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Abstract 

Background  Non-rhizobial endophytes (NREs) support plant health and nodule function by enhancing symbiotic 
interactions and nitrogen fixation. However, their recruitment dynamics under fertilizers of varying phosphorus 
solubility remain poorly understood. This study investigated how four P fertilization treatments—no phosphorus (P0), 
bone char (BC), surface-modified bone char plus (BCplus), and triple superphosphate (TSP)—with increasing solubility 
influence microbial recruitment and diversity in Pisum sativum, leading to differences in plant-available phosphorus 
across bulk soil, rhizosphere, roots, and nodules.

Results  Using 16S rRNA amplicon sequencing, we found that nodule-associated microbial communities were 
primarily recruited from unknown sources, likely seeds, followed by roots, especially under BCplus. Phosphorus solubil‑
ity of treatments significantly influenced recruitment patterns, with solubility further shaping microbial diversity. 
BCplus recruited beneficial taxa like Beijerinckiaceae and Flavobacteriaceae, which are associated with nitrogen fixation 
and biocontrol. In contrast, the highly soluble TSP treatment expanded recruitment from the rhizosphere, reflect‑
ing less stringent environmental filtering and promoting taxa like Steroidobacteraceae and Blastocatellaceae, known 
for nutrient cycling and pathogen suppression. In the absence of P fertilization (P0), recruitment relied heavily 
on seeds and roots, with arbuscular mycorrhizal fungi colonization prioritized over nodulation. Notably, TSP supported 
significantly more nodules with greater microbial diversity, potentially enhanced by NREs.

Conclusions  Phosphorus solubility of the applied fertilizers strongly influences NRE recruitment dynamics in P. 
sativum. Seeds and roots act as primary reservoirs, while highly soluble fertilizers promote broader recruitment 
from the rhizosphere and increase microbial diversity in nodules. These results underscore the importance of the ferti‑
lization form in modulating NRE recruitment.
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Background
In the last decades, pea (Pisum sativum) has gained more 
attention in agriculture due to its high nutritional value 
and its symbiotic interactions with microbes, which 
could improve soil quality. Its seeds are rich in pro-
tein (23–25%), slow-digesting starch, and other essen-
tial nutrients like vitamins and minerals [1, 2]. Beyond 
nutritional benefits, P. sativum plays a key role in crop 
rotations through symbiotic interactions with arbuscu-
lar mycorrhizal fungi (AMF) and diazotrophic rhizobia, 
enhancing nutrient cycling and soil health [3–5]. The 
mutualistic relationship between P. sativum and rhizo-
bia is critical for nitrogen (N) fixation and nodulation 
with Rhizobium leguminosarum bv. viciae being the most 
commonly detected symbiont [6, 7].

While nodules were traditionally thought to host only 
rhizobia, recent studies show that they also harbor non-
rhizobial endophytes (NREs), including genera such as 
Agrobacterium, Burkholderia, Methylobacterium, and 
Ralstonia [8]. NREs contribute to plant fitness by facili-
tating phosphorus (P) solubilization, indole-3-acetic acid 
(IAA) production, and pathogen suppression [9–12], 
although the full extent of their functional roles and 
interactions remain unclear [13]. While it is evident that 
nodules harbor diverse NREs, their recruitment path-
ways and precise roles in plant–microbe interactions 
still need to be fully understood. Mayhood and Mirza [9] 
observed a significant overlap between rhizosphere and 
nodule-associated bacteria, suggesting the rhizosphere as 
a potential source of NREs. Supporting this, it was dem-
onstrated that most amplicon sequence variants  (ASVs) 
of nodules originate from root-associated [14] microbes, 
which are strongly influenced by rhizosphere microbial 
communities. On top of the interactions between rhizos-
phere microbiome and rhizobia, AMF may also influence 
NREs. While AMF and rhizobia can compete for plant 
resources, potentially suppressing each other’s activity 
[15, 16], other studies highlight positive interactions that 
enhance N fixation and plant biomass [17–19]. None-
theless, the role of AMF in shaping NRE communities 
remains largely unexplored.

It remains to be seen whether agricultural manage-
ment practices influence NRE community structure. It is 
well understood that N and P availability plays a central 
role in nodule development and symbiotic N fixation. 
Nodules contain 2–3 times more P than other plant tis-
sues, underscoring its importance in these processes 
[20–23]. Consequently, higher P levels have been linked 
to increased nodulation in legumes [24]. Highly solu-
ble commercial P fertilizers have been shown to reduce 
diazotrophic diversity, potentially limiting successful 
nodulation. In contrast, slow-releasing fertilizers, such 
as biochar-based amendments, enhance diazotrophic 

abundance and diversity by altering community struc-
ture and promoting nutrient cycling [25]. This aligns 
with findings that long-term mineral fertilizer applica-
tion decreases soil microbial abundance [26], whereas 
slow-releasing P fertilizers are associated with increased 
microbial abundance [27, 28], enhance diversity [29, 30], 
and promote greater activity in nutrient cycling [31].

Given P. sativum’s ability to establish symbioses with 
AMF and rhizobia, it is an ideal model plant to study how 
the tripartite interactions between AMF, rhizobia, and 
microbes at the plant-soil interface the composition and 
recruitment dynamics of NREs. In this study, we investi-
gated how P fertilization with fertilizers of different solu-
bility—control (P0) < bone char (BC) < surface-modified 
bone char plus (BCplus) < triple superphosphate (TSP)—
affects microbial recruitment in bulk soil, rhizosphere, 
roots, and nodules during the ninth year of a long-term 
experiment. Despite identical P application rates across 
treatments, fertilizers with higher solubility resulted in 
increased plant-available P in soil over time [32]. By ana-
lyzing these interactions, we aimed to understand how 
fertilizer solubility, shaped by fertilizer form and solubil-
ity, influences microbial recruitment strategies and sym-
biotic relationships in pea-associated compartments.

To address these questions, we tested the following 
hypotheses: (i) Highly soluble P fertilizers reduce micro-
bial diversity while shifting community composition in 
pea-associated compartments—particularly in roots and 
nodules—by favoring a few dominant taxa. (ii) NREs are 
primarily recruited from root and rhizosphere communi-
ties, with stronger recruitment occurring under highly 
soluble fertilizers, especially in the TSP treatment. (iii) P 
fertilization affects the balance between nodulation and 
AMF colonization, with low-solubility inputs favoring 
AMF and high-solubility inputs promoting nodulation 
and NRE diversity.

Results
Overall community responses to fertilization
Non-metric multidimensional scaling (NMDS) analy-
sis revealed significant effects of compartment type and 
fertilization treatment on microbial community com-
position (Fig.  1A). Compartment type explained the 
majority of the variance  (R2 = 0.42, p < 0.01), while fer-
tilization treatment contributed marginally (R2 = 0.03, 
p = 0.01). A compartment-specific PERMANOVA 
analysis (Fig.  1B) showed minimal influence of fertiliza-
tion in bulk soil (R2 = 0.27, p = 0.45) and the rhizosphere 
(R2 = 0.72, p = 0.47), while stronger effects were observed 
in roots (R2 = 0.21, p < 0.01) and nodules (R2 = 0.14, 
p = 0.05). Given these findings, subsequent analyses were 
conducted separately for each compartment to better 
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understand the specific effects of fertilization within dif-
ferent microbial environments.

Bulk soil and rhizosphere communities
Fertilization treatments did not significantly affect the 
number of observed ASVs in bulk soil (Fig.  2A) and 
rhizosphere samples (Fig. 2B). Rhizobiaceae, while more 
abundant in BCplus, remained low compared to endo-
phytic compartments and were not significantly influ-
enced by fertilization (Fig. S1). This trend was supported 
by nifH gene quantification and mirrored the increase in 
Rhizobiaceae under BCplus (Fig. S2A). Conversely, AMF 
abundance and mycorrhizal colonization were highest 
in P0 and TSP, with BCplus exhibiting the lowest levels, 
though these patterns were not statistically significant 
(Figs. 3A, S2B).

Only the C:P ratio of plant-available soil nutrients dif-
fered significantly, with BC (0.69) exceeding TSP (0.48; 
p = 0.05; Tables  S1, S2). Other parameters, includ-
ing plant biomass (Fig.  3D), total C:P (Fig.  3E) and N:P 
(Fig. 3F) ratios of plant material and N:P ratios of plant-
available soil nutrients (Table S1), were unaffected by fer-
tilization. PCAL values, which reflect the concentration of 
plant-available P in the soil, increased progressively with 
the solubility of the applied fertilizers, despite identical 
P application rates (Table S1). This trend was accompa-
nied by a slight increase in grain yield, ranging from 2.79 
t ha−1 in P0 to 3.14 t ha−1 in TSP (unpublished data).

In bulk soil, 592 ASVs were shared across treatments 
(Fig.  2C), with dominant families including Micrococ-
caceae, Gaiellaceae, and Oxalobacteraceae (Fig. S3A). 
Most unique ASVs were observed for the BCplus, while 
P0 had the highest abundance of unique ASVs, including 
families like Ktedonobacteraceae, Rhodanobacteraceae, 
and Caulobacteraceae (Fig. S3B).

In the rhizosphere, 457 ASVs were shared among all 
treatments, as shown in the Venn diagram (Fig.  2D). 
These shared ASVs were dominated by families such 
as Rhizobiaceae, Burkholderiaceae, and Caulobacte-
raceae, based on relative abundance patterns (Fig. S3A). 
Although the core community structure was relatively 
stable, shared ASVs exhibited treatment-dependent 
differences in their relative abundances, indicating a 
dynamic microbial response to fertilization (Fig S3A). In 
terms of unique ASVs, the highest number was observed 
under BC treatment, followed by BCplus (Fig.  2D). The 
composition of unique ASVs, annotated at the fam-
ily level, differed markedly across treatments (Fig. S3B). 
In TSP, they were dominated by  Morganellaceae, Xan-
thomonadaceae, and Sphingomonadaceae, while BC 
was enriched in Caulobacteraceae, Xanthomonadaceae, 
and Comamonadaceae. In P0, Ktedonobacteraceae was 
the most abundant family, followed by Opitutaceae and 
Xanthobacteraceae. BCplus unique ASVs included Kte-
donobacteraceae, Streptomycetaceae, and Burkholde-
riaceae. Notably, some unique ASVs introduced new 
families, such as Morganellaceae, Chitinophagaceae, and 

Fig. 1  Impact of P fertilization on microbial composition across soil and plant compartments. A Non-metric multidimensional scaling (NMDS) plot 
of beta diversity based on Bray–Curtis dissimilarities. Samples are grouped by compartment with different shapes (bulk soil: square; rhizosphere: 
rhombus; roots: triangle; nodules: point) and by fertilization treatment with distinct colors (P0: grey, BC: turquoise, BCplus: light blue, TSP: blue). 
Ellipses represent 95% confidence regions for species clusters (stress = 0.17). Sample sizes: bulk soil (n = 12), rhizosphere (n = 12), roots (n = 36), 
nodules (n = 36). (B) PERMANOVA results based on Bray–Curtis dissimilarities. The table shows effect size (R2), significance (F-statistic), degrees 
of freedom (Df ), and variance explained (SumOfSqs) for compartments and fertilization treatments. Globally, compartments explained 42% 
of the variation (p < 0.01), while fertilization treatment contributed 3% (p = 0.01). The interaction was not significant. Compartment-specific analysis 
showed the strongest fertilization effect in roots (R2 = 0.21, p < 0.01), followed by nodules (R2 = 0.14, p = 0.05), with minimal, non-significant effects 
in bulk soil and rhizosphere
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Sphingobacteriaceae, absent in the top 20 core ASVs, 
highlighting distinct microbial recruitment patterns for 
each treatment.

Root endophytes
To validate sequencing accuracy in root samples, a 
mock community of eight known bacterial species was 
included as a positive control (Table  S3). Seven out of 

eight species were successfully detected, with Lactoba-
cillus fermentum missing, likely due to the high chloro-
plast DNA content. This result suggests that sequencing 
efficiency in root samples may be slightly influenced by 
plant-derived DNA. The number of observed ASVs in 
roots was significantly higher in the BCplus compared to 
P0 and BC (p < 0.01; Fig.  4A). Rhizobiaceae dominated 
the root microbiome, with Rhizobium phaseoli being 

Fig. 2  Microbial alpha diversity and shared ASVs in bulk soil and rhizosphere. Observed bacterial alpha diversity (ASVs) across P fertilization 
treatments (P0, BC, BC.plus, TSP) in A bulk soil and B rhizosphere (n = 3) is shown as box plots. No significant differences were detected 
among treatments (ANOVA, p > 0.05). Venn diagrams in (C) and (D) depict the number of shared and unique ASVs in bulk soil and rhizosphere, 
respectively. Values in brackets indicate the proportion of reads assigned to these ASVs. Additional information on the top 20 core and unique ASVs 
per treatment is provided in Supplementary Fig. S3



Page 5 of 19Thaqi et al. Environmental Microbiome           (2025) 20:92 	

the abundant species in BC, followed by TSP, BCplus, and 
P0 (Figure S1). This trend corresponded with the lowest 
nifH gene copy numbers detected in P0 (Fig. S2A). Other 
Rhizobiaceae species were less abundant, with the high-
est diversity in P0 and TSP.

Among the ASVs shared acorss all treatments, two 
ASVs assigned to Rhizobiaceae and Pseudomonadaceae 
were predominant, with the latter showing the highest 
abundance in BCplus (Fig. 4E). All other shared ASVs were 
present at low abundance across treatments. The root 
microbiome had a higher proportion of unique ASVs 
(Fig.  4B) compared to soil compartments (Fig.  2C, D). 

Within root samples, BCplus exhibited the highest num-
ber of unique ASVs, followed by TSP and fewer in P0 and 
BC. The distribution and taxonomic identity of unique 
ASVs across treatments are visualized in Fig. 4G. Unique 
ASVs varied by treatment, reflecting differences in P 
fertilizer solubility but were generally composed of rare 
taxa. For instance, P0 was enriched in unique ASVs from 
Sphingomonadaceae and Beijerinckiaceae, BCplus from 
Sphingobacteriaceae and Weeksellaceae, TSP from Fla-
vobacteriaceae, and BC from Oxalobacteraceae. Despite 
treatment-specific differences, several families, including 
Comamonadaceae, Flavobacteriaceae, and Rhizobiaceae, 

Fig. 3  Plant properties under different P fertilization treatments. Plant properties were analyzed under four fertilization treatments with increasing 
phosphorus solubility: no P (P0), bone char (BC), surface-modified bone char (BCplus), and triple superphosphate (TSP). Parameters include: A 
percentage of mycorrhizal fine roots per plant (n = 3), B number of nodules per plant (n = 9), C percentage of vital nodules per plant (n = 9), D plant 
biomass (n = 3), E carbon-to-phosphorus (C:P) ratio (n = 3), and F nitrogen-to-phosphorus (N:P) ratio (n = 3). Data are presented as mean values 
with error bars representing standard deviation. Statistical differences between treatments were assessed using ANOVA with Tukey post-hoc tests. 
Significant differences between treatments (p < 0.05) are indicated by different capital letters. If no significant differences were detected, no letters 
are shown
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Fig. 4  Microbial alpha diversity and distribution of shared and unique ASVs in roots and nodules under P fertilization treatments. Bacterial 
alpha diversity (observed ASVs) is shown for roots (n = 9) in panel (A) and for nodules (n = 9) in panel (C) as box plots. Significant differences 
between treatments were detected using ANOVA (p < 0.05) and are indicated by different capital letters; if no letters are shown, no significant 
differences were found. Venn diagrams in panels (B) and (D) illustrate the number of shared and unique ASVs across treatments (P0, BC, BCplus, TSP) 
in roots and nodules, respectively. Values in brackets indicate the proportion of reads assigned to the respective ASVs. Panels E–H present heatmaps 
showing the relative abundance of ASVs, with darker shades indicating higher abundance. Panel (E) displays core ASVs in roots shared across all 
treatments, panel F shows core ASVs in nodules, and panels G and H illustrate unique ASVs specific to individual treatments in roots and nodules, 
respectively
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were consistently represented among unique ASVs across 
treatments.

Nodule communities
To validate sequencing accuracy in nodule and root sam-
ples, a mock community of eight known bacterial spe-
cies was included as a positive control (Table S3). While 
seven out of eight species were detected in root samples, 
all eight were present in nodules, confirming a higher 
sequencing robustness for this compartment.

The total number of nodules was significantly lower 
in the P0 treatment compared to TSP (p < 0.01; Fig. 3B), 
while the proportion of vital nodules remained consist-
ent across treatments (Fig. 3C). The observed number of 
ASVs in nodules was highest in TSP, significantly exceed-
ing BC and P0 (p < 0.01, Fig. 4C). Rhizobiaceae dominated 
the nodule microbiome across all treatments, with Rhizo-
bium phaseoli as the prevalent species (Fig. S1). Subse-
quent BLAST analysis confirmed these sequences as 
Rhizobium leguminosarum bv. viciae, a key symbiont of 
Pisum sativum. The highest relative abundance of Rhizo-
biaceae was observed in P0 and BCplus, while TSP and BC 
exhibited lower levels. This trend corresponded with nifH 
gene copy numbers, which were lowest in TSP (Fig. S2A).

Despite the small number of shared ASVs across treat-
ments (9) (Fig.  4D), these ASVs were among the most 
abundant ones in nodules in contrast to other compart-
ments, where shared ASVs represent a minority (Fig. 4F). 
These shared ASVs were predominated by ASVs assigned 
to Rhizobiaceae and Pseudomonadaceae, with the former 
being most abundant in BC and BCplus and the latter in 
P0 and TSP.  Other shared ASVs, including those from 
the families Burkholderiaceae, Comamonadaceae, Propi-
onibacteriaceae, Staphylococcaceae, Streptomycetaceae, 
and Yersiniaceae, were consistently present but in low 
abundance.

The nodule microbiome also exhibited a high diversity 
of unique ASVs, with variation increasing alongside P 
fertilizer solubility (Fig. 3H). The TSP treatment showed 
the highest number of unique ASVs (68), including fami-
lies such as Rhodanobacteraceae, Weeksellaceae, Oxalo-
bacteraceae, Sphingobacteriaceae, Flavobacteriaceae, and 
Burkholderiaceae. In contrast, P0 nodules contained only 
11 unique ASVs, among which one affiliated with Inqui-
linaceae was highly abundant. BC (10 unique ASVs) and 
BCplus (27 unique ASVs) were characterized by a more 
stable microbial composition, with BCplus showing the 
highest number of unique Rhizobiaceae ASVs. Both BC 
and BCplus demonstrated stabilizing effects on the nod-
ule microbiome, maintaining a consistent abundance 
of unique ASVs, unlike the more pronounced shifts 
observed under TSP and P0.

Recruitment patterns of nodular microbiome
The sources of nodule-associated ASVs differed signifi-
cantly across compartments (p < 0.01, Table  S2). Over-
all recruitment patterns are visualized in Fig.  5. ASVs 
from unknown sources, potentially including seeds or 
unexplored reservoirs, contributed the most, followed 
by roots and ASVs shared between the rhizosphere and 
roots, which provided moderate contributions. The 
rhizosphere and bulk soil had lower contributions, with 
bulk soil consistently the least influential source. Pairwise 
comparisons confirmed significant differences between 
compartment contributions, with unknown sources con-
tributing more ASVs than any other compartment and 
roots contributing more than the rhizosphere and bulk 
soil. Fertilization treatments alone did not significantly 
affect the number of ASVs recruited (Table  S2). How-
ever, they influenced recruitment patterns within specific 
compartments (Fig. 5).

In the BCplus treatment, 30.2% of ASVs found in nod-
ules were also detected in roots, including members of 
Beijerinckiaceae, Flavobacteriaceae, Microbacteriaceae, 
and Sphingomonadaceae, as well as enriched Pseudomon-
adaceae. Nodules from TSP treatment shared 19.1% 
of their ASVs with roots, with additional contributions 
from Alcaligenaceae, Comamonadaceae, Promicromono-
sporaceae, Rhodanobacteraceae, Spirosomaceae, and 
Streptomycetaceae, and enrichment of Sphingobacte-
riaceae and Xanthomonadaceae. Nodules from BC and 
P0 treatments had similar proportions of root-derived 
ASVs (25.6% and 24.5%, respectively), largely affiliated 
with Pseudomonadaceae.

ASVs shared between the rhizosphere and roots con-
tributed to nodule ASVs with varying proportions across 
treatments. Nodules in the TSP treatment recruited 
13.7% of its nodule ASVs from this compartment, 
uniquely recruiting families such as Chitinophagaceae, 
Methylophilaceae, Pseudomonadaceae, Rubritaleaceae, 
and Oxalobacteraceae, alongside general enrichment of 
Flavobacteriaceae and Sphingobacteriaceae. Nodules 
from BC followed with 10.2%, recruiting ASVs primarily 
from Rhizobiaceae, while nodules from BCplus recruited 
10.1%, contributing unique families such as Labraceae 
and several ASVs from Sphingobacteriaceae. P0 showed 
the lowest recruitment (2.8%), with a single ASV 
recruited from the unique family Weeksellaceae.

Recruitment from the rhizosphere alone was high-
est under TSP (17.3%), significantly exceeding BC, 
where no ASVs were recruited from this compart-
ment (p = 0.035). Nodules from TSP recruited ASVs 
from diverse families unique to this treatment, such 
as Steroidobacteraceae, Blastocatellaceae, and Sphin-
gomonadaceae, while also generally enriching Sphin-
gomonadaceae alongside other families. Nodules from 
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Fig. 5  Sources contributing to the nodule-associated microbial community in Pisum sativum under P fertilization treatments. The chord diagram 
illustrates the proportional contributions of various microbial sources to the community composition in pea root nodules (sink represented in red) 
under four P fertilization treatments: A no P (P0), B bone char (BC), C surface-modified bone char (BCplus), and D triple superphosphate (TSP). The 
analyzed sources include Bulk soil (yellow), Rhizosphere (light green), Roots (orange), Bulk soil + Rhizosphere (lilac), Rhizosphere + Roots (light red), 
Bulk soil + Rhizosphere + Roots (blue), and Unknown (gray). Percentages represent the mean microbial contribution per treatment (n = 3). For P0, 
the majority of contributions originated from Unknown sources (42.64%) and Roots (24.51%), with smaller contributions from Rhizosphere + Roots 
(2.78%), Rhizosphere (3.70%), and Bulk soil + Rhizosphere + Roots (21.10%). Under BC treatment, Unknown sources (45.06%) and Roots 
(15.63%) contributed most, followed by Rhizosphere + Roots (10.23%) and Bulk soil + Rhizosphere + Roots (22.07%), with no contributions 
from the Rhizosphere alone. For BC.plus, contributions included Unknown sources (43.57%), Roots (30.17%), Rhizosphere + Roots (10.06%), 
Rhizosphere (3.54%), and Bulk soil + Rhizosphere + Roots (11.48%). Under TSP treatment, contributions shifted to Unknown sources (36.75%), Roots 
(19.13%), Rhizosphere + Roots (13.65%), Rhizosphere (17.30%), and Bulk soil + Rhizosphere + Roots (8.87%). Linear mixed-effects models followed 
by ANOVA on log-transformed data revealed significant differences between source compartments (p < 0.01; Table S2)



Page 9 of 19Thaqi et al. Environmental Microbiome           (2025) 20:92 	

BCplus (3.5%) and P0 (3.7%) showed minimal contribu-
tions from the rhizosphere, with nodules from BCplus 
recruiting ASVs from unique families like Labraceae 
and Sphingobacteriaceae, and P0 contributing a single 
ASV from the unique family Weeksellaceae.

Recruitment from ASVs shared between bulk soil 
and the rhizosphere was limited. In the TSP treatment, 
nodules recruited 4.3% of their ASVs uniquely from 
families such as Oxalobacteraceae, Polyangiaceae, and 
Rhizobiaceae, though no family was enriched. P0 nod-
ules recruited a slightly higher proportion (5.3%) but 
with lower diversity and no unique family contribu-
tions. BC nodules recruited 6.3%, predominantly from 
Rhizobiaceae, without notable diversity, while BCplus 
nodules recruited only 1.2%, showing minimal contri-
butions from this shared compartment.

ASVs originating from bulk soil, rhizosphere, and 
roots were distributed across treatments. Nodules 
from BC recruited the highest proportion (22.1%) 
of ASVs from this combined compartment, primar-
ily from Rhizobiaceae. P0 nodules followed closely 
with 21.1%, while BCplus nodules recruited 11.5% and 
TSP nodules only 8.9%. Rhizobiaceae was consistently 
enriched under BC and TSP, reflecting its central role 
in nodule formation. Other families, such as Burk-
holderiaceae and Streptomycetaceae, were variably 
recruited across treatments without showing signifi-
cant enrichment patterns.

ASVs from unknown sources, potentially includ-
ing seed-associated microbiota, showed the highest 
recruitment proportions across treatments. BC nod-
ules recruited 45.1% of its nodule ASVs from unknown 
sources, predominantly from Rhizobiaceae, with no 
other enriched families. Similarly, BCplus nodules 
relied on unknown sources for 43.6% of its nodule 
ASVs, uniquely recruiting families like A4b, Beijerinck-
iaceae, Microscillaceae, and Nocardiopsaceae, with 
notable enrichment of Rhizobiaceae. Nodules from 
P0 derived 42.6% of its nodule ASVs from unknown 
sources, including unique families such as Anaerolin-
eaceae, Dermabacteraceae, and Peptostreptococcaceae, 
though enrichment was again limited to Rhizobiaceae. 
In contrast, nodules from TSP relied least on unknown 
sources (36.8%) but uniquely recruited ASVs from a 
wide array of families, including Burkholderiaceae, 
Caulobacteraceae, Flavobacteriaceae, Micropepsaceae, 
Opitutaceae, Oxalobacteraceae, Phormidiaceae, 
Pseudomonadaceae, Pyrinomonadaceae, Sphingob-
acteriaceae, and Streptomycetaceae, with substantial 
enrichment of Oxalobacteraceae, Sphingobacteriaceae, 
and Rhizobiaceae.

Discussion
This study demonstrates that P fertilizer solubility sig-
nificantly impacts microbial communities in plant-asso-
ciated compartments, with stronger effects observed in 
roots and nodules than in soil compartments. Impor-
tantly, we show that although all plots received the same 
total amount of P and started from soils classified as class 
C (the optimal range for plant-available P in the German 
system), differences in fertilizer solubility led to varying 
PCAL levels over the course of the 9-year field experiment. 
At the time of sampling, PCAL values ranged from just 
below the class C threshold in P0 to the upper end of the 
range in TSP, reflecting diverging trends in P availability 
driven by the solubility of the treatments. These differ-
ences clearly influenced microbial community structure 
and diversity. A progressive decrease in alpha diversity 
from bulk soil to nodules was observed, reflecting the 
selective pressures exerted by plant proximity. These 
findings underscore the importance of P fertilizer solu-
bility as a key factor shaping plant–microbe interactions, 
particularly within symbiotic compartments. These find-
ings are in line with previous studies showing that avail-
able P strongly shapes rhizosphere microbial diversity 
[33–36].

Stability of microbial communities in bulk soil 
and rhizosphere
Bacterial richness and diversity in the bulk soil and 
rhizosphere remained remarkably stable across fertili-
zation treatments, likely reflecting the buffering capac-
ity of these compartments against fertilization-induced 
changes. This stability may be attributed to pre-existing 
soil nutrient levels, long-term adaptation of microbial 
communities, and the influence of factors such as organic 
C content and pH [37, 38]. Many ASVs were shared 
across fertilization treatments in bulk soil and rhizos-
phere, highlighting their role in maintaining stable and 
resilient microbial communities. These taxa likely play a 
key role in nutrient cycling and resilience to environmen-
tal fluctuations, supporting soil stability and adaptability 
under fertilization, as shown in previous studies [39–42]. 
Shifts in the relative abundance of shared ASVs suggest 
minor adjustments that help them function better under 
different nutrient conditions. In contrast, unique ASVs 
exhibited greater variability, highlighting their sensitivity 
to fertilization. For instance, the enrichment of families 
such as Rhodanobacteriaceae and Ktedonobacteraceae 
under P0 suggests adaptive responses to low P availabil-
ity, including enhanced nutrient cycling mechanisms [43, 
44]. Fertilization treatments like TSP and BC influenced 
the prevalence of specific taxa, with Morganellaceae 
abundant under TSP and Caulobacteraceae enriched in 
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BC. The association of Caulobacteraceae with bone char-
amended soils and its ability to utilize root-derived C may 
explain its prominence under BC, where steady P release 
supports nutrient cycling [45–47]. The abundance of 
Morganellaceae under TSP aligns with studies identify-
ing this family in plant-associated compartments despite 
its common link to insect endosymbionts [48–50]. This 
suggests that plants may foster environments favorable to 
these microbes, potentially influencing interactions with 
arthropods indirectly.

Solubility of P fertilization treatments influences diversity 
in roots
P fertilization significantly shaped root-associated micro-
bial communities, with distinct responses to varying P 
solubility. Consistent with previous findings [51], root 
microbiomes showed sensitivity to nutrient availabil-
ity, exhibiting noticeable shifts in bacterial composition 
and richness across treatments. Among root-associated 
ASVs, a small but abundant group shared across treat-
ments demonstrates the selective pressures favoring 
essential functions, particularly in nutrient cycling, as 
exemplified by taxa such as Rhizobiaceae and Pseu-
domonadaceae. In low-P treatments (P0 and BC), unique 
ASVs like Acidobacteriaceae and Chthoniobacteraceae 
were enriched, reflecting adaptations to nutrient-lim-
ited conditions and their roles in nutrient cycling [52, 
53]. P0 showed the highest abundance of unique ASVs, 
with taxa like Sphingomonadaceae, Beijerinckiaceae, and 
Pseudomonadaceae. These taxa promote plant growth, 
nutrient cycling, and stress resilience. For example, Pseu-
domonadaceae aids in IAA production and P solubiliza-
tion [54], while Beijerinckiaceae contributes to P cycling, 
N fixation, and methane degradation, though it declines 
in high-P conditions [55–57]. Sphingomonadaceae 
enhances resilience to environmental stress through 
phytohormones and siderophores [58–61]. These adap-
tations suggest that P0-treated plants actively recruit 
microbial partners like Pseudomonadaceae and Sphin-
gomonadaceae to enhance nutrient recycling and stress 
resilience under low P conditions.

In BCplus and TSP, the higher solubility of the applied 
P fertilizers supported greater microbial diversity and 
unique ASVs, aligning with studies suggesting that ele-
vated inorganic P availability and nutrient inputs can 
foster root microbial diversity and broader community 
shifts [62, 63]. Interestingly, while the total amount of 
unique ASVs was higher in BCplus, it was slightly reduced 
in TSP, aligning with the bell-shaped resource availability 
model [64], where diversity peaks at intermediate P lev-
els and declines with excess nutrients. BCplus supported 
taxa such as Sphingobacteriaceae, Weeksellaceae, and 
Caulobacteraceae, which thrive under steady nutrient 

release and more balanced P input. These taxa contrib-
ute to nutrient cycling and plant growth, with Caulobac-
teraceae playing a dual role in N cycling [47, 65] as well 
as promoting plant growth through siderophore produc-
tion and supporting S oxidation [66–69]. This aligns with 
the properties of BCplus, which is enriched with reduced 
S compounds, promoting microbial sulfoxidation in the 
soil [70]. Meanwhile, Weeksellaceae contributes to N and 
P turnover, aiding nutrient balance [71, 72]. In contrast, 
the high solubility of TSP led to reduced microbial diver-
sity but favored Flavobacteriaceae, a family known for its 
strong P-solubilizing capacity [73, 74] and plant health-
promoting traits. These may synergize with Rhizobiaceae 
in supporting nodulation and nitrogen fixation.

Different assembly of nodule microbiomes based on P 
fertilizer solubility
The balanced nodulation hypothesis suggests that leg-
umes optimize N acquisition by maintaining dominant, 
efficient strains alongside low-density microbial diver-
sity to balance C costs and symbiotic benefits. [75]. Our 
findings support this, showing that P fertilizer solubility 
shapes nodule-associated communities. Under TSP, sig-
nificantly higher richness suggests broader recruitment 
of non-rhizobial endophytes, complementing symbi-
otic functions and reducing reliance on C-costly rhizo-
bial symbioses, while dominance of Rhizobiaceae in the 
other treatments highlights a focus on efficient N fixation 
under lower P availability. This reflects legumes’ adaptive 
recruitment strategies to balance C costs and benefits.

This aligns with research highlighting the influence 
of soil properties [76] and fertilization on microbial 
communities, with studies indicating that P deficiency 
reduces nodule populations [77, 78].

High P availability has been shown to enable plants 
to allocate more C to a broader range of microbial part-
ners, increasing diversity while reducing selectivity [79] 
Consistently, under TSP, nodules displayed the highest 
microbial diversity, including unique ASVs of families 
such as Rhodanobacteriaceae and Sphingobacteriaceae, 
which contribute to pathogen suppression and bioactive 
compound production [80, 81]. Oxalobacteraceae, exclu-
sively found in TSP, is associated with enhanced micro-
bial diversity and beneficial functions [82–84].

Conversely, P-limited conditions (P0) supported lower 
microbial diversity, dominated by ASVs of Inquilinaceae 
and Rhizobiaceae. Inquilinaceae contributes to nodu-
lation-independent N fixation [85, 86]. Rhizobiaceae 
reflects the selective recruitment of highly efficient sym-
bionts to minimize C costs under nutrient scarcity. This 
selective recruitment aligns with findings that plant spe-
cies richness is associated with the recruitment of unique 
ASVs [40], and that P-limited plants may adjust their N 
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acquisition strategies, favoring less C-intensive sources 
such as nitrate and ammonium [79].

The BC and BCplus supported a balance between func-
tional diversity and symbiotic stability in nodules. Rhizo-
biaceae dominated unique ASVs, emphasizing its central 
role in N fixation and symbiotic equilibrium, while low-
abundance taxa, including plant growth-promoting 
microbes, likely contributed significant ecological func-
tions [87].

Across treatments, a minimal set of shared ASVs 
accounted for a significant proportion of the relative 
abundance in nodules. Rhizobiaceae and Pseudomona-
daceae were the main contributors to this group. Rhizo-
biaceae abundance was lowest in TSP, where highly 
soluble P was rapidly available, while Pseudomonadaceae 
showed the highest abundance under these conditions. 
Conversely, in the other treatments, Rhizobiaceae was 
more dominant, reflecting a preference for environments 
with lower or more gradually available P. In contrast, 
the abundance of Pseudomonadaceae was reduced. This 
inverse relationship aligns with previous findings report-
ing a negative correlation between Pseudomonas and 
Rhizobium [88].

P fertilizer solubility influences the recruitment 
of the nodular community
The primary source of nodule-associated microbiota 
likely includes seed-associated microbes, highlighting the 
role of vertical transmission during early plant coloniza-
tion [89–91]. These communities, shaped by the environ-
ment of the preceding plant generation, provide a stable 
foundation for further recruitment, particularly during 
early growth stages [92, 93]. In contrast, bulk soil con-
tributed least across all treatments, suggesting a spatial 
filtering process from distal to proximal compartments.

Fertilization shaped microbial recruitment from 
roots and rhizosphere, primarily through its effect on 
plant-available P. Although PCAL values did not dif-
fer significantly, a trend toward higher plant-available 
P with increasing fertilizer solubility was evident. This 
likely reflects both long-term microbial contributions 
to P mobilization and the high P demand of P. sativum, 
which may mask sharper treatment effects. Supporting 
this, earlier studies on the same field with different crops 
like winter barley, winter oilseed rape and winter wheat 
showed significantly higher plant-available P under more 
soluble fertilizers applied at identical rates [32, 94].

Roots emerged as key microbial reservoirs, especially 
under BCplus, where the moderately soluble P ferti-
lizer promoted strong root-associated recruitment and 
diversity, likely supporting microbial coexistence and 
redundancy. These findings align with recent evidence 
highlighting the root as a central filter and assembly 

hub for the nodule microbiome [14]. Unique recruit-
ment under BCplus included families such as Beijer-
inckiaceae and Flavobacteriaceae—the former includes 
free-living nitrogen fixers involved in carbon and phos-
phorus cycling [57, 95, 96], while the latter is associated 
with biocontrol and plant health promotion [97]. In 
contrast, TSP recruited fewer microbes from roots but 
uniquely enriched beneficial families like Alcaligenaceae, 
Rhodanobacteraceae, and Streptomycetaceae, associated 
with nutrient cycling, pathogen suppression, and plant 
stress resilience [98–104]. BC and P0, representing low-
solubility and no-P fertilization treatments, respectively, 
primarily recruited core taxa related to nitrogen fixation 
and plant health [6, 7, 54].

The rhizosphere contributed markedly under TSP, 
enriching taxa such as Blastocatellaceae, Steroidobacte-
raceae, and Sphingobacteriaceae, which are implicated 
in N cycle stabilization, nutrient retention, and disease 
suppression [105–111]. In contrast, rhizosphere-derived 
contributions were minimal under BC, BCplus, and P0, 
suggesting that rhizosphere-to-nodule recruitment is 
strongly influenced by P solubility. Enhanced recruitment 
under TSP likely reflects reduced environmental filter-
ing, as the high solubility of the applied P fertilizer pro-
motes increased root exudation and alleviates metabolic 
constraints [112]. These conditions may create broader 
ecological niches and promote microbial colonization. 
Long-term data from the same site further support this 
interpretation, as soluble fertilizers like TSP led to signifi-
cant increases in PCAL values over time, despite equal P 
inputs [32].

Microbial migration from bulk soil to nodules follows a 
stepwise path via rhizosphere and roots, shaped by both 
microbial traits and host filtering. Plants attract microbes 
via root exudates [113] with chemotaxis playing a key 
role [114]. AMF can facilitate this process by extend-
ing hyphal networks into the bulk soil, acting as “hyphal 
highways” that support bacterial dispersal and coloniza-
tion [115–117]. In our study, elevated AMF colonization 
under P0 coincided with higher NRE diversity compared 
to BC, suggesting AMF may enhance NRE recruitment 
by supporting transport and modulating rhizosphere 
conditions. Prior research has shown that Bradyrhizo-
bium and Sinorhizobium can migrate along AMF hyphae 
[115, 118], and AMF structures have been observed in 
aged nodules [119], indicating possible integration with 
the nodule microbiome. AMF also modulate P availabil-
ity and root physiology [120], influencing exudate pat-
terns and microbial assembly. Additional mechanisms 
include hitchhiking of non-motile bacteria by motile 
species like Pseudomonas fluorescens [121]. Interest-
ingly, Pseudomonadaceae were frequently recruited from 
roots under P0, where AMF colonization was strongly 
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enhanced. This pattern may reflect potential interac-
tions with AMF, suggesting that AMF networks not 
only facilitate nutrient acquisition but may also promote 
microbial transport and colonization under P-limited 
conditions. Upon arrival at the rhizoplane, colonization 
typically begins with attachment via pili and extracellular 
polymeric substances [122], followed by surface coloni-
zation or endophytic entry through epidermal cracks or 
cell junctions [123–125]. Rhizobiaceae typically invade 
through curled root hairs and form infection threads, 
though “crack entry” pathways have also been described 
[126–131]. NREs are presumed to access nodules through 
similar mechanisms, though their exact entry routes 
remain less well defined [8, 132–136]. These mechanistic 
insights are reflected in our source-tracking results: while 
ASVs from all compartments were detected in nodules, 
root-derived ASVs consistently dominated, supporting 
a selective bottleneck at the root–nodule interface. For 
instance, Pseudomonadaceae were frequently recruited 
from both roots and rhizosphere under BCplus and TSP; 
Sphingobacteriaceae were enriched primarily under TSP; 
and Rhizobiaceae were detected across all treatments, 
reflecting their central symbiotic role. Overall, fertilizer 
solubility modulated microbial diversity and transmission 
routes, with higher solubility promoting broader recruit-
ment. While this may benefit plant growth, it could also 
increase the risk of opportunistic colonizers, indicating a 
potential trade-off between enhanced microbial diversity 
and host resilience [137, 138].

P fertilizer solubility modulates symbiotic interactions
The solubility of P fertilizers plays a pivotal role in shap-
ing symbiotic interactions in P. sativum, particularly 
the balance between nodulation and AMF colonization. 
Taxonomic classification based on the SILVA 16S rRNA 
database initially assigned the dominant ASVs to Rhizo-
bium phaseoli. However, subsequent BLAST analysis 
identified these sequences as Rhizobium leguminosarum 
bv. viciae, the primary symbiont of P. sativum, confirm-
ing a stable host–symbiont relationship independent of P 
levels [6, 7].

Despite this taxonomic stability, P solubility signifi-
cantly influenced community structure and symbiotic 
dynamics. High solubility in the TSP treatment led to the 
highest number of nodules, likely reflecting increased 
energy and nutrient availability that facilitates nodulation 
[139]. However, paradoxically, the abundance of nifH-
harboring bacteria and rhizobia decreased under TSP, 
suggesting a shift toward NREs. These NREs may play a 
complementary role in enhancing nodulation [13, 140] or 
indirectly supporting plant growth through mineral sup-
ply and the synthesis of bioactive compounds [141]. AMF 
abundance remained remained pronounced, indicating 

potential synergistic interactions among AMF, rhizobia, 
and the host plant [142]. Under moderately soluble P fer-
tilization, as in the BCplus treatment, rhizobial symbiosis 
was favored over AMF, suggesting a functional prioritiza-
tion of N fixation when nutrient levels are sufficient but 
not excessive. Conversely, the P0 treatment—where PCAL 
values were lowest (Table  S1) —AMF colonization was 
strongly enhanced, likely reflecting compensatory scav-
enging under low P conditions. This was accompanied 
by reduced nodulation and lower nifH gene abundance, 
further underscoring AMF’s role in P acquisition under 
nutrient limitation [143]. In the BC treatment, character-
ized by low P solubility, both nodulation and AMF colo-
nization were reduced, likely reflecting a threshold below 
which neither symbiosis is energetically favorable. These 
findings highlight that the form and solubility of P fertili-
zation not only affect nutrient availability, but also plays a 
key role in shaping which microbes establish themselves 
and how the plant manages its symbiotic partnerships to 
access nutrients.

Conclusions
This study underscores the significant role of the form 
of P fertilizer in shaping microbial communities in pea-
associated compartments, particularly in roots and nod-
ules. The solubility of P had a major effect on diversity, 
recruitment, and function. The intermediate solubility 
of BCplus encouraged diverse microbial communities and 
supported N fixation by balancing competition and coex-
istence. In contrast, the high P solubility of TSP increased 
recruitment from the rhizosphere, bringing in microbes 
linked to nutrient cycling and pathogen suppression, and 
may have supported a tripartite symbiosis among AMF, 
rhizobia, and NREs. However, TSP might also raise the 
risk of pathogen recruitment. Under low P conditions 
(P0), AMF colonization took priority over nodulation, 
reflecting adaptations to nutrient scarcity. Roots and the 
rhizosphere acted as primary sources for nodule-associ-
ated microbes, while bulk soil had a minor role. Notably, 
unknown sources, such as seed-associated microbiota, 
were also important, highlighting the need to study seeds 
in future research. These findings offer practical guidance 
for fertilization strategies that improve nutrient use and 
support sustainable farming.

Methods
Experimental setup and sampling
The field trial, established in 2014 in Braunschweig, 
Germany (52° 18′ N 10° 27′ E), was conducted on Dys-
tric Cambisol and Haplic Luvisol [144] and is built from 
sandy fluviatil sediments overlaid with sandy loess. The 
soil pH averaged across all treatments during sampling 
was 6.1. The area receives an average annual precipitation 
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of 620 mm and a mean temperature of 9.0  °C. The ran-
domized block experiment included three replicates 
of four treatments: a non-P-fertilized control (P0), BC, 
BCplus (S-amended bone char from biogas purification, 
patent DE102011010525), and TSP. TSP is highly soluble, 
BCplus has intermediate solubility due to surface modi-
fication, and BC is a low-solubility P source [145]. Plots 
measured 5.75  m × 17.50  m, with P fertilizers applied 
annually at 45 kg ha−1 (reduced to 30 kg ha−1 since 2021) 
shortly before sowing. Over the years, despite equal P 
application rates, the fertilizers resulted in significant dif-
ferences in PCAL values due to their varying solubility, as 
demonstrated in previous analyses on the same field site 
[32, 94]. A 5-year crop rotation included winter barley, 
winter oilseed rape, winter wheat, lupin, and winter rye, 
with lupin replaced by P. sativum (cultivar Salamanca) 
in the second rotation cycle. Fields were plowed (25 cm), 
and the remaining straw was incorporated after har-
vest.  Sampling occurred in June 2022, during the flow-
ering stage (BBCH 68/69), when nodule biomass peaks 
[146–148].

Four compartments were sampled: bulk soil from 
pooled soil cores, rhizosphere soil by brushing roots, 
and root endosphere and nodules from surface-sterilized 
plant material. Bulk soil was pooled from 15 cores (10 cm 
depth) per plot and sieved to 2 mm. Rhizosphere soil also 
sieved to 2  mm, was collected by brushing the roots of 
two neighboring plants, which were also used for root 
and nodule sampling. Two neighboring plants per plot 
were used for analyses to increase the amount of sample 
material. All rhizosphere soil from these plants was col-
lected, while all nodules and roots were harvested and 
subsequently surface-sterilized. Recognizing the high 
variability expected in endophytic samples, three extrac-
tions were performed for both roots and nodules per plot 
for molecular analyses. Roots and nodules were surface-
sterilized [149]. Moreover, sterility was confirmed by 
performing  a 35-cycle PCR with the remaining wash-
ing water and incubating a surface-sterile sample over-
night on an R2A agar plate. All samples designated for 
molecular analysis were subsequently frozen at − 80  °C. 
Additionally, bulk soil samples were stored at 4  °C for 
soil chemical analysis, and three different plants per plot 
were sampled to assess nodulation and mycorrhization 
rates, with these samples also stored at 4 °C.

Analysis of the plant and bulk soil material
Aboveground plant biomass was dried at 60  °C to con-
stant weight in a ventilated oven to determine dry mat-
ter (DM). Dried samples were ground < 0.5 mm with an 
ultracentrifugal mill (Retsch ZM 200, Haan, Germany). N 
and C contents were analyzed using 30 mg (DM) mate-
rial in an Elemental Analyzer (Euro EA, Eurovector, 

Italy). Plant P content was determined by digesting 0.1 g 
DM with 5  mL HNO3 and 3  mL H2O2 in a microwave 
(Mars Xpress, CEM, Kamp-Lintfort, Germany), diluting 
the digest to 25 mL with distilled H2O, and measuring P 
concentrations at 214.915  nm using ICP-OES (Optima 
8300, Perkin Elmer, Waltham, Massachusetts, USA). Dis-
solved organic carbon (DOC) and total N bound (TNb) 
were extracted (1:20 soil: 0.01  M CaCl2) [150, 151] and 
quantified using DIMA-TOC 2000 + DIMA-N (Dima 
Tec, Langenhagen, Germany) or a Skalar (Skalar Ana-
lytical B.V., Breda, Netherlands), respectively. PCAL was 
extracted with Calcium acetate lactate [152]. The extracts 
were quantified using ICP-OES at 213.6  nm (iCAP, 
Thermo Fisher, Cambridge, United Kingdom). Mycor-
rhizal colonization of fine roots was quantified using the 
intersection method [153] after treating 10 mm root seg-
ments with 10% KOH for 24  h, acidifying with 1% HCl 
for 15 min, and staining with 0.05% chlorazol black E for 
24 h [154]. Nodules were categorized as active (red-pink, 
containing leghemoglobin) or inactive (white or grey) 
based on visual inspection [155].

DNA extraction, qPCR, and 16S rRNA gene amplicon 
sequencing
DNA was extracted from 0.3  g of bulk or rhizosphere 
soil, 0.5 g of root, or one vital nodule using Lysing Matrix 
Tubes E (MP Biomedicals, USA) with the Precellys24 
Instrument (Bertin Technologies, France). Nodules were 
sliced open before extraction, and roots were frozen in 
liquid nitrogen and crushed in a sterile mortar. DNA was 
extracted using a phenol–chloroform protocol [156, 157] 
and stored at − 20  °C. Extraction blanks served as nega-
tive controls. DNA quality and quantity were assessed 
via Nanodrop ND-1000 (Thermo Fischer Scientific, Ma, 
USA) and Quant-IT™ Pico-Green® dsDNA Assay Kit 
(Thermo Fischer Scientific, MA, USA), respectively.

Real-time quantitative PCR was performed in the 
7300 Real-Time PCR System Machine (Applied Biosys-
tems, Germany). qPCRs were conducted in 25 μL reac-
tions containing 12.5 μL SYBR Green®  Thermo Fisher 
Scientific, USA), forward and reverse primers (Meta-
bion, Germany), 0.5 μL BSA (3%, Sigma, Germany), and 
DEPC-treated water. All reactions were run for 40 cycles, 
with optimal sample dilutions of 1:16 to 1:64. The size 
of randomly selected qPCR products was verified using 
a 1.5% agarose gel. The markers, primers, and thermal 
profiles are summarized in Table S4. Each run included 
standard curves (R2 > 0.99), no-template controls, and 
diluted samples. Efficiencies ranged from 78–108%, and 
samples with < 10 copies μl−1 were excluded.

For 16S rRNA gene amplicon sequencing, the V4 
region was amplified using primers 515F (5′-GTG​YCA​
GCMGCC​GCG​GTAA-3′) and 806R (5′-GGA​CTA​



Page 14 of 19Thaqi et al. Environmental Microbiome           (2025) 20:92 

CNVGGG​TWT​CTAAT-3′) [158, 159]. PCR was per-
formed with the Nextera® XT Index Kit v2 (Illumina) 
using NebNext® High-Fidelity 2X PCR Master Mix (New 
England Biolabs, Ipswich, MA, USA), 3% bovine serum 
albumin (BSA) (Sigma-Aldrich), and 5 ng/μL DNA. The 
following cycling conditions were used: 98 °C for 1 min, 
35 cycles of 98 °C for 10 s, 55 °C for 30 s, 72 °C for 30 s, 
followed by a final extension at 72  °C for 5 min. A PCR 
negative control was included in each run to check for 
contamination. To account for potential sequencing 
biases, a mock community (ZymoBIOMICS™ Microbial) 
was included as a positive control for the nodule and root 
samples, where plant DNA is present, in accordance with 
the manufacturer’s protocol (Table S3). Before sequenc-
ing, all samples, including PCR negative controls, posi-
tive controls, and extraction blanks, were amplified and 
confirmed on a 1.5% agarose gel. Subsequently, PCR 
clean-up was carried out using Agencourt AMPure XP 
magnetic beads from Beckman Coulter Life Sciences 
(Brea, CA, United States), following the manufacturer’s 
protocol with a DNA-to-bead ratio of 0.8. DNA concen-
tration and fragment size were assessed using the Frag-
ment Analyzer™ (Agilent Technologies, Santa Clara, CA, 
USA). For indexing, 10  ng of DNA was used, and sam-
ple-specific indices were added using the Nextera® XT 
Index Kit v2 (Illumina). After a second clean-up, DNA 
concentration and quality were re-verified, and the final 
DNA was pooled, standardized to 4 nM, and sequenced 
on the Illumina MiSeq platform (2 × 300 bp, paired-end, 
20% PhiX).

Bioinformatic and statistical data analysis
Demultiplexed fastQ files generated by MiSeq were were 
pre-processed on the European Galaxy server [160]. 
Sequencing adapters were removed using AdapterRe-
moval v2 [161], and reads were trimmed (240 bp forward, 
180 bp reverse) and denoised using DADA2 [162]. Tax-
onomy was assigned with the SILVA database version 
138 [163]. For root and nodule samples, resequenced 
data were merged using the mergeSequenceTables func-
tion in DADA2, and ASV counts were summed across 
datasets to standardize the format. Microbiome analysis 
was performed in R (version 4.3.1) [164], with ‘decontam’ 
(version 1.13.0) used for contaminant removal [165] and 
‘phyloseq’ for downstream analyses (version 1.44.0) [166]. 
Sequencing yielded 832,694 reads (bulk soil), 798,878 
(rhizosphere), 5,160,695 (nodules), and 3,423,777 (roots). 
After filtering for contaminants, chloroplasts, and mito-
chondria, 550,081 reads remained for bulk soil, 615,179 
for rhizosphere, 3,844,636 for nodules, and 605,857 for 
roots (Table S5). A mock community confirmed sequenc-
ing accuracy (Table S3). Cumulative sum scale (CSS) nor-
malization [167] addressed sampling depth differences. 

For robust analysis of the endophytes, only ASVs present 
in at least two of three replicates per plot were retained 
[40]. Beta diversity was assessed using Bray–Curtis dis-
tances, visualized with NMDS plots, and tested for sig-
nificance using PERMANOVA (adonis function, vegan; 
version 2.6–4; [168]).  Venn diagrams (‘ggvenn’;  version 
0.1.10; [169]) and heatmaps (‘ggplot2’; version 3.3.5; [170] 
were used to illustrate unique and shared ASVs. Source 
tracking analysis quantified the contributions of com-
partments to nodular ASVs. Venn diagrams identified 
ASVs shared between nodules and other compartments. 
The percentage of nodular ASVs simultaneously present 
in bulk soil, rhizosphere, roots, or multiple compart-
ments was calculated per block, averaged across treat-
ments, and visualized using chord diagrams (‘circalize’; 
version 0.1.10; [171]).

Log-transformed data were analyzed with lin-
ear mixed-effect models (‘nlme’; version 3.1-162; 
[172]), and significant differences between treatments 
(p < 0.05) were assessed using 2-way ANOVA with 
Tukey post-hoc tests.
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