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SUMMARY

In this study, we established a comprehensive workflow to collect multi-omics single-cell data using a 

commercially available micro-well-based platform. This included whole transcriptome, cell surface markers 

(targeted sequencing-based cell surface proteomics), T cell specificities, adaptive immune receptor reper

toire (AIRR) profiles, and sample multiplexing. With this technique, we identified paired T cell receptor se

quences for three prominent human CMV epitopes. In addition, we assessed the ability of dCODE dextramers 

to detect antigen-specific T cells at low frequencies by estimating sensitivities and specificities when used as 

reagents for single-cell multi-omics.

INTRODUCTION

Improving our understanding of immune responses requires so

phisticated methods capable of capturing multiple layers of infor

mation simultaneously. The emergence of advanced single-cell 

multi-omics technologies has revolutionized our understanding 

of cellular heterogeneity and immunological processes.1,2 These 

technologies are particularly valuable for the characterization of 

lymphocytes and their diverse adaptive immune receptor reper

toires (AIRRs). Importantly, the integration of multiple layers not 

only facilitates the identification of antigen-specific lymphocyte 

clones but also sheds light on the intra- and interclonal phenotypic 

heterogeneity, enabling clonal tracking over time and across tis

sues.3–5 This is important as T cell clones can exhibit varied func

tionalities based on their peptide specificities, major histocompat

ibility complex (MHC) restriction, tissue localization, and antigen 

exposure.6–8

Recent studies incorporating non-barcoded multimer strate

gies have not only revealed the extensive phenotypic diversity 

and clonal dynamics of antigen-specific T cells in infections 

such as influenza,9,10 hepatitis C,11,12 and COVID-1913–16 but 

they have also set a benchmark for integrative immune profiling. 

By simultaneously linking transcriptional states, T cell receptor 

(TCR) sequence, and antigen specificity, these approaches 

MOTIVATION Single-cell multi-omics approaches are powerful tools to understand regulatory events in 

T cells; however, integrated use of the full portfolio of different modalities remains rare. Here, we report a 

highly standardizable workflow to generate a five-layer multi-omics dataset using the BD Rhapsody platform 

for the characterization of human antigen-specific T cells. Modalities include whole transcriptome, T cell re

ceptor (TCR) sequences, T cell antigen specificity, surface marker proteins, and combinatorial sample multi

plexing. 
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provide a comprehensive framework for understanding adaptive 

immune responses across diverse clinical settings. DNA bar

code-labeled multimers were first used in bulk to screen 

>1,000 peptide specificities in parallel, enabling large-scale 

detection of antigen-specific CD8+ T cells by sequencing- 

based readout.17 Building on these advances, single-cell adap

tations enabled the simultaneous capture of antigen specificity 

and paired TCRαβ sequences,18–21 with further developments 

allowing integration of transcriptome and surface protein 

expression profiling.22 As a result, DNA-barcoded peptide- 

MHC (pMHC) multimer technologies provide a robust, high- 

throughput approach to study antigen-specific T cells in both 

research and clinical settings.

The identities and proportions of T cells specific for a certain 

antigen are hard to estimate. Factors such as the organ of 

origin as well as disease status and age of the donor add addi

tional variability. In many cases, frequencies of antigen-specific 

T cells of interest will be low. Enrichment methods like fluores

cence-activated cell sorting (FACS) with pMHC multimers are 

often required to improve the detection of low-abundance tran

scripts and proteins in rare antigen-specific cell populations 

and allow sequencing experiments to be conducted in a 

cost-effective manner. However, additional processing steps 

can be unfeasible and may even alter cellular states. More 

importantly, prior pMHC multimer enrichment might not fully 

capture the entire response to a given antigen.23 This can result 

in the failure to notice responses to uncharacterized MHC-pre

sented peptide epitopes and missing out on analyzing T cells in 

the context of their overall immune landscape. Therefore, bar

coded pMHC multimer staining—either without subsequent 

FACS enrichment or with simultaneous analysis of both en

riched and unenriched cells—enables comprehensive 

characterization of gene expression and TCR profiles for 

antigen-specific T cells with both known and unknown specific

ities for which potential reactivity can be computationally 

predicted.24,25

This raises the question of whether DNA-barcoded pMHC 

complexes, such as dCODE dextramers, can identify antigen- 

specific T cells at low frequencies. In this study we address 

this through a spike-in experiment using human cytomegalo

virus (CMV)-specific T cells with known pMHC specificities 

and compare the performance of dCODE Dextramers when 

used as sequencing reagents against flow cytometry reagents. 

Furthermore, we present a workflow for collecting multi-omics 

data encompassing whole transcriptome, surface markers, 

AIRR, multiple antigen specificities, and combinatorial multi

plexing using the BD Rhapsody platform.26 Our approach 

integrates a two-tiered hashing strategy that enables flexible, 

high-throughput multiplexing. We utilize this technology to 

characterize TCR sequences of CMV-specific CD8+ T cells. 

Additionally, we address technical aspects crucial for 

planning multi-omics experiments including DNA-barcoded 

pMHC multimers.

Taken together, he presented workflow offers significant po

tential for studying antigen-specific T cells in various biological 

contexts and provides a valuable resource for researchers using 

the BD Rhapsody platform or considering experiments with 

dCODE dextramers.

RESULTS

Single-cell multi-omics analysis allows for the 

delineation of antigen-specific T cells and background 

samples

T cells have diverse functionalities and phenotypes among 

different T cell clones, and single-cell multi-omics approaches 

enable comprehensive exploration of this diversity. Here, we 

provide a framework of how this can be technically achieved 

employing a five-layer BD Rhapsody multi-omics approach 

including whole-transcriptome analysis (WTA), TCR sequencing, 

antibody sequencing (AbSeq), dCODE dextramers, and dual 

sample multiplexing (Figures 1A and S1).

As a proof of concept to determine the ability to identify CMV- 

specific T cells at low frequency using dCODE dextramers, we 

conducted a spike-in experiment. As spike-in, a mixture of three 

samples enriched for CMV-specific CD8+ T cells in a ratio of 

1:1:1 was used. This included two previously described T cell 

clones7,27 and one sample of peripheral blood mononuclear cells 

(PBMCs) 10 days after peptide stimulation. These samples are 

called ‘‘NLV clone,’’ ‘‘CRV clone,’’ and ‘‘TPR enriched’’ according 

to the CMV peptides they recognize: NLVPMVATV (pp65495-503 on 

human leukocyte antigen [HLA]-A*02:01) for the NLV clone, 

CRVLCCYVL (IE-1309-317 on HLA-C*07:02) for the CRV clone, 

and TPRVTGGGAM (pp65417-426 on HLA-B*07:02) for the TPR-en

riched sample, which was derived from PBMCs of a healthy donor 

(HLA-B*07:02+) (Figure 1B; Table S1A). Correspondingly, we uti

lized three dCODE dextramers targeting the respective CMV epi

topes: DexA (HLA-A*02:01/pp65495-503), DexB (HLA-B*07:02/ 

pp65417-426), and DexC (HLA-C*07:02/IE-1309-317) (Figure 1B). A 

negative control dextramer (DexN) carrying a nonsense peptide 

was also employed for background correction (HLA-B*08:01/ 

AAKGRGAAL). Prior to the spike-in experiment, stainings with 

dCODE dextramers (phycoerythrin [PE] labeled) revealed that the 

NLV clone binds to DexA, with 97% of cells being DexA-PE+ 

(Figures S2A and S2B). Similarly, 98% of the CRV clone cells 

were DexC-PE+. The TPR-enriched sample contained about 

16% DexB-PE+ cells and 18% non-T cells (Figure S2B), reflecting 

that this sample originated from TPRVTGGGAM peptide-stimu

lated PBMCs.

The three-sample spike-in mix was compared against poly

clonal CD8+ T cells from the PBMCs of two healthy donors, in 

the following referred to as ‘‘background.’’ Specifically, DexA 

was HLA matched with background donor 1 (BG_D1) (HLA- 

A02:01+; HLA-B07:02− and HLA-C*07:02− ), while DexB and 

DexC were HLA matched with background donor 2 (BG_D2) 

(HLA-B07:02+ and HLA-C*07:02+; HLA-A02:01− ) (Figure 1B). 

To estimate the sensitivity and specificity of antigen-specific 

T cells captured with dCODE dextramers in our multi-omics 

approach, we needed a low-frequency spike-in condition. For 

this we chose to perform a 5% spike-in of the three-sample 

spike-in mix, meaning that each sample’s actual spike-in fre

quency was about 1.67% (Table S1B). Additionally, we included 

a 50% spike-in plus 50% background condition to ensure suffi

cient cells for characterization of the spike-in mix (Figures 1B 

and S1A).

To reidentify all input populations (three CMV-enriched popu

lations and two background donors), as well as four dCODE 
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dextramer staining conditions (5% and 50% CMV spike-in mix 

against either BG_D1 or BG_D2), we employed a dual hierarchi

cal indexing strategy. Individual input populations were 

labeled with anti-PE flex-tags binding PE-labeled anti-CD45 in 

the primary staining (Figure S1A). Subsequently, the four 

spike-in/donor mixes were labeled with regular Sample-tags 

(Figure S1A). This allowed for the simultaneous allocation of 

spike-in input samples and staining mixes and facilitated the 

estimation of dextramer performance within each setting.

We loaded 20,000 cells on 2 cartridges, performed the BD 

Rhapsody workflow, and proceeded to bioinformatic analysis af

ter sequencing and preprocessing (see method details and 

Figure S1B). The first step of the analysis was assigning cells 

to their corresponding input material (flex-tag for BG_D1, 

BG_D2, NLV_Clone, TPR_enriched, or CRV_Clone) and staining 

mix (Sample-tag for 5:95 or 50:50 of spike-in/background with 

either background donor 1 or 2) (Table S1B). Cells were retained 

for analysis only if both tags were present, resulting in a dataset 

of 9,771 cells. After demultiplexing, the distribution of the 5 input 

samples showed a ratio of approximately 3%:30% spike-in and 

97%:70% background cells (Figure 1C), indicating lower than 

A

B C

D E

Figure 1. Single-cell multi-omics workflow 

allows delineation of spike-in and back

ground samples 

(A) Scheme of the different multi-omic modalities 

captured per cell. 

(B) Schematic of the spike-in versus background 

experiment. The types of input material are de

picted, and for the three CMV spike-in samples at 

the top, the corresponding CMV epitope as well as 

dCODE dextramer specificity are indicated by 

black lines. For polyclonal background samples, 

HLA-matched and -mismatched combinations 

with the dCODE dextramers are shown. HLA- 

matched and -mismatched combinations with 

dCODE dextramers are depicted by black and red 

lines, respectively. 

(C) Distribution of spike-in and background cells in 

the four dCODE dextramer staining conditions. 

(D and E) wnnUMAP representation of single-cell 

data with coloring according to flex-tag label 

(origin of five input populations) (D) and Leiden 

clustering (E). 

See also Figures S1 and S2 and Table S1.

expected spike-in frequencies likely due 

to lower viability of the clones after cell 

thawing.

We utilized uniform manifold approxi

mation and projection (UMAP) to reduce 

data dimensionality.28 A weighted near

est-neighbor (wnnUMAP) approach was 

chosen for multimodal UMAP embedding, 

integrating paired single-cell RNA 

sequencing (scRNA-seq and AbSeq infor

mation.29 This approach allowed similar 

cells of the same subset or type to accu

mulate in specific UMAP clusters, indi

cating related transcriptome and surface 

marker expression. The CMV spike-in and background samples 

clustered apart in the wnnUMAP (Figure 1D), and the two back

ground donors could also be visually distinguished. No technical 

batches from both cartridges were observed (Figure S2C). 

Cell clustering identified 17 clusters (Figure 1E), which we 

further characterized using transcriptome and surface protein 

expression (Figure 2). Background CD8+ T cells clustered into 

four major states: naive, central memory (TCM), effector memory 

(TEM), and effector memory T cells re-expressing CD45RA (TEMRA) 

(Figure 1E). Naive T cells were characterized by CCR7 gene 

expression and surface markers CCR7, CD62L, and CD45RA 

(Figure 2). TCM cells exhibited CD127, CD27, and CD28 expres

sion, with intermediate levels of CCR7 and CD62L but no 

CD45RA (Figure 2A). TEM cells showed high expression of PD-1 

(CD279) and CXCR6 (Figure 2), while they lacked the surface 

markers CD62L, CCR7, and CD45RA. TEMRA cells re-expressed 

CD45RA and lacked CD127 and CD27 (Figure 2A). Additional 

smaller clusters included MAIT cells, γδ T cells, CXCR5+ cells, nat

ural killer (NK)T cells, and NK cell clusters (Figure 1E).

As outlined above, the NLV clone, TPR-enriched sample, and 

CRV clone clustered separately from the polyclonal background 
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samples (Figure 1D). Interestingly, during quality control, we de

tected a cluster containing a mixture of clone-derived and TEM 

cells; however, we observed that this cluster exhibited high mito

chondrial transcripts, low unique molecular identifier (UMI) and 

gene counts, and elevated MALAT1 expression (data not 

shown). Additionally, despite dextramer positivity, TCR informa

tion could not be recovered from these cells. These findings sug

gest that the cluster likely consisted of cells undergoing activa

tion-induced cell death (AICD), and it was therefore excluded 

from further analysis. The TPR-enriched sample appeared 

more heterogeneous and contained CD4+ T cells (Figure 2). 

Both NLV and CRV clones, along with the TPR fraction contain

ing CD8+ T cells, exhibited high surface expression of activation 

A

B

Figure 2. Cell cluster characterization by 

surface protein and marker gene expres

sion 

(A) Expression heatmap of 31 surface markers by 

cluster (colored by z-transformed expression). 

(B) Dot plot displaying expression of the top five 

markers for each cluster, as well as additional 

selected T cell and NK cell gene markers. Dots are 

colored by z-transformed mean expression per 

cluster, dot size represents the frequency of 

expression within the cluster. 

See also Figure S2.

markers HLA-DR and inducible co-stimu

latory molecule (ICOS) (Figure 2A). CD56 

protein and neural cell adhesion molecule 

1 (NCAM1) transcript quantification 

confirmed that both CMV-specific clones 

upregulated CD56 relative to other clus

ters, with NCAM1 transcript expression 

markedly enriched in the NLV clone 

(Figures 2A and S2D). The NLV and 

CRV clones were further distinguished 

by increased gene expression of 

CD8+ T cell activation markers IFNG, 

SLAMF7, GZMA, and GNLY (Figure 2B). 

These observations support the notion 

that the CMV-specific clones were of 

CD8+ T cell origin but were transcription

ally different from ex vivo isolated CD8+ 

T cells, likely due to their in vitro cultiva

tion and possibly influenced by the 

distinct activation and differentiation his

tory of CMV-specific CD8+ T cells in vivo.

Characterization of CMV-specific 

CD8+ T cells

To identify dextramer-positive (Dex+) cells, 

we analyzed the distribution of back

ground-corrected normalized expression 

for each dextramer to establish an appro

priate cutoff (Figure S3; see method 

details). The data showed a clear separa

tion between Dexhigh and Dexlow popula

tions (Figures 3A and S3A). Cutoffs were set at local minima of 

the distribution, which exhibited a multimodal pattern. Thresholds 

for Dex+ cells were automatically defined using k-means clustering 

(Figure S3A).

We then investigated which clusters contained Dex+ cells 

(Figure 3A). Expectedly, the majority of the NLV clone was 

defined as DexA+ and the majority of the CRV clone as DexC+. 

Additionally, a fraction of the ‘‘TPR_enriched_CD8/other’’ cluster 

was DexB+. Background donor 1 (BG_D1), which was HLA 

matched to DexA, displayed a distinct fraction of DexA+ cells, 

whereas background donor 2 (BG_D2), HLA matched to DexB 

and DexC, showed a small cluster of DexB+ and some inter

spersed DexC+ cells (Figure 3B). Dex+ cells in the background 
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samples mainly localized to TEMRA and TEM clusters (Figures 3B 

and S4A). These cells potentially correspond to endogenous 

CMV-specific memory T cells in these donors.

Subsequently, we examined the occurrence of CMV- 

specific CD8+ T cells under different dCODE dextramer staining 

conditions. The frequencies of Dex+ cells in the four spike-in/ 

background staining conditions for each dextramer are shown 

in Figure S4B. Samples with HLA-matched backgrounds consis

tently contained higher frequencies of Dex+ cells compared to 

HLA-mismatched samples. However, even in samples with 

low-frequency spike-ins, Dex+ cells were consistently detect

able (Figure S4B), indicating that the assay was sensitive 

A

B

C

D

E

Figure 3. Characterization of CMV-specific 

CD8+ T cells 

(A) Distribution of background noise-corrected 

CLR-normalized DexA, DexB, and DexC counts 

per cluster. Red line indicates cutoff for Dex+ label. 

(B–D) wnnUMAP representation of dataset with 

highlighted DexA+, DexB+, and DexC+ cells (B), 

colored by receptor type after filtering for ‘‘single 

pair,’’ ‘‘extra VJ,’’ and ‘‘extra VDJ’’ sequences 

(C) and showing the corresponding clone size for 

each cellular TCR sequence (D). 

(E) CDR3 sequence logo plots depicting under- 

and overrepresented amino acids of TCR CDR3α 
and CDR3β amino acid sequences. Logo plots are 

shown for DexA+, DexB+, and DexC+ cells. Colors 

indicate amino acid chemistry. 

See also Figures S3 and S4 and Tables S2, S3, 

and S4.

enough to detect antigen-specific cells 

across all spike-in frequencies.

As it has been reported that HLA-C 

multimers like DexC can bind to 

CD158b (KIR2DL2/3) on CD8+ T cells 

with low affinity in a CMV-epitope-inde

pendent manner,30 we also investigated 

the co-expression of CD158b (KIR2DL2/ 

3) and DexC. Co-expression analysis 

did not reveal a KIR2DL2/3+ DexChigh 

population (Figure S4C), indicating that 

DexC specifically bound to TCRs target

ing the IE-1309-317 epitope.

To evaluate the performance of 

oligo-coupled dCODE dextramers we 

compared them to flow cytometry data 

from the same reagents and conditions in 

the three CMV spike-in populations. In 

the flow cytometry data, DexA and DexC 

molecules bound to nearly the entirety of 

the corresponding clones (Figure S2B). 

We used this as a reference to estimate 

the sensitivity and specificity of DexA and 

DexC in the single-cell omics protocol. 

Cells from the NLV or CRV clones stained 

with flex-tags were assumed capable of 

binding DexA and DexC, respectively, 

while DexB was excluded due to the heterogeneity of the TPR-en

riched sample.

We assessed the overlap between DexA+ and DexC+ cells 

based on dextramer detection (‘‘predicted class’’) and cells 

labeled as NLV or CRV clones by flex-tags (‘‘actual class’’) and 

calculated sensitivity and specificity (Table S2). For DexA, the 

positive ‘‘actual class’’ included the NLV clone, with the negative 

class consisting of cells either HLA mismatched to DexA or cells 

from the CRV clone. For DexC, the positive actual class were cells 

from the CRV clone, and the negative class contained cells HLA 

mismatched to DexC or cells from the NLV clone. The predicted 

classes were previously defined based on detected centered 
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log-ratio (CLR)-normalized dextramer sequencing counts (Dex+ 

and Dex− labels). Using these definitions, we observed that 

DexA and DexC exhibited specificities of 100% and 99.9%, 

respectively, indicating a minimal false positive rate. Sensitivities 

were 75.8% for DexA and 84.8% for DexC (Table S2).

Taken together, this demonstrates that dCODE dextramers 

can be highly specific and sensitive when used for scRNA-seq, 

providing reliable identification of antigen-specific T cells. How

ever, differences in sensitivity between scRNA-seq and flow cy

tometry exist, highlighting the need for careful consideration 

when interpreting results across modalities.

TCR repertoires of CMV-specific CD8+ T cells

Analysis of the AIRR data identified 7,499 cells with paired im

mune receptor sequences and corresponding transcriptome 

data. After filtering, 7,281 cells contained TCR sequences, 2 

were B cell receptor (BCR) expressing, and 213 exhibited 

multi-chain expression. Complete pairs of TCRα/β or TCRγ/δ 
chains could be reconstructed for approximately 25% of cells 

(Figure S4D). For the majority of cells, at least one TCRα or 

TCRβ chain was detected (6,561 cells), while the remaining cells 

either had TCRγ/δ chains (270 cells) or non-canonical receptor 

combinations (450 cells), such as TCRβ+γ. Notably, TCRγδ se

quences co-localized with the γδ T cell cluster identified in the 

scRNA-seq dataset (based on TRGC1/TRGC2 and TRDC gene 

expression) (Figures 3C and 2B). Subsequently, we analyzed 

clonotypes by first excluding BCR, VJ, or VDJ chain-only se

quences, as well as non-canonical and multi-chain receptors. 

Clonotypes were then defined as cells with identical nucleotide 

TCR sequences (Table S3).

To explore antigen specificity beyond identical nucleotide se

quences, we performed a secondary clonotype clustering based 

on the similarity of combined TCRα and TCRβ CDR3 amino acid 

sequences. Similarity was assessed using a metric based on the 

BLOSUM62 substitution matrix enabling the grouping of TCRs 

that likely recognize the same antigen. Network graphs 

(Figure 4) depict clonotypes as nodes and their inferred relation

ships as edges. Clone sizes defined by identical nucleotide TCR 

sequences were highest in TEM and TEMRA populations, as well 

as the NLV and CRV clones (Figures 3D, 4A, and 4B).

In addition, CDR3 amino acid logo plots were generated for 

both Dex+ cells (DexA, DexC, DexB; Figure 3E) and flex-tag- 

labeled samples (NLV, CRV, TPR; Figure S4E). For the CRV clone 

and DexC+ populations, cells exhibited nearly identical CDR3 se

quences across both TCRα and TCRβ chains (Figures 3E and 

S4E). CRV clone cells shared a common TCRα CDR3 amino 

acid sequence CAASEAAGNKLTF (TRAV29/DV5, TRAJ17), with 

the most prominent TCRβ CDR3 amino acid sequence being 

CASSPVSQGVRYNEQFF (TRBV28, TRBD1, TRBJ2-1) (Table S4).

Interestingly, while the clone size of the NLV clone appeared 

smaller compared to the CRV clone (Figure 3D), the NLV clone 

contained two distinct clonotype clusters in the network graph 

(Figure 4A). This was because NLV clones shared a common 

TCRβ chain (CDR3: CASSPKTGTIYGYTF from TRBV6-5, 

TRBD1, TRBJ1-2), but diverged in their TCRα chains—one 

with a TCRα CDR3 CVRNRDDKIIF (TRAV38-1, TRAJ30) and 

the other with CARNTGNQFYF (TRAV24, TRAJ49) (Table S4). 

While DexA+ cells and those labeled with a flex-tag for the 

NLV clone co-localized to clonotype clusters ‘1’ and ‘15’ 

(Figures 4A and 4C), two additional DexA+ clusters (‘105’ and 

‘164’) originated from the polyclonal background sample of 

donor 1 (BG_D1) and displayed distinct TCR sequences 

(Table S4).

Lastly, clonotype cluster 21 contained DexB+ cells from both 

the TPR enriched and BG_D2 samples, consistent with their 

common donor origin (Figures 4A and 4C). Despite the heteroge

neity of the TPR-enriched sample, DexB staining effectively 

isolated TCR sequences specific for the pp65417-426 epitope 

on HLA-B*07:02, with the most frequent sequences being 

CDR3α CATVLRMDSSYKLIF (TRAV17, TRAJ12) and CDR3β 
CASSLLGISTYNEQFF (TRBV7-9, TRBJ2-1) (Figures 3E and S4E).

The specificities of TCRs were assessed by comparing se

quences to a curated database of TCR sequences with known 

antigen specificities (VDJdb). This comparison revealed that 

the CDR3 sequences of the NLV and CRV clones were correctly 

predicted to be specific for pp65 and IE-1 CMV epitopes, 

respectively (Figure S4F). In summary, the analysis demon

strated that large clones originated from the three spike-in 

samples, or, alternatively, from clusters of differentiated T cell 

populations in the background samples (Figure 4).

DISCUSSION

In this study, we generated a comprehensive single-cell 

multi-omics dataset using the BD Rhapsody system, combining 

flex-tags with standard Sample-tags in a dual-layer hashing 

approach alongside whole transcriptome, 31 surface markers, 

AIRR, and antigen specificities. Unlike conventional combinato

rial barcoding methods applied to fixed cells such as single-cell 

combinatorial indexing RNA sequencing (sci-RNA-seq) or split 

pool ligation-based transcriptome sequencing (SPLiT-seq),31,32

our method multiplexes viable cells using cell surface markers 

via two sequential antibody stainings on distinct sample pools 

with differing cell compositions. This enables a significant in

crease in sample throughput and potential scaling for screening 

large sample volumes.

The dataset was designed to address both technical and bio

logical questions, notably assessing dCODE dextramers for rare 

antigen-specific T cell detection and characterizing CMV-spe

cific TCR sequences. Five samples were analyzed: three en

riched for CMV-specific CD8+ T cells and two CD8+ polyclonal 

T cell backgrounds from CMV-seropositive individuals with 

matching HLA allotypes. Despite lower-than-expected spike-in 

frequencies, dual hashing recovered 9,771 cells with both Sam

ple-tag information. Notably, negative selection for enrichment 

of CD8+ T cells introduced minor non-T cell contamination in 

polyclonal background samples.

To detect antigen-specific T cells using dCODE dextramers as 

sequencing reagents, we established an alternative workflow 

that employs k-means clustering to automatically define Dex+ 

cells based on dextramer count distributions without the need 

to pre-filter cells on TCRα/β expression, as required by the 

dextramer analysis framework ICON.33 With this workflow, we 

demonstrated that dextramers can effectively detect antigen- 

specific T cells at low frequencies. Although the detection limit 

for antigen-specific T cells was not reached in our data, we 
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observed differences in dextramer sensitivity when used as a 

sequencing versus flow cytometry reagent. Flow cytometry indi

cated that 97% of NLV clone cells were DexA-PE+ and 98% of 

CRV clone cells were DexC-PE+. Cells detected in the 

sequencing dataset labeled with flex-tags for the NLV and CRV 

clone could therefore be assumed to bind to DexA and DexC, 

respectively. The sequencing data confirmed high specificity of 

A

B

C

Figure 4. TCR repertoires of CMV-specific 

CD8+ T cells 

(A–C) Clonotype network graphs for filtered TCR 

sequences are colored by flex-tag label (A), an

notated cluster from scRNA-seq analysis (B), and 

dextramer label (C). Each circle depicts a clono

type. Connecting lines between clones indicate a 

‘‘clonotype cluster,’’ thus a high degree of CDR3 

amino acid similarity between the VJ and VDJ 

chains of the connected clones. The numeric label 

indicates the clonotype cluster number. Clono

type clusters in the graph layout are arranged 

according to their size. 

See also Tables S3 and S4.

DexA and DexC for the NLV and CRV 

clones, respectively, with negligible false 

positives and no HLA-mismatched bind

ing. However, the sensitivity was lower 

than flow cytometry, with estimated sen

sitivities of 75.8% for DexA and 84.8% for 

DexC. This discrepancy may arise from 

signal loss during multiple processing 

steps in the sequencing workflow and 

needs to be further monitored and inves

tigated in future studies. In addition, AICD 

may pose a challenge in experiments 

with low-frequency antigen-specific 

T cells as prior cell stimulation and dex

tramer-labeling might contribute to this. 

Furthermore, increasing sequencing 

depth of the dextramer library might be 

necessary to reliably capture rare cells 

or counter lower binding efficacies. 

Moreover, systematic benchmarking of 

different oligo-barcoded pMHC multimer 

and single-cell multi-omics platforms, us

ing matched clones, reagents, and proto

cols, will be critical to establish standard

ized performances.

TCR analysis of CMV-specific T cell 

clones revealed two known pp65-binding 

CDR3α motifs: CARNTGNQFYF (TRAV24- 

TRAJ49, clonotype cluster 1/DexA+) 

binding pp65495-503 on HLA-A*02:0134

and CATVLRMDSSYKLIF (TRAV17- 

TRAJ12, clonotype cluster 2/DexB+) 

binding pp65417-426 on HLA-B*07:02.35

Known CDR3β sequences included 

CASSLLGISTYNEQFF (TRBV7-9, TRBJ2-1) 

and CASSPVSQGVRYNEQFF (TRBV28, 

TRBJ2-1) specific for CMV epitopes pp65417-426 and IE-1309- 

317, respectively.36 Additionally, the CDR3β sequence 

CASSPKTGTIYGYTF (TRBV6-5, TRBJ1-2) was previously linked 

to a pp65 mini-lymphoblastoid cell line (LCL) without epitope 

determination.36

We observed that dCODE dextramers can identify antigen- 

specific T cells at low frequencies and may be used on 
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samples without further enrichment. Flow cytometry can 

help to estimate antigen-specific T cell frequencies and 

guide sequencing experiments. In cases where antigen-spe

cific T cells are rare, sorting before sequencing may be 

advantageous to ensure comprehensive gene expression 

analysis.

By presenting a step-by-step protocol, a dual-layer hashing 

strategy, and a detailed description of key quality-control steps, 

our workflow offers practical guidance that may support wider 

adoption of oligo-barcoded pMHC multimer single-cell multi- 

omics, an area where standardized best practices have only 

recently begun to emerge. This approach enhances our under

standing of immune responses at the single-cell level, particularly 

in the context of TCR specificity and function and holds significant 

potential for improving vaccine trials and developing targeted 

immunotherapies.

Limitations of the study

Various approaches exist for identifying Dex+ cells, each of 

which has its own merits. However, the lack of standardized 

best practices in the community hampers the comparability 

of pMHC multimer-omics data between studies. Establishing 

community standards would improve the reliability and 

reproducibility. In our study, we used k-means clustering to 

identify Dex+ cells, which proved effective due to the pres

ence of distinct Dexhigh and Dexlow populations. However, 

this method may encounter challenges in datasets featuring 

populations with intermediate affinity or high variability be

tween donors.

The existing literature illustrates the diversity in methodolo

gies for defining pMHC-binding T cells. The TetTCR-SeqHD 

method employs a bimodal distribution fitting and knee point 

analysis to set thresholds for defining tetramer-binding 

events.22 Other studies classify cells as Dex+ as those with 

UMI counts surpassing negative controls multifold.23,37 Yet 

another study defined cells as Dex+ if more than 30% of 

dextramer-derived UMI counts were derived from a specific 

dextramer barcode.38 Lastly, ICON, a tool for the normaliza

tion of high-throughput TCR-pMHC binding data and the 

identification of TCR-pMHC interactions incorporated nega

tive control dextramers as well as TCRα/β information to 

determine dextramer binders.33 Our study provides a flexible 

approach that circumvents the limitation of pre-selecting 

TCRα/β-expressing cells, reducing the risk of excluding rele

vant antigen-specific cells due to incomplete TCR recovery, 

although incorporating paired clonotype information remains 

essential for high-fidelity pMHC specificity assignment. 

Instead, we define cutoffs based on the distribution of CLR- 

normalized dextramer data. Similarly, ensuring downstream 

analysis tools can natively import data in AIRR-compliant 

TCR rearrangement format39 will be critical for reproducible 

repertoire analyses.

In conclusion, while our study demonstrates the potential of 

combining dCODE dextramers and single-cell workflows like 

the BD Rhapsody platform for the identification of antigen-spe

cific T cells, it underscores the necessity for standardized meth

odologies and highlights the challenges inherent in multi-modal 

single-cell analysis.
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custom AbSeq DNA barcode
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PE mouse anti-human CD45 (clone HI30) BioLegend Cat# 304039, RRID:AB_2562057
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Chemicals, peptides, and recombinant proteins
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Fetal bovine serum PAN Biotec Cat# 3302

RPMI 1640 medium Gibo Cat# 21875034

PBS, pH 7.4 Gibco Cat# 15374875

Critical commercial assays

Human CD8+ T cell isolation kit Miltenyi Cat# 130-096-495

BD Rhapsody cDNA Kit Becton Dickinson Cat# 633773

BD Rhapsody WTA Amplification Kit Becton Dickinson Cat# 633801

BD Rhapsody TCR/BCR Amplification Kit Becton Dickinson Cat# 665345

BD Rhapsody Enhanced Cartridge 
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Thermo Fischer Cat# L34975

NovaSeq 6000 S4 Reagent Kit v1.5 (300 

cycles)
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Deposited data

Single-cell multi-omics raw data This paper EGA: EGA50000000594

Software and algorithms

FlowJo BD Biosciences https://flowjo.com, RRID:SCR_008520

Bcl2fastq2 v2.20 Illumina https://support.illumina.com/sequencing/ 

sequencing_software/bcl2fastq- 

conversion-software.html, 

RRID:SCR_015058

STAR v2.6.1b Dobin et al.40 https://github.com/alexdobin/STAR/, 

RRID:SCR_004463

Cutadapt v1.16 Martin41 https://github.com/marcelm/cutadapt, 

RRID:SCR_011841

Dropseq-tools Broad Institute https://github.com/broadinstitute/Drop- 

seq/

(Continued on next page)
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R v4.1.2 (scRNA-seq/AbSeq analysis) R Foundation http://www.r-project.org/, RRID:

SCR_001905

Python v3.10.13 (scTCR-seq analysis) Python Software Foundation https://www.python.org/, RRID:

SCR_008394

Seurat v4.1.0 (R package) Butler et al.42 http://seurat.r-forge.r-project.org/, RRID:

SCR_007322

sctransform v0.3.3 (R package) Hafemeister and Satija43 https://github.com/satijalab/sctransform, 
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ggplot2 v3.3.5 (R package) Wickham44 https://cran.r-project.org/web/packages/ 

ggplot2/index.html, 

RRID:SCR_014601

stats v4.1.2 (R package) N/A https://stat.ethz.ch/R-manual/R-devel/ 

library/stats/html/00Index.html, RRID:

SCR_025968

caret v6.0-94 (R package) Kuhn45 https://github.com/topepo/caret, RRID:

SCR_022524

SeuratDisk v0.0.0.9019 (R package) N/A https://github.com/mojaveazure/seurat- 

disk

igraph - Leiden clustering Traag et al.46 https://igraph.org/r/doc/cluster_leiden. 

html

MiXCR v4.2.0 Bolotin et al.47 https://mixcr.com/mixcr/about/, 

RRID:SCR_018725

Scanpy v1.9.8 Wolf et al.48 https://github.com/theislab/scanpy, RRID:

SCR_018139

Scirpy v0.17.2 Sturm et al.49 https://scirpy.scverse.org/en/latest/

anndata v0.10.8 Virshup et al.50 https://github.com/theislab/anndata, RRID:

SCR_018209

muon v0.1.6 Bredikhin et al.51 https://gtca.github.io/muon/, RRID: 

SCR_022804

mudata v0.2.3 N/A https://github.com/scverse/mudata

MuDataSeurat v0.0.0.9000 (R package) N/A https://pmbio.github.io/MuDataSeurat/

numpy v1.26.4 N/A http://www.numpy.org/, 

RRID:SCR_008633

scipy v1.13.0 N/A http://www.scipy.org/, 

RRID:SCR_008058

pandas v2.2.2 N/A https://pandas.pydata.org/, RRID:

SCR_018214

matplotlib v3.7.2 N/A http://matplotlib.sourceforge.net/, RRID:

SCR_008624

Custom code This paper Zenodo: https://doi.org/10.5281/zenodo. 

15423937

Other

dCODE Dextramer (RiO) - Gold, HLA-A* 

0201/NLVPMVATV/PE

Immudex Cat# WB02132DRG

dCODE Dextramer (RiO) - Gold, HLA-B* 

0702/TPRVTGGGAM/PE

Immudex Cat# WH02136DRG

Custom reagent dCODE Dextramer (RiO), 

HLA-C*07:02/CRVLCCYVL/PE

Immudex N/A

dCODE Dextramer (RiO)-Gold, HLA-B* 

0801/Neg. Control/PE

Immudex Cat# WI03233DRG
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

PBMCs were prepared from anonymous peripheral blood buffy coats purchased from the Institut für Transfusionsmedizin, Ulm, Ger

many. Alternatively, PBMCs were isolated from peripheral blood donations provided by healthy adult CMV-positive donors with 

informed consent. PBMCs were used to establish T cell lines and clones and generate mini-EBV-transformed B cell lines. The insti

tutional review board (Ethikkommission bei der Medizinischen Fakultät der Ludwig-Maximilians-Universität München, Project no. 

17–455, 16.10.2017) has approved these procedures. HLA typing was performed by MVZ Labor Dr. Klein and Dr. Rost, Martinsried, 

Germany. Demographic information for human material, along with details on the Donor origin of each sample (’NLV clone’, ’TPR 

enriched’, ’CRV Clone’, ’Background Donor 1′, and ’Background Donor 2′), can be found in Table S1.

The small number of human subjects involved in this study limits its generalizability to any population group defined by ethnicity, 

geography etc. However, each of the donors was carrier of one or more HLA alleles (A*02:01) or haplotypes (B*07:02-C*07:02) known 

to be overrepresented in populations of European origin compared to the worldwide average. Information about self-ascribed 

ethnicity or origin was not obtained from donors as per the study protocol reviewed by the institutional review board.

METHOD DETAILS

Generation of CMV-specific T cells

The T cells used in this study were a CD8+ T cell clone specific for HLA-A*02:01-restricted epitope NLVPMVATV from tegument phos

phoprotein pp65 (abbreviated NLV, amino acids 495–503), referred to as ‘NLV clone’; a CD8+ T cell clone specific for HLA-C*07:02- 

restricted epitope CRVLCCYVL from immediate-early protein IE-1 (abbreviated CRV, amino acids 309–317), referred to as ‘CRV 

clone’; and a polyclonal T cell culture enriched for CD8+ T cells specific for HLA-B*07:02-restricted epitope TPRVTGGGAM from 

pp65 (abbreviated TPR, amino acids 417–426), referred to as ‘TPR enriched’. These CD8+ T cell epitopes were previously identified 

as follows: NLV,52 CRV,7 TPR.53 For TPR, a polyclonal T cell culture was used, because of technical limitations in the analysis of a 

TPR-specific T cell clone. Cell culture medium was RPMI 1640 (Invitrogen) with 10% fetal bovine serum (FBS; Anprotec). Recombi

nant human interleukin-2 (Proleukin, Novartis) was added as indicated.

To establish T cell clones, peripheral blood mononuclear cells (PBMCs) from CMV-positive carriers of the required HLA allele were 

repeatedly stimulated,54 in the presence of interleukin-2 (50–100 U/ml), with irradiated cells from an autologous mini-EBV-trans

formed B-lymphoblastoid cell line (mini-LCL) that expressed the antigen in question (pp65 or IE-1) encoded by its mini-EBV genome 

under control of an SV40 promoter.27 This procedure results in polyclonal T cell cultures strongly enriched for CMV antigen-specific 

T cells after 4–5 stimulations (31–38 days). In a second step, T cell clones were produced from these polyclonal T cell cultures by 

limiting dilution7,54 into 96-well plate microcultures at 0.5 or 0.7 T cells per well and cultivation with irradiated feeder/stimulator 

cells (mixed allogeneic PBMCs at 1–1.5x106 cells/ml and autologous pp65-or IE-1-expressing mini-LCL at 5–10x104 cells/ml) and 

1000 U/ml Interleukin-2. Microcultures were checked for outgrowth and first screened for specificity at 2–3 weeks after limiting 

dilution, and outgrowing cultures were expanded under the same conditions. Screens for specificity included testing for recognition 

of CMV antigen-expressing autologous mini-LCLs over control mini-LCLs, demonstrating recognition of intracellularly processed 

antigen, testing for recognition of specific peptide, and staining with HLA/peptide multimers.

Polyclonal T cell cultures enriched for TPR-specific T cells were generated by stimulation of PBMCs with peptide.36 PBMCs from a 

CMV-positive, HLA-B*07:02-positive donor were loaded with peptide (1 μg/mL) for 1 h at 37◦C, washed three times with phosphate- 

buffered saline (PBS), and plated at 2.5x106 cells per mL in medium with interleukin-2 (50 U/ml). Cells were cultivated for 10 days, with 

partial medium renewal at 5 days. Cells were cryoconserved in 50% FBS, 40% RPMI 1640, and 10% DMSO, and stored over liquid 

nitrogen until further use.

T cell clones, polyclonal T cells, and control PBMCs were derived from different donors for reasons of availability, except for one 

donor from whom both the TPR-enriched T cells and PBMCs for one of the polyclonal CD8+ T cell background (BG_D2) originated.

Generation of polyclonal T cell background

‘Background’ samples were CD8+ polyclonal T cells enriched from PBMCs of two different donors (referred to as ‘BG_D1’ and 

‘BG_D2’). CD8+ T cells were isolated by negative selection using MS columns with a Miltenyi human CD8+ T Cell Isolation Kit (Cat 

No. 130-096-495) according to manufacturer’s instructions. Sterile filtered PBS with 0.5% BSA and 2 mM EDTA was used as a buffer 

for magnetic cell separation.

Thawing of human Cell material

Cryovials were removed from liquid nitrogen storage and briefly placed on dry ice before thawing in a 37◦C water bath for 2–3 min. 

Thawed cells were gently transferred to a 50 mL Falcon tube using a 1 mL pipette tip. The cryovial was rinsed with 1 mL of pre- 

warmed complete growth medium (RPMI +10% FCS), which was gradually added dropwise to the Falcon tube. Cells were serially 

diluted 1:1 with complete growth medium five times, reaching a final volume of 32 mL. The suspension was centrifuged at 300 × g for 

5 min at room temperature. After aspirating the supernatant to 1–2 mL, cells were resuspended and stored on ice until further use.
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Single Dextramer stainings and flow cytometry

First, cell labeling, wash, and FACS buffers were prepared. Cell labeling buffer consisted of BD Pharmingen Stain Buffer (FBS) sup

plemented with 0.1 g/L sheared herring sperm DNA. Wash buffer was PBS (pH 7.4) with 2.5% fetal bovine serum albumin, while FACS 

buffer contained PBS (pH 7.4) with 0.5% bovine serum albumin.

Aliquots of the NLV and CRV T cell clones, as well as the TPR-enriched sample, were thawed and counted. Each cell type was 

individually stained with one of the following dCODE Dextramers: HLA-A*02:01/pp65495-503 (‘‘DexA’’), HLA-B*07:02/pp65417-426 

(‘‘DexB’’), HLA-C*07:02/IE-1309-317 (‘‘DexC’’), HLA-B*08:01/AAKGRGAAL (‘‘DexN’’), or left unstained as a control. For each condition, 

300,000 cells were resuspended in 50 μL of cell labeling buffer and stained with 0.2 μL of 100 μM d-Biotin (diluted in PBS) and 2 μL of 

dCODE Dextramer (DexA, DexB, DexN) or 10 μL of dCODE Dextramer (DexC). Staining was performed for 10 min at room temper

ature, protected from light.

During incubation, a 2x concentrated antibody master mix was prepared, containing CD3 (BV421) antibody (1:200) and a viability 

dye (1:1000) in BD stain buffer. After incubation, the cell suspension volume was adjusted to 100 μL with cell labeling buffer, followed 

by the addition of 100 μL of the 2× antibody master mix, yielding a final staining volume of 200 μL. Samples were incubated for 30 min 

at 4◦C in the dark. Cells were then washed twice by centrifugation at 400g for five minutes, discarding the supernatant and resus

pending in 1 mL of wash buffer. Finally, cells were resuspended in 200 μL of FACS buffer and immediately acquired on a 

FACSymphony A5 Cell Analyzer. Data were analyzed using FlowJo software.

Multi-omics staining and single-cell capture

The three samples ‘NLV clone’, ‘CRV clone’ and ‘TPR enriched’ are referred to as "spike-in’’ samples. CD8+ polyclonal T cells en

riched from PBMCs of two different donors are referred to as ‘‘background’’.

First layer sample multiplexing and CD158b staining

Each of the five samples were individually labeled with different BD Flex SMK antibodies. To do so, three to four million cells per sam

ple were pelleted (400 × g, 5 min), resuspended in 100 μL blocking buffer (95 μL BD Stain Buffer (FBS) + 5 μL FcR human blocking 

reagent), and incubated on ice for 10 min. Cells were then first stained with 7.5 μL primary CD45-PE antibody (BioLegend, Cat No. 

304008) for 20 min on ice, then washed three times with 2 mL BD stain buffer (400 × g, 5 min), and resuspended in 80 μL BD stain 

buffer.

Next, secondary BD flex SMK antibodies, each with a unique oligo barcode per sample, were added alongside CD158b AbSeq 

antibody (BD, Cat. No. 559784). Samples were incubated with 98 μL BD stain buffer, 20 μL BD flex SMK antibody, and 2 μL 

CD158b antibody for 30 min on ice. After three washes (400 × g, 5 min), cell pellets were resuspended in 500 μL stain buffer and 

stored on ice.

dCODE dextramer staining and second layer sample multiplexing

Cells were counted and pooled into four staining mixes (400,000 cells per staining mix), each containing either 95% or 50% back

ground and 5% or 50% spike-in mix, respectively. Background samples consisted of either Background Donor 1 or 2, while the 

spike-in mix included NLV Clone, TPR enriched, and CRV Clone samples in a 1:1:1 ratio.

A dextramer labeling master mix was prepared for the four samples using 3.2 μL of 100 μM d-Biotin and 8 μL of each dextramer, 

except for HLA-C*07:02 (CMV IE-1), which was added at 40 μL. A total of 16.8 μL master mix was added per sample, followed by 

incubation at room temperature for 10 min. Then, 113.2 μL BD stain buffer and 20 μL standard BD SMK antibody were added to 

each reaction, using a unique DNA barcode tag per staining mix. After a 20 min incubation, samples were washed three times 

(400 × g, 5 min) and resuspended in 500 μL stain buffer, counted, and stored on ice.

AbSeq surface marker staining

BD AbSeq Immune Discovery Panel (IDP) antibodies (BD, Cat No. 625970) were reconstituted in nuclease-free water and stored on 

ice. The four staining mixes (100,000 cells each) were pooled in a 1:1:1:1 ratio, centrifuged (300 × g, 5 min, 4◦C), and resuspended in 

100 μL blocking buffer. The antibody mix was prepared by adding 65 μL BD stain buffer to the reconstituted antibodies, yielding 

100 μL of 2× AbSeq labeling master mix, which was added to the cells and incubated for 40 min on ice.

After two washes with BD stain buffer (300 × g, 5 min, 4◦C), cells were resuspended in 300 μL cold sample buffer. Finally, 20,000 

cells were processed on each of two BD Rhapsody cartridges (replicates), using enhanced cell capture beads.

Multi-omics library preparation

From each cartridge, six libraries were prepared. Reverse transcription and template switching was performed following manufac

turer’s instructions (Becton Dickinson, Doc ID: 23–24020(02)). During the subsequent denaturation, 75 μL of elution buffer was used. 

The denatured supernatant was saved and utilized for dCODE Dextramer (RiO), AbSeq and Sample Tag library production. Gener

ation of these three libraries was done following the manufacturer’s protocol (Immudex, Doc ID: TF1196.07) with 11 instead of 13 

cycles in the dCODE RiO PCR2. By contrast, indexed WTA, TCR and BCR sequencing libraries were generated directly from the 

cell capture beads by following the corresponding steps of the manufacturer’s protocol (Becton Dickinson, Doc ID: 23–24020(02)).
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Sequencing and raw data demultiplexing

Libraries were pooled taking into account the lower clustering efficiency of BCR and TCR libraries due to the increased average 

length following manufacturer’s instructions (Becton Dickinson, Doc ID: 23–24020(02)). dCODE dextramer libraries were sequenced 

with a sequencing depth of an average of 5750 reads per cell and dextramer. Abseq libraries were sequenced with a sequencing 

depth of an average of 2900 reads per cell and antibody marker. Sequencing was performed on a NovaSeq6000 instrument with 

an S4 300 cycles kit v1.5. Sequencing was performed paired end with read 1 measuring 86 cycles and read 2 216 cycles for optimal 

TCR/BCR assembly.

Data pre-processing of scRNA-seq data

After demultiplexing of bcl files using Bcl2fastq2 V2.20 from Illumina and quality control, paired-end scRNA-seq reads were filtered 

for valid cell barcodes using the barcode whitelist provided by BD. Cutadapt 1.16 was then used to trim NexteraPE-PE adaptor se

quences where needed and to filter reads for a PHRED score of 20 or above.41 Then, STAR 2.6.1b was used for alignment against the 

human GENCODE reference genome and transcriptome hg38 release 33.40,55 Dropseq-tools 2.0.0 were used to quantify gene 

expression and collapse to UMI count data (https://github.com/broadinstitute/Drop-seq/). To quantify AbSeq and dCODE Dextramer 

counts and facilitate dual-layer hashtag-oligo-based demultiplexing of single-cell data for downstream assignment of cell barcodes 

to their sample of origin (CMV spike-in/background) or staining mix, the corresponding DNA tag sequences were added to the refer

ence genome and quantified.

Bioinformatic analysis of multi-omics data

For the bioinformatic analysis of the multi-omics data (Figure S1B), UMI count matrices were imported into R (version 4.1.2) as pre

viously described56 and further analyzed with the R toolkit Seurat (version 4.1.0).29 RNA-seq analysis using Seurat was performed 

with the predefined software environment of the docker image jsschrepping/r_docker:jss_R412_S41 (https://hub.docker.com/r/ 

jsschrepping/r_docker). The WTA count matrix was filtered to only contain cells with more than 250 UMI counts and with a percent

age of mitochondrial genes of less than 55%. Sample tag count matrices were split into separate assays for flex and regular sample 

tags. Dextramer count matrices were obtained for four dextramers – three HCMV-specific ones (DexA, DexB and DexC) and one 

negative control dextramer (DexN). Background noise correction was performed by subtracting counts of the DexN Dextramer 

from DexA, DexB and DexC counts on a per-cell basis.

Count matrices for whole transcriptome, AbSeq markers, flex sample tags, regular sample tags and background corrected Dex

tramers were merged into one Seurat object with distinct assays using the CreateAssayObject function. The count matrix of the 

whole transcriptome assay was normalized using sctransform v2 regularization (R release 0.3.3).43 The count data in the assays 

for AbSeq, sample tags and background-corrected Dextramers were normalized using centered log-ratio (CLR) transformation fol

lowed by scaling. For WTA and AbSeq assays, principal components (PCs) were calculated with Seurat’s RunPCA function.

Demultiplexing of cells was performed for both the flex and regular sample tag assay using the HTODemux function implemented in 

Seurat.57 Only cells that were labeled as ‘‘singlets’’ during demultiplexing were kept. Cells were further annotated according to their 

sample tag labels (Table S1B).

Seurat’s FindMultiModalNeighbors function was used to create an embedding that represented a weighted combination of the two 

modalities ‘whole transcriptome’ and ‘AbSeq’.29 The first 20 dimensions of the WTA PCA and the first 18 dimensions from the AbSeq 

PCA were used to calculate multimodal neighbors as well as a weighted shared nearest neighbor (WSNN) graph. The resulting multi

modal neighbor object was used to compute a joint weighted-nearest neighbors Uniform Manifold Approximation and Projection 

(wnnUMAP) embedding with Seurat’s RunUMAP function. The WSNN graph was used to identify clusters with the leiden algorithm 

(resolution 0.52). Gene and surface expression markers for each cluster were determined with a Wilcoxon rank-sum test using the 

functions FindAllMarkers function (with the following parameters: only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25). In case of 

the sctransform-normalized WTA assay, the function PrepSCTFindMarkers was applied to the Seurat object prior to marker identi

fication. Data visualization was performed with Seurat’s VlnPlot, DotPlot, DoHeatmap, FeaturePlot and DimPlot function, as well as 

with R package ggplot2 (version 3.3.5).

Dextramer count matrices were obtained for four dextramers – three HCMV-specific ones (DexA, DexB and DexC) and one nega

tive control dextramer (DexN). To assess and correct unspecific background signal, we first computed the percentages of cells with 

zero UMI counts in the dataset across all 31 AbSeq markers (Figure S3B) and across raw dextramer counts (Figure S3C, left). AbSeq 

markers displayed low zero-count rates even for proteins not expressed by CD8+ T cells (e.g., IgM, ∼1% of cells with zero UMI 

counts), and raw dextramer counts likewise exhibited low zero-count rates despite low true-positive frequencies, indicating notable 

unspecific background signal. We then subtracted DexN counts from DexA, DexB, and DexC on a per-cell basis, which markedly 

increased the proportion of zero counts for all three dextramers (Figure S3C, right), and yielded a clearer separation of true dextramer 

binders, as shown for an exemplary clonotype (clone_id 169) which binds to DexA (Figure S3D). Negative corrected values were 

floored to zero.

Dextramer-positive cells were defined using k-means clustering applied to CLR-normalized and background-corrected counts for 

each Dextramer individually. This was done using the kmeans function (centers = 4) from the stats package (version 4.1.2). The lower 

boundary of the k-means cluster with the highest mean value was used as a threshold to separate dextramer-positive from dex

tramer-negative cells (DexA = 3.94, DexB = 3.78, DexC = 3.99; Figure S3A). Dextramer sensitivities and specificities for the 
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DexA & the NLV clone, as well as DexC & the CRV clone, were calculated with the confusionMatrix function of the R package caret 

(version 6.0–94).

Bioinformatic analysis of AIRR data

The raw fastq files of the TCR and BCR libraries were preprocessed with MiXCR (version 4.2.0) using the mixcr analyze function with 

the ‘bd-rhapsody-human-tcr-full-length’ or ‘bd-rhapsody-human-bcr-full-length’ preset, respectively. AIRR compliant tables were 

exported with MiXCR’s exportAirr function.

The subsequent downstream analysis of the paired TCR/BCR and WTA data (Figure S1B) was performed in Python (version 

3.10.13) with the docker image rnakato/shortcake_light_3.0.0 (https://hub.docker.com/r/rnakato/shortcake_light). The Scirpy toolkit 

(version 0.17.2) was used for the subsequent analysis and visualization of scAIRR-seq data as well as the integration with the cor

responding scRNA-seq data.49 Additionally, the following python packages were used: Scanpy (1.9.8), anndata (0.10.8), muon 

(0.1.6), mudata (0.2.3), numpy (1.26.4), scipy (1.13.0), pandas (2.2.2) and matplotlib (3.7.2).

The AIRR-compliant output tables were imported into Scirpy using scirpy.io.read_airr. Chain quality metrics were calculated with ir. 

tl.chain_qc. To enable downstream analysis with Scirpy and Scanpy, the filtered, normalized, and annotated Seurat object was con

verted into an multimodal data object (MuData) object via the MuDataSeurat R package (version 0.0.0.9000) and imported with 

scanpy.read_h5ad. Transcriptome data were merged with TCR annotations into a MuData object.

For clonotype construction, the immune receptor repertoire was filtered to exclude sequences Scirpy’s chain_qc function classi

fied as ‘‘ambiguous’’ (non-canonical receptor combinations), ‘‘multichain’’, ‘‘no IR’’, ‘‘orphan VJ’’, or ‘‘orphan VDJ’’, as well as any 

entries containing BCR sequence annotation. Clonotypes were defined based on CDR3 nucleotide sequence identity of the primary 

VJ and VDJ chains using scirpy.pp.ir_dist and scirpy.tl.define_clonotypes. Clonotype clustering was performed using amino acid 

sequence similarity with scirpy.pp.ir_dist(metric = "alignment", sequence = "aa", cutoff = 15), which computes pairwise sequence 

alignments based on a BLOSUM62 substitution matrix. Using scirpy.tl.define_clonotype_clusters, the clonotype clustering consid

ered both alpha and beta chains (receptor_arms = "all") and included dual TCR-expressing cells (dual_ir = "any"). Variations in CDR3 

length were accounted for by BLOSUM62’s alignment gap penalties.

TCR CDR3 sequence logo plots were generated with palmotif (version 0.4). TCR specificity predictions were performed using 

scirpy.tl.ir_query with VDJdb (metric = "identity", sequence = "aa", receptor_arms = "any", dual_ir = "any"), and the multimodal 

data object was annotated using scirpy.tl.ir_query_annotate (strategy = "most-frequent").

QUANTIFICATION AND STATISTICAL ANALYSIS

The analysis was performed on R and Python: the specific packages used for the analysis, their version and relevant parameters used 

are explained in the Method details sections.
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