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Abstract
Background  Steatotic liver disease is a major public health issue, with hepatic iron overload exacerbating fibrotic 
conditions. This study aimed to identify metabolites associated with hepatic fat and/or iron overload using targeted 
metabolomics in a population-based cohort.

Methods  We used the cross-sectional KORA-MRI study (N = 376 individuals). Hepatic fat and iron content were 
derived by magnetic resonance imaging, and serum metabolite concentrations were quantified through targeted 
metabolomics. Associations between 146 metabolites and 40 indicators with hepatic phenotypes were analyzed, 
adjusted for confounders, and corrected for multiple testing. Formal pathway analyses and mediation analyses 
including genetic data were conducted. Performance of metabolomics to diagnose steatosis or hepatic iron overload 
was evaluated using ROC curves, and compared to the fatty liver index (FLI).

Results  Overall, 50.8% of participants (mean age 56.4 years) had hepatic steatosis, and 43.6% iron overload. Twelve 
unique metabolites/indicators (amino acids, lysophosphatidylcholine, acyl-alkyl-phosphatidylcholine), and sums 
of branched chain and aromatic amino acids, and five lipids, and ratio of acyl-alkyl-phosphatidylcholines to diacyl-
phosphatidylcholines were associated with hepatic fat content. 27 metabolites/indicators, including 25 lipids, were 
associated with hepatic iron content. Addition of these metabolites to the FLI improved diagnosis of steatosis and 
iron overload nominally. Glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and 
glycerophospholipid metabolism were shared pathway between steatosis and iron overload. Alanine, isoleucine, 
glutamine and pimeloylcarnitine (C7-DC) mediated effects between genetic variants and hepatic phenotypes.

Conclusion  Metabolites were associated with hepatic fat and iron content, shared common pathways, and 
improved diagnosis of steatosis and iron overload, highlighting the role of iron in hepatic disorders.
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Background
Hepatic steatosis is one of the most common chronic 
liver diseases and a major public health concern. The 
sharply increased prevalence of steatotic liver disease 
(SLD) (encompassing metabolic dysfunction-associated 
steatotic liver disease (MASLD); formerly non-alcoholic 
fatty liver disease, NAFLD) has been recently estimated 
as 23.4% worldwide (Paik et al., 2023). This is mainly 
due to the parallel increase in obesity and diabetes that 
are major risk factors. However, also individuals without 
metabolic impairment are at risk of developing hepatic 
steatosis. Particularly these individuals are difficult to 
identify as a high-risk group, which prevents timely treat-
ment and fosters disease progression.

Recently, genetic variants in the HFE gene, predis-
posing to hepatic hemochromatosis, were found to be 
associated with hepatic steatosis in individuals with 
regular body mass index (BMI) (Sun et al. 2023). More-
over, hepatic iron has been implicated to exacerbate 
fibrotic conditions in recent animal studies (Altamura 
et al. 2021). Excess iron has lipotoxic effects, is known 
to induce inflammation and promote oxidative stress 
(Altamura et al. 2021) and is implied in the pathogenesis 
of insulin resistance (Harrison et al. 2023). A compre-
hensive analysis corroborated that patterns of iron depo-
sition in hepatocytes and reticuloendothelial cells are 
associated with histologic features and steatosis severity 
(Nelson et al. 2011). Since progression of hepatic ste-
atosis to fibrosis and cirrhosis is a main cause of hepatic 
death, pathways implied in iron metabolism could be rel-
evant targets for therapeutic interventions. Increased cir-
culating iron has been suggested to play a causal role in 
risk for hepatic steatosis (Sun et al. 2024).

Metabolomics has emerged as a powerful tool to 
characterize pathophysiological pathways in metabolic 
disease. Specific serum metabolites have been shown 
to be associated with distinct stages of liver disease 
(McGlinchey et al. 2022). Other metabolites have been 
reported to distinguish between different subtypes of 
MASLD (Shao et al., 2023) and an atlas of metabolites for 
hepatic triglyceride content is mainly characterized by 
two groups of metabolites (Faquih et al. 2023). Moreover, 
associations between iron metabolism markers with the 
plasma lipidome and metabolome have been reported 
from population-based studies (Kaul et., 2018).

Given the substantial public health burden of SLD, 
it is necessary to investigate the role of hepatic iron in 
pathways to liver disease on a population-based level, 
including individuals without overt hepatic disease. Fur-
ther metabolomics-based characterization of underlying 
metabolic pathways between genetics, hepatic iron, and 
SLD will improve our understanding of pathophysiol-
ogy of SLD, might identify metabolites that can be used 
for diagnosis or prediction of phenotypes, and identify 

potential treatment targets, e.g. with respect to iron-
related pathways. Current non-invasive markers to deter-
mine risk for SLD are limited in their ability to identify 
intermediate disease stages (Wong et al. 2018), and cur-
rent recommended treatment for SLD in Europe is solely 
lifestyle based without medication regimes. However, as 
stated above, not all individuals with steatosis present 
overt metabolic risk factors that lend themselves to life-
style interventions.

In the current study, we aimed to use population-based 
data to identify serum metabolites that are associated 
with hepatic phenotypes, i.e. hepatic fat and iron con-
tent derived by magnetic resonance imaging (MRI), and 
liver enzymes. We hypothesized that there are distinct 
serum metabolites associated with these phenotypes that 
provide a better characterization of metabolic pathways 
from genetic variants to hepatic outcomes and diagnostic 
of hepatic steatosis and iron overload.

Methods
Study sample
We use data from the KORA-MRI study, which is a sub-
study of the prospective, population-based KORA-S4 
cohort (Cooperative Health Research in the Region of 
Augsburg, N = 4261, enrolled in 1999/2001) in Southern 
Germany. The data of the current analysis are cross-sec-
tional and include N = 400 participants from the second 
follow-up in 2013/2014 (KORA-FF4, N = 2279). While 
the KORA-S4 cohort is drawn from the general popu-
lation in the region of Augsburg, the KORA-MRI is a 
subsample focused on cardiovascular risk across the gly-
cemic spectrum in individuals free of cardiovascular dis-
eases (CVD). The framework of the KORA-MRI study 
has been described previously (Bamberg et al. 2017). 
Individuals were eligible for enrollment if they were 
younger than 74  years, had no cardiovascular disease 
(myocardial infarction, stroke, revascularization), and no 
contraindications to MRI, including adequate renal func-
tion (serum creatinine < 1.3  mg/dL). Whole-body MRI 
at a central imaging site took place within three months 
after a detailed examination at the KORA study center, 
including a face-to-face interview with trained interview-
ers, a physical examination, and a blood draw after an 
overnight fast.

All KORA cohorts are approved by the Ethics Com-
mittee of the Bavarian Association of Physicians (EC# 
06068). The MRI study was additionally approved by 
the institutional review board of the Medical Faculty of 
the Ludwig-Maximilians-University Munich (# 498–12). 
The study was conducted according to the Declaration of 
Helsinki, and all participants provided written informed 
consent.
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Outcome: hepatic phenotypes
Hepatic fat and iron content were measured on a high-
speed T2-corrected multi-echo sequence on 3  T MRI 
(Magnetom Skyra, Siemens Healthineers, Erlangen, Ger-
many) in the left and right liver lobe. Hepatic fat content 
was assessed in % and iron content as relaxation rate in 
1/s. Continuous values were averaged over the left and 
right liver lobe. Hepatic steatosis was defined as fat con-
tent ≥ 5.56% and iron overload as values ≥ 41.0  s−1 (Kühn 
et al. 2017; Szczepaniak et al. 2005). Since the study was 
population-based, no liver biopsy or histology were done.

Liver enzymes gamma-glutamyl transferase (GGT), 
alanine transaminase (ALT) and aspartate transami-
nase (AST) were measured in fasted serum samples in 
μkat/l by the modified IFCC method. Additionally, the 
fatty liver index (FLI) was calculated from BMI, waist 
circumference, triglycerides and GGT according to the 
published formula (Bedogni et al. 2006). A FLI < 30 is 
suggested to rule out prevalent SLD and a FLI > 60 is sug-
gested to diagnose prevalent SLD (Bedogni et al. 2006). 
We chose the FLI as a reference score, because it is an 
established tool that is readily available and applicable in 
clinical practice to estimate potential steatosis, especially 
in the absence of histological examination.

Exposure: targeted metabolomics
Targeted serum metabolites were quantified from fasted 
samples by the AbsoluteIDQ™ p180 kit (BIOCRATES 
Life Sciences AG, Innsbruck, Austria). The advantage of 
a targeted approach over untargeted metabolomics is the 
high precision in identification and (relative) quantifica-
tion of metabolites. Especially the high precision allows 
for better comparability among different studies, par-
ticularly when no validation cohort is accessible. For the 
AbsoluteIDQ™ p180 kit interlaboratory reproducibility 
showed high precision (Siskos et al. 2017) and the appli-
cation in various cohort studies (Floegel et al., 2013; Kaul 
et., 2018) supports reliability of the targeted metabolo-
mics approach. The kit measures different biochemical 
groups of amino acids, biogenic amines, carnitines, lyso-
phosphatidylcholines (lysoPC), sphingomyelins (SM), 
diacylphosphatidylcholines (diacylPC), acylalkylphos-
phatidylcholines (acylalkylPC) and hexoses.

For sample preparation, 10  µl of serum was added to 
the 96-well kit plate, along with the respective internal 
standards for LC separation to the filter inserts, which 
already contained internal standards for the FIA analysis. 
Derivatization of amino acids and biogenic amines was 
done with 5% phenylisothiocyanate in ethanol/water/
pyridine. After extraction of metabolites and internal 
standards with methanol/5 mM ammonium acetate sol-
vent, acetonitrile/water and the kits running solvent were 
added for LC–MS/MS (C18 guard column) and FIA-
MS/MS analysis, respectively. Samples were randomly 

distributed across 29 plates, including five pooled EDTA-
plasma reference samples from Sera Laboratories Inter-
national Ltd. (Hull, United Kingdom) (Zukunft et al. 
2018). MetIQ™ software was used for metabolite iden-
tification (Dong et al., 2023) quantifying metabolites in 
µmol/l. During quality control, those metabolites were 
removed where the coefficient of variance was ≥ 25% 
in reference sampels, or the limit of detection per plate 
was ≥ 50% of all metabolite concentrations, or the non-
detectable rate was ≥ 50%, resulting in a final number 
of 146 metabolites (Maushagen et al. 2024). Addition-
ally, 40 metabolite indicators were calculated out of the 
146 metabolite levels as ratios and sums of metabolites 
to capture effects of chemical groups or as proxies for 
enzyme activity (Supplementary Table  1). Subsequent 
data processing was stratified by sex: Data were win-
sorized to the 95% percentile, logarithmized and then 
standardized (minus mean and divided by standard devi-
ation) by plate to account for potential batch effects.

Genotyping
Genotyping was done with the Affymetrix Axiom Chip 
and subsequent imputation with HRC panel 1.1 (Maier 
et al., 2021). We selected rs738409 (reference|effect allele 
C|G) in PNPLA3 as the lead SNP for hepatic fat content 
(Trépo et al. 2016) and rs1800562 (reference|effect allele 
G|A), in HFE as the lead single nucleotide polymorphism 
(SNP) for hepatic iron content (Wilman et al. 2019).

Clinical covariates
Smoking behavior, menopausal status and medication 
intake were self-reported. Daily alcohol consumption 
was calculated from self-reported type of beverages con-
sumed and consumption frequency. Hypertension was 
defined as systolic blood pressure ≥ 140  mmHg and/or 
diastolic blood pressure ≥ 90  mmHg, or intake of anti-
hypertensive medication while being aware of having 
hypertension. Lipid profile was measured in fasted serum 
samples by enzymatic, colorimetric Flex assays (Vista, 
Siemens or Cobas, Roche). In addition to HbA1c, fasting 
glucose and fasting insulin, individuals without a diag-
nosis of type 2 diabetes additionally underwent an oral 
glucose tolerance test and were categorized as normogly-
cemia, prediabetes, or type 2 diabetes based the results 
according to World Health Organization criteria.

Statistical analyses
Participant characteristics are given as means and stan-
dard deviation for continuous data and counts and per-
centages for categorical data. The relation between 
hepatic fat and hepatic iron parameters were described 
using Spearman’s correlation coefficients. Principal 
components analysis of metabolomics data was done to 
assess data quality. Associations of metabolite exposures 
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with hepatic phenotypes were evaluated by linear or 
logistic regression models. For linear models, continuous 
hepatic outcomes (hepatic fat and iron content, enzymes) 
were logarithmized before modeling and resulting esti-
mates denote percent change in geometric mean with 
corresponding 95% confidence intervals (CI). For logis-
tic models (steatosis and iron overload), odds ratios with 
corresponding 95% CI are given. Models were calculated 
for the whole sample and sex-stratified. First, regressions 
were adjusted for age (years), sex (if not sex-stratified) 
and BMI (kg/m2). Second, full adjustment included addi-
tionally glycemia status (normoglycemia, prediabetes, 
diabetes), systolic blood pressure (mmHg), serum triglyc-
erides (mg/dL) and daily alcohol consumption (g/d). All 
p-values were corrected for False Discovery Rate (FDR) 
using the Benjamini–Hochberg method and values < 0.05 
were considered statistically significant.

To understand the relationship between genes, metab-
olites and hepatic phenotypes we performed formal 
mediation analysis using a regression-based approach. 
Associations of post-imputation dosages of lead SNPs 
with 1) the hepatic phenotypes fat and iron content and, 
2) metabolites identified as significantly associated with 
hepatic fat or steatosis, or iron content or iron over-
load, were assessed by linear regression with confounder 
adjustment as above on the whole sample. For metabo-
lites significantly associated with SNPs, formal mediation 
analysis was performed, using the R package “mediation”, 
for the pathway SNP- > metabolite- > hepatic phenotype. 
The “mediation” package uses the framework introduced 
by Imai et al. and decomposes the average total effect into 
a direct and mediated effect (Imai et al. 2010).

As a first step to assess the ability of metabolites to 
diagnose, or improve the diagnosis of, the categorical 
parameters hepatic steatosis and iron overload, logistic 
regressions were calculated using leave-one-out cross 
validation. We refrained from statistical prediction of 
continuous parameters, since the precise prediction 
of subclinical amounts of hepatic fat and iron is clini-
cally less relevant compared to prediction of pathologic 
phenotypes. However, metabolites from all outcomes 
(hepatic fat/steatosis or hepatic iron/iron overload) 
were used to capture as many metabolites as possible on 
the pathway to disease. We computed the correspond-
ing receiver operating characteristic (ROC) curves with 
Area under the curve (AUC) as a performance measure. 
Three models were calculated with the predictors 1) FLI 
alone, 2) metabolites/indicators that were significantly 
associated with the respective phenotype, 3) FLI plus 
metabolites/indicators from model 2) for the respec-
tive phenotype. As an additional analysis, we explored 
whether hepatic iron and post-imputation dosages of lead 
SNPs predict hepatic steatosis, and whether hepatic fat 

content and post-imputation dosages of lead SNPs pre-
dict hepatic iron overload without additional variables.

R version 4.1.1 was used for all calculations.

Pathway analysis
Two pathway analyses (PAs) were conducted to identify 
different pathways between individuals with and without 
steatosis, and individuals with and without iron overload, 
respectively. The PAs were done with MetaboAnalyst 5.0 
(Pang et al., 2021), which includes 80 possible pathways 
for homo sapiens from the Kyoto Encyclopedia of Genes 
and Genomes database. The analysis combines an enrich-
ment analysis of metabolite sets using Fisher’s exact test 
with a topology analysis using relative-betweenness cen-
trality. Pathways with an FDR corrected p-value < 0.05 
were considered significantly enriched. Metabolites sig-
nificantly associated with any hepatic outcome were used 
for the PAs.

Results
Characterization of study sample
One participant retroactively withdrew their consent 
for data usage. Participants with incomplete data on 
hepatic MRI or metabolites were excluded (Supplemen-
tary Fig. 1), resulting in a sample size of 217 men and 159 
women. Genetic data were available for 351 participants.

Individuals with hepatic steatosis or iron overload were 
significantly older, had higher body weight, higher alcohol 
consumption, and higher diabetes prevalence compared 
to individuals without (Table 1). Hepatic fat content and 
hepatic iron content were significantly higher in indi-
viduals with iron overload and hepatic steatosis, respec-
tively (Table  1). Participants were, on average, 56  years 
old, with two-thirds of the women being post-menopause 
(Supplementary Table 2). Almost two-thirds of men and 
one third of women had hepatic steatosis as defined by 
MRI, with an average hepatic fat content of 10.8% in men 
and 6.2% in women (Supplementary Table  2). Among 
men with a FLI > 60, which is suggested to identify stea-
totic liver disease, 81.1% had steatosis as defined by MRI, 
while among women with a FLI > 60, 70.4% had steatosis 
as defined by MRI. Additionally, 55.3% of men and 27.7% 
of women had iron overload (Supplementary Table 2).

In sex-stratified correlation analyses log-transformed 
hepatic fat and hepatic iron showed low to moderate pos-
itive correlations (female: r = 0.53, p < 0.001; male: r = 0.31, 
p < 0.001; Supplementary Fig.  2). The PCA plot showed 
no outliers for metabolomic data and did not reveal any 
batch effects, indicating valid data quality (Supplemen-
tary Fig. 3).

Association of serum metabolites with hepatic phenotypes
Adjusting for age, sex and BMI showed significant asso-
ciations between 45 metabolites/3 indicators and hepatic 
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Table 1  Characteristics of the total sample and stratified by hepatic steatosis and iron overload
Overall Stratified according to hepatic steatosis Stratified according to hepatic iron 

overload
Steatosis 
present

Steatosis 
absent

p-value Iron overload 
present

Iron overload 
absent

p-value

n 376 191 185 164 212
Age, years 56.4 (9.2) 58.2 (8.6) 54.6 (9.4)  < 0.001 58.3 (8.5) 55.0 (9.4)  < 0.001
Sex, male 139 (72.8) 78 (42.2)  < 0.001 120 (73.2) 97 (45.8)  < 0.001
Weight, kg 82.9 (16.7) 91.0 (15.6) 74.6 (13.3)  < 0.001 87.3 (14.8) 79.5 (17.3)  < 0.001
Height, cm 171.8 (9.8) 173.2 (9.9) 170.3 (9.5) 0.004 173.7 (9.9) 170.3 (9.4) 0.001
BMI, kg/m2 28.0 (4.9) 30.3 (4.6) 25.7 (4.0)  < 0.001 28.9 (4.3) 27.4 (5.2) 0.002
Waist circumference, cm 98.4 (14.4) 106.8 (12.2) 89.8 (11.0)  < 0.001 102.8 (12.3) 95.1 (15.0)  < 0.001
Post menopause 106 (66.7) 44 (23.0) 62 (33.5)  < 0.001 39 (23.8) 67 (31.6)  < 0.001
Alcohol consumption, g/day (median 
[IQR])

8.6 [0.2, 26.2] 16.94 [34.3] 5.71 [20.0]  < 0.001 19.6 [34.92] 4.4 [19.5]  < 0.001

Smoking behaviour  < 0.001 0.086
  Never 137 (36.4) 66 (34.6) 71 (38.4) 82 (50.0) 82 (38.7)
  Former 164 (43.6) 102 (53.4) 62 (33.5) 54 (32.9) 83 (39.2)
  Current 75 (19.9) 23 (12.0) 52 (28.1) 28 (17.1) 47 (22.2)
Systolic blood pressure, mmHg 120.6 (16.9) 126.7 (16.7) 114.3 (14.6)  < 0.001 124.9 (16.9) 117.3 (16.1)  < 0.001
Diastolic blood pressure, mmHg 75.3 (10.0) 78.6 (10.0) 72.0 (8.9)  < 0.001 77.4 (9.3) 73.7 (10.3)  < 0.001
Hypertension 129 (34.3) 34 (18.4) 95 (49.7)  < 0.001 72 (43.9) 57 (26.9) 0.001
Antihypertensive medication 97 (25.8) 68 (35.6) 29 (15.7)  < 0.001 52 (31.7) 45 (21.2) 0.029
Total cholesterol, mg/dL 217.6 (36.6) 218.3 (37.5) 216.9 (35.6) 0.712 219.2 (36.8) 216.5 (36.4) 0.479
Triglycerides, mg/dL 131.7 (86.7) 159.4 (90.8) 103.2 (72.1)  < 0.001 148.4 (93.9) 118.9 (78.6) 0.001
LDL, mg/dL 139.4 (33.1) 141.4 (33.6) 137.2 (32.5) 0.223 140.4 (33.7) 138.5 (32.7) 0.586
Lipid lowering medication 41 (10.9) 32 (16.8) 9 (4.9)  < 0.001 21 (12.8) 20 (9.4) 0.383
Glycemia  < 0.001 0.001
  Normoglycemic 232 (61.7) 81 (42.4) 151 (81.6) 84 (51.2) 148 (69.8)
  Prediabetes 91 (24.2) 68 (35.6) 23 (12.4) 52 (31.7) 39 (18.4)
  T2 Diabetes 53 (14.1) 42 (22.0) 11 (5.9) 28 (17.1) 25 (11.8)
HbA1c, % 5.6 (0.7) 5.7 (0.7) 5.5 (0.7) 5.6 (0.6) 5.6 (0.8) 0.557
Fasting glucose, mg/dL 104.1 (22.9) 110.5 (24.1) 97.6 (19.5)  < 0.001 107.2 (21.4) 101.7 (23.7) 0.02
Fasting insulin, mg/dL 11.2 (7.7) 14.9 (8.7) 7.5 (3.7)  < 0.001 12.9 (8.1) 10.0 (7.1)  < 0.001
Serum uric acid, mg/dL 5.6 (1.5) 6.3 (1.4) 4.9 (1.3)  < 0.001 6.2 (1.5) 5.2 (1.4)  < 0.001
hsCRP, mg/L (median [Q1, Q3]) 1.18 [0.61, 

2.47]
1.56 [2.3] 0.84 [1.5]  < 0.001 1.2 [2.2] 1.1 [1.8] 0.194

Hepatic phenotypes
  Hepatic fat content, % 8.9 (8.1) 14.50 (7.98) 3.04 (1.29)  < 0.001 12.30 (8.95) 6.20 (6.25)  < 0.001
  Hepatic fat content, %, median [IQR] 5.7 [9.1] 11.8 [12.3] 2.9 [2.0] 9.4 [14.5] 4.0 [5.5]
Steatosis 191 (50.8) 114 (69.5) 77 (36.3)  < 0.001
Hepatic iron content, 1/s 40.6 (4.7) 42.43 (4.42) 38.74 (4.27)  < 0.001 44.75 (2.88) 37.41 (3.09)  < 0.001
Iron overload 164 (43.6) 114 (59.7) 50 (27.0)  < 0.001
ALT (GPT), μkat/l 0.52 (0.29) 0.48 (0.61) 0.40 (0.23)  < 0.001 0.58 (0.31) 0.47 (0.27) 0.001
AST (GOT), μkat/l 0.42 (0.22) 0.46 (0.16) 0.38 (0.25)  < 0.001 0.44 (0.15) 0.41 (0.25) 0.085
GGT, μkat/l 0.66 (0.67) 0.83 (0.68) 0.48 (0.61)  < 0.001 0.79 (0.72) 0.56 (0.61) 0.001
Fatty liver index, continuous 54.2 (31.3) 73.51 (22.53) 34.18 (26.17)  < 0.001 64.82 (27.19) 45.91 (31.87)  < 0.001
 < 30 109 (29.0) 9 (4.7) 100 (54.1) 22 (13.4) 87 (41.0)
≥ 30 and < 60 86 (22.9) 41 (21.5) 45 (24.3) 37 (22.6) 49 (23.1)
≥ 60 181 (48.1) 141 (73.8) 40 (21.6) 105 (64.0) 76 (35.8)
Presented are mean (SD) for continuous data or n (%) for categorical data if not stated differently. Hepatic steatosis was defined as hepatic fat content ≥ 5.56%. Iron 
overload was defined as hepatic iron content ≥ 41 1/s
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fat content and 16 metabolites with steatosis of which 13 
metabolites were overlapping between hepatic fat con-
tent and steatosis. Moreover, 26 metabolites were asso-
ciated with iron content and 28 metabolites/9 indicators 
with hepatic iron overload of which 20 metabolites over-
lapped between iron and iron overload (Additional File 
1).

After full adjustment 9 metabolites/indicators (Ala, 
Ile, Leu, alpha-AAA, lysoPC a C17:0, PC ae C38:2, bcaa, 
keta_aa, PCae_PCaa) were significantly associated with 
hepatic fat content, and 5 metabolites (Glu, lysoPC a 
C17:0, PC ae C34.3, PC ae C36:2, PC ae C38:2) were asso-
ciated with steatosis. Two metabolites (lysoPC a C17:0, 
PC ae C38:2) overlapped between these phenotypes. In 
total, 12 unique metabolites/indicators significantly asso-
ciated with hepatic fat content or steatosis (Fig.  1, Sup-
plementary Fig. 4, Table 2, Additional File 2).

For hepatic iron content, 14 metabolites (C0, C7-DC, 
alpha-AAA, lysoPC a C20:4, PC aa C36:4, PC aa C38:4, 
PC aa C38:5, PC aa C40:5, PC ae C36:4, PC ae C36:5, 
PC ae C38:5, PC ae C38:6, SM C18:1, SM C20:2), but 
no indicators, were significantly associated after adjust-
ment. Additionally, 20 metabolites/indicators (C2, 
C7-DC, C14:1, alpha-AAA, PC aa C36:4, PC aa C38:4, 
PC aa C38:5, PC aa C38:6, PC aa C40:6, PC ae C36:5, PC 
ae C38:6, bcaa, total_AC, total_longAC, total_shortAC, 
total_mufaAC, total_sfaAC, total_pufaPCax, total_PCax, 
total_PCaa) were significantly associated with hepatic 
iron overload, with 7 overlapping metabolites (C7-DC, 
alpha-AAA, PC aa C36:4, PC aa C38:4, PC aa C38:5, PC 
ae C36:5, PC ae C38:6) between these two phenotypes. 
In total, 27 metabolites/indicators were associated with 
hepatic iron content or hepatic iron overload (Fig. 1, Sup-
plementary Fig. 4, Table 2, Additional File 2).

Fig. 1  Circular bar plot of all significant associations between metabolites, metabolite indicators (name printed in italics) and hepatic phenotypes, for 
the whole sample and sex-stratified. Colors of bars indicate hepatic phenotype. Positive associations are marked with “ + ” and negative associations 
with “-”. Bar heights correspond to -log10 (FDR corrected p-value). GGT = gamma-glutamyl transferase, ALT = alanine transaminase (GPT), AST = aspartate 
transaminase (GOT)
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Metabolite or Indicator Estimate (95% CI) FDR corrected p-value Log10 p-value
Fat
  Ala 1.17 (1.08, 1.26) 0.009 2.06
  Ile 1.13 (1.05, 1.22) 0.031 1.51
  Leu 1.13 (1.05, 1.22) 0.031 1.51
  alpha.AAA 1.14 (1.05, 1.23) 0.031 1.51
  lysoPC a C17.0 0.88 (0.81, 0.95) 0.04 1.39
  PC ae C38.2 0.88 (0.82, 0.95) 0.031 1.51
  bcaa 1.13 (1.05, 1.21) 0.024 1.62
  keto_aa 1.13 (1.05, 1.21) 0.024 1.62
  PCae_PCaa 0.86 (0.79, 0.94) 0.024 1.62
Fat male
  C14 1.19 (1.08, 1.31) 0.037 1.44
  C16 1.18 (1.07, 1.3) 0.037 1.44
  Ala 1.19 (1.07, 1.31) 0.037 1.44
  alpha.AAA 1.18 (1.07, 1.31) 0.037 1.44
  PC aa C32.1 1.21 (1.08, 1.35) 0.037 1.44
  keto_aa 1.18 (1.07, 1.3) 0.027 1.57
Hepatic steatosis
  Glu 1.72 (1.24, 2.41) 0.049 1.31
  lysoPC a C17.0 0.55 (0.39, 0.76) 0.035 1.46
  PC ae C34.3 0.56 (0.4, 0.76) 0.035 1.46
  PC ae C36.2 0.59 (0.42, 0.81) 0.049 1.31
  PC ae C38.2 0.62 (0.45, 0.83) 0.049 1.31
Iron
  C0 1.02 (1.01, 1.03) 0.031 1.52
  C7.DC 1.02 (1.01, 1.03) 0.031 1.51
  Alpha.AAA 1.02 (1.01, 1.03) 0.046 1.34
  Lysopc a C20.4 1.02 (1.01, 1.03) 0.031 1.51
  PC aa C36.4 1.02 (1.01, 1.04) 0.028 1.55
  PC aa C38.4 1.03 (1.01, 1.04) 0.005 2.29
  PC aa C38.5 1.02 (1.01, 1.04) 0.018 1.75
  PC aa C40.5 1.02 (1.01, 1.04) 0.028 1.55
  PC ae C36.4 1.02 (1.01, 1.03) 0.031 1.51
  PC ae C36.5 1.02 (1.01, 1.03) 0.031 1.51
  PC ae C38.5 1.02 (1.01, 1.03) 0.046 1.34
  PC ae C38.6 1.02 (1.01, 1.03) 0.046 1.34
  SM C18.1 1.02 (1.01, 1.03) 0.04 1.4
  SM C20.2 1.02 (1.01, 1.03) 0.031 1.51
Iron male
  PC aa C34.4 1.04 (1.02, 1.05) 0.038 1.42
  SM C20.2 1.03 (1.01, 1.05) 0.038 1.42
Iron overload
  C2 1.53 (1.18, 1.98) 0.045 1.35
  C7.DC 1.46 (1.14, 1.88) 0.045 1.35
  C14.1 1.49 (1.16, 1.93) 0.045 1.35
  Alpha.AAA 1.5 (1.15, 1.96) 0.045 1.35
  PC aa C36.4 1.53 (1.18, 2.01) 0.045 1.35
  PC aa C38.4 1.5 (1.15, 1.97) 0.045 1.35
  PC aa C38.5 1.52 (1.17, 1.99) 0.045 1.35
  PC aa C38.6 1.57 (1.21, 2.05) 0.045 1.35
  PC aa C40.6 1.51 (1.17, 1.97) 0.045 1.35
  PC ae C36.5 1.46 (1.14, 1.89) 0.045 1.35
  PC ae C38.6 1.45 (1.14, 1.87) 0.045 1.35

Table 2  Significant associations of metabolites/indicators with the respective hepatic phenotype adjusted for the full model
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Metabolite or Indicator Estimate (95% CI) FDR corrected p-value Log10 p-value
  Bcaa 1.45 (1.12, 1.88) 0.033 1.49
  Total_AC 1.52 (1.18, 1.97) 0.02 1.71
  Total_longAC 1.44 (1.12, 1.86) 0.033 1.49
  Total_shortAC 1.56 (1.21, 2.02) 0.02 1.71
  Total_mufaAC 1.43 (1.11, 1.86) 0.033 1.49
  Total_sfaAC 1.52 (1.18, 1.98) 0.02 1.71
  Total_pufaPCax 1.5 (1.16, 1.96) 0.025 1.61
  Total_PCax 1.44 (1.1, 1.88) 0.039 1.41
  Total_PCaa 1.43 (1.09, 1.88) 0.045 1.34
GGT
  Asp 1.14 (1.07, 1.21) 0.001 2.89
  Glu 1.19 (1.11, 1.27) 0 4.04
  Phe 1.15 (1.08, 1.22) 0.001 2.96
  PC aa C38.3 1.13 (1.06, 1.22) 0.01 2
  PC aa C38.4 1.13 (1.06, 1.21) 0.007 2.19
  PC aa C40.4 1.11 (1.04, 1.19) 0.019 1.71
  PC aa C40.5 1.12 (1.05, 1.19) 0.015 1.83
  PC aa C40.6 1.11 (1.04, 1.18) 0.025 1.6
  PC ae C40.2 1.11 (1.04, 1.18) 0.015 1.83
  SM C18.0 1.16 (1.09, 1.23) 0 3.57
  SM C18.1 1.12 (1.05, 1.19) 0.013 1.9
  SM C20.2 1.11 (1.05, 1.18) 0.013 1.89
  SM C24.1 1.14 (1.07, 1.21) 0.001 2.96
  Cit_arg 0.91 (0.85, 0.97) 0.035 1.46
  Pla2 0.9 (0.84, 0.97) 0.035 1.46
  Total_SM 1.1 (1.03, 1.17) 0.035 1.46
  total_SM_nonOH 1.1 (1.03, 1.17) 0.035 1.46
GGT male
  Asp 1.14 (1.06, 1.23) 0.02 1.71
  Glu 1.19 (1.09, 1.29) 0.004 2.36
  PC aa C32.1 1.15 (1.05, 1.27) 0.043 1.37
  PC aa C36.4 1.16 (1.07, 1.27) 0.015 1.82
  PC aa C38.3 1.15 (1.05, 1.26) 0.042 1.38
  PC aa C38.4 1.19 (1.1, 1.29) 0.004 2.43
  PC aa C40.4 1.2 (1.1, 1.3) 0.004 2.43
  PC aa C40.5 1.14 (1.05, 1.24) 0.037 1.43
  SM C18.0 1.13 (1.05, 1.22) 0.036 1.45
  Total_pufaPCax 1.14 (1.05, 1.23) 0.033 1.48
  Total_PCax 1.15 (1.05, 1.25) 0.033 1.48
  Total_PCaa 1.15 (1.05, 1.25) 0.033 1.48
GGT female
  Phe 1.23 (1.1, 1.36) 0.026 1.58
  SM_PC 1.23 (1.09, 1.37) 0.02 1.69
ALT
  PC aa C40.6 1.09 (1.04, 1.14) 0.012 1.91
  PC aa C42.5 1.09 (1.04, 1.14) 0.012 1.91
  pufaPC_sfaPC 0.92 (0.88, 0.97) 0.032 1.49
AST
pufaPC_sfaPC 0.93 (0.89, 0.96) 0.005 2.32
Abbreviations CI Confidence interval

Table 2  (continued) 
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Additionally, 17 metabolites/indicators were associated 
with GGT, AST, and ALT. Overall, 38 unique metabolites 
and 17 unique indicators were identified to be associated 
with at least one hepatic phenotype (Fig. 1, Supplemen-
tary Fig. 4, Table 2, Additional File 2).

While there were no sex-specific associations of any 
metabolite with the outcomes of steatosis or iron over-
load 5 metabolites and 1 indicator were associated with 
hepatic fat content in men only, and 2 metabolites were 
associated with hepatic iron in men only (Additional 
File 2). There was no overlap between men and women 
in metabolites or indicators associated with GGT (Fig. 1, 
Supplementary Fig. 4, Additional File 2).

Role of serum metabolites in the pathway between genetic 
variants and hepatic phenotypes
After full adjustment, rs738409 (PNPLA3) was tentatively 
associated with hepatic fat (estimate = 1.13, 95%CI: [0.99; 
1.29], p = 0.07), but not iron content (estimate = 1.00, 
95%CI 0.98; 1.02], p = 0.92, Table  3), whereas rs1800562 
(HFE) was tentatively associated with increased fat (esti-
mate = 1.3, 95%CI [0.99; 1.59], p = 0.06), and iron content 
(estimate = 1.05, 95%CI [1.01; 1.09], p = 0.02, Table  3). 
After full adjustment, rs738409 (PNPLA3) was nega-
tively associated with the amino acids alanine, isoleu-
cine and glutamate (Table  3) and rs1800562 (HFE) was 
positively associated with acylcarnitine C7DC (Table 3). 
Formal mediation analysis showed that alanine, isoleu-
cine and glutamate were suppressors of the association 
between rs738409 and hepatic fat (Fig. 2A-C), attenuat-
ing the direct effect of the SNP. In comparison, 12.2% of 
the association between rs1800562 and hepatic iron were 
mediated by acylcarnitine C7DC (Fig. 2D).

Difference in pathways
Using any significant metabolite from the regression 
analysis in the pathway analysis, individuals with steato-
sis or iron overload showed several different enriched 
pathways, with effects on other pathways (Fig. 3, Supple-
mentary Table  3–4). In individuals with steatosis, the 

d-glutamine and d-glutamate metabolism or alanine, 
aspartate and glutamate metabolism showed strong 
impacts. The glycerophospholipid metabolism, arginine 
biosynthesis and lysine degradation were significantly 
enriched in the steatosis group. In individuals with iron 
overload the same four pathways showed a high topol-
ogy impact, however, enrichment was low. Furthermore, 
glycerophospholipid metabolism and lysine degradation 
were enriched (Fig. 3, Supplementary Table 3–4).

Discrimination of hepatic steatosis and iron overload
For discrimination of hepatic steatosis, the continu-
ous FLI showed an AUC of 0.859 in the overall sample 
(Table 4, Fig. 4, upper panel). The 12 metabolites/indica-
tors significantly associated with hepatic fat content or 
hepatic steatosis showed a significantly lower AUC of 
0.769 (p  < 0.001). Adding the 12 metabolites/indicators 
to the FLI slightly decreased discrimination nominally 
(AUC of 0.851), but not significantly (p = 0.336, Table 4, 
Fig. 4).

In men, the continuous FLI showed an AUC of 0.818. 
The 12 metabolites/indicators showed nominally (AUC 
of 0.802), but not significantly (p = 0.636), worse discrimi-
nation of hepatic steatosis. Adding the 12 metabolites/
indicators to the FLI improved discrimination nominally 
(AUC of 0.830), but not significantly p = 0.594, Table  4, 
Fig.  4). In women, the continuous FLI showed an AUC 
of 0.867. The 12 metabolites/indicators showed a signifi-
cantly worse discrimination (AUC of 0.771, p = 0.019). 
Adding the 12 metabolites/indicators to the FLI declined 
discrimination nominally (AUC of 0.844), but again not 
significantly (p = 0.144, Table 4, Fig. 4).

While hepatic steatosis was better discriminated by 
lead SNPs for HFE gene compared to hepatic iron con-
tent, the lead SNP for PNPLA3 gene showed smaller 
AUCs than hepatic iron content in additional analyses 
(Supplementary Table 5).

The discrimination of hepatic iron overload was not 
statistically significant in any model. For discrimination 
of hepatic iron overload, the continuous FLI showed an 

Table 3  Association of SNPs with hepatic phenotypes and metabolites
Unadjusted Base adjustment Full adjustment

SNP (Gene) Outcome Estimate [95% CI] p-value Estimate [95% CI] p-value Estimate [95% CI] p-value
rs738409 (PNPLA3) Hepatic fat 1.19 [0.99; 1.43] 0.06 1.13 [0.98; 1.30] 0.10 1.13 [0.99; 1.29] 0.07

Hepatic iron 1.01 [0.98; 1.03] 0.53 1.00 [0.98; 1.03] 0.84 1.00 [0.98; 1.03] 0.92
Alanine 0.83 [0.69; 0.99] 0.04 0.82 [0.68; 0.99] 0.04 0.83 [0.04; 0.99] 0.04
Isoleucine 0.81 [0.68; 0.98] 0.03 0.81 [0.67; 0.97] 0.02 0.82 [0.69; 0.98] 0.03
Glu 0.83 [0.69; 1.0] 0.05 0.82 [0.68; 0.99] 0.04 0.84 [0.71; 0.99] 0.04

rs1800562 (HFE) Hepatic fat 1.51 [1.09; 2.10] 0.01 1.33 [1.03; 1.72] 0.03 1.25 [0.99; 1.59] 0.06
Hepatic iron 1.06 [1.02; 1.11] 0.01 1.05 [1.01; 1.10] 0.01 1.05 [1.01; 1.09] 0.02
C7.DC 1.44 [1.03; 2.02] 0.03 1.42 [1.02; 1.97] 0.04 1.41 [1.01; 1.96] 0.04

The base model is adjusted for age (years), sex and BMI (kg/m2) and the full adjustment additionally for glycemia status (normoglycemia, prediabetes, diabetes), 
systolic blood pressure (mmHg), serum triglycerides (mg/dL) and daily alcohol consumption (g/d)
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Fig. 3  Pathway analyses in individuals with steatosis and iron overload (A) Comparison of pathways in individuals with and without steatosis. B Compari-
son of pathways in individuals with and without iron overload. Colors indicate enriched pathways displayed as -log10 (p-value). Yellow = lower enrich-
ment, red = higher enrichment. Circle size indicates pathway impact. Please note the different scaling of y-axes

 

Fig. 2  Mediation analysis (A-C) show associations of rs738409 (PNPLA3) with hepatic fat content and D) shows associations of rs1800562 (HFE) with 
hepatic iron content. Solid arrows indicate direct effects; dashed lines indicate the mediated proportion, and the dotted lines show the total effect via 
unknown (X) pathways. Note that the total effect for (A-C) is smaller than the direct effect, due to the suppression through the mediators (corresponds 
to negative proportion mediated)
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Table 4  Areas under the Curve (AUC) from leave-one-out cross validation logistic regression models predicting hepatic phenotypes
Outcome: Group Predictor AUC p-value
Steatosis: All FLI alone 0.859 1

Metabolites alone 0.769  < 0.001
Metabolites and FLI 0.851 0.3335

Steatosis: Men FLI alone 0.818 1
Metabolites alone 0.802 0.6362
Metabolites and FLI 0.83 0.5935

Steatosis: Women FLI alone 0.867 1
Metabolites alone 0.771 0.0189
Metabolites and FLI 0.844 0.1439

Iron overload: All FLI alone 0.658 1
Metabolites alone 0.602 0.1328
Metabolites and FLI 0.664 0.8414

Iron overload: Men FLI alone 0.579 1
Metabolites alone 0.589 0.8288
Metabolites and FLI 0.587 0.8387

Iron overload: Women FLI alone 0.613 1
Metabolites alone 0.657 0.5375
Metabolites and FLI 0.723 0.0722

Values are given for different groups (all, men, women) based on combinations of fatty liver index (FLI) and metabolites. P-values are retrieved from comparing to 
the model including FLI alone

Fig. 4  Discrimination of steatotic liver disease and hepatic iron overload. Upper panel: ROC curves for outcome steatosis with predictors FLI (solid line), 
12 metabolites/indicators (dotted line) and FLI plus Ala, Ile, Leu, alpha-AAA, lysoPC a C17:0, PC ae C38:2, Glu, PC ae C34:3, PC ae C36:2, BCAA, keto_aa, 
PCae_PCaa (dashed line). Lower panel: ROC curves for outcome iron overload with predictors FLI (solid line), 28 metabolites/indicators (dotted line) and 
FLI plus C0, C2, C7-DC, C14:1, alpha-AAA, BCAA, lysoPC a C20:4, PC aa C36:4, PC aa C38:4, PC aa C38:5, PC aa C38:6, PC aa C40:5, PC aa C40:6, PC ae C36:4, 
PC ae C36:5, PC ae C38:5, PC ae C38:6, SM C18:1, SM C20:2, total AC, total longAC, total shortAC, total mufaAC, total sfaAC, total pufaPCax, total PCax, total 
PCaa (dashed line)
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AUC of 0.658 in the overall sample (Table 4, Fig. 4, lower 
panel). The 27 metabolites/indicators significantly associ-
ated with hepatic iron content or hepatic iron overload 
showed a nominally lower AUC of 0.602 (p = 0.180). Add-
ing the 27 metabolites/indicators to the FLI improved 
discrimination nominally (AUC of 0.664, p = 0.841, 
Table 4, Fig. 4).

In men, the continuous FLI showed an AUC of 0.579. 
The 27 metabolites/indicators showed a nominally bet-
ter discrimination of hepatic iron overload (AUC of 
0.589, p = 0.829). Adding the 27 metabolites/indicators 
to the FLI improved discrimination nominally compared 
to FLI alone, but was slightly worse than metabolites 
alone (AUC of 0.587, p = 839). In women, the continu-
ous FLI showed an AUC of 0.613. The 27 metabolites/
indicators alone and in combination with the FLI (AUC 
of 0.657 and 0.723, respectively) improved discrimination 
nominally (p = 0.538 and p = 0.072, respectively, Table  4, 
Fig. 4). Generally, for the discrimination of iron overload 
there was a consistent improvement from FLI alone, over 
metabolites/indicators alone to the combination of both 
in sex-specific analyses.

Discussion
Our analysis of the association of serum metabolites 
with hepatic phenotypes resulted in 91 associations of 
38 unique metabolites and 23 associations of 17 unique 
metabolite indicators. Pathway analyses showed differ-
ences in amino acid related pathways between individu-
als with and without steatosis, and the same pathways 
exhibited a high impact in iron overload, indicating an 
overlap between pathways of steatosis and iron over-
load on a molecular level. We identified mediating roles 
of metabolites in the association of genetic variants with 
hepatic phenotypes, and showed that metabolites have 
the potential to improve the diagnostic performance of 
the established FLI.

It has already been shown that circulating metabolites 
are associated with stages of hepatic steatosis in a patient 
cohort, illustrating the potential of these measurements 
to reflect the process of fatty liver pathogenesis, and 
to serve as early biomarkers of hepatic deterioration 
(McGlinchey et al. 2022). In a recent publication of the 
population-based Rotterdam Study, with three replica-
tion samples, the association of metabolites with SLD 
revealed several lipids and amino acids to be involved 
in SLD pathology (Abozaid et al. 2025). Especially our 
results of amino acids coincide with these findings, while 
lipids partly show other effect directions. We identi-
fied overlapping pathways in steatosis and iron overload 
such as amino acid metabolism and glycerophospho-
lipid metabolism. These pathways were found before 
in the progression from liver cirrhosis to hepatocellular 
carcinoma (Gao et al. 2015). We hypothesize that these 

pathways and their metabolites might describe early dis-
ease progression from non-severe steatosis to MASLD, 
underlining the role of iron in this process.

Amino acids
We found the sum of branched-chain amino acids 
(BCAA) to be associated with both liver fat and iron 
overload, and amino-acid related pathways were enriched 
or had significant impact in pathway analysis (Fig. 3A and 
Supplementary file 3). BCAA levels in humans are main-
tained by a complex interplay of BCAA digestion and 
catabolism, and increased BCAAs levels are associated 
with several diseases including insulin resistance and 
diabetes. One well-studied effect of leucine is the pro-
tein synthesis or cell growth via the mechanistic target of 
rapamycin (mTOR) pathway (Neinast et al. 2019).

A systematic review showed that circulating BCAAs 
were associated with NAFLD in the majority of studies 
(Piras et al., 2021). Kalhan et al. (2011) showed increased 
BCAAs and glutamate levels in individuals with non-
alcoholic steatohepatitis (NASH) compared to healthy 
individuals, but no associations of BCAAs with steato-
sis (Kalhan et al. 2011). Männistö et al. (Männistö et al. 
2015) found lower concentrations of BCAAs in individu-
als with steatosis compared to NASH patients. This indi-
cates that BCAA concentrations increase with hepatic 
disease severity, supporting our findings that BCAA were 
associated with hepatic fat content in early disease stages. 
A cross-sectional analysis of a randomized controlled 
trial confirms a gradual increase of circulating BCAA 
with increase in hepatic fat content (Amanatidou AI et al. 
2023).

Direction and causality of the association between 
BCAA and adipose tissue increase are still unclear. Ani-
mal studies suggest that the effect of BCAA also depends 
on nutrition background (Newgard 2012; Solon-Biet et 
al. 2022); for instance, insulin resistance is induced by 
high fat diet in combination with BCAA (Newgard et al. 
2009), due to a downregulation of BCAA catabolism in 
obesity (White et al. 2018). Downstream effects of BCAA 
are mediated through mTOR complex 1 (mTORC1) 
which increases oxidative stress in mitochondrial path-
ways, promotes inflammation via NF-kB or increases 
hepatic fat content via lipogenesis (Zhenyukh et al. 2017). 
The same pathway is hypothesized to be involved in iron 
homeostasis (Guan and Wang 2014), however, iron is 
also involved in the activation of mTORC1 (Shapiro et 
al. 2023). Correlations of BCAAs with circulating iron 
markers have been reported (Enko et al. 2020), and val-
ues of these BCAAs were lower in patients with anemia. 
Moreover, dietary intake of BCAAs have been found to 
be associated with increased ferritin and hepatic iron 
content (Galarregui et al. 2021), supporting our results. 
Another study suggests that iron overload induces liver 
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damage via the inhibiting PI3K/AKT/mTOR signaling 
pathway in chicks (Lv et al. 2024).

We thus hypothesize that hepatic fat and iron con-
tent both contribute to SLD disease progression via 
BCAA and their downstream effects probably mainly via 
mTORC1. However, to confirm and assess this pathway, 
future studies should assess the effect of hepatic fat and 
iron on SLD progression via BCAA in longitudinal stud-
ies or include interventions to evaluate the effect of low-
ering BCAA.

Alpha aminoadipic adic
In our analysis, alpha aminoadipic acid (alpha-AAA) was 
found to be significantly associated with hepatic fat con-
tent, iron content and iron overload, and the association 
with steatosis pointed to the same direction (FDR cor-
rected p-value = 0.08). Alpha-AAA in humans is mainly 
generated by the oxidation of lysine through the saccha-
ropine pathway, and is known to induce a pro-oxidative 
milieu and generate oxidative stress through impaired 
mitochondrial function (Estaras et al. 2020). The latter 
is associated with metabolic syndrome (Prasun 2020) 
and alpha-AAA levels predict T2D risk (Razquin et al. 
2019). Changes in alpha-AAA are associated with adi-
pogenesis; expression is found in adipocytes, but not in 
preadipocytes, and levels of alpha-AAA are higher in 
individuals with obesity (Lee et al. 2019), where levels 
were also correlated with higher cholesterol and glucose. 
Desine et al. replicated the association of alpha-AAA lev-
els with unfavorable lipid profile and hyperinsulinemia 
in individuals with HIV. Moreover, they could also show 
that the association with obesity is indeed driven by adi-
pose tissue dysfunction, since they obtained associations 
with visceral and hepatic fat, but not subcutaneous fat 
or anthropometric markers of body size (Desine et al. 
2023). Previous analyses on our sample showed a strong 
association of glycemic traits with both hepatic iron and 
fat (Niedermayer et al. 2023), as well as an association 
of visceral adipose tissue with hepatic iron (Maier et al. 
2021). In a cell study, alpha-AAA was shown as marker 
of oxidation of proteins in the presence of iron and under 
pathological glucose conditions (Luna et al. 2021). We 
might thus hypothesize that the association of alpha-
AAA with hepatic phenotypes is modulated by impaired 
glycemia. To link the hepatic phenotypes of our analysis 
we further hypothesize, that elevated levels of alpha-
AAA might result of oxidative stress due to iron overload 
and that alpha-AAA can in turn increase hepatic fat via 
adipogenesis and therefore promote hepatic steatosis 
progression. However, the relation of hepatic iron and 
metabolomics, and in particular alpha-AAA, is currently 
understudied in population-based cohorts. We therefore 
suggest that longitudinal studies should assess the rela-
tion and direction of associations between hepatic iron, 

alpha-AAA and hepatic steatosis to further characterize 
their relationship.

Lipids
In the current analysis, glycerophospholipids, sphin-
gomyelins and their indicators showed 56 associations 
with hepatic phenotypes, and several metabolites were 
associated with more than one phenotype. Moreover, 
glycerophospholipid metabolism was identified as one 
of the main pathways differing in individuals with and 
without steatosis or iron overload. Several of the metabo-
lites identified have been reported before in the context 
of excess weight and obesity, again indicating the close 
connection between general metabolic and hepatic 
impairment. We replicated the association of lysoPC a 
C17:0 with hepatic fat and steatosis, that was previously 
implied in other studies, either directly (Feldman et al. 
2017), or indirectly through risk factors associated (Prada 
et al. 2021). In an analysis of three population-based 
studies, higher levels of lysoPC a 17:0 were protective 
against abdominal weight gain in both men and women 
(Merz et al. 2016) and several diacyl and acyl-alkyl PCs, 
among them PC ae C38:2 and PC ae C36:2 were reported 
as protective against abdominal weight gain in women. 
In line with these findings, our current results showed 
that higher levels of serum phospholipids lysoPC a 17:0 
and the acylalkyl-PC ae 38:2 were associated with lower 
hepatic fat content. Elevated serum lipid levels corre-
spond to lower uptake into hepatocytes, a process driven 
by phospholipase A2 (Stremmel et al. 2014). We thus 
hypothesize that higher serum PC levels might indicate 
lower hepatic fat.

LysoPC a C20:4, in our study associated with hepatic 
iron, has been shown to be associated with circulating 
ferritin in both men and women (Kaul et al. 2018). Iron 
overload is associated with hepatic ferroptosis (Chen et 
al. 2023), a cell death which depends on lipid peroxida-
tion and leads to liver fibrosis. LysoPCs are recycled to 
PCs by the enzyme LPCAT, which is also a key enzyme in 
ferroptosis (Pandrangi et al. 2022). Ferroptosis requires 
mainly PCs esterified with polyunsaturated fatty acids 
(PUFA), which might explain the associations of iron 
overload with PUFA lipids as single metabolites and the 
sum of PUFA PCs in our analysis. PC aa 40:5, as another 
lipid containing PUFA, is associated with increased risk 
for diabetes (Floegel et al. 2013) and hepatic fat content 
(Boone et al. 2019). In our analysis, differently saturated 
diacyl-PCs of the fatty acid C40 were associated with iron 
parameters and GGT. We can thus hypothesize that lip-
ids esterified with PUFA, such as lysoPC a C20:4 or PC aa 
40:5, are markers of both iron metabolism and metabolic 
impairment, indicating a shared molecular background.

In our study, especially lipid metabolites (PCs and 
SMs), that were associated with GGT had overlap with 
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metabolites associated with hepatic steatosis and iron 
parameters, indicating a connection between patho-
physiologic pathways. Indeed, GGT is a marker oxida-
tive stress as it provides reduced glutathione to reduce 
oxygen species (Irie et al. 2012). Oxidative stress is one 
important driver of SLD via inflammation (Altamura et 
al. 2021) and can be induced by hepatic iron.

Mediation of genetic effects
Effects of rs738409 (PNPLA3) on hepatic fat and 
rs1800562 (HFE) on hepatic iron are established (Sun et 
al. 2023), and were replicated in our sample. The subse-
quent formal mediation analysis indicated that 12.2% 
of the effect of rs1800562 on hepatic iron content was 
mediated through acylcarnitine C7-DC, suggesting a 
potentially causal, but in any case intermediary role. In 
line with this finding, acylcarnitines have been reported 
to be associated with iron hemoglobin and ferritin 
(Kaul et al. 2018). Interestingly, we found that rs738409 
(PNPLA3) decreases serum levels of alanine, isoleucine 
and glutamate (Fig.  2A-C), which in turn are associ-
ated with higher hepatic fat content. The association of 
another variant in PNPLA3 (rs738408-C) with decreased 
glutamate has been found before, supporting our results 
(Richardson et al. 2022). Consequently, the mediation 
analysis suggests that the pathway between rs738409 and 
hepatic fat content is partly suppressed through the asso-
ciation with these three amino acids (Fig. 2A-C).

Here, we have assessed only two lead SNPs, as a first 
step to evaluate the mediating role of metabolites in the 
pathway between genetic predisposition and hepatic phe-
notypes. However, to fully investigate these pathways, 
a more comprehensive panel of genetic variants will be 
needed, including SNPs in TM6SF2, MBOAT7, GCKR, or 
APOE, which should be analyzed in further studies.

Sex specific effects and predictions
Previously, we could show that the associations between 
hepatic iron and risk factors vary according to sex 
(Maier et al. 2021; Niedermayer et al. 2023). In the cur-
rent study, we failed to identify consistent sex-specific 
associations of individual metabolites with hepatic phe-
notypes, which is likely due to the limited sample size in 
sex-stratified analyses. Variation in hepatic fat and iron 
content was lower in women compared to men, and prev-
alence of steatosis and iron overload was also lower in 
women, thus the likelihood to identify effects in women 
was smaller. In line with this, adding metabolites to the 
FLI improved prediction performance of hepatic steatosis 
nominally, but not significantly, only in men. The FLI was 
not designed to identify hepatic iron overload; however, 
in our sample its ability to distinguish between individu-
als with and without hepatic iron overload was 0.658 and 
nominally improved by adding metabolites associated 

with hepatic iron. We must stress that this model has to 
be regarded as a very first step, only indicating the poten-
tial of these metabolites to improve diagnosis, since due 
to lack of an external validation sample, we tested diag-
nostic performance on the same data as the metabolites 
were derived. We refrained from testing other non-
invasive liver scores designed for phenotypes of fibrosis 
or cirrhosis, such as FIB-4, FNI, NFS, or MASEF. Since 
biopsy data or elastography imaging was not available 
in our study to define fibrotic or cirrhotic phenotypes, 
we cannot properly evaluate the performance of these 
scores. However, the need to improve the performance of 
conveniently accessible scores such as the FLI have been 
recognized (Jung et al. 2020). Metabolite data can be 
measured from a simple blood draw, and due to improve-
ments in speed, reliability, and cost of metabolite mea-
surements, they have the potential to be easily applicable 
in clinical practice. Should the predictive performance of 
the metabolites identified in the current study prove to 
be robust by validation in further analyses, they would 
have the potential to somewhat reduce the currently very 
large grey area of the FLI in diagnosing hepatic steatosis 
and iron overload.

Strength and limitations
A main strength of our analysis is the well-characterized 
study sample with accurate, MRI-based measurements 
of hepatic fat and iron content, a broad panel of targeted 
metabolite data as well as ample clinical data for appro-
priate confounder adjustment. Nevertheless, our analy-
sis has certain limitations. Due to the population-based 
setting of our study, no biopsies were conducted and we 
cannot establish presence of fibrosis or cirrhosis. Fur-
thermore, no standard cut off values for iron overload 
based on MRI exist. We therefore rely on cutoff values, 
which were calibrated with histopathologic measure-
ments in other cohorts (Kühn et al. 2017). Since our data 
were cross-sectional, we could not assess causality or the 
direction of associations and cannot establish if serum 
metabolites have an impact on hepatic phenotypes, or 
if metabolites are a consequence of hepatic phenotypes. 
Additionally, metabolite levels are potentially influenced 
by a large number of risk factors, including medication, 
alcohol consumption, and nutrition, so residual con-
founding remains in our analyses. The sample size pre-
vented us from conducting more detailed, sex-specific 
analyses with accounting for menopause status. There-
fore, studies with longitudinal settings are required 
to evaluate predictive performance and direction of 
association.
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Conclusions
In conclusion, findings from our population-based data 
show that circulating serum metabolites can reflect 
hepatic phenotypes and are involved in shared path-
ways, such as lysine degradation and glycerophospholipid 
metabolism. Iron-related pathways in hepatic steatosis 
might therefore be an interesting target for intervention.
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