only if its corre-
sponding model Gabor coefficient exceeds in modulus some lower threshold 7 > 0. Second, we
assume that the magnitude of a Gabor coefficient is transmitted in an unary representation by the
firing rate of the simple cell. Here, the number of discharges of a simple cell is approximately
proportional to the magnitude of the wavelet coefficient. At last, we assume that the number of
discharges per observed scene has the upper limit Fyy,x € N.

Let us comment on the plausibility of these assumptions. The first assumption derives from
a general property of neurons. A neuron discharges if its action potential exceeds some lower
threshold, cf. [BCPO7, Ch. 4]. The assumption of a unary representation (base-1 representation)
of the amplitude by the firing rates can be justified as follows. In a unary (base-1) representation,
the weight of a single digit does not depend on its position within the representation, as opposed
to a binary (base-2) representation. In particular, coding and decoding in unary representations
does not require a discrimination between the positions in a sequence of digits. The plausibility
of the third assumption, that is the existence of an upper limit for the firing rates F,x, is evident.
However, we require a reasonable order of magnitude for Fy,x, which we derive as follows. We
have seen in the last section that the reconstructions might be severely distorted if the coefficients
are coded by only one bit (which corresponds to the sign reconstruction). Clearly, an extension
of the code space results in a better reconstruction quality. On the other hand, each additional
element in the code space is at the cost of extra neuronal discharges, which consumes extra
energy. Hence, the maximal firing rate per scene is a tradeoff between reconstruction quality and
energy consumption. To derive a reasonable value, we use the fact that several works report a
firing rate of up to about 100 Hz for simple cells, e.g., [CHM97, SFV76, SBS*87]. In [SSM05],
the sampling rate of scenes by a human observer is found to be about 16 Hz. This suggests the
choice Fpx = [%] = 6, where the square brackets denote the rounding operation. The quantity
we derived here has to be understood more as an order of magnitude than as a precise parameter.
We note that the outcome of the experiments is not altered significantly for other choices of the
parameter F,x, as long as we keep the order of magnitude. For example, a choice of Fiyx
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between 5 and 10 leads to almost identical results. The determination of exact parameters would
require physiological experiments, which cannot be obtained in this work. We will comment in
the next paragraph on the choice of the threshold 7.

A model of amplitude quantization With the assumptions of the previous paragraph, we
model the relation between the Gabor coefficients and the discharges of the simple cells indi-
cated in (6.5) by the quantifying function

0, if0<u<rm,

: 1
1, ifr<u< mumax,

: 1 2
2, if =— F Fooan Ymax fu< Fooan Ymaxs

F(u) = (6.8)
3, S U < 7 —Umax,
max
Fiax, if %umax <u.
ma;

Here, upax denotes the Gabor wavelet magnitude corresponding to the maximum simple cell dis-
charge rate Fin,x. We empirically found that the maximum coefficient amplitude is about um,x = 1
for natural images taking values in the range [0, 1]. The graph of F is depicted in Figure 6.5. Our
model for the simple cell discharges now reads

L, f = FI(ReWy, N)+],

L, f = FIRe(W,, f))-

E!f = FIAMy, )+

E, f = FI(Im{y, f)-

For example, the wavelet coefficient w = 0.6 — 0.2 corresponds to F(0.6) = 4 subsequent dis-

charges of an L* cell and F(0.2) = 2 discharges of an E~ cell. Note that in our model (6.9) the
simple cell firing rate is not in a perfect proportional relation to the Gabor coefficient.

Our next goal is to look at reconstructions from the quantified wavelet coefficients. To this end,

we recompose the four quantified amplitude coeflicients to a quantified complex Gabor wavelet
coefficient s, by

]
]’

6.9
| (6.9)
]

’

Sy = ;Tnzz[L;f—L;f+ i(E}f - EZ .

(The multiplicative constant 72 assures that the reconstruction has the same scaling as the orig-
inal image.) Inserting this 1nto “the reproducing formula (6.4) the reconstruction formula of the
quantified coefficients reads

Sk ikt + (s B Pr- (6.10)
gl

Notice that in this reconstruction formula, the lowpass coeflicients (f, ¢;) are assumed to be free
from distortions.

We eventually comment on the choice of the threshold parameter 7. We found in our experi-
ments that the magnitude of the threshold influences the reconstruction quality as follows. If 7 is
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6,,
— Fu)
6u
4l --- F(u)—6u
2,,
T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.5: The quantification function F(u) for the parameter choice Fi,x = 6, Umax = 1, and 7 = % . ?‘]%: ~ 0.017.

The quantified values are almost everywhere higher that the non-quantified values, depicte& here as the
linear function u +— %u = 6u (dottet line). The function of the quantization error F'(u) — 6u is plotted as

dashed red line.

chosen too low then a lot of very small coefficients is raised to a higher level, and hence, noise is
amplified, cf. Figure 6.3. On the other hand, if 7 is large, then small details of the observed scene
may be suppressed. We found that the threshold value 7 = 0.1 - % is a fair tradeoff between the
suppression of noise and the preservation of details.

Simulation of brightness illusions Before we apply our quantization model (6.10) to bright-
ness illusions we first check its reconstruction quality for natural images. In Figure 6.6 we see
that a reconstruction from quantified coefficients preserves both the brightness and the structural
information of natural images and that no significant distortions are introduced. In contrast, the
following experiments show that the quantified reconstruction leads to an notable error if ap-
plied to brightness illusions and that this error coincides surprisingly accurate with the perceived
illusory effects.

Let us first look at the Hermann grid illusion, which was already discovered in 1870, see
[Her70]. The Hermann grid consists of white vertical and horizontal bars on a black background
(Figure 6.1(a)). At the crossings of the bars, illusory gray smudges are perceived. In our first
experiment, Figure 6.7, we observe that the reconstruction by our model reproduces the illusory
gray circles of the Hermann grid illusion and that the intensity of the simulated effect matches
the intensity of the perceived illusory effect.

In a second example, we investigate the sine distorted Hermann grid; see Figure 6.8. As stated
in [GBHSO8], the illusory effect vanishes for sufficiently high amplitudes of the sine wave. For
low amplitudes of the sine, the gray smudges are still existent, but their intensity falls off with
increasing amplitude up to almost no effect. In Figure 6.8 we see that this effect is reproduced
by the proposed reconstruction model. This variant is of particular importance since it serves as
a counterexample to the classical explanation of the illusory effects [GBHSOS].

The next three variants were proposed in [SCO05]. If the thickness of the white bars increases,
then the illusory effect is diminished. In Figure 6.9 we see that the described behavior is accu-
rately simulated by the quantified simple cell model. Further, if diagonals are added, then the
illusion almost vanishes which we also can reproduce, see Figure 6.10. At last, we look at shifts
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(b) Unaltered reconstruction (6.4).

(d) Original. (e) Unaltered reconstruction (6.4). (f) Model reconstruction (6.10).

Figure 6.6: The reconstruction from quantified Gabor coefficients and the reconstruction from perfect coefficients
of a natural image and a brightness illusion. (a—c) The reconstruction from perfect coefficients (6.4)
is hardly distinguishable from the original. In the reconstruction from the quantified coefficients (6.10)
almost all important details are preserved and the reconstruction error is within reasonable bounds. We
even recognize the nice side effect that details in low contrast regions, such as the man’s jacket, are more
pronounced in the reconstruction. This can be explained, because small coefficients, which are just above
the threshold 7, are raised by the quantification to the next larger integer value. (d—f) The reconstruction
from perfect coefficients yields an almost perfect reconstruction even for brightness illusions. On the other
hand, if we assume quantified coefficients according to (6.10), we observe a notable error which coincides
with the perceived illusory effect.

of the black squares. Here, the illusory effect decreases already for small shifts but then remains
on a constantly low level for larger shifts. This effect is simulated in Figure 6.11.

Apart from the Hermann grid, our model accounts for further classical brightness illusions.
Amongst these are the Mach bands (Figure 6.12), the White illusion (Figure 6.13), and the
Chevreul illusion (Figure 6.14). An explanation of the effects is given in the captions of the
respective figures.

Further remarks on the quantization error Having shown that the reconstruction formula
(6.10) reproduces illusory effects of brightness illusions we now try to figure out the reason for
this behavior. We notice that the difference of the quantified reconstruction (6.10) to the unaltered
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6.3 An amplitude quantization model for the simulation of brightness illusions

(a) Original. (b) Reconstruction by (6.10). (c) Reconstruction error (gray values
rescaled for better visibility, see pro-
file plot (e) for the magnitudes).

o
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(d) Central horizontal profile of original (a) in blue and recon- (e) Central profile of error (c).
struction (b) in red.

Figure 6.7: (a) The observer of the Hermann grid sees illusory gray spots at the crossings of the white bars
[Her70]. (b—e) The illusory effect can be clearly seen in the reconstruction from the quantified ampli-
tude coeflicients.

reconstruction (6.4) is given by

2 max
o (s, - an
u max

Thus, the reconstruction error originates from the quantification errors of the coefficients

M G — () = sgn () - (mmm) - |x,1|) + i sgn (y,) - (%Fum) - |yﬂ|).

Fmax Fmax max

where x, = Re(f, ) and y, = Im(f, ;). By the substitution

Umax

h(u) = F(u)—u, foru>0,

max
we can rewrite the quantification error of the coefficients as

Umax

F max

Sy — wy = sgn (x,) - h(lxul) + i sgn (y,) - h(lxy)).

In this form, we may recognize a similarity to the sign reconstruction formula (6.7). In Figure 6.5
we see that / has the shape of a sawtooth function, taking values between [0, 1], for u# < upax. If
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Chapter 6 Simulation of brightness illusions

h(u) were equal to 1 for u > 7, then the reconstruction error (6.11) would amount exactly to the
sign reconstruction of (6.7). This connection suggests that the illusory effects are similar to the
effects induced by the sign reconstruction (6.7). However, the reason for the sign reconstruction
effects are not yet understood and require further investigation.

6.4 Further references

The sign reconstruction formula (6.7) has parallels to the g-bit quantification experiments in
[Lee96]. There, it has been observed that a good image reconstruction of natural images can
be obtained even if the amplitude of the Gabor coefficients is quantified to a small set of values.

The classical explanation of brightness illusions is based on the filter characteristics of retinal
ganglion cells [Bau60]. Recently, it has been shown by a striking counterexample that the illusory
effect of the most famous brightness illusion, the Hermann grid, cannot originate on a retinal
ganglion cell level [GBHSOS].

The currently most favored theory is that brightness illusion originate on a simple cell level.
The authors in [SCO5] argue on an informal level that the Hermann grid illusion originates in
the simple cells but their arguments were not backed by proper simulations. Corney and Lotto
[CLO7] reproduce the Hermann grid illusion as result of an artificial neuronal network, which
was trained to robustly recognize surfaces under non-uniform illumination. The main issue of
this approach is that one gets few insight into what has been learned by the neuronal network.
In [OVAPO8], brightness illusions are reproduced by a normalization of wavelet coefficients of a
tensor product wavelet. Although several brightness illusions are simulated, the employed tensor
product wavelets are not known to have any connection to the mammalian visual system. In
[BM99], several brightness illusions, such as the classical Hermann grid and the white effect,
are simulated by scale-wise renormalization of oriented difference of Gaussian (ODoG) filter
outputs. The ODoG model is the most related approach to the simulations in this work, since the
ODoG filters are similar to the Gabor wavelets. However, in [BM99] the authors manipulate the
wavelet coefficients by a computationally expensive renormalization operation whose purpose for
the visual system has not been answered satisfactory.
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(b) Amplitude 6 Pixel

(e) Reconstruction of (b) (f) Reconstruction of (c)
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Figure 6.8: (a — ¢) The illusory effect decreases with increasing amplitude of the sine distortion. This is the coun-
terexample from [GBHSOS] to the classical explanation. (d —f) We observe that the reconstruction by the
proposed model (6.10) reproduces the vanishing effect for larger amplitudes. We verify in the plot that the
relative brightness in the center indeed decreases (brown line).
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(b) Thickness 20 Pixel

(e) Reconstruction of (b)

(¢) Thickness 26 Pixel

(f) Reconstruction of (c)
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Figure 6.9: (a — c) The illusory effect is diminished if the thickness of the white bars increases, cf. [SCO5]. Note that
the intensity of the illusory effect depends on the distance of the image to the eye. (d — f) The decrease of
the smudges’ intensities can also be observed in the reconstruction by (6.10). The precise quantities are
depicted in the graph. There we see that the difference between the maximum gray value and the average
gray level in the center decreases (brown line).
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(a) Original. (b) Reconstruction by (6.10). (c¢) Reconstruction error (gray values
rescaled for better visibility, see pro-
file plot (e) for the magnitudes).
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(d) Central horizontal profile of original (a) in blue and recon- (e) Central profile of error (c).
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Figure 6.10: The illusory effect of the Hermann grid is reduced significantly when diagonals are added, cf. [SCO5].
Also in the reconstruction, the gray patches are only about half as intense as the patches in the original
Hermann grid (Figure 6.7) and the variation is much smoother.
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(a) Shift 8 Pixel (b) Shift 16 Pixel (c) Shift 64 Pixel

(d) Reconstruction of (a) (e) Reconstruction (b) (f) Reconstruction (c)
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Figure 6.11: The illusory effect is diminished if the black squares are shifted [SCO5] (a — ¢). This effect can be
observed by the quantified reconstruction (d — f). The graph also shows that there is a saturation after a
shift of about 20 to 24 pixels.
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(a) Original.

Intensity

256 512

-0.2 |

(d) Central horizontal profile of original (a) in blue and recon-
struction (b) in red.
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(b) Reconstruction by (6.10).
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Figure 6.12: (a) The observer recognizes two illusory thin strips at the sides of the central slope, so called Mach bands.
(b —e) These illusory bands are nicely reproduced by the proposed simple cell model.
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(b) Reconstruction by (6.10). (c) Reconstruction error (gray values
rescaled for better visibility, see pro-
file plot (e) for the magnitudes).
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(e) Central profile of error (c).

(a) Original.

o
8]

Intensity
Intensity

|
o
)

(d) Central horizontal profile of original (a) in blue and recon-
struction (b) in red.

Figure 6.13: The White illusion. The right gray patch appears to be brighter than the left one, although they have the
same gray values. In the reconstruction, the right patch becomes indeed brighter than the left one, which

can be best seen in the error image.
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(a) Original. (b) Reconstruction by (6.10). (¢) Reconstruction error (gray values
rescaled for better visibility, see pro-
file plot (e) for the magnitudes).
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Figure 6.14: The Chevreul illusion. Although the image (a) is piecewise constant it appears as if the stripes are
brighter at their left hand side than at their right hand side. This illusory effect is simulated by the our
quantization model.
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Chapter 7
Conclusion and outlook

We have seen how reasonable wavelet amplitude and sign decompositions can be constructed and
that such decompositions yield direct applications in signal and image analysis. It was investi-
gated under which conditions combinations of quadrature operators and wavelet transforms are
reasonable. Here, the Riesz and the partial Hilbert were in the focus, so the investigation of other
quadrature operators is desirable.

We have used the connections between the coefficient’s amplitudes to the wavefront set for
setting up a computable edge model within a well developed theory. Here, a future direction
of research will be the refinement of these models, for example by advancing from the classical
wavefront set to the H*-wavefront set.

We have further shown by the discrete signature that the wavelet signs can be applied to the
analysis of signal and images. However, the theoretical foundations of wavelet signs in signal and
image analysis are still poorly understood, so there is need for further research. First theoretical
results in that direction could be obtained by the author in a joint work with L. Demaret and
P. Massopust [DMS12].

At last, we proposed a model for the quantization of the wavelet coefficients’ amplitudes within
the visual system and gave computational evidence that this model reproduces the illusory effects
of brightness illusions. For definite implications for the perception of brightness illusion, further
physiological evidence is required.
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A Appendix

A.1 The Fourier transform

We provide some basic facts about the Fourier transform, see e.g. [Bra0O]. The Fourier transform
for f € L'(R") is defined by

Fe) = fR Foe e .

For a distribution with compact support f € &' (R") the Fourier transform f is a function and we
may write

f&) = (f,es).

The Fourier transform for general tempered distributions f € S’(R") is defined by duality

(f,¢) = (f.$), for ¢ € SR™.

If A : R" — R" is linear and invertible, then, by the change of variable,

F)e AV gy

foA@®) = | fAx)e™ ™ édx =
RI’I

|detA| Jg»
1 —2miy(AHT¢ L = -
= dy = A . A.l
(et A] e f(ye y IdetAlf(( ) &) (A.1)
In particular, if A is orthogonal, then
FoA@©) = f(Ad). (A2)

A table of frequently occurring Fourier transform is given in Table A.1.

A.2 The Meyer-type window functions
The radial Meyer-type window function W is defined by

cos(3z(5 - 6¢)), for?<é<?

5
6

1, for2 < &< 4,

weo=1" [
cos(5236§ —4)), forz <&<3

0 else.

(A.3)
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1163

real-valued

real-valued

Hermitian

isinc(“’:)

ldl a
6()

1
iné

u(x) = 1o,

3 (72 +00)

Table A.1: Some important Fourier transforms.

and the angular Meyer-type window function V is given by

see [Dau92, MP09]. Here z is a sufficiently smooth function satisfying

for |¢] < 3,

V(&) = {cos(Zz(3lél - 4)), for 1 <€ < 3,

else,

& +z(1-6) =1,

(A4)

The following choices for z on the interval (0, 1) yield C°, C! and C* regularity, respectively:

where
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