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Abstract 

Single-cell RNA-seq data from clinical samples often suffer from batch effects, but data 
sharing is limited due to genomic privacy concerns. We present FedscGen, a privacy-
preserving communication-efficient federated method built upon the scGen model, 
enhanced with secure multiparty computation. FedscGen supports federated train-
ing and batch effect correction workflows, including the integration of new studies. 
We benchmark FedscGen across diverse datasets, showing competitive perfor-
mance—matching scGen on key metrics like NMI, GC, ILF1, ASW_C, kBET, and EBM 
on the Human Pancreas dataset. Published as a FeatureCloud app, FedscGen enables 
secure, real-world collaboration for scRNA-seq batch effect correction.
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Background
Over the years, advancements in technology have significantly enhanced our ability to 
generate single-cell gene expression data. This data, often derived from a range of experi-
ments, introduces variations because of differences in capture times, personnel, equip-
ment, and technological platforms. These variations result in batch effects, which can 
overshadow the actual biological differences of interest. Addressing these discrepancies 
is essential, and tools like ComBat [1] and limma’s removeBatchEffect [2, 3], originally 
developed for batch effect correction in microarray data, have been utilized for bulk RNA 
[4] and applied to simulated single-cell RNA sequencing (scRNA-seq) data [5]. However, 
single-cell data is characterized by a high prevalence of dropouts that emerge due to the 
stochasticity of gene expression [6] and fragment sampling. This necessitated the devel-
opment of specialized methods to cater to such data intricacies [7–9]. Concurrently, the 
capability to profile thousands of cells in one experiment has given rise to significant pro-
jects like the Human Cell Atlas [10] which deepens our understanding of cell types and 
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states. Gaining comprehensive insight, especially encompassing both healthy and dis-
eased cells, requires merging datasets from different sources and platforms [11, 12].

The necessity of addressing batch effects in scRNA-seq data has led to various compu-
tational strategies. First, there are adaptations of tools originally designed for bulk tran-
scriptome data, such as ComBat (1) and limma (2), which have been modified to suit 
sequencing data [13]. Second, a significant subset of methods employs mutual nearest 
neighbors (MNNs) and its following improvements such as fastMNN to align data [8]. 
Other techniques like Scanorama [11] and BBKNN [12] also employ MNNs in reduced 
spaces. In addition, Harmony [14] offers a robust approach by utilizing PCA for dimen-
sionality reduction and an iterative process to refine cell clustering across batches. The 
Seurat package introduced MultiCCA [7], later evolving to Seurat 3 [15] using MNNs 
within a canonical correlation analysis.

Neural network-based approaches gain an edge over traditional methods [16]. In 
fact, even with relatively simple architectures, the adaptability and learning capabilities 
of neural networks offer substantial benefits for handling and interpreting the growing 
volumes of data characteristic of modern biological and genomic studies. Accordingly, 
recent advancements in deep learning have led to novel approaches such as residual 
neural network strategy [17] and scGen [18], a Variational AutoEncoder (VAE) model. 
Recently, approaches like DISCERN [19] have applied deep neural networks (DNNs) to 
scRNA-seq datasets with high-quality references to improve data integration and bio-
logical coherence across conditions. scGen [18] utilizes the architecture of a VAE to gen-
erate new data points while maximizing the likelihood of each sample using a generative 
process based on latent variables that are sampled to compute the probability of observ-
ing a data point given the model parameters.

With the growing demand for large-scale single-cell datasets to enable robust and gen-
eralizable analyses, a central challenge arises: balancing the necessity of data aggregation 
with the need to protect individual privacy. While combining scRNA-seq datasets across 
studies and institutions enhances analytical power, it also introduces significant legal 
and ethical concerns, particularly under data protection regulations such as the GDPR 
(Article 4(1)) [20]. Although single-cell data may appear anonymized, it can still reveal 
highly personal biological traits unique to individuals or their relatives. This creates risks 
not only of re-identification but also of unintended disclosure of sensitive information. 
Studies have shown that despite inherent variability in single-cell measurements, geno-
type–phenotype associations derived from scRNA-seq data, in specific expression count 
matrices [21], can be used to infer private attributes [22], and that combining multiple 
datasets may even allow adversaries to reconstruct identifiers such as surnames [23] or 
addresses [24]. Furthermore, single-cell gene expression datasets are vulnerable to link-
ing attacks, where adversaries infer sensitive phenotypic information using publicly 
available tissue or cell-type-specific expression quantitative trait loci (eQTL) data [21].

Federated learning constitutes a solution, allowing machine learning without central 
data aggregation, addressing privacy and legal challenges [25–27]. Federated learning 
(FL) [28] presents a paradigm shift in machine learning by allowing for the training of 
algorithms across decentralized datasets without the need to share the raw data itself, 
thereby preserving privacy and ensuring data security. FL approaches can cope with 
heterogeneous data sources [29, 30] and imbalanced data across clients [31]. Federated 
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platforms like FeatureCloud [32] were designed for facilitating development and deploy-
ment of federated applications in the field of biomedicine. Previously, federated analyses 
were conducted, either without batch effect corrections [33] or by explicit accounting for 
batch effects in the model [34].

In this paper, leveraging scGen’s strengths in handling diverse datasets [35], we intro-
duce FedscGen, a federated framework for privacy-aware batch effect correction of dis-
tributed scRNA-seq data. We deploy the VAE model from scGen across multiple clients 
where each client trains the model on its own dataset. Afterwards, clients share the 
trained parameters with a coordinator which aggregates and updates the global model by 
averaging the parameters, and broadcasts the global model back to all clients. To enable 
batch correction without data sharing, we also introduce the Federated δ -vector estima-
tion and correction procedure that identifies dominant batches for shared cell types and 
enables local correction based on securely aggregated latent representations. FedscGen 
supports the entire process in a privacy-aware manner using secure multiparty compu-
tation (SMPC) based on an additive secret sharing technique [36, 37]. We demonstrate 
that FedscGen achieves comparable performance to scGen on benchmark datasets while 
addressing the critical privacy constraints of multi-center studies.

Results
We introduce FedscGen, a novel federated learning framework for enabling collabora-
tive batch effect correction based on the scGen model for training local VAE models in 
a privacy-aware federated manner. FedscGen employs two federated workflows (WFs): 
training (for training the VAE model) and correction (for calculating mean latent fea-
tures for shared cell types to enable batch effect correction).

To evaluate FedscGen, we applied it to eight benchmark datasets and simulated heter-
ogeneous scenarios by assigning each of the batches in a dataset to separate clients. This 
setup reflects real-world differences in data distribution due to varying geographic and 
procedural collection protocols. In certain experiments, we excluded one batch from 
the training workflow and designated it as a held-out batch, which was only included in 
the correction workflow. This configuration enabled the evaluation of FedscGen’s ability 
to perform batch effect correction during the integration of new studies. In our experi-
ments, we trained scGen for 100 epochs with 0.001 as the learning rate, a configura-
tion that consistently removed batch effects across datasets [18]. Also, we incorporated 
an early stopping mechanism terminating training if the validation loss did not improve 
beyond a specified threshold for a predetermined number of epochs [38].

We benchmarked FedscGen against scGen for batch effect correction using both vis-
ual and quantitative assessments. We assessed Uniform Manifold Approximation and 
Projection (UMAP) plots for batch effect correction, and additionally measured the 
quality of batch mixing and integration using kBET (k-nearest neighbor batch-effect 
test) acceptance rate and KNN-accuracy, which assess how well samples from dif-
ferent batches mix after correction, indicating the effectiveness of batch integration. 
Additionally, we used ASW (Average Silhouette Width) and NMI (Normalized Mutual 
Information) to evaluate the cohesion and separation of clusters from different batches, 
indicating how well the correction method maintains cell type distinctions while inte-
grating data. Moreover, we used EBM (Empirical Batch Mixing) to assess the empirical 
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quality of batch correction. In another category of benchmarking metrics, we assessed 
biological signal preservation using LISI (Local Inverse Simpson’s Index), ILF1 (Inverse 
Local F1 Score), and GC (Graph Connectivity).

To compare performance across datasets, we benchmarked the quality of batch effect 
correction on the Cell Line (CL) [39], Human Dendritic Cells (HDC) [40], Human Pan-
creas (HP) [39, 41–45], Mouse Brain (MB) [46, 47], Mouse Cell Atlas (MCA) [48, 49], 
Mouse Hematopoietic Stem and Progenitor Cells (MHSPC) [50, 51], Mouse Retina (MR) 
[52, 53], and human Peripheral Blood Mononuclear Cell (PBMC) [39] datasets. Through-
out our experiments, we compared the performance of FedscGen and scGen by calcu-
lating the performance difference for each metric m as △m = FedscGenm − scGenm , 
resulting in △m ∈ [−1, 1] , where positive values indicate better performance of Fed-
scGen, and negative values indicate better performance of scGen (see the “  Methods” 
section). In a similar fashion, we also calculated the performance difference of Fedsc-
Gen-SMPC relative to scGen.

FedscGen enables privacy‑aware batch effect correction of distributed data

In a real-world scenario, heterogeneous, identifiable scRNA-seq data resides in multi-
ple institutions. Collecting data in a centralized custody would significantly benefit the 
analysis, but privacy concerns strongly discourage hospitals from sharing their data. 
FedscGen enables federated computation where a centralized coordinator orchestrates 
clients, e.g., hospitals and clinics, that collaboratively train models using patients’ dis-
tributed data but without compromising data privacy (Fig. 1a). In the FedscGen training 
workflow, the coordinator deploys a VAE model, with common initial parameters shared 
with all clients. Each participant trains the model locally for the e epochs, then sends the 
trained parameters to the coordinator. The coordinator securely aggregates the param-
eters of local models and outputs the global model parameters (Fig. 1a). To aggregate 
the models, we use FedAvg [28] with factoring the ratio of training samples for client c 
in averaging the parameters θr ← c∈C

Nc · θc , where θr is the global weights in rth com-
munication round and C is the number of clients. After training the model, the latent 
representations of local cells are corrected by subtracting each latent vector from mean 
latent features of the dominant batch (see the “ Methods” section).

In a FedscGen workflow with five clients, where each was assigned one of the five 
batches in Human Pancreas (HP) dataset [39, 41–45] (Fig.  1b–c), we trained Fedsc-
Gen for eight communication rounds and two local epochs. By comparing mean kBET 
acceptance rates, we showed both methods are equally well in batch mixing while mak-
ing cell types more distinguishable in the HP dataset (Fig. 1b–c), evidenced by similar 
performance in the NMI and ASW_C metrics. Also, the identical ILF1 and GC scores 
indicate comparable preservation of biological signals and maintenance of biological 
connectivity. Furthermore, FedscGen outperforms scGen by 0.03 in EBM, indicating 
better batch mixing, it lags behind scGen in ARI by 0.09, KNN Acc by 0.04, and ASW_B 
by 0.02 (Fig. 1b, no held-out batch). FedscGen shows decent batch effect removal with 
the inclusion of new studies (Fig.  1d), where batches are sequenced by different tech-
nologies—CelSeq2, SMART-seq2, inDrops, and SMARTer [39, 41–45] (Fig. 2a)—one of 
which is used as a held-out batch. Furthermore, evaluation of the effectiveness of correc-
tion on a downstream cell type classification task using corrected data from FedscGen 
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versus scGen, yields similar results, where FedscGen’s performance difference stays 
consistently less than 2% across various metrics when tested on different batches of HP 
dataset (Fig. 2b). In terms of iLISI scores, the variation of batches in raw HP dataset is 
not wide and both FedscGen and scGen notably increase the variation while FedscGen 
provides a wider distribution (Fig. 2c). In terms of cLISI, the diversity of batches in the 
raw HP dataset is very low, and both scGen and FedscGen manage to preserve the low 
diversity of cell types within each cell neighborhood after correcting the data (Fig. 2c).

FedscGen corrects batch effects of new studies without compromising patients’ data

In FedscGen’s correction WF with inclusion of new studies that were absent in the 
training WF, the mean latent features of the dominant batch for some cell types could 
be updated. In a training workflow with four clients, each representing one unique 
batch of the HP dataset, we trained a VAE model in a federated fashion. Using the 

Fig. 1  FedscGen delivers results comparable to scGen without compromising patient privacy. a FedscGen 
orchestrates federated training by deploying models to clients for local updates, followed by secure 
aggregation over communication rounds. The correction workflow allows FedscGen to correct batch effects 
and support the inclusion of new studies. b FedscGen achieves comparable batch effect correction to scGen 
across batch mixing and biological preservation metrics for different held-out batches in the Human Pancreas 
(HP) dataset. In the held-out scenario, the training WF includes four clients (each with a batch), and the 
correction WF incorporates the fifth batch as a new study for correction. In the no held-out scenario, all five 
batches are included as clients in both the training and correction workflows. c UMAP visualization of batch 
effect correction using FedscGen in a federated scenario with five clients, showing effective batch mixing and 
cell type separation. d UMAP plots for each held-out batch scenario demonstrating that FedscGen achieves 
correction quality comparable to centralized scGen without a held-out batch



Page 6 of 29Bakhtiari et al. Genome Biology          (2025) 26:216 

global model, in the correction workflow with five clients, we corrected all five 
batches in the HP dataset, including the held-out batch (Fig. 1b, d). We also trained 
the scGen model and corrected the HP data under the same setting (Fig. 1b). In all 
five held-out scenarios, FedscGen performs comparably well in comparison to scGen; 
for KNN_Acc with at most 0.04, scGen performs better, and for some of the held-out 
batches, it shows minor improvement of at most 0.02 in ASW_B and ARI. In compar-
ison with batch effect correction of data without any held-out studies in the training 
(Figs. 1b–d and 2d (for no held-out batch)), FedscGen manages to preserve the distin-
guishability of cell types while mixing the batches for various held-out batches well.

Fig. 2  The results of FedscGen benchmarking (with and without SMPC). a Summary of datasets used for 
benchmarking. b Comparison of classification accuracy for cell type prediction using corrected HP data from 
FedscGen, FedscGen-SMPC, and scGen. c Comparing iLISI and cLISI scores, left and right, respectively, across 
eight datasets, Both scGen and FedscGen perform comparably well. d Performance difference between 
scGen and FedscGen on various benchmarking metrics. e FedscGen with SMPC yields comparable results 
with no significant difference, based on the Mann Whitney test, for GC and ILF1, and better results for EBM 
and ASW_B across seven datasets. While a performance difference △m value shows which method performs 
better, the cells are marked with asterisks if the observed performance difference is statistically significant
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FedscGen‑SMPC corrects batch effects by securely aggregating the models 

without revealing the local model parameters

Comparing the performance of FedscGen-SMPC and scGen across seven datasets and 
eight metrics, we categorically evaluated the batch integration and biological preser-
vation of both methods (Fig.  2e). We trained FedscGen-SMPC for eight communica-
tion rounds and two local epochs. Using the Wilcoxon-Mann–Whitney test across 10 
random seeds per method, followed by Benjamini–Hochberg correction, we assessed 
whether the observed differences were statistically significant (adjusted p < 0.05). Sta-
tistically significant differences for any metric-dataset pair are marked with asterisks 
in Fig.  2e. In terms of consistent significant differences for the same metric across all 
datasets, there were no differences in GC and ILF1, while FedscGen significantly out-
performed scGen in EBM and ASW_B. For the remaining metrics, there were no con-
sistent significant differences in favor of one method across all datasets. For instance, 
scGen significantly outperformed FedscGen in biological signal preservation metrics 
such as ASW_C and ARI in the CL and MHSPC datasets. Additionally, scGen showed 
significantly better batch mixing in terms of NMI in the HDC and MHSPC datasets. 
These results partially demonstrate a trade-off between batch effect removal and bio-
logical preservation, with FedscGen achieving competitive or superior integration in 
many cases while exhibiting a controlled and interpretable impact on biological fidelity. 
Meanwhile, in terms of the effect of batch effect correction on the downstream cell type 
classification task, FedscGen-SMPC consistently performs comparably to FedscGen, 
with only minor differences in mean and variance across all datasets (Fig. 2b). Similarly, 
FedscGen-SMPC yields iLISI and cLISI scores (Fig. 2c) that closely match those of Fed-
scGen, demonstrating robust performance while enhancing privacy across all datasets.

Comprehensive comparison of FedscGen against scGen on eight datasets using ten 

evaluation metrics

We use UMAP as a visualization technique, batch effect correction metrics, and qual-
ity assessment of downstream analysis based on cell type classification accuracy of 
a MLP model trained on raw vs corrected data. A summary of dataset characteristics 
is provided in Fig. 2a (for more details see Additional file 1: Tables S1–2). All datasets, 
except for HP and CL, with 5 and 3 batches, respectively, are constructed with exactly 
two batches. In all scenarios, we use the same VAE architecture and generic default 
hyperparameters.

FedscGen achieves better results or performs as good as scGen across various data-
sets, while only showing negligible differences in a few metrics (Fig.  2d). FedscGen 
consistently performs better than or equal to scGen for the MCA and PBMC datasets 
across all metrics, and for the GC, ILF1, and kBET metrics across all datasets, indicat-
ing robust preservation of biological signals while effectively removing batch effects. 
Also, in terms of iLISI, both models show notable improvement of batch mixing, in com-
parison to the raw data, across all datasets by increasing the diversity of batches in the 
neighborhood of various cells (Fig.  2c). However, scGen occasionally shows marginal 
advantages in certain metrics; in four cases, for NMI, ARI, and or ASW_C, we observe 
modest outperformance of scGen by a margin of 0.06 to 0.12, indicating better cell type 
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distinguishability (Fig. 2d). We demonstrate later how using different numbers of local 
epochs and communication rounds can make FedscGen’s results more competitive 
(Additional file 2: Fig. S1).

In the HDC dataset, which is relatively small with 576 cells sequenced using SMART-
seq technology, we observed that the cell types were fairly separated by batch in the raw 
data, while the raw data shows the high batch diversity (Fig. 2c). Both scGen and Fed-
scGen have effectively mitigated the batch effect, which is crucial for accurate analysis 
within such a specialized cell population. FedscGen shows a notable advantage in reduc-
ing batch effects, as indicated by kBET, ASW_B, and EBM metrics (Fig. 2d). Both meth-
ods preserve biological signals, according to GC and ILF1 metrics. However, the UMAP 
visualization (Fig.  3a) shows that scGen has slightly better clusters of standalone cell 
types, those present only in one batch, CD141 and CD1C, resulting in a 0.03 improve-
ment on ARI (Fig. 2d). Nonetheless, by training FedscGen for 6 rounds and 2 epochs, 
FedscGen achieves ARI differences of 0 (Additional file 2: Fig. S1).

The MCA dataset, which suffers from batch effects due to different sequencing meth-
odologies (microwell-seq and 10X technologies), exhibits low diversity in batches 
as indicated by iLISI (Fig.  2c). However, it has shown improvement in the integration 
of cells across batches with the application of both scGen and FedscGen. Particularly 
noteworthy is the distribution of cell types such as B-cells, T-cells, and endothelial cells; 
these initially displayed a skewed batch distribution but appear more homogeneously 

Fig. 3  FedscGen removes batch effects by mixing batches and separating cell types in a manner comparable 
to scGen. UMAPs of cells colored by cell types and batches are shown for raw and corrected data using scGen 
and FedscGen: a HDC, b MCA, c PBMC, and d CL datasets
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distributed after correction, as visualized in Fig. 3b. Across the metrics, FedscGen dem-
onstrates consistently better or comparable results to scGen.

In the PBMC dataset, which shows low iLISI diversity among batches (Fig.  2c), cell 
types such as B cells, Monocyte CD14, and CD4T cells are clearly separated across 
batches (Fig.  3c) in raw data where both models manage to cohesively cluster the cell 
types while mixing the batches. FedscGen consistently performs as well as or better than 
scGen across all metrics, with a notable edge of 0.21 in EBM (Fig. 2d).

In the CL dataset, which comprises 2,885 cells from   293 T and 3,258 from Jurkat, the 
raw data’s iLISI suggests batch diversity (Fig. 2c). This diversity is evident in the distribu-
tion of the   293 T cell type across batches, while the Jurkat cell type clearly suffers from 
a batch effect (Fig. 3d). Both approaches perform equally well across all metrics with a 
margin of 0.03 difference, except for ASW_C, where scGen has a modest edge of 0.07 
(Fig. 2d).

For the MR dataset, which includes a large number of cells (26,830 from Drop-seq 
and 44,808 from another technology), the raw data exhibits modest diversity in batches 
(Fig.  2c). This diversity is attributed to the distribution of rods and Müller cell types 
across batches, while Bipolar cell type clearly suffers from batch effect (Additional file 2: 
Fig. S2a). Both methods perform well across all metrics, except for ASW_C, where 
scGen performs slightly better by 0.03 (Fig. 2d).

The MB dataset comprises 691,600 cells from Drop-seq and 141,606 cells from SPLiT-
seq, resulting in considerable imbalance and low diversity across batches and cell types 
(Fig. 2c). It exhibits significant batch separation among Neuron and Olfactory cell types 
(Additional file 2: Fig. S2b). Both FedscGen and scGen yield competitive performance 
across several metrics (Fig.  2d). FedscGen achieves an improvement of 0.06 in EBM 
(Fig. 2d), demonstrating the empirical effectiveness of its batch correction. On the other 
hand, scGen’s 0.12 advantage in ASW_C (Fig. 2d) signifies its strength in maintaining 
cohesiveness of cell types.

The MHSPC dataset, comprising a moderate number of cells (1920 from SMART-seq2 
and 2729 from MARS-seq), with low diversity in batches shows the highest diversity in 
cell types among the datasets (Fig. 2c), where CMP and MEP cell types are distributed 
among the batches (Additional file 2: Fig. S2c). FedscGen performs better or comparably 
across most metrics. However, scGen shows modestly better performance in NMI and 
KNN_ACC, by 0.06 and 0.04, respectively, indicating better cell type distinguishability 
and batch integration (Fig. 2d).

Tuning of the number of communication rounds and local training epochs improves 

the results of FedscGen compared to scGen

For the hyperparameter tuning of FedscGen across datasets, we evaluated the model 
using NMI, ARI, ASW_B, ASW_C, KNN_Acc, and EBM metrics (Additional file  2: 
Fig. S1). Training the FedscGen model for additional communication rounds with the 
same number of epochs does not necessarily enhance performance. A similar trend is 
noted when increasing the number of local epochs. Accordingly, we cannot define a one-
size-fits-all guideline for all datasets, and achieving optimal performance may require 
trade-offs across metrics. Given the importance of communication efficiency in feder-
ated solutions, reducing the number of rounds while minimizing performance loss is 
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preferred. With this consideration, and to maintain simplicity through generic values 
for all settings, we find that the best performance across all datasets and metrics can be 
achieved with 2 epochs and 8 rounds. In this scenario, the maximum performance drop 
for FedscGen is 0.07. The second-best option would be 2 epochs for 10 rounds, which 
results in a maximum performance loss of 0.09 (Additional file 2: Fig. S1).

FedscGen has a similar impact on downstream cell type classification as using scGen

After correcting the data using scGen, FedscGen, and FedscGen-SMPC models, we 
evaluated the effectiveness of batch effect correction in a downstream classification task. 
Specifically, we trained an MLP model to predict cell types from the latent representa-
tions of the corrected data using a cross-validation scheme, placing each batch in the 
test set once. The resulting classification accuracy differences show that FedscGen, with 
or without SMPC, performs equally well or better than scGen in the CL, MCA, and 
PBMC datasets. For the remaining datasets, the mean performance drop was not greater 
than 5%, demonstrating the utility of the federated secure solution compared to the cen-
tralized non-privacy-aware baseline (Fig. 2b).

FedscGen performs comparably to scGen in different cell type inclusion scenarios

Different studies, resulting in different batches, include various numbers of samples 
from specific cell types; some cell types are shared, while others appear only in one 
batch. Inclusion of standalone (only present in one batch) and minority cell types (with 
a few samples) in centralized batch effect correction experiments was previously done 
by combining [38] or using them as they appeared in the dataset [35]. Batch effect cor-
rection often relies on dominant batches per cell type, which raises the challenge of han-
dling standalone cell types or, more broadly, the inclusion of minority cell types with 
few samples (Additional file 1: Tables S1–S2). To comprehensively evaluate FedscGen, 
we considered three different cell type inclusion scenarios: All (retaining all minority 
cell types), Combined (combining minority cell types and labeling them as “others”), and 
Dropped (removing minority cell types). We computed the performance difference △ 
between FedscGen and scGen across nine metrics (NMI, GC, ILF1, ARI, EBM, KNN 
Acc, ASW_B, ASW_C, and kBET) over six datasets (Fig. 4 and Additional file 2: Fig. S3). 
In the MCA and PBMC datasets, FedscGen performs as well or better than scGen across 
all nine metrics, regardless of the inclusion scenario. For other datasets, FedscGen still 
shows non-negative performance differences across most metrics (Fig. 4). However, in 
the MB dataset for the KNN Acc and ASW_B metrics, and in the MHSPC dataset for 
the NMI and KNN Acc metrics, scGen outperforms FedscGen across all inclusion sce-
narios (Fig. 4). Notably, in the HP dataset for the ARI and KNN Acc metrics, switch-
ing from the All scenario to either the Dropped or Combined scenario leads to better 
FedscGen’s performance (Fig. 4). Similarly, for the ASW_C metric in both the MB and 
MHSPC datasets, FedscGen performs as well as or better than scGen in the Dropped 
scenario, unlike in the All and Combined scenarios (Fig. 4). We also compared iLISI and 
cLISI across the three scenarios, observing highly similar results in both the Dropped 
and Combined scenarios (Additional file 2: Fig. S4). Additionally, we visualized the cor-
rected data with UMAP for both scGen and FedscGen, compared with the raw data, 
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for the Combined (Additional file  1: Fig. S5) and Dropped (Additional file  2: Fig. S6) 
scenarios.

Discussion
In this study, we introduced FedscGen as a federated framework built on the scGen 
model to train a VAE in a privacy-preserving federated manner utilizing additive secret 
sharing for secure aggregation. Post-training, FedscGen runs a correction workflow 
to utilize the trained VAE model for correcting clients’ local data. In a comprehensive 
evaluation, we demonstrated that FedscGen is able to produce competitive results to 
its counterpart in a heterogeneous environment on eight different datasets. We applied 
multiple benchmarking criteria to point out any difference in terms of performance 
comparison of FedscGen and scGen; both models consistently deliver similar results in 
terms of batch mixing and cell type distinction.

Benchmarking and performance trade‑offs

Batch effect correction serves as a foundational step for a wide range of downstream 
analyses including clustering, classification, and differential expression, by harmoniz-
ing technical variability and enhancing comparability across datasets. In our compre-
hensive benchmarking, we used various metrics to evaluate the results of batch effect 
correction in scRNA-seq data, which can be broadly categorized into batch mixing/
integration metrics (e.g., kBET, KNN-Acc, ASW_B, NMI, GC, and EBM), which assess 
how well cells from different batches are integrated, and biological signal preservation 
metrics (e.g., LISI, ASW_C, ARI, and ILF1), which evaluate the retention of true bio-
logical structure such as cell type identity [54]. It has been demonstrated that improving 
batch mixing can come at the cost of blurring biological distinctions, and vice versa [35, 
54]. Accordingly, batch effect correction inherently involves a metric-driven trade-off: 
methods that aggressively remove batch effects may inadvertently eliminate biologically 
meaningful variation, while methods that preserve all biological signals might retain 
some batch-specific artifacts. Which method is preferable thus depends on which subset 
of evaluation metrics a practitioner chooses to prioritize—whether emphasizing integra-
tion or biological fidelity.

This observation aligns with findings from Tran et  al. [35], who benchmarked 14 
centralized batch correction methods—including scGen—and showed that no single 
method consistently outperformed others across all datasets and evaluation metrics. 
Accordingly, the performance of FedscGen, as a federated extension of scGen, should 
be interpreted in the context of potential performance trade-offs that may also arise 
when adapting other centralized methods to a federated setting. While the current study 
focuses on FedscGen, a natural next step would be to evaluate federated adaptations of 
other top-performing centralized methods using similar benchmarking criteria. Such 
comparative evaluation—guided by prior centralized benchmarking results—could fur-
ther contextualize the strengths and limitations of FedscGen and help identify the most 
suitable approaches for privacy-sensitive real-world applications.

FedscGen’s distributed architecture, paired with its federated aggregation strategy, 
mitigates overfitting to batch-specific features—particularly under heterogeneous 
data conditions. As a result, in light of this trade-off, FedscGen occasionally achieves 
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better integration without compromising critical biological structure—as observed, for 
instance, in the EBM and ASW_B metrics (Fig. 2d–e)—demonstrating that high perfor-
mance in federated settings does not necessarily require access to pooled raw data.

To better understand these metric-driven trade-offs, we also examined the role of 
training configuration. Even though training FedscGen for eight communication rounds 
and two epochs shows competitive performance to centralized scGen across most met-
rics and datasets (Fig. 2), FedscGen’s performance is influenced by the choice of com-
munication rounds and local training epochs. For instance, in the HP dataset, scGen 
outperforms FedscGen by 0.09 in ARI (Fig.  2b). The best FedscGen’s performance 
according to ARI occurs with 7 epochs and 1 round, making it 0.05 better than scGen 
(Additional file  2: Fig. S1). However, this improvement compromises KNN Acc and 
ASW_C, making FedscGen’s performance at least 0.05 worse than scGen. On the other 
hand, with 5 epochs and 6 rounds, the performance difference across six tuning metrics 
for FedscGen falls within − 0.01 to 0.06, effectively reducing the performance difference 
for ARI to zero. Accordingly, we recommend using eight communication rounds and 
two local epochs as a general-purpose configuration. For use cases requiring optimiza-
tion for specific evaluation metrics or datasets, we provide a summary of the best-per-
forming configurations in Additional file 1: Table S3. We note that we did not investigate 
variations in batch size or learning rate, as acceptable results were obtained using default 
values while tuning epochs and rounds. Despite the recommended configuration for 
FedscGen and the provided metric-prioritized choices of epochs and communication 
rounds for the evaluated datasets, tuning hyperparameters in a fully decentralized man-
ner remains an open challenge—particularly in real-world, privacy-sensitive settings 
involving new or unseen data.

Fig. 4  FedscGen yields comparable performance to scGen across different cell type inclusion scenarios. We 
evaluated performance differences between FedscGen and scGen under the batch-out-zero setting, where 
each batch in a dataset was treated as a client in federated workflows. Comparisons were made across three 
cell type inclusion scenarios—All, Combined, and Dropped—using six datasets: HP, MB, MR, MCA, PBMC, and 
MHSPC
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To further assess FedscGen’s robustness, we evaluated the impact of commonly used 
strategies in using minority and standalone cell types to evaluate batch correction meth-
ods. Different aspects of including all cell types in the experiments were covered in Figs, 
1, 2 and 3. We extensively covered Combined (Additional file 2: Fig. S5) and Dropped 
(Additional file  2: Fig. S6) cell type inclusion scenarios, for combining and removing 
minority cell types, respectively, to contrast the performance of our federated model 
against scGen. In both Dropped and Combined scenarios, FedscGen and scGen show 
similar results in terms of batch mixing and cell type distinguishability across all datasets 
in benchmarking metrics (Fig. 4) and UMAPs (Additional file 2: Figs. S5–6). In fact, the 
comparable results across the majority of datasets in all scenarios had limited exceptions 
that show minor differences. Such performance differences can also be addressed by 
hyperparameter tuning in both scGen and FedscGen models. These results suggest that 
such performance differences are not inherent to the federated setup, but instead reflect 
the effect of tunable parameters that can be optimized based on the relative priority of 
technical correction or biological signal preservation.

Data heterogeneity across clients further complicates the metric-driven trade-offs. In 
our simulations, each client held data from one batch, resulting in variability in sample 
size, cell type composition, and sequencing protocols (Additional file  1: Tables S1–2). 
While changes to the DNN architecture could affect overall capacity, we found that fine-
tuning the hyperparameters can help compensate for heterogeneity-related minor per-
formance differences (Additional file  2: Fig. S1). Most hyperparameters, like learning 
rate and batch size, are shared across both models, and an early stopping mechanism is 
used for scGen. However, changing the number of local epochs and federated aggrega-
tions notably affects the FedscGen results. We trained the scGen model for 100 epochs 
which fully leverages the learning capacity of the model. On the other hand, we trained 
the FedscGen model for 8 communication rounds with 2 local epochs. Increasing the 
number of local epochs can make the model prone to overfitting for extremely non-iid 
data [30]. Therefore, adjusting the local epochs according to the heterogeneity level can 
improve the performance, albeit at the cost of increasing the number of communica-
tions. The VAE model in both scGen and FedscGen uses BatchNormalization layers 
which struggle with data heterogeneity in federated settings. Addressing shortcomings 
of the BatchNormalization layer was not within the scope of this study which can poten-
tially further improve FedscGen results [55].

These trade-offs in performance tuning become particularly evident when considering 
the communication cost. In more homogeneous scenarios, where data distributions and 
sequencing protocols are aligned, fewer communication rounds may suffice to achieve 
competitive performance. The communication efficiency of FedscGen can be enhanced 
in accordance with data homogeneity. For instance, in a relatively homogeneous setting 
such as the MR dataset—characterized by uniform sequencing platforms, fairly balanced 
sample sizes, and consistent cell type distributions (Additional file 1: Tables S1–2)—Fed-
scGen achieves comparable performance across all metrics in just two communication 
rounds. Remarkably, it reaches its best performance in ARI, NMI, EBM, and ASW_B 
with only one communication round (Additional file 2: Fig. S6), highlighting its commu-
nication efficiency when data heterogeneity is low.
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Regarding benchmarking fairness, FedscGen primarily simulates federated scenarios 
to ensure computational scalability. Due to minor discrepancies in federated dimension-
ality reduction for UMAP [56], we opted to use centralized UMAPs across all methods 
to avoid biases introduced by differing evaluation strategies. This approach ensures that 
visual and quantitative evaluations reflect methodological performance rather than arti-
facts of implementation. While centralized evaluation supports fairness in benchmark-
ing, federated evaluation remains the only viable option in real-world privacy-aware 
deployments. To support practical applications, we published FedscGen as a Feature-
Cloud app, which provides secure, containerized execution with built-in SMPC support 
in the platform.

Beyond benchmarking methodology and fairness considerations, we also examined 
how data characteristics—particularly the presence of minority or rare cell types—affect 
correction performance. Although previous studies have not systematically explored 
how different cell type inclusion strategies affect batch effect correction results, we 
addressed this gap by analyzing FedscGen’s performance across multiple inclusion sce-
narios to better contextualize our benchmarking results. While all main experiments in 
this study were conducted using the All scenario (where all cell types, including rare and 
standalone ones, were retained), we also evaluated performance under the Combined 
and Dropped scenarios to assess the method’s robustness. Notably, in several datasets, 
FedscGen demonstrated improved or comparable performance to scGen when rare cell 
types were either merged or removed—particularly for metrics such as ARI and KNN 
Acc in the HP dataset (Fig. 4). This suggests that the All scenario represents the most 
challenging setup for FedscGen, and the observed performance gains in the Combined 
and Dropped scenarios underscore the strength of its competitive results even under the 
most complex inclusion strategy. Importantly, these findings highlight FedscGen’s adapt-
ability and underscore the need for further systematic investigations into cell type inclu-
sion strategies in future benchmarking studies.

Complementing this analysis, we further evaluated FedscGen’s utility in dynamic, real-
world scenarios where new datasets may become available after initial model training. 
To assess FedscGen’s ability to integrate new studies in a privacy-aware manner, we eval-
uated its performance in a held-out batch scenario, where one batch was excluded from 
the training workflow and introduced only during correction. This simulates real-world 
settings where new studies may be integrated post hoc without retraining the model. 
In this setup, FedscGen successfully updated the mean latent features of dominant 
batches for shared cell types, enabling effective batch effect correction (Fig. 1c). Across 
all held-out scenarios, FedscGen performed comparably to scGen, with only minor dif-
ferences observed in specific metrics (Fig. 1b). Importantly, FedscGen maintained both 
batch mixing and cell type separation quality similar to scenarios where all batches were 
included during training, demonstrating its robustness and practical utility for integrat-
ing new studies while safeguarding sensitive patient data (Fig. 1b–d).

To further examine the performance differences between FedscGen-SMPC, as a 
privacy-preserving method, and scGen, we conducted a systematic statistical analysis 
across seven datasets and eight metrics using the Wilcoxon–Mann–Whitney test. Fed-
scGen-SMPC performed comparably to scGen, with no statistically significant differ-
ences observed across all datasets for GC and ILF1, while it significantly outperformed 



Page 15 of 29Bakhtiari et al. Genome Biology          (2025) 26:216 	

scGen in EBM and ASW_B across multiple datasets (Fig.  2e). In contrast, scGen sig-
nificantly outperformed FedscGen-SMPC in certain metric–dataset combinations—for 
example, in ASW_C and ARI on the CL and MHSPC datasets—indicating better pres-
ervation of biological signals in these cases. Similarly, scGen showed significantly better 
performance in NMI on the HDC and MHSPC datasets (Fig. 2e). Despite these statisti-
cally significant differences, the observed performance gap remained within the range 
△m[−0.07, 0.19]  across all tested metrics and datasets, highlighting the overall com-
petitiveness of FedscGen-SMPC even in less favorable conditions and suggesting limited 
practical impact. Furthermore, the same trend of trade-offs observed earlier (Fig.  2d) 
is also apparent in this case of statistical testing (Fig. 2e), reflecting a balance between 
effective batch effect removal and the risk of inadvertently diminishing meaningful bio-
logical variation—an inherent challenge in batch correction.

Privacy

Privacy concerns surrounding the sharing of scRNA-seq data arise not only from poten-
tial individual re-identification but also from broader institutional data governance 
challenges. While increased data availability significantly enhances the performance of 
machine learning models, especially deep learning, hospitals and research groups are 
often discouraged from data sharing due to the identifiable nature of expression profiles 
and the risk of revealing unpublished scientific findings. The privacy concerns addressed 
by FedscGen relate primarily to the protection of sensitive, potentially re-identifiable 
biological patterns in scRNA-seq data, rather than direct identifiers such as names or 
patient IDs. Even though single-cell count matrices may appear anonymized, emerging 
studies show that expression profiles can be used to infer phenotypes, identify rare or 
disease-specific cell types, or reconstruct genotype-associated signatures [21, 22]—rais-
ing the risk of indirect re-identification or the leakage of publishable insights [23, 24]. 
Beyond individual-level privacy, FedscGen addresses institutional restrictions rooted in 
scientific competitiveness, ethical obligations, and concerns over sharing unpublished 
results such as the discovery of novel or rare cell types, population-specific transcrip-
tional profiles, or protocol-specific artifacts. While FedscGen does not share raw data or 
expose the learned representations, FedscGen-SMPC incorporates additive secret shar-
ing, as an effective countermeasure [57, 58], to prevent model inversion or reconstruc-
tion attacks [59, 60].

In FedsGen, the coordinator role can be assigned to a trusted third party or to one 
of the participating clients. With SMPC in place, this coordinator never sees individual 
client updates, as they are masked and split across multiple computational parties. We 
used a default configuration of three computational parties, which can be increased to 
further minimize the risk of collusion. Despite the randomization introduced by secret 
sharing, which may cause minor variation across runs, FedscGen-SMPC achieves per-
formance comparable to its non-encrypted counterpart across various datasets and met-
rics (Fig. 2b, c, e).

Once the training is complete, for correcting the local data, FedscGen offers two 
options: local update with precomputed mean latent features and federated correction, 
each with its computational and privacy implications. In the first option, by publish-
ing mean latent features of the dominant batch for each cell type, the batch removal 
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process can be done locally without revealing sensitive patients’ data since averaging 
masks the raw data. However, mean latent features are not updated with the inclusion 
of new studies with possible dominant batches for some cell types. Alternatively, Fed-
scGen enables the participation of new studies in a correction workflow to effectively 
contribute dominant batches of new studies into the calculation of mean latent fea-
tures. In fact, the federated correction workflow utilizes the trained model for removing 
batch effects, where the dominant batch for each cell type is identified using a privacy-
preserving secret-sharing protocol across clients, and the corresponding mean latent 
features are shared for correcting local data with all clients (see the “  Methods” sec-
tion). Accordingly, dominant batches are determined without revealing local cell-type 
counts; only the identity of the client holding the dominant batch for a given cell type is 
revealed to the aggregator. Although the model is not re-trained with new studies, we 
show that this strategy enables substantial correction using latent representations alone 
(Fig. 1d).

The privacy-preserving federated adaptation of alternative methods to scGen [18] 
requires careful consideration of both privacy and performance robustness, as the core 
mechanisms of statistical models may not directly translate to federated settings. For 
instance, federating Harmony [14]—a method that relies on iterative clustering and cor-
rection with centralized data access—necessitates the use of secure aggregation tech-
niques such as secret sharing to maintain exact computations without leaking sensitive 
data. While secret sharing itself does not introduce noise, its application to iterative sta-
tistical procedures can pose challenges related to numerical precision, synchronization, 
and convergence in practice. This highlights the need for methodologically sound adap-
tations of statistical models that account for both privacy constraints and potential per-
formance trade-offs in federated learning environments.

Future directions

FedscGen’s performance in batch effect correction, while preserving patient privacy, 
underscores the potential of federated solutions, particularly with the advent of foun-
dation models. This research can serve as a building block, potentially contributing to 
foundation models by enhancing feature extraction, nonlinear dimensionality reduc-
tion, and the integration of multi-modal data sources in a federated manner. Such 
advancements can enable a comprehensive understanding of cellular biology, span-
ning genomics, transcriptomics, epigenomics, and proteomics. Leveraging feder-
ated learning techniques, foundation models can be trained in a distributed manner 
on big datasets or fine-tuned with the inclusion of new studies, facilitating transfer 
learning and the adaptation of knowledge across domains to enhance scRNA-seq data 
analysis. Crucially, insights captured from integrated scRNA-seq data hold promise in 
constructing disease atlases, elucidating molecular mechanisms underlying diseases, 
and identifying potential therapeutic targets. Furthermore, integrated data serves as a 
valuable resource for supervised downstream tasks, including cell type classification, 
trajectory inference, and biomarker discovery, all of which can be performed in a fed-
erated fashion.
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Conclusions
In this study, we introduced FedscGen, a federated framework for batch effect correc-
tion in scRNA-seq data. FedscGen, built on the scGen architecture, employs additive 
secret sharing for secure aggregation of client models in a privacy-preserving manner. It 
avoids sharing raw patient data in compliance with GDPR and further protects learned 
parameters from leakage using SMPC. We demonstrated the effectiveness of FedscGen 
in removing batch effects through extensive benchmarking across eight diverse datasets 
and ten evaluation metrics, simulating heterogeneous scenarios by assigning different 
batches to different clients. FedscGen consistently achieved comparable performance 
to centralized methods, while metric-driven trade-offs through hyperparameter tuning 
enabled optimization under varying levels of data heterogeneity and communication 
constraints. By releasing FedscGen as a containerized FeatureCloud app, we facilitate its 
real-world adoption in multi-institutional research settings. This work lays the founda-
tion for future privacy-preserving federated learning applications, particularly in feder-
ated workflows aimed at training large foundation models on harmonized, distributed 
single-cell data.

Methods
FedscGen extends the scGen algorithm, which has demonstrated strong performance in 
batch effect correction for scRNA-seq data. Our framework enables collaborative batch 
correction by training local Variational Autoencoder (VAE) models across multiple cli-
ents in a federated learning setup. To ensure privacy, we employ additive secret sharing 
as a secure aggregation mechanism. FedscGen introduces two key workflows: a train-
ing workflow, where the VAE is collaboratively trained across clients, and a correction 
workflow, where mean latent features are used to compute a federated δ-vectors shift for 
shared cell types across sites. We benchmark FedscGen against the centralized scGen 
model using diverse datasets and simulate heterogeneous conditions by assigning each 
batch to a separate client.

scGen

The scGen algorithm (Additional file  3: Algorithm  1) takes as input the scRNA-seq 
data X  , which is a collection of samples from multiple batches B . The scRNA-seq data 
undergoes normalization and scaling as a preprocessing step. A VAE model is initialized 
and subsequently trained using the training algorithm detailed in Additional file 3: Algo-
rithm 2. The VAE comprises an encoder E that transforms the input data xi to a latent 
representation zi , and a decoder D that reconstructs the data from the latent space. To 
approximate the posterior distribution P(xi|zi; θ) , with model parameters θ , variational 
distribution Q(zi|xi;φ ) parameterized by φ  is used. The training process involves opti-
mizing the reconstruction loss Lrecon  and the Kullback–Leibler (KL) divergence loss 
LKL over a specified number of epochs and batch sizes.

Upon training completion, the trained VAE is used to correct batch effects using the 
centralized batch effect removal procedure, detailed in Additional file  3: Algorithm  3. 

Lrecon(xi) = Ez∼Q(z|xi;φ)[log P(xi|z; θ)]

LKL(xi) ← KL[Q(z|xi;φ)�P(zi|xi; θ)]
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After identifying shared cell types T   and standalone cell types S  (cell types that only 
appear in one batch), the average latent feature for each shared cell type t is calculated as:

Next, shared cell types t ∈ T  are corrected based on mean latent features Mt :

The correction procedure is described in the Additional file 3: Algorithm 4.

FedscGen

We introduce FedscGen as a federated learning framework for scenarios where scRNA-
seq data are distributed across different clients. In FedscGen, we ensure the raw data 
remains localized while we address privacy concerns. FedscGen as a cross-silo model 
supports federated collaboration among C clients with local scRNA-seq data Xc for client 
c and an initial model θinit with shared initial parameters across clients. Over R commu-
nication rounds, each client trains a local VAE model for several epochs on their data. 
Each client communicates its model parameters θc and sample counts Nc to the coordi-
nator for aggregation. The coordinator uses the FedAvg aggregation method to update 
the global model VAE for the next round:

The updated model will be broadcast to all clients to resume their local training. This 
process is detailed in Additional file 3: Algorithm 5.

Following the federated training, a federated δ-vector estimation and correction 
procedure is applied for correcting batch effects on local data without compromis-
ing privacy. Similar to the centralized scGen, the dominant batches I   are identified 
by determining which client has the most number of cells for a given cell type, i.e., 
∣

∣Nt
i

∣

∣ ≥

∣

∣Nt
c

∣

∣, ∀c ∈ C\ i . Accordingly, in the first aggregation step, clients Ct
I

  with the 
dominant batch for cell type t will be detected and informed. Then, in the second aggre-
gation step, each client will calculate and communicate the mean latent features of sam-
ples for any cell type which has dominancy:

These mean vectors M act as federated δ-vectors, representing the latent shifts used 
for correcting data across clients. Conditioned on the availability of M for all shared cell 
types at the client’s side, each client will be able to correct the batch effect on local data 
accordingly. For the standalone cell types S , no mean latent features are calculated and 
therefore correction is not applied. The entire process is described in more detail along-
side a comprehensive list of symbols and their descriptions in Additional file 3: Algo-
rithm  6. If Mt  and the scGen model is publicly available while the dominant batches 

M
t
=

1
∣

∣Zt
b∗

∣

∣

∑

z∈Zt
b∗
z where b∗ = argmaxb∈BN

t
b , ∀t ∈ T

Zt
Corrected ← Zt

−M
t , ∀t ∈ T

θr+1 ←
∑

c∈C

(

Nc
∑

c∈CNc

· θc

)

M
t
= Avg

(

E

(

X
t
C
t
I

))

, ∀t ∈ T



Page 19 of 29Bakhtiari et al. Genome Biology          (2025) 26:216 	

are not affected by the arrival of new batches, the batch effect correction method can be 
applied in a centralized fashion.

To enhance privacy during model training and latent shift estimation, FedscGen 
employs secure multiparty computation (SMPC) using the CrypTen [61] framework. 
SMPC enables clients to jointly compute aggregated model parameters and latent sta-
tistics without revealing their locally trained models. For reproducibility during devel-
opment and benchmarking, CrypTen was executed in debug mode using fixed random 
seeds and three computational parties for secure aggregation. We used FedAvg in Fedsc-
Gen-SMPC to aggregate client models, weighting them by their sample sizes. To deter-
mine dominant batches for each shared cell type without exposing local cell-type counts, 
we implemented a secure SMPC protocol that computes the maximum across clients 
using secret sharing (Additional file  3). All experiments for FedscGen-SMPC were 
conducted using the same set of hyperparameters as FedscGen, for example, two local 
epochs and eight communication rounds.

Preprocessing

Before performing batch effect correction, we filtered cells with very low coverage, fewer 
than 200 expressed genes, which are likely to correspond to empty droplets. Then, we 
normalized the data to have the same total counts per cell and selected highly variable 
genes, which are chosen based on their dispersion across the dataset. Only genes with a 
mean expression between 0.0125 and 2.5, and a dispersion greater than 0.7 are kept [35]. 
And finally, log1p transformation is applied to stabilize the variance across genes with a 
cap at a maximum value of 10. A summary of datasets for all scenarios is in Additional 
file 1: Table S1.

Datasets

We analyze various datasets to compare FedscGen against scGen (centralized) in terms 
of batch correction. For the sake of simplification, we refer to the dataset by abbrevia-
tions. The Cell Line (CL) [39] dataset is derived from the 293t_jurkat experiment and 
contains three batches with 16,602 genes. Human Dendritic Cells (HDC) dataset comes 
from [40] and involves scRNA-seq data of human dendritic cells. Four cell populations 
were studied and two batches were created with slightly varying cell types, providing a 
challenge for batch correction. Human Pancreas (HP) dataset consolidated data from 
five sources [39, 41–45] with 14,767 cells each, and 15,558 genes. Mouse Brain (MB) [46, 
47] dataset merges two mouse brain datasets with 691,600 and 141,606 cells, and 17,745 
genes. Mouse Cell Atlas (MCA) dataset combines efforts from [48] and [49]. The focus is 
on 11 cell types from various organ systems. The batches consist of 4239 and 2715 cells, 
respectively, each containing 15,006 genes. Mouse Hematopoietic Stem and Progenitor 
Cells (MHSPC) dataset contains data from [50, 51] using the SMART-seq2 and MARS-
seq protocols. Mouse Retina (MR) dataset combines the mouse retina data from two 
unassociated laboratories [52, 53] with 26,830 and 44,808 cells, and 12,333 genes. PBMC 
(human Peripheral Blood Mononuclear Cell) [39] dataset is based on scRNA-seq data 
of human PBMC with two batches that were made using the 3′ and 5′ 10 × Genomics 
protocols. The batches had 8098 and 7378 cells, respectively, each with 17,430 genes. For 
more detail see Additional file 1: Tables S1–2.
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Variational Autoencoder architecture

FedscGen builds upon the core architecture of scGen [18], which employs a Variational 
Autoencoder (VAE) combined with latent space arithmetic for effective batch effect 
correction. The VAE comprises a multilayer perceptron-based encoder and decoder, 
designed to project high-dimensional gene expression profiles into a lower-dimensional 
latent space while preserving meaningful biological variation. The encoder maps each 
input cell X ∈ Rd  into a distribution over latent variables Z ∈ Rk , parameterized by a 
mean and variance learned through the network. The decoder then reconstructs the 
original expression vector from samples drawn from this latent distribution using the 
standard reparameterization trick. The loss function combines a reconstruction loss 
(mean squared error) with a Kullback–Leibler (KL) divergence term, regulated by a 
weighting factor α [62].

In our implementation, we adopt the same foundational design as scGen, using fully 
connected layers with ReLU activations. By default, the encoder and decoder each con-
sist of two hidden layers of sizes 800 and 800, a latent dimensionality of 10, and a drop-
out rate of 0.05 applied to each layer. The decoder mirrors the encoder’s architecture in 
reverse. The number of input and output neurons corresponds to the number of highly 
variable genes selected from each dataset (Fig. 1a); for instance, for the CL dataset which 
contains 16,602 preprocessed genes, the input layer size will be 16,602 neurons. We used 
the same architecture consistently across both centralized and federated experiments for 
a given dataset, with fixed random seeds to ensure reproducibility.

Experiments

As part of the comprehensive benchmarking of FedscGen against scGen, we designed 
experiments to investigate different influencing factors, including data heterogene-
ity and the inclusion of minority cell types. To simulate real-world data heterogeneity, 
we defined federated scenarios where each client had access to only one batch within a 
given dataset. Accordingly, each scenario includes a different number of clients depend-
ing on the number of batches. In general, we included all available batches in both train-
ing and correction workflows. However, to evaluate how well FedscGen can integrate 
new studies under real-world data heterogeneity conditions, we also conducted experi-
ments using a held-out batch strategy. In this setup, the training workflow included all 
but one batch, with each participating batch assigned to a separate client. The remain-
ing batch was excluded during training and introduced only in the correction workflow, 
alongside the other batches, to simulate the inclusion of a previously unseen study. This 
design enabled us to assess the robustness of FedscGen’s correction capabilities under 
data heterogeneity and its ability to generalize to new data without compromising cor-
rection quality.

To assess how the presence or absence of minority and standalone cell types affects 
batch effect correction, we implemented three distinct cell type inclusion scenarios: 
All, where all cell types—including minority and standalone—are retained as-is [35]; 
Combined, where minority and rare cell types are merged into a single label (“others”) 
[38]; and Dropped, where minority cell types are entirely excluded. These scenarios 
were applied across six datasets: HP, MB, MR, MCA, PBMC, and MHSPC. Following 
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the approach in Lotfollahi et al. [38], we identified minority and standalone classes to 
determine eligibility for each scenario. Accordingly, the Combined and Dropped sce-
narios were not applicable to the HDC and CL datasets due to the absence of minority 
or standalone cell types. All experiments were conducted under a non-IID batch-out-
zero federated setting, where each batch was assigned to a separate client in the training 
workflow. Notably, while batch sizes and distributions remain unchanged between the 
All and Combined scenarios, batch sizes may shrink in the Dropped scenario due to the 
exclusion of certain cell types.

Downstream cell type classification

To evaluate the effectiveness of batch effect removal on downstream analysis using Fed-
scGen (with or without SMPC) compared to scGen, we trained a multi-layer perceptron 
(MLP) classifier to predict cell types based on the latent representations produced by 
each method. The classifier architecture consisted of two hidden layers of size 800, each 
followed by batch normalization and ReLU activation, supporting stable training and 
improved generalization. The output layer was defined to match the number of unique 
cell types in the “all” inclusion scenario (Additional file 1: Table S2). All latent features 
were normalized using z-score normalization prior to being used for classification. The 
MLP models were initialized with a fixed seed for reproducibility and were trained using 
a cross-entropy loss function and optimized with the Adam optimizer. Meanwhile, we 
employed a leave-one-batch-out cross-validation strategy, where each batch was itera-
tively left out as a test set while the remaining batches were used for training. This exper-
iment was conducted using FedscGen and scGen models that were first trained on the 
full set of batches and then used to correct the data before classification.

Evaluation

To evaluate the effectiveness of batch effect correction, we employed a comprehensive 
set of metrics widely used in single-cell RNA-seq benchmarking studies. These metrics 
fall into two broad categories: those that assess batch mixing and those that evaluate 
the preservation of biological signal. Batch mixing metrics such as kBET, KNN accuracy 
(KNN-Acc), Average Silhouette Width for batch labels (ASW_B), Normalized Mutual 
Information (NMI), Graph Connectivity (GC), and Empirical Batch Mixing score (EBM) 
quantify how well cells from different batches are integrated following correction. Con-
versely, biological signal preservation metrics—including Local Inverse Simpson’s Index 
(LISI), ASW for cell types (ASW_C), Adjusted Rand Index (ARI), and Inverse Local F1 
Score (ILF1)—measure the degree to which meaningful biological variation, such as cell 
type identity, is retained.

To quantify performance differences, we compared the performance of FedscGen 
against the centralized scGen baseline by computing the difference in each metric, 
defined as △m = FedscGenm − scGenm . All calculated metric values throughout this 
study, lie in m ∈ [0, 1]  resulting in △m ∈ [−1, 1] . This provides an interpretable range 
where positive values indicate an advantage for FedscGen, and negative values indicate 
superior performance by scGen. The same strategy was used to assess FedscGen-SMPC 
relative to scGen. Performance difference was used throughout this study except for 
cLISI and iLISI, where the scores were compared directly.
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To further evaluate FedscGen’s utility in scenarios involving the integration of new 
datasets after initial training, we designed a held-out batch experiment using the HP 
dataset. In this setup, a global model was trained on four clients, each representing a 
unique batch. During the correction workflow, the previously excluded fifth batch was 
introduced and corrected alongside the original four. This allowed us to test whether 
FedscGen could effectively update the mean latent features for each cell type in a feder-
ated manner, without requiring retraining of the VAE model (Fig. 1b, d). The experiment 
demonstrated that FedscGen can support dynamic correction workflows across institu-
tions, highlighting its flexibility and real-world applicability.

To provide a robust statistical basis for these comparisons, we assessed the signifi-
cance of performance differences △ between FedscGen-SMPC and scGen, we performed 
a Wilcoxon–Mann–Whitney (WMW) test for each metric–dataset pair. Using WMW, 
we tested whether the performance scores from 10 independent runs (seeds) of each 
model were drawn from the same distribution, as a difference in distributions would 
suggest the observed performance differences are statistically significant. The test was 
applied to eight metrics across seven datasets, resulting in 56 independent comparisons 
to ensure comprehensive evaluation. P-values were computed for each metric–dataset 
pair, and to account for multiple testing, we applied the Benjamini–Hochberg (BH) cor-
rection to control the false discovery rate (FDR). Metric–dataset pairs with adjusted 
p-values below 0.05 were considered statistically significant. This approach provides a 
robust statistical basis for evaluating whether FedscGen consistently matches or outper-
forms scGen across diverse benchmarking scenarios.

k‑Nearest neighbor batch‑effect test (kBET) acceptance rate

Following Tran et al. [35], to quantitatively assess local batch mixing following dimen-
sionality reduction, we employed the k-nearest neighbor batch effect test (kBET) [63, 
64]. This statistical test evaluates whether cells from different batches are well-integrated 
in the latent space by comparing the batch label distribution among the k-nearest neigh-
bors of each cell to the global batch distribution. Significant deviations from the global 
distribution indicate residual batch effects and inadequate mixing. kBET computes a 
rejection rate based on Pearson’s χ2 test applied to local neighborhoods. For each cell, the 
null hypothesis is that its local batch label distribution matches the global batch distribu-
tion. A low rejection rate (i.e., a high acceptance rate) suggests good batch mixing, while 
a high rejection rate indicates poor integration. The final acceptance rate is defined as 
the proportion of cells for which the null hypothesis is not rejected. We calculated kBET 
acceptance rates on the latent representations from FedscGen and scGen using the top 
20 principal components (PCs) obtained from PCA. To ensure robustness, we followed 
the recommended strategy of computing acceptance rates across multiple k-values, rep-
resenting different neighborhood sizes: 5%, 10%, 15%, 20%, and 25% of the dataset size 
(Additional file 2: Fig. S3). For each method and dataset, we report the median accept-
ance rate across these values (Figs. 1b and 2d). An exception was made for the Mouse 
Brain (MB) dataset due to its large size; here, k was fixed to 0.1% of the dataset size to 
maintain computational tractability.
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Local Inverse Simpson’s Index (LISI)

To assess both batch mixing and biological signal preservation, in reduced-dimen-
sional representations, we employed the Local Inverse Simpson’s Index (LISI), a metric 
designed to evaluate local neighborhood diversity in the latent space [63, 65]. LISI meas-
ures how well cells from different batches or cell types are integrated within their local 
neighborhoods based on nearest neighbors. This method first computes the local dis-
tance matrix and determines the k-nearest neighbors of each cell using a fixed perplexity 
value [63]. It then applies the inverse Simpson’s index, which captures the effective diver-
sity of a label (e.g., batch or cell type) in a cell’s local neighborhood. Higher iLISI values 
indicate greater diversity (i.e., effective batch integration). In contrast, lower cLISI values 
imply that cells of the same type cluster together (i.e., biological signal preservation). 
In our experiments, we calculated iLISI (integration LISI), which quantifies batch mix-
ing where an iLISI score close to the number of batches suggests optimal batch integra-
tion. Furthermore, we calculated cLISI (cell type LISI), which quantifies the preservation 
of biological signals where a lower cLISI score (close to 1) indicates well-separated cell 
types in latent space, reflecting accurate biological clustering. We applied LISI to the top 
20 PCs of raw and corrected data by each model. The iLISI score was computed only for 
shared cell types across all batches to ensure valid comparisons. The output consisted of 
one score per cell for each metric (Fig. 2c, Additional file 2: Fig. S4).

Average Silhouette Width (ASW)

To evaluate both batch effect correction and biological signal preservation, we applied 
the Average Silhouette Width (ASW), as implemented in prior work [38]. The silhou-
ette score ranges from − 1 to 1 and quantifies how well a cell is embedded within its 
assigned cluster compared to neighboring clusters. Higher scores indicate that cells 
are well-clustered with similar cells and distinct from other clusters, suggesting strong 
cluster cohesion and separation. Using the top 20 PCs, we computed per-cell-type 
ASW (ASW_C), which uses cell type labels to evaluate the preservation of biological 
structure, and per-batch ASW (ASW_B), which uses batch labels to assess the extent 
of batch effect removal. A high ASW_C score reflects that cells of the same type form 
tight clusters, indicating successful preservation of true biological identity. In contrast, 
for ASW_B, lower silhouette scores are desired as well-corrected data should not clus-
ter by batch. Therefore, we applied a normalization and reversal step to the ASW_B 
values so that higher normalized ASW_B scores correspond to better batch mixing. 
To account for batch effects within individual cell types, we further applied the cell-
type-stratified ASW_B evaluation strategy [54, 66], where batch silhouette scores are 
computed within each cell type group and then averaged. This approach ensures that 
ASW_B reflects batch mixing independently of potential confounding by dominant 
cell types. Together, ASW_C and normalized ASW_B provide a balanced view of how 
well each method preserves biological signals while eliminating batch-driven artifacts 
in the latent space. Throughout our experiments we found ASW _C ∈ [0, 1] , and the 
same holds for ASW_B, enabling the computation of performance differences such as 
△ASW_C = FedscGenASW_C − scGenASW_C which is consistent with the computation of 
performance differences for other evaluation metrics.
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Adjusted Rand Index (ARI)

To quantify how well biological structure is preserved following batch correction, we used 
the Adjusted Rand Index (ARI) [38]. The ARI measures the similarity between two clus-
terings, adjusting for chance agreement. In our setup, we construct a KNN graph with 
k = 15 using the top 20 PCs, and then apply the Louvain algorithm [66] to infer clusters 
from the latent representation. These inferred clusters are compared to the known cell 
type labels using the ARI. A score of 1 indicates perfect concordance between the true 
and predicted clustering, while a score of 0 reflects random assignment. ARI is symmetric 
and remains invariant under label permutations, making it a robust metric for evaluating 
clustering alignment. It is particularly useful for assessing whether corrected data main-
tains cell type coherence while avoiding overclustering. Even though ARI score ranges 
from − 0.5 (indicating highly discordant clustering) to 1.0 (indicating perfect agreement), 
the observed ARI scores in our experiments consistently fell within [0, 1]  range, requir-
ing no additional normalization which facilitates direct comparison of ARI differences 
△ARI with those derived from other evaluation metrics used in this study.

Entropy of Batch Mixing (EBM)

To evaluate local batch mixing in latent space, we employed the Entropy of Batch Mix-
ing (EBM) metric [18, 54], which quantifies how uniformly cells from different batches 
are distributed among the nearest neighbors of a given cell. The EBM score is calculated 
by estimating the entropy of batch labels within local neighborhoods, thereby identify-
ing residual batch-specific clustering. For each cell, we determined its 15 nearest neigh-
bors using Euclidean distance and computed the Shannon entropy of the batch labels 
among those neighbors. This process was repeated across 100 randomly sampled cells, 
and the final EBM score was averaged across 50 independent sampling pools to ensure 
robustness. To allow comparability across datasets with different numbers of batches, 
the entropy values were normalized to lie within the interval [0, 1] , where a score close to 
1 indicates optimal batch mixing (i.e., high diversity among neighbors), and a score near 
0 suggests strong batch-specific clustering and poor integration.

Normalized Mutual Information (NMI)

To evaluate the consistency between inferred and true cell type labels, we used the Nor-
malized Mutual Information (NMI) metric [38]. NMI quantifies the mutual dependence 
between two clusterings, capturing how much information is shared between them. 
Specifically, we applied Louvain clustering using the top 20 principal components of the 
latent representation and compared the resulting clusters with known cell type anno-
tations. To ensure fair comparison, we optimized the Louvain resolution to maximize 
the NMI score using the “arithmetic” averaging method [54, 66]. The final NMI value is 
calculated as the mutual information between the inferred clusters and the true labels, 
normalized by the average entropy of the two label distributions. A score of 1.0 indicates 
perfect agreement between clusters and labels, reflecting high biological fidelity, while a 
score of 0 indicates no mutual structure between the two partitions. NMI is symmetric 
and scale-invariant, making it suitable for comparing clustering outcomes across data-
sets of different sizes and complexities.
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Isolated Label F1 (ILF1)

The Isolated Label F1 (ILF1) metric [54] is designed to assess how effectively rare cell 
type labels, which are least frequent across batches, are distinctly clustered in latent 
space. According to ScArches [48], we calculate the F1 score as the harmonic mean of 
precision and recall:

where F1 ranges from 0 to 1 to contrast the isolated cell type against all others in the 
cluster. A higher score indicates pure clustering of the isolated label. When multiple iso-
lated labels exist, their F1 scores are averaged to offer a comprehensive evaluation of the 
data’s ability to capture nuanced biological distinctions. A higher ILF1 score (closer to 
1) indicates that the isolated labels are well-separated from other cell types in the latent 
space, reflecting the model’s ability to preserve rare biological signals despite the pres-
ence of batch effects.

Graph Connectivity (GC)

We evaluate the structural coherence of cell types in the latent space using the Graph 
Connectivity (GC) metric [54]. For each cell type, we construct a k-nearest neighbor 
(kNN) graph based on the latent representation. We then compute the size of the larg-
est connected component (LCC) in this graph and divide it by the total number of cells 
belonging to that cell type. This results in a per-type connectivity score ranging from 
0 (completely fragmented) to 1 (fully connected). We considered the average GC score 
across all cell types, offering a unified measure of how consistently cells of the same type 
are clustered. Higher GC scores indicate more cohesive biological structure within cell 
types and improved preservation of biological identity following batch correction.

KNN accuracy

We evaluate KNN accuracy (KNN Acc) [38] as local purity of cell type clustering in the 
latent space, using top 20 PCs. For each cell, we identify its 15 nearest neighbors and 
compute the proportion that share the same cell type label, yielding an individual clas-
sification accuracy score. These scores are first averaged across all cells of each unique 
cell type, and then averaged across all cell types. A kNN Acc score closer to 1 indicates 
better local clustering of cells with the same label, reflecting a well-preserved biological 
structure in the latent space.
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