
Deep learning based aerosol particle classification for the detection of 
ship emissions

Guanzhong Wang a, Heinrich Ruser a,*, Julian Schade b, Seongho Jeong b, Johannes Passig c,d,  
Ralf Zimmermann c,d, Günther Dollinger a, Thomas Adam b,d

a Institute for Applied Physics and Measurement Technology, University of the Bundeswehr Munich, 85577 Neubiberg, Germany
b Institute of Chemistry and Environmental Engineering, University of the Bundeswehr Munich, 85577 Neubiberg, Germany
c Institute of Chemistry, Division of Analytical and Technical Chemistry, University of Rostock, 18059 Rostock, Germany
d Joint Mass Spectrometry Center (JMSC), Helmholtz Zentrum München, Neuherberg 85764, Germany

H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Chemical composition of individual 
aerosol particles using single-particle 
mass spectrometry (SPMS)

• Deep learning for the classification of 
spectral data to identify the pollution 
sources of aerosol particles

• SPMS, deep learning, meteorological 
conditions and Automatic Identification 
System (AIS) for ship emissions 
detection

A R T I C L E  I N F O

Editor: Ouyang Wei

Keywords:
Aerosol particles
Deep learning
Environmental monitoring
Ship emission detection
Single-particle mass spectrometry

A B S T R A C T

Increasing recognition of the impact of shipping on air pollution has led the International Maritime Organization 
(IMO) to establish Sulfur Emission Control Areas (SECA) to reduce emissions. Within SECA, ships must switch to 
low-sulfur fuel or use a scrubber technique to clean their exhaust gases. Conventional monitoring methods are 
limited by detection range, real-time data availability, and challenges in source attribution. This study describes 
a monitoring system that combines single-particle mass spectrometry (SPMS) with deep learning to overcome 
these shortcomings. SPMS can reveal the chemical composition of individual airborne aerosol particles, with the 
capability to detect emissions over several kilometers, enabling real-time pollution source identification. To 
automatically process the complex mass spectral data, a convolutional neural network (CNN) was designed, 
achieving 92 % accuracy in classifying 13 distinct classes of abundant aerosol particles. The results demonstrate 
that the proposed detection system enables to automatically classify aerosol particles from multiple sources. Of 
particular concern in this study is the in-situ analysis of particles from ship exhaust plumes, to rapidly identify 
ships running on polluting heavy fuel oil. Focusing on unique particles containing vanadium (51V+/67[VO]+), 
nickel (58/60Ni+), and iron (54/56Fe+) ions, designated as V-rich class, the real-time classification makes it 
possible to reliably detect particles from heavy fuel oil (HFO) combustion. In addition, to locate the emission 
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sources, the CNN’s predictions are linked to local wind measurements and ship trajectories provided by the 
Automatic Identification System (AIS). During a one-week monitoring period, 21 ships passing the measurement 
site 80 times in distances of up to ~1.3 km were detected using HFO.

1. Introduction

Ships play a fundamental role in the global transportation of goods. 
Statistics from the United Nations Conference on Trade and Develop
ment show that >80 % of the world’s trade was transported by sea 
(UNCTAD, 2018), with an expected rise by a further 3.2 % in 2024 
(UNCTAD, 2023). Cargo ships as well as ferries, cruise liners and other 
passenger ships as the main mean of maritime transportation have 
become a huge and growing source of carbon dioxide (CO2), nitrogen 
oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) in the 
atmosphere (Eyring et al., 2010; Toscano and Murena, 2019; Zhu et al., 
2018), which apart from contributing to global warming intensify air 
pollution in coastal areas, potentially causing human’s respiratory 
problems leading to premature death (Blasco et al., 2014; Fuglestvedt 
et al., 2009; Viana et al., 2014).

In order to reduce these harmful effects of ship emissions, the In
ternational Maritime Organization (IMO) established Sulfur Emission 
Control Areas (SECA) to mitigate and control environmental pollution 
caused by ship exhaust. SECA include, for example, most of North 
American coast regions, and the North Sea and the Baltic Sea in Europe. 
More areas are under discussion for becoming SECA (Cariou et al., 2024; 
Dulebenets, 2016; Lähteenmäki-Uutela et al., 2019).

In compliance with the emission standards established by the IMO, in 
SECA ship must run on low-sulfur fuels with a sulfur content of no more 
than 0.1 % m/m (mass by mass) (Dulebenets, 2016; IMO, 2016), such as 
marine gas oil (MGO). Alternatively, ships upgraded with fuel after
treatment systems including sulfur scrubbers are allowed to continue to 
use high-sulfur fuels (1…2.5 % m/m (Jeong et al., 2023)), such as heavy 
fuel oil (HFO), in SECA (Cariou et al., 2024; Lähteenmäki-Uutela et al., 
2019). Many ships still run on cheaper high-sulfur fuels with scrubbers 
within SECA (Abdul Jameel et al., 2019; Zis et al., 2022). Most scrub
bers, however, utilize seawater for purification and discharge the 
mixture into the sea, causing additional environmental and biological 
problems (Eyring et al., 2010; Ni et al., 2020; Zhou and Wang, 2020). 
Hence, there is an immediate need for effective measures to detect the 
emissions from ships in compliance with the IMO standards.

Most of the currently established detection systems for monitoring 
ship emissions use gas-phase measurement instruments (Kattner et al., 
2015; Toscano and Murena, 2019; Zhou et al., 2022a). These systems are 
typically deployed near coastlines or in port areas to measure the change 
of gas concentrations, such as CO2, SOx, and NOx, during the passage of 
ships. Gas-phase measurements are significantly affected by the distance 
between the emission source and the measurement station, with an 
effective measuring range of only a few hundred meters due to the rapid 
dilution of the gas as it spreads. Ship-based monitoring (Beecken et al., 
2015; Fu et al., 2013; Zhou et al., 2022a) involves the installation of 
instruments on-board to measure the emissions. Although this way of 
monitoring is sensitive, it is also costly and inefficient, since only one 
ship at a time can be inspected. Airborne monitoring systems installed 
on manned or unmanned aircraft (Mellqvist et al., 2017; Villa et al., 
2019; Yuan et al., 2020) are not suitable for permanent monitoring.

As aerosol particles can keep parts of their source-specific chemical 
composition even after long air transport, particle-phase measurement 
instruments are an effective approach to extend the detection range of 
air quality monitoring (Dall’Osto and Harrison, 2006; Passig et al., 
2021). Single-particle mass spectrometry (SPMS) is a real-time mea
surement technique that reveals the chemical composition of individual 
particles on behalf of their mass spectra, with high measurement rates of 
up to hundreds of particles per minute (Passig and Zimmermann, 2021; 
Pratt and Prather, 2012; Schade et al., 2019). For automatic analysis of 

this amount of data, machine learning approaches for fast and efficient 
pattern recognition are being sought (Beck et al., 2024; Christopoulos 
et al., 2018; Wan et al., 2024; Wang et al., 2024a). Accurate classifica
tion of a large variety of MS patterns offers new ways for air pollution 
monitoring and source apportionment, to locate pollution sources and 
the amount they contribute to ambient air pollution levels (Dall’Osto 
and Harrison, 2006; Heikkilä et al., 2024; Shen et al., 2024; Su et al., 
2024), as well as ship emissions (Passig et al., 2022, 2021; Zhou et al., 
2022b), traffic emissions (Toner et al., 2006; Xu et al., 2024), industrial 
pollutions (Arndt et al., 2021; Ye et al., 2025), etc.

This paper describes a real-time application for in-site analysis and 
identification of emission sources of individual airborne particles in the 
atmosphere using SPMS and deep learning, in particular based upon a 
convolutional neural network (CNN). We focus on analyzing particles 
from ship emissions, transported by wind to a land-based measurement 
site, specifically on particles within the predictions signaling the com
bustion of polluting HFO. In order to identify and locate ships running 
on HFO, (1) CNN’s classification, (2) wind data (direction and speed) 
from a local metrological station and, (3) entries in the Automatic 
Identification System (AIS) recording the trajectory of ships are inte
grated for the first time. Fig. 1 shows the flowchart of the monitoring 
system.

In Section 2, the SPMS measurement device is briefly described and 
typical MS patterns in different classes of abundant airborne particles 
are presented. In Section 3, several conventional approaches of mainly 
expert-assisted, off-line MS patterns analysis are discussed and the new 
classification method based on deep learning is introduced. In Section 4, 
it is described how the data obtained from a month-long measurement 
campaign are used to create a benchmark dataset to train, validate, and 
test a CNN model to provide accurate and efficient identification of the 
chemical signature of aerosol particles. In Section 5, results are given 
and discussed, showing that the new system is a powerful tool to realize 
remote and real-time air quality monitoring and is particularly suitable 
for the detection of ship emissions in coastal areas.

2. Single-particle mass spectrometry

SPMS is a highly sensitive real-time technique for profiling the 
chemical signatures of individual airborne aerosol particles. The oper
ating principles and parameters of SPMS have been described in detail in 
other studies (Passig and Zimmermann, 2021; Pratt and Prather, 2012; 
Schade et al., 2019). In short, the entering particles are isolated using an 
aerodynamic lens (Part I in Fig. 2(a)), then sized via light scattering with 
a setup that includes a pair of continuous-wave lasers (wavelength 532 
nm), ellipsoidal mirrors, and photomultipliers (Part II). The individual 
particles are then exposed to a triggered UV laser pulse (KrF-excimer 
laser, wavelength 248 nm) for laser desorption/ionization (LDI), and the 
ionized anions and cations are separated and detected in two time-of- 
flight (TOF) mass spectrometers (Part III). The resulting bipolar mass 
spectrum reveals the chemical composition of a single particle by dis
playing the intensity distribution of mass-to-charge ratios (m/z) for the 
anions and cations, see an example in Fig. 2(b). By examining specific 
combinations of peaks in the MS patterns, the probable emission source 
of the particles can be determined.

Fig. 3 shows several representative examples of chemical signatures 
of particles from different sources. The preprocessed and discretized 
(Δm/z = 1) MS pattern for each particle contains signal intensities in the 
range of the mass-to-charge ratio (m/z) from − 120 to +120 and is 
normalized by the maximum intensity of the positive and negative mass 
spectra, respectively.
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Fresh particles from traffic emissions have dense elemental carbon 
(EC) ion signals 12nCn

± (Dall’Osto and Harrison, 2006; Healy et al., 
2010), as shown in Fig. 3(a); biomass combustion is known to produce 
particles containing EC and organic carbon (OC) (Dall’Osto and Harri
son, 2012; Toner et al., 2006), see Fig. 3(b); calcium and its related ions 
(Fig. 3(c)) stem mainly from engine lubricant additives (Moffet et al., 
2008; Passig et al., 2021); particles with strong iron signals but small 
sulfate signatures (Fig. 3(d)) are associated with the combustion of low- 
sulfur fuels such as MGO (Passig et al., 2022; Wang et al., 2019); the 
combination of the transition metal ions vanadium (51V+/67[VO]+), 
nickel (58/60Ni+), and iron (54/56Fe+) (Fig. 3(e)) is characteristic for the 
combustion of HFO fuel used for marine engines (Ault et al., 2009; 
Passig et al., 2021); sea salt particles from sea spray as in Fig. 3(f) have 
ions associated with sodium and chlorine (Köllner et al., 2017; Shen 
et al., 2019).

3. SPMS data classification

For every detected airborne aerosol particle, SPMS generates an MS 
pattern representing the chemical composition of that particle. For 
plumes of high density of particles, tens of particles are detected per 
second. For fast inspection of a vast amount of MS patterns, ion marker 
screening based on preset mass numbers or the ratios between specific 
ion peak intensities is often used (Rosewig et al., 2024). Many mass 
numbers, however, have multiple meanings depending on the type of 
emission source, which makes the screening inaccurate. For example, 
regarding the mass numbers used to determine V-rich particles, m/z 51 
could be 51V+ or 51[C4H3]+, 56 could be 56Fe+; or 56[CaO]+, 60 could be 
60Ni+or 60C5

+, and 67 could be 67[VO]+or 67Zn+. Moreover, identifica
tion based on ratios of ion peak intensities is applicable only to stable 
ratios. For our application, this is often not the case, see Fig. 4.

Therefore, for classification of MS patterns, unsupervised clustering 
algorithms such as K-means and ART-2a are most used in the field. 
Unsupervised clustering does not require training and allows new 
spectral features to be discovered during expert-assisted post-process
ing. In order to bring down the usually large number of clusters pro
posed by the unsupervised clustering algorithms to the number of 
intended classes, clusters are merged in a multi-step expert-assisted off- 
line process (Chen et al., 2024; Dall’Osto and Harrison, 2006, 2012; 
Passig et al., 2022, 2021). Clearly, unsupervised clustering makes it 

difficult to obtain accurate, stable and continuous outputs and manual 
post-processing prevents the aerosol particles analyzed in-situ to be 
classified in real-time.

In a few studies (Christopoulos et al., 2018; Wan et al., 2024; Wang 
et al., 2024a), supervised machine learning methods such as Random 
Forest, Support Vector Machines, and Multi-layer Perceptron were 
proposed for the classification of MS patterns. Based on labeled data, 
predictive models are trained to classify huge amounts of data in a fully 
automated way.

In contrast to traditional machine learning approaches, deep 

Fig. 1. Flowchart of the monitoring system for ship emission detection based on profiling air-transported aerosol particles by a land-based single-particle mass 
spectrometry (SPMS). The resulting mass spectra are classified in real-time by deep learning (realized as a convolution neural network, CNN). In order to localize 
emission sources, predictions of relevant classes are linked to local wind measurements (direction and speed) and reported position data (AIS) of individual ships. 
(Icons are provided by flaticon.com).

Fig. 2. (a) Configuration of the SPMS instrument (Passig and Zimmermann, 
2021) consisting of three main parts: aerodynamic lens (Part I), sizing unit 
(velocimetry laser system) (Part II), laser desorption/ionization (LDI) and bi
polar TOF mass spectrometer (Part III). (b) Typical generated mass spec
tral pattern.
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learning-based architectures such as convolutional neural networks 
(CNNs) perform adaptive feature extraction, making them well-suited 
for processing complex data. CNNs are free from the dependence on 
expert-engineered learning features and have been successfully applied 
to a large variety of input data such as text, image, and audio (LeCun 
et al., 2015). The specific CNN architecture, which is built upon 
convolution layers, allows the weights of its filters (called convolutional 
kernels) to be continuously adjusted and optimized during training. This 
enables the network to automatically generate characteristics of feature 
maps that capture important patterns from the input data. The perfor
mance of such high-dimensional abstract features learned by convolu
tion operations has been shown to outperform the hand-designed 
learning features (Alzubaidi et al., 2021; LeCun et al., 2015).

To extract the learning features from the one-dimensional (1D) SPMS 
data for classification, 1D-CNN architectures were designed (Wang 
et al., 2023; Xu et al., 2024). The resulting small convolutional kernels 
with dimensions 3 × 1 (Wang et al., 2023), however, make it difficult to 
capture both local and global features simultaneously, potentially losing 
relationships between ‘distant’ parts of a MS vector on the mass axis. 
Increasing the size of convolutional kernels in 1D-CNN did not improve 
the performance. Alternatively, through a serpentine layout the MS 
vector can be converted into a two-dimensional (2D) representation to 
be used as input to a 2D-CNN architecture. In a 2D representation the 
spectral information is stored in a compact format, enabling to effi
ciently extract different specific features of complex MS patterns (Wang 
et al., 2024b). In this study we use a 2D-CNN architecture to classify the 
MS data and compared the classification results among different archi
tectures, see Section 5.1.

4. Detection of ship emissions

4.1. Measurement campaign

The aim of this study is to investigate, how well the proposed deep 
learning-based classification of individual aerosol particles can be 
applied on-line to describe and localize emission sources of aerosol 
particles produced by the combustion of marine fuels from ships. Spe
cifically, we focus on analyzing the emissions of ships entering and 
leaving the port of Rostock, Germany, situated on the south coast of the 
Western Baltic Sea, with the purpose to identify ships running on cheap 

but heavily polluting fuels like HFO. To the best of our knowledge, this is 
the first time that the SPMS technology is combined with deep learning 
technologies, local wind conditions and tracking data of registered ships 
(AIS) to classify emissions from fuel combustion of ships and localize its 
source.

The trade and ferry port of Rostock is the largest German Baltic Sea 
port with an annual cargo throughput of >30 Mt and a passenger volume 
of >2.5 million. The unique SPMS instrument, manufactured by Pho
tonion GmbH, Germany, was installed in a trailer and moved to the 
entrance of the harbor area. The position of the measurement site 
(54◦10′14.8″ N, 12◦06′24.7″ E) was chosen to be close to the main 
channel connecting the port to the Baltic Sea, ~0.5 km east (often 

Fig. 3. Exemplary mass spectral patterns of aerosol particles of 6 of the 13 predefined classes. The mass-to-charge ratios (m/z) range from − 120 to +120, and the 
intensities for negative and positive m/z are separately normalized by the maximum intensities of anions and cations. The colored ion peaks show characteristic class- 
specific markers for different particle classes.

Fig. 4. Exemplary mass spectral patterns of four vanadium-containing aerosol 
particles (V-rich class) with different ratios of peak intensities of characteristic 
ion markers (in magenta).
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downwind) of the channel and ~2 km north of the port, see Fig. 5. The 
city of Rostock (~200,000 inhabitants) is about 10 km to the south.

With westerly (northwest, west, southwest) winds, aerosol particles 
from the exhaust plume of ships in the maritime channel will be trans
ported to the sampling site. The ambient air was sampled at a height of 
~7 m above sea level. A concentrator (model 4240, MSP Corp., Shore
view, MN, USA) was used to concentrate the particles from a 300 L/min 
intake air stream into a 1 L/min carrier gas stream. The particles then 
passed through a dryer (model MD-700-12S-1, Perma Pure LLC, Lake
wood, NJ, USA) and were concentrated again in a virtual impactor stage 
at the inlet of the SPMS right above the aerodynamic lens (Rosewig 
et al., 2023). According to the specifications of the concentrator and the 
SPMS, the analyzed single particles were in the size range of 0.25–2.5 
μm.

In this study, data from a 34-day field measurement campaign con
ducted from July 1st to August 3rd 2022, were used. The wind data 
(direction and speed) at the time of the measurements are available 
online from the German Weather Service (DWD), Station 4271 
(54◦10′49.1″N, 12◦04′50.9″E), located about 2 km northwest of the 
sampling site, see Fig. 5. The data from the meteorological station were 
recorded every 10 min (German Weather Service (DWD), 2022). From 
the wind direction and speed, the delay between the emission and the 
time of measurement at the sampling site can be deduced. To match the 
detected particles with a specific ship passing the maritime channel in 
the proper location and time, we used an AIS logger data recording the 
positions (latitude and longitude) over time (along with the ship’s name, 
length, type, and other data) of all ships in the area.

In Fig. 5, the Search Area for ship detection is marked as a red 
transparent surface. All ships entering or leaving the harbor sail through 
the straight maritime channel (length ~3 km, width ~250 m) linking 

the harbor area with the Baltic Sea. As Search Area for our in
vestigations, we chose a ~2 km long section of that maritime channel, 
with latitudes ranging from 54◦09′42.1″N to 54◦10′47.3″N, such that the 
latitude of the sampling site (54◦10′14.8″N) marks the mean of the 
latitude range of the Search Area, with a distance of about 1 km from 
both its northern and southern boundaries and about 500 m to the main 
shipping lane at the closest point of passing.

With a reduced maximum allowed cruising speed of all vessels in the 
maritime channel, the average passage time through the Search Area is 
about 10 min.

4.2. Benchmark dataset

During the measurement campaign, the chemical composition of 
about 1.5 million individual aerosol particles was analyzed with the 
SPMS device at the sampling site. Of these, 37,406 particle MS patterns 
were selected and manually labeled to build a benchmark dataset for 
training and testing a 2D-CNN classification model. The dataset contains 
particles representing the 13 most abundant particle classes in the local 
ambient atmosphere during the period of the measurement campaign. 
The classes were defined based on expert knowledge on typical mass 
spectral patterns. In the off-line labeling process, each particle was 
attributed to one of those 13 predefined classes, analyzing occurring 
combinations of different chemical components (i.e. positions of peaks 
in the MS patterns) and their intensities. To reduce bias from subjec
tivity, the labeling process was assisted by multiple experts. In Table 1, 
the 13 classes are listed, associated with main emission sources, major 
ion markers used to identify characteristic chemical precursors of each 
class and the number of samples (particles) available in the benchmark 
dataset.

MS examples given in Fig. 3 embody the chosen guideline for la
beling mass spectra of individual particles. Generally, the assignment to 
a class was based on the occurrence of dominating ion markers (see 
Table 1). In practice, the mass spectrum of many particles contained ions 
which are characteristic for more than one class. In those cases, the ion 
peak with the highest intensity was said to determine the class label of 
that particle. Notably, we allowed for one exception to this rule: Spectra 
showing any combination of ion peaks of vanadium (51V+/67[VO]+), 
nickel (58/60Ni+), and iron (54/56Fe+) of noticeable intensity, which is 
characteristic for HFO combustion, were labeled as belonging to the V- 
rich class, even if none of those ion peaks were dominant in the MS 
patterns. This ‘sensitive’ rule ensures that none of the relatively few 
vanadium-containing particles found in the measurement data is missed.

Since the concentration of aerosol particles in the atmosphere can 
greatly vary depending on the emission source, to create a balanced 
dataset containing patterns with roughly the same number for every 
class was difficult. The chosen sampling site was in close distance to a 
busy maritime channel within a SECA. Therefore, a significant number 
of particles from the combustion of low-sulfur MGO fuel (permitted in 
SECA) occurred in the atmosphere and hence in the benchmark data
base. Many iron-containing particles were detected due to the LDI laser 
wavelength of 248 nm, matching a strong absorption line of atomic iron 
(Passig et al., 2022). These particles were further grouped into sub
classes (Fe-EC, Fe-Sul-Nit, Fe-Nit-EC, Fe-Nit, Fe-dominant), based on 
their degree of aging (a rough estimate of the distance to the emission 
source). Compared to particles from MGO combustion, there were fewer 
particles from HFO combustion (allowed in SECA only with a scrubber), 
and therefore these particles from HFO combustion (V-rich class) were 
not sub-grouped into additional classes.

5. Results and discussion

5.1. Classification of aerosol particles

The 2D-CNN architecture used in this study to train the model for the 
classification of MS patterns was successfully tested earlier (Wang et al., 

Fig. 5. Map of the Rostock harbor area. (Source: openstreetmap.org) The red 
transparent surface highlights the Search Area for ship detection, covering a 2- 
km-stretch of the maritime channel linking the city’s port with the Baltic Sea. 
Also marked are the locations of the sampling site and the meteorological 
station. The closest distance from the sampling site to the shipping lane is 
approx. 500 m, and the distance to the port is also about 2 km.
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2024b). The original 1D MS patterns with mass-to-charge ratios (m/z) 
ranging from − 120 to +120 excluding 0 are transformed into 2D rep
resentations, i.e., the original MS vector X = [x1, …, x240] is converted 
into a matrix whose product of rows (m) and columns (n) is 240. It was 
experimentally confirmed that the best performance is acquired when 
the MS patterns are transformed into a matrix of dimension m × n = 16 
× 15 as input to the 2D-CNN model.

For training and testing, the benchmark dataset described in Section 
4.1 was randomly split into two parts: 80 % (29,924 samples) for 
training and validation, and 20 % (7482 samples) for final testing, with 
equal class distribution in both parts. To address class imbalance, we 
applied random over-sampling for minority classes and under-sampling 
for majority classes during training. Additionally, to reduce the impact 
of random sampling on training reliability 5-fold cross-validation was 
applied, with each fold subsequently serving as validation while the 
remaining were used for training. The final model performance was 
evaluated on the independent test set.

The 2D-CNN architecture was optimized through grid search strat
egy, considering factors like the number and size of convolutional and 
pooling layers, kernel sizes, and fully connected (FC) layer structures. 
Fig. 6 shows the top-performing architecture, with four convolutional 
layers for MS pattern feature extraction. To preserve spatial dimensions, 
padding was applied ensuring that deeper layers receive sufficient in
formation. After the fourth convolutional layer, a 3 × 3 max pooling 
layer down-sampled the features, reducing dimensionality and 
enhancing feature abstraction and robustness. Finally, two FC layers 
were used for classification. As output, each MS is attributed to one of 
the (here: 13) predefined classes, according to the highest probability of 
membership.

We used cross-entropy function to measure the inconsistency be
tween predicted and true values during training and updated the 
network parameters with the Adam optimizer to minimize the loss 
function. The learning rate controls the step size of parameter update: a 
high rate may cause oscillation around the optimal solution, while a low 
rate ensures convergence but slows training and risks getting stuck in 
local optima. To balance efficiency and convergence, we applied a 
learning rate decay, starting at 0.0001 and reducing by 10 % every 100 

epochs, for a total of 300 epochs. Additionally, batch normalization and 
dropout techniques were implemented to accelerate training and pre
vent overfitting (Wang et al., 2024b).

The experiments were performed with the following configurations: 
Windows 10, NVIDIA GeForce RTX 3090 graphics card, 3.2 GHz Intel 
Core i9-12900K processor and 64 GB DDR3 RAM. We used Python 3.10 
and a machine learning framework PyTorch 1.12 to train the models. All 
libraries used in this work are open-source and cost-free.

Table 2 presents the prediction results of different models on the 
same test set (7482 samples), evaluated using the performance metrics 
accuracy, recall, precision, and F1 score. The last column in Table 2 lists 
the number of trainable parameters for each model. Due to the relatively 
small size of the 2D patterns in this study (16 × 15), classical CNN al
gorithms designed for image classification like AlexNet (Krizhevsky 
et al., 2017) and VGG (Simonyan and Zisserman, 2015) underperform 
because their larger convolutional kernels and deeper networks are not 
suited for the classification of SPMS data. For example, AlexNet’s first 
convolutional kernel is 11 × 11, and even the smallest VGG architecture, 
VGG11, has eight layers. To adapt AlexNet and VGG to process SPMS 
data, we adjusted parameters, including the size of each convolutional 
layers and first FC layer, greatly reducing the number of parameters.

The results in Table 2 show that using 2D representations of MS 
patterns followed by 2D-CNN classification outperforms all other tested 
algorithms, even the 1D-CNN approach (Wang et al., 2023) designed to 
directly processes the original 1D MS patterns. Moreover, this is ach
ieved with the smallest number of parameters among the models. 
Whereas the average training time for 2D-CNN was approx. 1 h, the time 
needed to test the network is seconds.

The confusion matrix in Fig. 7 documents the accuracy of the 2D- 
CNN model when classifying the 7482 samples from the test set into 
one of the 13 predefined classes. The main diagonal displays the rate of 
correct classifications for each class (true positive (TP) rates). The 
average accuracy over all classes is 92.0 %. Eight classes show accu
racies of >90 % (of which three classes exceed 95 %). The remaining five 
classes are the V-rich class (87.6 %) and four classes of iron-containing 
particles (Fe-Sul-Nit, Fe-Nit, Fe-Nit-EC, Fe-dominant (85.3 %–89.8 %).

All entries other than on the confusion matrix’ diagonal express 

Table 1 
Overview of the 13 particle classes in the labeled benchmark dataset. Prominent emission sources and the corresponding ion markers of particles are summarized from 
the literature and expert experience.

No. Class Prominent emission sources Ion markers No. of 
samples

%

1 Elemental carbon (EC) Traffic emissions, biomass burning (Ault et al., 2009; Dall’Osto 
and Harrison, 2006; Healy et al., 2010; Toner et al., 2006)

EC: 12C±, 24C2
±, …, 120C10

± 816 2.2

2 Organic and elemental 
carbon (OC-EC)

Biomass burning, traffic emissions (Dall’Osto and Harrison, 2006, 
2012; Shen et al., 2019; Toner et al., 2006)

OC: 27[C2H3]+, 37[C3H]+, 39[C3H3]+, 43[C3H7]+, 
51[C4H3]+, 63[C5H3]+, etc.; EC

3383 9.0

3 K-rich Biomass burning (Dall’Osto and Harrison, 2006; Healy et al., 
2012, 2010; Moffet et al., 2008)

39/41K+ 3300 8.8

4 Ca-rich Lubricating oil of engines (Dall’Osto and Harrison, 2006; Moffet 
et al., 2008; Passig et al., 2021; Toner et al., 2006)

40Ca+, 56[CaO]+, 57[CaOH]+, 112[CaO]2
+ 3238 8.7

5 V-rich HFO fuel emissions (Ault et al., 2009; Passig et al., 2022, 2021; 
Toner et al., 2006)

51V+, 67[VO]+; 54/56Fe+; 58/60Ni+ 943 2.5

6 Mn-rich Industrial emissions (Arndt et al., 2021) 55Mn+ 2904 7.8
7 Fe-EC Low-sulfur fuel emissions (fresh) (Healy et al., 2009; Passig et al., 

2022, 2021; Wang et al., 2019)

54/56Fe+, 73[FeOH]+; EC 3306 8.8

8 Fe-Sul-Nit Low-sulfur fuel emissions (moderately aged) (Healy et al., 2009; 
Passig et al., 2022, 2021; Wang et al., 2019)

54/56Fe+, 73[FeOH]+; Sulfate: 80[SO3]− , 96[SO4]− , 
97[HSO4]− ; Nitrate: 46[NO2]− , 62[NO3]−

2992 8.0

9 Fe-Nit-EC Low-sulfur fuel emissions (moderately aged) (Healy et al., 2009; 
Passig et al., 2022, 2021; Wang et al., 2019)

54/56Fe+, 73[FeOH]+; Nitrate; EC 3451 9.2

10 Fe-Nit Low-sulfur fuel emissions (aged) (Healy et al., 2009; Passig et al., 
2022, 2021; Wang et al., 2019)

54/56Fe+, 73[FeOH]+; Nitrate 3050 8.2

11 Fe-dominant Low-sulfur fuel emissions (aged) (Healy et al., 2009; Passig et al., 
2022, 2021; Wang et al., 2019)

54/56Fe+, 73[FeOH]+; negative signals are empty or 
very weak

3423 9.2

12 Salt-Fe Mixed state (Passig et al., 2022) 54/56Fe+, 73[FeOH]+; Salt: 23Na±, 39[NaO]+, 
62[Na2O]+, 63[Na2OH]+, 35/37Cl−

3300 8.8

13 Sea spray Sea salt (Dall’Osto and Harrison, 2006; Healy et al., 2010; Köllner 
et al., 2017; Shen et al., 2019)

Salt; Sulfate; Nitrate 3300 8.8

Sum 37,406 100
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incorrect classifications, with the entries in rows (‘true labels’) being 
class-specific false negative (FN) rates (i.e. wrongly dismissed assign
ments to that class) and the entries in columns (‘predicted labels’) being 
false positive (FP) rates (i.e. wrong assignments to that class). For the V- 
rich class, FNV-rich (5th row) is generally higher than FPV-rich (5th col
umn), meaning that particles from other classes are rarely misidentified 
as V-rich particles, but a larger number of V-rich particles are mis
classified as belonging to other. As an effect, if V-rich particles are 
identified, they are likely stemming from HFO combustion (precision =

TPV− rich
TPV− rich+FPV− rich 

= 93.2 %), but a number of V-rich particles may be over

looked (false missing rate = FNV− rich
FNV− rich+TPV− rich 

= 11.9 %).
By examining the misclassified particles, we found that many false 

positive classifications (‘predicted label’) of spectra labeled as belonging 
to the V-rich class (‘true label’) are due to the bias introduced by our 
labeling rules. As described above, spectra with weak ion peak in
tensities of the combination of 51V+/67[VO]+, 58/60Ni+, and 54/56Fe+

ions were labeled as V-rich in the benchmark dataset, even when peaks 
of other ions were dominant. This rule was applied for labeling V-rich 
particles to enable the model to be sensitive to the V-rich particles from 
HFO combustion. Another reason for V-rich misclassifications is that our 
dataset has a class imbalance problem. In future work, data augmenta
tion methods shall be applied (Wang et al., 2024c) which help to in
crease the number of samples from certain classes (e.g., V-rich class) and 
to reduce class imbalances.

Spectra of iron-containing particles (mostly from emissions from 
MGO combustion) were classified into five subclasses, which represent 
different ‘ages’ of analyzed particles due to different distances from the 
emission source. As can be seen in Fig. 8, the main influences of aging 
effects on the MS are in the anions’ spectra. The freshly emitted particles 
typical show strong EC signals (class ‘Fe-EC’). As particles are trans
ported by air, the EC peaks become progressively weaker, in contrast to 
peaks from nitrate ions, which are enhanced (classes ‘Fe-Sul-Nit’, ‘Fe- 
Nit-EC’, ‘Fe-Nit’) (Passig et al., 2022). The differences between these 

spectra are, however, comparatively small, making it difficult even for 
experts to set rules or thresholds to reliably distinguish between them. 
Hence, it is no surprise that – as the confusion matrix shows – most of 
misclassified spectra of iron-containing particles are assigned to one of 
the other subclasses. However, misclassifications into the iron-specific 
subclasses do not affect the identification of ships using HFO.

5.2. Ship detection

To confirm whether a ship entering or leaving Rostock harbor was 
operating on HFO fuel, a 3-step-procedure was implemented. Ground 
are the classes as predicted by the 2D-CNN model of the MS pattern of all 
detected aerosol particles. These classes represent several probable 
sources of emission. As stated earlier, ships running on HFO will likely 
release a significant number of V-rich particles (Ault et al., 2009; Passig 
et al., 2022, 2021; Toner et al., 2006). The following steps are taken to 

Fig. 6. Architecture of the 2D-CNN for the classification of mass spectral patterns of aerosol particles (Wang et al., 2024b).

Table 2 
Classification results in % of different algorithms on the test set (~7500 samples) 
with 5-fold cross-validation.

Algorithm Accuracy Recall Precision F1 
score

No. of 
Parameters

AlexNet (
Krizhevsky 
et al., 2017)

87.5 ±
0.5

87.4 
± 0.6

87.1 ±
0.4

87.2 
± 0.5

57.0 M

VGG11 (Simonyan 
and Zisserman, 
2015)

89.5 ±
0.3

89.4 
± 0.3

89.4 ±
0.1

89.3 
± 0.3

30.2 M

1D-CNN (Wang 
et al., 2023)

90.4 ±
0.9

89.2 
± 0.2

90.1 ±
0.2

89.6 
± 0.3

30.6 M

2D-CNN (Wang 
et al., 2024b)

92.0 ±
0.1

91.9 
± 0.1

91.9 ±
0.1

91.9 
± 0.1

2.7 M

Fig. 7. Normalized confusion matrix illustrating the results of classification in 
% on the test set (~7500 samples) using the trained 2D-CNN model. The ver
tical axis shows the ground truth, and the horizontal axis displays the pre
dictions. The main diagonal displays the rate of correct classifications for each 
of the 13 predefined classes. All other entries areas in the matrix express 
incorrect classifications, with the entries in rows being false negative (false 
missing) rates and the entries in columns being false positive (false alarm) rates.
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localize the emission source, if a particle is predicted to be of the V-rich 
class: First, the time stamp will be tagged when the concentration of V- 
rich particles in the 2D-CNN model’s prediction is above a reasonable 
threshold of 1 % of all particles detected in a 10-minute-interval. Sec
ond, the meteorological data at the marked time are considered, spe
cifically the reported wind direction and speed, in order to estimate the 
location of the emission plume identified as releasing V-rich particles. 
The last step is to search in the AIS database whether a ship passage 
event has occurred at the specific time and location when significant V- 
rich particle emissions could be traced back. In this study, only large 
ships with a minimum length of 75 m were considered as potential 
targets, and smaller ships in the AIS database were ignored.

We completed a comprehensive analysis of all spectra measured by 
the SPMS instrument during seven consecutive days from July 12th 
2022, 00:00:00 to July 18th 2022, 23:59:59 (HH:MM:SS). Of course, 
none of the SPMS spectra recorded during that period were included in 
the benchmark dataset used for training and test, so that the seven-day 
predictions were completely independent.

Fig. 9 shows the analysis for one day (July 17th 2022) and serves as 
an example to discuss the results. The horizontal axis of each subplot has 
the timescale 00:00:00 to 23:59:59 with 10-minute intervals. In Fig. 9(a) 
and (b) the predictions over time of the 2D-CNN model of class distri
butions are given in absolute (a) and relative (b) numbers of particles in 
one of the 13 classes, integrated in intervals of 10 min and shown in 
color-coded bars of 10-minute width. The meaning of the colors is dis
played on the right-hand site of graphs (a) and (b). Fig. 9(c) visualizes 
the mean wind direction and wind speed in 10-minute-intervals, as re
ported from the local DWD meteorological station. The arrow’s angle 
represents the wind direction and the arrow’s length indicates the speed. 
The scales of both measures are shown in the legend on the right. The 

displayed wind data help to roughly estimate where the particles have 
been transported from. The left vertical axis in Fig. 9(d) is the percentage 
of V-rich particles within a 10-minute interval, extracted from Fig. 9(b). 
If the percentage of V-rich particles is equal to or >1 % the bars are 
colored yellow, and green otherwise.

To verify the performance of the trained CNN model, we manually 
checked all 355 MS patterns predicted as belonging to the V-rich class on 
that day. Of these 355 predictions, 15 predictions could not be 
confirmed (true positive rate of 95.8 %). We then manually checked the 
prediction results for all particles from 00:00:00 to 12:00:00 on the same 
day (18,452 MS patterns) to reveal the number and time instants of V- 
rich particles that were not identified by the CNN model. We found only 
~70 particles that were not but should be attributed to the V-rich class 
(false missing rate ~0.4 %). Most of these misclassified particles showed 
a mixed state with marker ions from other classes, i.e. their MS patterns 
contained not only the ion markers of the V-rich class, but also of other 
classes, and the intensities of 51V+/67[VO]+, 58/60Ni+, and 54/56Fe+ ions 
were weak. Since the number of unidentified V-rich particles is small, 
the effect on the identification of ships running on HFO is negligible. We 
found, that the ship type (passenger ship, cargo ship or tanker) had no 
effect on the quality of CNN’s predictions.

Also in Fig. 9(d), passing events of ships are marked in different 
colors, whether they enter (red markers) or leave (blue markers) the 
harbor area, according to the positions recorded in the AIS data logger. 
The length of these markers is 10 min, as is the average passing time 
through the predefined Search Area. On the right vertical axis of Fig. 9
(d), 10 individual ships are displayed, for which an emission plume 
containing particles in the V-rich class was predicted by the 2D-CNN 
model on that day. Of these 10 ships, in total 30 passages were recor
ded in the AIS database on that day. SHIP5, SHIP9, and SHIP10 entered 
the harbor and did not leave it that day, while the remaining seven ships 
(mostly ferries) passed the sampling site at least twice, up to eight times 
that day. (According to the AIS database, six more individual large ships 
passed through the Search Area on that day. However, no V-rich parti
cles were detected at the time of their presence in the Search Area, and 
therefore their passages are not shown in Fig. 9(d)). Dash-lined squares 
around the markers in Fig. 9(d) indicate passage events that were 
identified as ships running on HFO, due to the V-rich content of the 
emission plume >1 % along with supporting indications from wind and 
AIS data. Of the 30 passages noted as likely emission events from HFO 
combustion, 21 passages (70 %) were identified, from all 10 targeted 
ships. Unfortunately, we could neither conduct an on-board check nor 
had we access to filed information what type of fuel a ship actually was 
using.

Let us discuss now on behalf of one example, how these target 
emissions were confirmed based on the automated CNN’s predictions 
and the supporting wind and AIS data. As can be seen in Fig. 9(d), during 
the interval from 00:10:00 to 00:20:00, 1.9 % of all particles recorded in 
that period were predicted as V-rich, what is displayed by a yellow bar. 
Since this concentration is above the preset threshold of 1 %, this sig
nificant appearance V-rich particles is considered likely stemming from 
a ship in the Search Area running on HFO. At the time of passage, the 
wind direction was 300 degree (north-west) and the wind speed was 9.8 
m/s (which is considered strong, but not too strong wind for a plume to 
be quickly dispersed). From these wind data it could be estimated that 
the emission source of that particle plume was approx. 750 m away from 
the sampling site in north-western direction, which is roughly in the 
center of the Search Area. At the time of detection, the AIS database lists 
SHIP1 on its way out of the harbor area, passing the assumed emission 
source location at 00:06:38. Adding the travel time (~75 s) of the par
ticles to the sampling site means that the plume should be observable at 
around 00:08:00 in the SPMS results. According to the CNN’s pre
dictions, significant V-rich particle concentrations appear in the interval 
from 00:10:00 to 00:20:00, see the first yellow bar in Fig. 9(d), which – 
considering our rough estimations – is counted as confirmation that 
SHIP1 was running on HFO that night. (Perhaps the wind conditions on 

Fig. 8. Exemplary mass spectral patterns of iron-containing subclasses of 
aerosol particles.
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the particles’ path from the traveling ship to the sampling site were 
slightly different from the recordings of the DWD meteorological station 
some 2 km away.)

The next instance of V-rich particles in the measured aerosols is 
predicted at around 00:50:00, see the first green bar in Fig. 9(d). The 

concentration, however, is below 0.5 %. At the time of observation 
(minus travel time of the particles) no ship (even a smaller one) was 
listed in the AIS database. We assume that these V-rich particles (and 
others observed that night) come from ships outside of the Search Area. 
By reviewing the MS patterns, we found that these particles are 

Fig. 9. Time distributions of aerosol particle classes predicted by the trained 2D-CNN model for 24 h of measurements (July 17th 2022), with (a) absolute and (b) 
relative numbers of particles per class, integrated in intervals of 10 min. The names and colors of each of the 13 regarded particle classes are shown in the legend on 
the right. In (c), wind speed and direction are displayed in intervals of 10 min, with scales of speed and direction (angle) given on the right. In (d), the left vertical axis 
gives the particle number concentration (in %) of V-rich class particles over a 10-minute interval, shown in two colors according to a threshold of 1 % of all particles 
in the time interval. The red and blue markers represent the time of passages of all 10 ships detected as potentially using polluting HFO, when they enter or leave the 
Search Area, respectively, according to the AIS database. Dash-lined squares around these markers indicate passages of ships using HFO detected by associating the V- 
ion predictions with wind measurements and AIS data at the same time.
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generally highly aged (i.e. they contain stronger nitrate signals or almost 
no contributions in anions’ MS), being transported over a longer 
distance.

Table 3 records the results of the detected passages per day of the 
observation period, as found following the described procedure. In total, 
the AIS data recorded a total of 310 passing events of 57 different large 
ships (with lengths of >75 m) sailing into or out of the harbor during the 
seven days of observation. Matching the CNN’s predictions with the 
wind and AIS data, 80 passages of 21 different ships were identified as 
sources of emission of the detected V-rich particles. Counting the pas
sages on a day-by-day basis, the overall number of passages from these 
21 ships was 180, of which as much as 80 passages (44.4 %) were 
automatically identified by our analysis. The remaining 36 ships 
(including some ferries) could not be detected every day they showed up 
at Rostock harbor.

The results in Table 3 show that the detection rates varied across 
different days, despite the relatively stable ship traffic in the Search 
Area, which averaged around 40 to 50 passages per day, as indicated by 
the AIS data. It must be underlined, that the detection results are highly 
dependent not only on the wind conditions (directions and speed), but 
also on humidity of the local air, as the meteorological conditions affect 
the number of collectable particles from the air (Celik et al., 2020; Passig 
and Zimmermann, 2021). Rainfall on July 14th and July 15th and high 
wind speeds during July 15th and July 16th were clearly not favorable 
for the collection of particles.

Table 4 shows the types of the detected 21 ships, the total number of 
times they passed through the Search Area during the seven days of 
observation, the number of times they were detected as potentially using 
HFO, and the rate of detection. The ships from SHIP1 to SHIP10 are the 
same ships as marked in Fig. 9(d). The results show that the emission of 
V-rich particles was identified in 7 out of 8 times (87.5 %), when SHIP1 
(a ferry) passed the sampling site. SHIP9, SHIP11, and SHIP18 were 
detected during each individual passage (100 %)! (SHIP9 and SHIP11 
passed twice and four times, SHIP18 only once during that week.)

The total number of passages of these 21 ships identified as running 
on HFO at least once during the seven days was 217, according to the AIS 
data. The difference to the 180 passages of these 21 ships when counted 
on a day-by-day basis (Table 3) can be easily explained: For example, 
SHIP5 was identified as running on HFO during its single passage on 
July 17th. According to the AIS data, SHIP5 passed through the Search 
Area two more times during those seven days of observation, on July 
12th and 18th. Significant emissions of V-rich particles, however, were 
not detected during these two passages. This is probably due to either 
the usage of a fuel type not containing V+ ions (e.g. MGO) or unfavor
able wind directions. Thus, counting passages of ships identified as 
running on HFO on a day-by-day basis (Table 3), from the three passages 
of SHIP5 during the seven days of observation only the passage on July 
17th was detectable and considered when calculating the detection rate.

Moreover, calculating the detection rates in Table 4 for all ships 
identified as using HFO fuel at least once, we assumed that individual 
ships run on the same fuel in all passages. In practice, there are ‘hybrid’ 

ships using different types of fuel or switching to battery-powered 
electric engines when entering and leaving a port. For example, 
SHIP4, SHIP6, and SHIP8 were more frequently detected when entering 
the harbor, but not when leaving. If the switching between engines and 
the usage of different fuels were recorded and known, our detection 
rates could be dramatically increased.

Another interesting event, recorded on July 17th by the measure
ment system and predicted by the CNN model, but not related to ship 
traffic, occurred after 23:00:00 and lasted until July 18th. As can be seen 
in Fig. 9(a) and (b), a large number of particles was recorded. As became 
apparent later and was even published in the local press, the reason for 
that tremendous increase of particles from biomass burning (mainly 
classified as EC-OC and K-rich) was the outbreak of a large fire ~5 km 
away from the sampling site. This observation once again underscores 
the capability of the SPMS system to monitor the air quality in a larger 
region and to reliably classify probable emission sources through our 
deep learning prediction model.

6. Conclusion and outlook

This study demonstrates for the first time the potential of combining 
sensitive and specific single-particle mass spectrometry (SPMS) with 
deep learning for real-time identification of relevant emissions through 
the classification of aerosol particles. On behalf of an advanced auto
mated feature extraction based on an optimized 2D convolutional neural 
network (2D-CNN), the system proved to be a valuable tool for 

Table 3 
Local wind conditions, total number of large ships (>75 m) passing through the search area and number of passages where HFO usage was detected on each of seven 
consecutive days.

July 12 July 13 July 14 July 15 July 16 July 17 July 18 Sum

Local wind directions  
(N-north, E-east, S-south, W-west)

NW-W-SW SW-W-NW NW-W-NW NW-SW SW-NW NW-SW SW-S –

Local wind speed (m/s) 4.9 ± 1.3 5.4 ± 3.1 8.7 ± 2.5 9.9 ± 2.7 10.3 ± 3.1 6.2 ± 2.8 2.7 ± 0.8 –
Rainfall (yes/no) No No Yes Yes No No No –
No. of large ships (from AIS) 20 22 20 18 15 16 17 In total: 57 ships
No. of passages (from AIS) 43 48 51 43 42 39 44 310
No. of detected ships using HFO fuels 6 9 6 5 4 10 6 In total: 21 ships
No. of passages of detected ships (from AIS) (A) 25 27 27 22 23 30 26 180 (from 21 ships)
No. of detected passages (B) 11 17 9 6 5 21 11 80 (from 21 ships)
Detection rate (B/A) (%) 44.0 63.0 33.3 27.3 21.7 70.0 42.3 44.4

Table 4 
Detection results for each of the 21 ships identified as using HFO at least once.

Detected 
ship

Type of 
ship

Length 
in m

No. of 
passages

No. of 
detected 
passages

Detection 
rate (%)

SHIP1 Passenger 179 8 7 87.5
SHIP2 Passenger 170 59 18 30.5
SHIP3 Passenger 229 6 4 66.7
SHIP4 Passenger 170 68 20 29.4
SHIP5 Tanker 144 3 1 33.3
SHIP6 Cargo 154 2 1 50.0
SHIP7 Passenger 177 10 4 40.0
SHIP8 Passenger 200 22 4 18.2
SHIP9 Cargo 83 2 2 100.0
SHIP10 Passenger 150 2 1 50.0
SHIP11 Passenger 191 4 4 100.0
SHIP12 Cargo 122 2 1 50.0
SHIP13 Cargo 174 6 2 33.3
SHIP14 Cargo 187 4 3 75.0
SHIP15 Cargo 218 4 2 50.0
SHIP16 Cargo 82 3 1 33.3
SHIP17 Cargo 90 2 1 50.0
SHIP18 Cargo 193 1 1 100.0
SHIP19 Passenger 299 2 1 50.0
SHIP20 Cargo 229 5 1 20.0
SHIP21 Cargo 166 2 1 50.0
Sum 217 80 36.9
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identifying emission plumes of ships in coastal areas, stemming from the 
combustion of polluting fuels such as heavy fuel oil (HFO). Trained and 
validated with measurement data from a month-long campaign in the 
harbor area of Rostock, Germany, over 92 % accuracy was achieved in 
identifying 13 distinct classes of abundant aerosol particles. For the 
classification of V-rich particles the accuracy was 87.6 %, which can be 
explained by class imbalance of the created benchmark dataset and by 
the labeling rules assigning many particles as belonging to the V-rich 
class which are in fact in a mixed state.

By integrating predictions from 2D-CNN with meteorological data 
from a local weather station and ship positions from the Automatic 
Identification System (AIS), the system could identify a large number of 
ships running on HFO. For a period of seven consecutive days in July 
2022, of 57 individual large ships entering or leaving the harbor area, 21 
could be identified as using HFO at least once. The detection rate varied 
from day to day, depending on the number of particles from ship engine 
emissions detectable in the air, which are significantly affected by the 
wind direction and speed and the local meteorological conditions in 
general.

In addition, we understand the importance of the verification of ships 
which actually use HFO to raise the credibility. We approached the 
Federal Maritime and Hydrographic Agency (BSH) being the general 
public institution for maritime tasks in Germany, but could not get ac
cess to information about the detailed usage of fuels. To get such valu
able information remains a task for the future.

Of note, the abundance of aerosol particles in the air is generally 
influenced by meteorological conditions (wind, rainfall, etc.) (Celik 
et al., 2020; Dall’Osto and Harrison, 2006; Passig and Zimmermann, 
2021). The wind data used in this study were recorded by a German 
Weather Service (DWD) station located approximately 2 km north-west 
of the sampling site. In future measurement campaigns, we shall equip 
our mobile measurement system with appropriate weather sensors to 
measure the wind directly at the particle inlet. In this study we moni
tored ships at the port entry during westerly (northwest, west, south
west) wind. Establishing a system consisting of multiple linked SPMS 
devices around the monitoring area, this clear limitation could be eased.

Future research will also focus on identifying ships using MGO fuels 
by considering multiple iron-containing particle classes characteristic 
for ship emission plumes. The results in Fig. 9(b) show that using the 
iron-containing particles alone is not sufficient to identify ships using 
MGO, since iron-containing particles were abundant throughout the 
entire time of investigation and no distinct changes among the distri
bution of these classes could be observed. To achieve MGO identifica
tion, larger molecules with higher mass-to-charge ratios (m/z > 140) 
like polycyclic aromatic hydrocarbons should be also considered 
(Anders et al., 2024).

The success of the proposed flexible and real-time classification 
based on mass spectra of individual aerosol particles underscores its 
potential for broader application in air quality monitoring and envi
ronmental regulation. This work is a first step towards on-line classifi
cation of aerosol particles in maritime environments in order to 
remotely monitor and localize ship emissions from larger distances using 
meteorological and AIS position data, with the perspective of classifying 
both MGO and HFO fuels used by ships. Moreover, fully automated 
classification of particles enables the monitoring of a wider range of 
indicators (e.g., toxins, industrial emissions, chemical spills, fires, etc.), 
thus allows SPMS to support applications in broader areas such as haz
ard and air quality monitoring.
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