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Abstract
Motivation: Spatially resolved chromatin accessibility profiling offers the potential to investigate gene regulatory processes within the spatial 
context of tissues. However, current methods typically work at spot resolution, aggregating measurements from multiple cells, thereby obscur
ing cell-type-specific spatial patterns of accessibility. Spot deconvolution methods have been developed and extensively benchmarked for spa
tial transcriptomics, yet no dedicated methods exist for spatial chromatin accessibility, and it is unclear if RNA-based approaches are applicable 
to that modality.
Results: Here, we demonstrate that these RNA-based approaches can be applied to spot-based chromatin accessibility data by a systematic 
evaluation of five top-performing spatial transcriptomics deconvolution methods. To assess performance, we developed a simulation frame
work that generates both transcriptomic and accessibility spot data from dissociated single-cell and targeted multiomic datasets, enabling direct 
comparisons across both data modalities. Our results show that Cell2location and RCTD, in contrast to other methods, exhibit robust perfor
mance on spatial chromatin accessibility data, achieving accuracy comparable to RNA-based deconvolution. Generally, we observed that RNA- 
based deconvolution exhibited slightly better performance compared to chromatin accessibility-based deconvolution, especially for resolving 
rare cell types, indicating room for future development of specialized methods. In conclusion, our findings demonstrate that existing deconvolu
tion methods can be readily applied to chromatin accessibility-based spatial data. Our work provides a simulation framework and establishes a 
performance baseline to guide the development and evaluation of methods optimized for spatial epigenomics.
Availability and implementation: All methods, simulation frameworks, peak selection strategies, analysis notebooks and scripts are available 
at https://github.com/theislab/deconvATAC.

1 Introduction
Single-cell transcriptomics and epigenomics have significantly ad
vanced our understanding of cellular states and their gene regula
tion. However, the inherent cell dissociation in these methods 
obscures spatial information. Spatial transcriptomics has 
addressed this limitation, enabling the study of cellular functions 
and states within their native tissue context (Marx 2021, 
Heumos et al. 2023). Further, there is an increasing interest in re
solving additional cellular modalities without the need for dissect
ing the cellular microenvironment (Vandereyken et al. 2023, 
Klughammer et al. 2024, Vicari et al. 2024). Spatial proteomics 
(noa 2024) and spatial receptor sequencing (Engblom et al. 
2023) paired with insight obtained from transcriptomics generate 
more complete views of local dependencies in complex tissues. 
Recently, the emergence of spatial chromatin accessibility tech
nologies (Deng et al. 2022, Llorens-Bobadilla et al. 2023, Zhang 
et al. 2023, Russell et al. 2024, Guo et al. 2025) offers the poten
tial to investigate gene regulatory processes and chromatin regu
lation within this spatial context.

Unlike spatial transcriptomics methods, spatial chromatin 
accessibility methods are solely sequencing-based and can be 

broadly categorized into two approaches. Slide-tag directly 
tags single-nuclei within an intact tissue using barcodes with 
known spatial positions, enabling subsequent single-nucleus 
chromatin accessibility profiling using the assay for 
transposase-accessible chromatin with sequencing (ATAC- 
seq) (Russell et al. 2024). However, this technology suffers 
from significant cell loss, hindering the detection of 
fine-grained spatial interactions (Russell et al. 2024). 
Alternatively, spot-based protocols (Deng et al. 2022, 
Llorens-Bobadilla et al. 2023, Zhang et al. 2023, Guo et al. 
2025) measure gene expression or chromatin accessibility 
from regions containing multiple cells of potentially diverse 
types, resulting in composite measurements reflecting the ag
gregate signal. This necessitates deconvolution methods to 
disentangle the mixed signals and estimate cell-type propor
tions within each spot (Longo et al. 2021, Vandereyken et al. 
2023). Several methods have been developed for spatial tran
scriptomics and were independently assessed in several 
benchmarks (Li et al. 2022, 2023, Yan and Sun 2023, Sang- 
aram et al. 2024). These methods typically leverage a dissoci
ated single-cell reference to learn cell-type signatures, which 
are then used to deconvolve the spot-based expression vector. 
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The methods either make no assumptions about the count 
distribution (Biancalani et al. 2021, Dong and Yuan 2021), 
or model the data using probabilistic models based on stan
dard count distributions such as the negative binomial 
(Kleshchevnikov et al. 2022, Lopez et al. 2022) or Poisson 
distribution (Cable et al. 2022). It was shown that fragment 
counts in chromatin accessibility peaks exhibit similar distri
butions (Martens et al. 2024, Miao and Kim 2024), and 
hence, we hypothesized that deconvolution methods might be 
applicable to spatial epigenomic data without significant 
alterations of the underlying method (Fig. 1a). In this work, 
we benchmark five well-performing spatial transcriptomics 
deconvolution methods (Cell2location (Kleshchevnikov et al. 
2022), RCTD (Cable et al. 2022), Tangram (Biancalani et al. 
2021), SpatialDWLS (Dong and Yuan 2021), and DestVI 
(Lopez et al. 2022)) and assess whether they can be readily 
applied to emerging spatial epigenetic data. Additionally, we 
developed a flexible framework to simulate paired spot-based 
transcriptomic and accessibility data from dissociated multi
ome datasets (Kanemaru et al. 2023, Zhu et al. 2023) and 
targeted spatial multiome data (Russell et al. 2024) (Fig. 1b). 
Our simulation framework enables direct comparison of 
method performance across modalities. Further, we account 
during simulations for strong variations in tissue heterogene
ity, by altering cell-type compositions, cell density and spatial 
zonation. Variations in these spatial structures are commonly 
observable in complex tissues and it has been shown that 
they reflect meaningful biological signals (Bhuva et al. 2024) 
and deconvolution methods should still accurately recover 
the cellular composition in such cases.

Spatial transcriptomics deconvolution methods are typi
cally designed to be applied to a few thousand highly variable 
genes. The analysis of ATAC-seq data however commonly 
includes over 100,000 peaks, which raises the need for care
ful choice of peak selection strategies. We therefore investi
gate the impact of two common peak selection strategies, 
highly accessible or highly variable peaks.

In conclusion, this study demonstrates that certain spatial 
transcriptomics deconvolution methods can be successfully 
applied to spatial chromatin accessibility data. This work 
provides specific recommendations for peak selection, a ro
bust simulation framework for generating complex spatially 
structured multimodal data, and establishes a performance 
baseline to guide the development and evaluation of methods 
specialized for spatial epigenomics.

2 Methods
2.1 Overview of deconvolution methods
We assessed the performance of the five deconvolution meth
ods using SEML (Slurm Experiment Management Library) 
(Z€ugner et al. 2023) for experiment management. Method- 
specific parameter settings are detailed below.

2.1.1 Cell2location
Cell2location (Kleshchevnikov et al. 2022) is a Bayesian 
probabilistic model that infers cell-type composition in spa
tial transcriptomics data using negative binomial regression. 
We used v0.1.4 and followed the guidelines from https://cell2 
location.readthedocs.io/en/latest/notebooks/cell2location_tu 
torial.html, setting detection_alpha to 20 and n_cells_per_ 
location to 8. The means_cell_abundance_w_sf and q05_cell_ 
abundance_w_sf posteriors were evaluated.

2.1.2 DestVI
DestVI (Lopez et al. 2022) is a variational autoencoder-based 
(VAE) model employing two VAEs: a single-cell latent vari
able model (scLVM) and a spatial latent variable model 
(stLVM). The scLVM, trained on a reference single-cell 
RNA-seq dataset, provides a cell-type-specific latent space. 
The stLVM uses the trained scLVM and spatial data to pre
dict cell-type proportions. Both models expect negative- 
binomially distributed expression data as input. We used 
scvi-tools (v1.0.3) and followed the guidelines from https:// 
docs.scvi-tools.org/en/stable/tutorials/notebooks/spatial/DestVI_ 
tutorial.html. We set max_epochs to 300 for scLVM and to 
2000 for stLVM.

2.1.3 Tangram
Tangram (Biancalani et al. 2021) is a deep-learning model 
based on non-convex optimization. The model outputs a ma
trix indicating the probability of each cell type in each spatial 
voxel. We used version v1.0.4 and followed the instructions 
from https://tangram-sc.readthedocs.io/en/latest/tutorial_link. 
html. We ran Tangram in both modes, mode¼“clusters” with 
cluster_label¼“cell_type” and mode¼“cell.” In cluster mode, 
Tangram maps averaged cells of the same cluster instead of 
single cells.

2.1.4 RCTD
RCTD (Cable et al. 2022) is a probabilistic-based method 
that uses maximum-likelihood estimation to predict cell-type 
proportions, assuming Poisson distributed counts for each 
spot with a log-normal prior. We used the spacexr package 
(v2.2.1) and followed the tutorial provided on the website: 
https://raw.githack.com/dmcable/spacexr/master/vignettes/vis 
ium_full_regions.html, setting doublet_mode to “full” in the 
run.RCTD function. We disabled feature filtering by setting 
gene_cutoff, fc_cutoff, gene_cutoff_reg, and fc_cutoff_reg to 
zero. CELL_MIN_INSTANCE and UMI_min were also set 
to zero.

2.1.5 SpatialDWLS
SpatialDWLS (Dong and Yuan 2021) involves fitting a least 
squares regression model that estimates cell-type proportions 
by minimizing the weighted difference between the observed 
and predicted gene expression/accessibility values. We used 
the Giotto package (v4.0.4) to run SpatialDWLS. For ATAC 
data, we used TFIDF-normalized data and LSI for dimension
ality reduction, while log-normalized data and PCA were 
used for RNA data. Data was clustered using the Leiden algo
rithm with default parameters. A signature matrix was cre
ated using makeSignMatrixDWLS with expression_values set 
to “normalized”, and reverse_log to TRUE for RNA and 
FALSE for ATAC. Deconvolution was performed with 
runDWLSDeconv, setting n_cell to 10.

2.1.6 Baseline
As a baseline comparison, we implemented a naive deconvo
lution strategy that predicted only the majority cell type in 
each spot with a probability of 1.

2.2 Dataset collection and preprocessing
2.2.1 Spatial chromatin accessibility datasets
Slide-tags human melanoma: The Russell et al. (2024) dataset 
comprises a human metastatic melanoma sample profiled us
ing the Slide-tags method, which spatially tags and profiles 
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Figure 1. Workflow for evaluating spatial deconvolution methods developed for spatial transcriptomics data on spatial chromatin accessibility data. (a) 
Spatial deconvolution has been developed and successfully applied to spatial transcriptomics data at spot resolution to decompose the cell-type 
composition in individual spots. We evaluate deconvolution methods originally designed for transcriptomics measurements on their capabilities to 
deconvolve spatially-resolved chromatin accessibility data. We provide a framework to simulate spatial epigenetic data in two ways: (b) through the silver 
standard by leveraging dissociated references and c, through the gold standard by leveraging targeted spatial ATAC datasets. Our pipeline allows the 
generation of spot-based data with different cell densities, cell-type heterogeneity, and spatial distributions to accurately reflect tissue patterns observed 
in real datasets (b). Epigenetic information measured with targeted technologies can be aggregated to spot-based spatial data by aggregating features 
overlapping artificial spots (c). (d) The benchmarking pipeline incorporates different feature selection strategies and tests five deconvolution methods: 
Cell2location, RCTD, Tangram, SpatialDWLS, and DestVI. Performance is evaluated based on two different metrics: RMSE and JSD. Additionally, we 
compare the performance obtained on spatial transcriptomics measurements. Heart and brain icons were created in BioRender. Heumos, L. (2025) 
https://BioRender.com/d08u1k8.
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single nuclei using droplet-based snATAC and snRNA-seq. 
The dataset includes 2529 spatially mapped nuclei from a 
38.3 mm2 section.

2.2.2 Simulation datasets
Human heart: Kanemaru et al. (2023) measured 704,296 
cells in human heart tissue samples using the 10x Genomics 
Multiome ATAC and Gene Expression protocol. The dataset 
comprises eight different anatomical regions of the human 
heart acquired from 25 different donors with a known his
tory of cardiac disease or arrhythmia and an age ranging be
tween 20 and 75 years. For our simulations of spot-based 
chromatin accessibility data, we used the twelve cell types 
originally annotated by Kanemaru et al. (2023). The data 
was obtained from the cellxgene census (Abdulla et al. 2025) 
and stored as a MuData object (Bredikhin et al. 2022, 
Virshup et al. 2023).

Human cerebral cortex: Zhu et al. (2023) measured 45,549 
nuclei in the human cortex along six developmental time
points using the 10x Genomics Multiome ATAC and Gene 
Expression protocol. For our simulations of spot-based chro
matin accessibility data, we used the 13 cell types originally 
provided by Zhu et al. The data was obtained from the cellx
gene census (Abdulla et al. 2025) and stored as a MuData ob
ject (Bredikhin et al. 2022, Virshup et al. 2023).

2.2.3 Peak and gene selection
For scATAC-seq data, peak selection was performed on the 
reference datasets by retaining either the 20,000 most accessi
ble peaks or the 20,000 most highly variable peaks. We used 
ArchR’s (Granja et al. 2021) highly variable peak selection 
method which identifies highly variable peaks across clusters. 
In our case, the clusters were predefined by the cell-type 
labels. For scRNA-seq data, analyses were performed using 
Scanpy (Wolf et al. 2018, Virshup et al. 2023) (v1.9.5). Raw 
gene expression counts were normalized using Scanpy’s nor
malize_total function, followed by log(expression þ 1) trans
formation. The 4000 most highly variable genes were then 
selected using the “seurat” flavor. The same selected feature 
space was then used for the spatial datasets.

2.3 Simulation of spatial datasets
For systematic evaluations and comparisons of the described 
methods, we generated two different types of benchmarking 
datasets. We refer to them as gold standard and silver stan
dard. Silver standard benchmarking datasets were simulated 
from the heart (Kanemaru et al. 2023) and brain (Zhu et al. 
2023) single-cell multiome datasets using a simulation frame
work that is conceptually inspired by RCTD (Cable et al. 
2022) and Stereoscope (Andersson et al. 2020), while incor
porating some key modifications. Similar to these methods, 
our framework generates spot-based data by randomly 
sampling a specified number of cells from the dissociated 
single-cell reference and aggregates their expression and ac
cessibility profiles. Departing from these methods, we mod
eled both tissue heterogeneity (number of cell types per spot) 
and spot cell density using a Poisson-Gamma distribution, 
which has been shown to provide a more realistic representa
tion of cell-type compositions than uniform sampling (Liu 
et al. 2023). Cell types were sampled with equal probability, 
and the overdispersion parameter of the Poisson-Gamma dis
tribution was fixed at 20 while the mean was varied to 

control the number of cells and cell types in each simulated 
spot. Furthermore, we incorporated spatially varying cell- 
type compositions, which we refer to as spatial zonation 
(Fig. 1b), a feature absent in previous benchmarks, simulating 
both stripes and circles of differing compositions. The gold 
standard simulated benchmarking dataset was generated 
from the Russell et al. (2024) targeted spatial multiome data
set by aggregating gene expression and fragment counts from 
cells to larger spot-like areas, referred to as pseudo spots 
(Fig. 1c). Simulation parameters are summarized in Table 1. 
By employing these diverse simulation strategies, we argue 
that no spatial deconvolution method has an unfair advan
tage or benefits from the underlying distribution 
assumptions.

Further, we assessed Tangram’s stability in cell mode by 
simulating reference datasets of varying sizes using the disso
ciated human heart tissue dataset due to observed perfor
mance differences for varying reference dataset sizes. The 
smallest reference dataset contained only the cells that were 
used to generate spots in a corresponding spatial simulation. 
This smallest reference dataset was then incrementally ex
panded by adding cells, without replacement, sampled from 
the full human heart reference dataset. The size of the ex
panded reference was systematically increased by factors of 
2, 4, 8, and 16 times the size of the smallest reference.

2.4 Evaluation metrics
Deconvolution performance was evaluated by comparing 
predicted cell-type proportions to the true cell-type propor
tions using two primary metrics: root mean squared error 
(RMSE) and Jensen–Shannon divergence (JSD). RMSE quan
tifies the absolute difference between predicted and true pro
portions, while JSD measures the similarity between the 
distributions of predicted and true cell-type proportions. We 
also assessed the agreement between predicted and true ma
jority cell-type assignments using the Normalized Mutual 
Information (NMI), a measure of similarity between two 
data clusterings. Furthermore, we assessed the ability of the 
methods to recover rare cell types using the F1 score, which 
computes the harmonic mean of precision and recall for the 
detection of those cell types.

3 Results
3.1 Evaluation pipeline
In order to efficiently benchmark different methods and as
sess the impact of individual parameter choices, we designed 
an end-to-end benchmarking pipeline. Our pipeline compares 
five deconvolution methods on a set of two differently 
designed simulated datasets and reports a set of pre-selected 
metrics (Fig. 1d). Specifically, we simulate spatial spots based 
on dissociated multiome datasets by incorporating realistic 
tissue heterogeneity and spatial variability (Fig. 1b), and 
additionally, by simulating a spatial dataset derived from a 
targeted spatial multiome experiment (Fig. 1c). Spot-based 
spatial transcriptomics data typically measures up to 30,000 
genes, but commonly only a few thousand highly variable 
genes are then used during spatial deconvolution. In contrast, 
ATAC-seq data measures over 100,000 peaks and feature se
lection can either be performed based on highly variable 
peaks or highly accessible peaks. For the methods to scale, we 
therefore investigated the impact of feature selection on the 
performance of deconvolution methods for spatial chromatin 
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accessibility data. We compared two common peak selection 
strategies: selecting highly accessible peaks, which represent 
common and robust signals, and selecting highly variable 
peaks, which should be informative for distinguishing cell 
types (Fig. 1d). Accuracy was evaluated using RMSE and JSD 
between predicted and true cell-type proportions (Fig. 1d). 
The multiome data enabled direct comparison of RNA and 
ATAC deconvolution performance.

3.2 Performance evaluation of 
deconvolution methods
As the methods presented in this work are primarily designed 
for spatial transcriptomics data, we compared whether there 
is a significant drop in deconvolution performance when in
stead leveraging ATAC-based spatial data (Fig. 2a and 
Supplementary Table S1). For Tangram we evaluated both 
model-inherent modes, the cell and cluster mode, which differ 
in the way they assign cell types to spots (Methods; see 
Supplementary Table S1 for cluster mode results). Despite the 
inherent sparsity of ATAC-seq data, Cell2location and 
RCTD demonstrated robust performance on the chromatin 
accessibility modality. They ranked highest according to the 
mean JSD and RMSE across both simulation strategies 
(Fig. 2a and Supplementary Table S1). This is in concordance 
with previous benchmarks where these methods ranked top 
on spatial transcriptomics data (Li et al. 2022, Yan and Sun 
2023, Sang-aram et al. 2024). However, while overall results 
were comparable, RCTD’s and Cell2locations’ performance 
on ATAC was still slightly lower than the RNA-based decon
volution, suggesting that there is potential for further refine
ment of existing or development of new methods that are 
specifically optimized for ATAC-based spatial data. 
SpatialDWLS and DestVI performed worse on the data simu
lated from dissociated data, scoring only slightly better than 
the baseline for the ATAC modality. The performance of 
DestVI was not consistent across all datasets, showing even 
further reduced accuracy on targeted-data simulations which 
was also noted in previous studies (Sang-aram et al. 2024). 
For Tangram we observed a variable deconvolution perfor
mance. On simulations obtained with dissociated data, both 
Tangram’s cell and cluster modes generally performed no bet
ter than the baseline, except for marginal improvement using 
the cluster mode with RNA-seq data (Supplementary Table 
S1). In contrast, on simulations obtained with targeted spatial 
data, the cell mode achieved unexpectedly high performance, 
while the cluster mode remained poor. We hypothesized that 
this disparity might be due to Tangram’s cell-to-spot map
ping strategy. For reference datasets as constrained in compo
sition as for the targeted simulation (2529 cells that are also 
part of the spatial slide), we expect the direct cell to spot 
mapping to be easier. As we observed this phenomena only 

for Tangram and not for any other spatial deconvolution 
method, we simulated different reference compositions using 
the heart tissue dataset (Kanemaru et al. 2023) and assessed 
the performance of Tangram to validate our hypothesis 
(Methods). We observed that Tangram’s performance was 
optimal when the reference dataset composition and size 
matched with the size of the spatial dataset and deteriorated 
when more cells were present in the reference dataset 
(Supplementary Fig. S1), suggesting that Tangram’s perfor
mance is sensitive to the reference.

Across all methods, we observed a significant difference in 
performance based on the feature selection strategy used. 
Specifically, the selection of highly variable peak selection 
consistently outperformed highly accessible peak selection 
(P¼ 0.007, two-sided Wilcoxon test, n¼ 9; Supplementary 
Table S1), highlighting the importance of appropriate fea
ture selection.

We then assessed the influence of simulation parameters, 
namely cell-type heterogeneity and spatial zonation (Fig. 2b
and c). Cell2location and Tangram increased in performance 
with higher cell-type heterogeneity, whereas the other meth
ods decreased in performance (Fig. 2b). While Cell2location 
and RCTD were relatively robust to cell-type heterogeneity, 
SpatialDWLS and DestVI showed greater performance degra
dation on heterogeneous dataset. Tangram also showed a 
substantial performance drop, though in the opposite direc
tion from SpatialDWLS and DestVI, showing better perfor
mance on heterogeneous datasets. This observed effect on the 
Tangram method was confirmed to not be an artifact of the 
full reference being used for deconvolution, by showing the 
same behaviour when a reduced reference was used. 
Analyzing performance across different zonation patterns 
(Fig. 2c) showed that Cell2location outperformed RCTD in 
scenarios with spatially varying cell-type compositions, 
achieving lower mean RMSE and JSD (0.2037 vs. 0.2174). 
SpatialDWLS and DestVI exhibited greater sensitivity to spa
tial zonation compared to Cell2location and RCTD, with 
SpatialDWLS performing better on datasets with multiple 
zones and DestVI demonstrating higher accuracy on datasets 
with fewer zones. Overall, Cell2location and RCTD showed 
consistently robust performance in our simulations, while 
Tangram’s accuracy was sensitive to the reference dataset.

3.3 Deconvolution of a human metastatic 
melanoma dataset
We showcase the deconvolution results of the three best per
forming methods, Tangram, Cell2location and RCTD, on the 
Russell et al. dataset (Russell et al. 2024), a spatially resolved 
human metastatic melanoma sample profiled with both 
RNA-seq and ATAC-seq. This dataset exhibits two spatially 
distinct tumor subpopulations (denoted as tumor 1 and 

Table 1. Parameters used for generating simulated datasets.

Dataset Reference Number  
of spots

Zonation  
type

Number  
of regions

Mean number of 
cell types per spot

Mean number of 
cells per spot

Heart/Brain 1 Heart/Brain multiome 1000 Uniform 1 3 5
Heart/Brain 2 Heart/Brain multiome 1000 Uniform 1 10 15
Heart/Brain 3 Heart/Brain multiome 1000 Zonated 4 10, 5, 10, 5 15, 10, 15, 5
Heart/Brain 4 Heart/Brain multiome 1000 Zonated 4 3, 5, 3, 5 15, 10, 15, 5
Russell Slide-tags 360 Artificial spots N/A N/A N/A

Note: This table summarizes the key parameters used to generate the simulated benchmarking datasets from dissociated (Heart/Brain) and targeted spatial 
data (Russell).

i318                                                                                                                                                                                                                     Ouologuem et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/Supplem

ent_1/i314/8199385 by H
elm

holtz Zentrum
 M

uenchen user on 22 July 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf268#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf268#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf268#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf268#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf268#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf268#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf268#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf268#supplementary-data


tumor 2) with extensive immune cell infiltration (Fig. 3a). We 
generated synthetic spots by aggregating expression and ac
cessibility profiles of cells within defined spatial regions 
(Fig. 3b). Figure 3c compares the predicted dominant cell 
type for each spot using Tangram, Cell2location and RCTD 
across data modalities. ATAC-based deconvolution showed 
similar, but slightly lower performance in spatial localization 
of major cell types compared to RNA-based deconvolution 
(NMI: 0.445 vs. 0.462 for Cell2location). This performance 
reduction is partly explained by RNA-based deconvolution’s 
greater ability to resolve rare cell types. For example, we 

observed that RNA-based deconvolution achieved higher F1 
scores than ATAC-based deconvolution for CD4þ T cells 
(0.6 vs. 0.2), regulatory T cells (0.4 vs. 0.25), and myeloid 
dendritic cells (0.2 vs. 0.0). Cell2location outperformed 
RCTD in this heterogeneous tissue by accurately predicting 
lower proportions of tumor cells relative to CD8þ T cells, 
also shown by a higher NMI score. These results, combined 
with our benchmarking analysis (Fig. 2), suggest that while 
RCTD and Cell2location exhibit comparable performance on 
many simulated datasets, Cell2location demonstrates supe
rior performance in complex tissues with substantial 

Figure 2. Performance evaluation of spatial deconvolution methods on simulated data. (a) Performance of the deconvolution methods on simulated 
datasets derived from the silver standard simulations and the gold standard simulations. JSD and RMSE are reported for both ATAC-seq and matched 
RNA-seq data on highly variable features, which consistently showed higher performance compared to highly accessible features (Supplementary Table 
S1). Lower JSD and RMSE values indicate better performance. For silver standard evaluations, the table reports the mean and standard deviation across 
all simulations (heart and brain, n¼ 8). For gold standard evaluations, the table reports the respective metric (n¼1). Method rankings are based on the 
mean JSD and RMSE of the ATAC deconvolution across both feature selection methods only. Tangram Cell Mode results for targeted data have inflated 
scores (see main text) as indicated by the asterisk (�). Tangram Cluster mode consistently showed lower performance and is omitted here 
(Supplementary Table S1). (b) Mean of JSD and RMSE for each method on the ATAC modality and using highly variable features on homogeneous (few 
different cell types per spot, n¼ 4) and heterogeneous (many different cell types per spot, n¼4) simulated datasets. (c) Mean of JSD and RMSE for each 
method on the ATAC modality and using highly variable features on simulated datasets with a single (n¼ 4) and multiple zones (n¼4), each zone having 
distinct cell-type compositions. Error bars indicate 95% confidence intervals using bootstrapping. Heart and brain icons were created in BioRender. 
Heumos, L. (2025) https://BioRender.com/d08u1k8.
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variations in cell-type composition. Finally, as discussed ear
lier, Tangram demonstrated strong performance on this spe
cific dataset. However, its performance, particularly given 
the very small reference dataset, should be inter
preted cautiously.

4 Discussion
This study evaluated the applicability of five established spa
tial deconvolution methods (Biancalani et al. 2021, Dong and 
Yuan 2021, Cable et al. 2022, Kleshchevnikov et al. 2022, 
Lopez et al. 2022), originally developed for spatial transcrip
tomics, to the deconvolution of emerging spatial chromatin 
accessibility data. To this end, we developed a flexible simu
lation framework that generates both transcriptomic and 
chromatin accessibility data from dissociated single-cell mul
tiome datasets and targeted spatial multiome datasets to di
rectly compare the performance across modalities. This 
framework additionally allowed us to assess the impact of 
various factors, including cell density, cell-type heterogeneity, 
tissue zonation, and peak selection strategies, on the 
performance of deconvolution methods applied to spatial 
chromatin accessibility data. Our evaluation showed that 
Cell2location and RCTD can effectively deconvolve spatial 
chromatin accessibility data, exhibiting the highest perfor
mance among the tested deconvolution methods. This obser
vation also aligns with prior benchmarks on spatial 
transcriptomics data (Li et al. 2022, Yan and Sun 2023, 
Sang-aram et al. 2024), highlighting the general robustness of 
these methods and the transferability of their model 

assumptions to chromatin accessibility data. Notably, the 
two methods were also robust to variations in cell density, 
cell-type heterogeneity, and tissue zonation, with 
Cell2location performing slightly better in heterogeneous set
tings. SpatialDWLS and DestVI exhibited performance close 
to a simple baseline for ATAC-seq data, suggesting a limited 
applicability of these methods to this new data modality. 
Tangram showed variable performance on both modalities 
that was especially impacted by the composition of the refer
ence dataset. Specifically, when Tangram was applied to 
spot-based data using a reduced reference, it performed well. 
However, its performance deteriorated with larger and more 
complex reference datasets. We therefore recommend care
fully considering the reference dataset size when using 
Tangram for deconvolution of spatial chromatin accessibility 
data. We generally found that selecting highly variable fea
tures improved performance across all methods compared to 
selecting the most accessible peaks, indicating the importance 
of appropriate feature selection for chromatin accessibility 
data. Although Cell2location and RCTD achieved perfor
mance levels on ATAC-based deconvolution that were com
parable to those observed for RNA-based deconvolution, the 
latter still worked better, especially at resolving rare cell 
types. This performance discrepancy likely stems from two 
primary constraints: the inherent sparsity of ATAC-seq data 
itself, a factor we suspect mirrors the established sensitivity 
of spatial RNA-seq deconvolution to sparsity (Li et al. 2022) 
and the fact that current methods are designed for RNA-seq- 
based deconvolution. For instance, Cell2location and RCTD 
model overdispersed counts, while chromatin accessibility 

Figure 3. Spatial deconvolution using both RNA-based and ATAC-based deconvolution on a spatial human metastatic melanoma multiome dataset. (a) 
Spatial allocation of cells in the original Russell et al. dataset, colored by cell type. (b) Spatial plot of simulated spots generated by aggregating cells in 
spatial regions and colored by the dominant cell type. (c) Predicted dominant cell type per spot using Cell2location, RCTD and Tangram on both ATAC-seq 
and RNA-seq data with highly variable feature selection. T CD4: CD4-positive T cell; T CD8: CD8-positive T cell; T reg: regulatory T cell; mDC: myeloid 
dendritic cells; mono-mac: monocyte-derived macrophages; pDC: plasmacytoid dendritic cell.
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peak counts are often accurately modeled using a Poisson dis
tribution (Martens et al. 2024). One evident limitation of our 
pipeline is the limited availability of gold standard datasets 
measuring chromatin accessibility and transcriptomics in 
space at single-cell resolution. Hence, our work is currently 
only considering one gold standard simulation dataset. 
However, future targeted spatially resolved chromatin acces
sibility datasets can easily be added to our pipeline. Despite 
these limitations, our results demonstrate that direct applica
tion of existing spatial transcriptomics deconvolution meth
ods to spatial chromatin accessibility data is possible. This 
study additionally provides a simulation framework to simu
late realistic data and establishes a performance baseline for 
spatial epigenomic deconvolution, against which future meth
ods can be compared.
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