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Abstract
Ageing significantly impacts lung function and increases susceptibility to chronic lung diseases. The lung
is a complex organ with multiple cell types that undergo cellular age-related perturbations or hallmarks. As
knowledge of ageing mechanisms has progressed, we have a better understanding how intracellular
adaptations impact cellular crosstalk and integrate to increase the susceptibility to age-related diseases in
the lung. Herein, we discuss the prospects of exhaustion of lung progenitor cells, disrupted lung cell
plasticity, perturbation in fibroblasts, impaired adaptive immune responses and alterations in lung
microenvironment in the promotion of ageing and age-related lung diseases. Additionally, the ageing
process trajectory of the lung depends on a combination of biological, genetic, metabolic, biomechanical
and sociobehavioural factors that range from protective phenotypes to accelerated ageing phenotypes. We
propose the concept of AgEnOmics, which expands the temporal dimension of lung ageing by
distinguishing between chronological ageing and accelerated lung ageing phenotypes. Based on this
concept, we define biomarkers of biological ageing that will help to define accelerated ageing and early
interventions in biological ageing-related lung diseases.

Introduction
Medical advancements have extended human lifespans, creating a growing aged population, the “silver
tsunami”. The global population aged 65 years and older is projected to rise from 10% in 2022 to 16% by
2050, representing a 47% increase [1]. This shift in chronological ageing is expected to burden economies
and healthcare systems with rising chronic diseases and disabilities. While chronological ageing is the
count of years lived, biological ageing is influenced by factors such as genetics and environmental
exposures, and results in molecular, cellular and systemic changes that contribute to physiological decline
and increased disease and mortality risks. The hallmarks of ageing [2], particularly impact the lungs,
which are constantly exposed to environmental factors and regulate systemic homeostasis. The human
lungs are highly heterogeneous, hosting a variety of resident and immune cells [3]. Single-cell
transcriptomic analyses demonstrate that ageing differentially affects these cells. Immune cells and
progenitor alveolar type (AT) 2 (AT2) cells exhibit the highest lung ageing gene signatures, senescence
scores and phenotypes, suggesting a potential role in age-related lung dysfunction [4]. However, while
these cells show increased expression of senescence-associated genes, further research is needed to
determine how they are directly contributing to lung function decline. The accumulation of senescent cells
is considered a hallmark of ageing and it is known to be associated with impaired tissue repair, reduced
regeneration capacity and chronic inflammation, all of which may contribute age-related chronic lung
diseases (CLDs) such as idiopathic pulmonary fibrosis (IPF) and COPD [5].
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Hallmarks of ageing and diseased lungs
Age significantly affects lung physiology, with function increasing until 20–25 years, stabilising in adulthood
and declining at around 50 years of age [5]. In resident and immune cells of the ageing lung, multiple
cellular and subcellular changes occur that diminish lung repair capacity. Following previous definitions, we
have grouped the hallmarks of the ageing lung into three different categories based on their hierarchy, their
interconnections and the high complexity and regulated dynamics of different cell populations of the lung
(figure 1). Primary hallmarks are defined as the causes of cellular damage (genomic instability/telomere
attrition, deregulated proteostasis/autophagy and mitochondrial dysfunction) affecting the physiological
function of most cell types in the lung including immune, endothelial, epithelial and mesenchymal cells.
Secondary hallmarks, established as consequences of the initial damage, encompass senescence, stem cell
exhaustion and disrupted cell plasticity. Finally, the integrative hallmarks include inflammageing, dysbiosis,
cell competition leading to imbalance of cell populations and the altered cell crosstalk associated with
changes in the extracellular matrix stiffness. The integrative hallmarks of the ageing lung summarise drivers
of loss of homeostasis and function in the ageing lung promoting inadequate stress responses and with
potential pathological consequences (figure 1). It is possible that the integrative hallmarks engage in
feedforward loops that accentuate primary and secondary hallmarks, driving the ageing process and
accelerating its pace. For example, epithelial cell senescence and the senescence-associated secretory
phenotype (SASP) of mesenchymal cells may be both the cause and the consequence of progenitor cell
exhaustion and plasticity loss contributing to cell competition and imbalance. Simultaneously, senescence of
immune cells promotes dysbiosis that enhances inflammageing. Immunodeficiency leads to accumulation of
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FIGURE 1 Different levels of hallmarks of the ageing lung. A schematic framework categorises lung ageing into
primary hallmarks, causes of cellular damage (genomic instability/telomere attrition, deregulated proteostasis/
autophagy and mitochondrial dysfunction) affecting immune, epithelial and mesenchymal cells; secondary
hallmarks, consequences including senescence, stem cell exhaustion and disrupted cell plasticity; and
integrative hallmarks related to tissue homeostasis and function, that encompass inflammageing, dysbiosis,
cell population competition leading to cellular imbalance and perturbed fibroblast crosstalk with increased
matrix stiffness. ROS: reactive oxygen species. Figure created using BioRender.
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senescent cells including fibroblasts that accentuate changes in the matrix composition leading to higher
stiffness that might impact cell plasticity. Hence, a major challenge is to understand the relative importance
of each of the hallmarks of lung ageing and to clarify their interconnections, with the final goal of defining
optimal molecular targets for attenuating or interrupting the ageing process (figure 2).

Primary hallmarks: causes of damage
Genetic alterations
Cellular and DNA replication shorten telomeres, triggering DNA damage signals with telomere-associated
DNA damage response foci formation, genomic instability and cellular senescence or apoptosis [2].
Furthermore, epigenetic regulation in lung cells including DNA methylation changes with age and
responds dynamically to several environmental exposures. In relation to disease, mutations in telomere
maintenance genes have been found in families with inherited IPF [6–8] and most IPF patients have short
telomeres regardless of age [9–11]. Some patients with familiar telomerase mutations and a history of
cigarette smoke exposure develop emphysema independently or concurrently with IPF [12–14], suggesting
critical roles for environmental exposure and genetic predisposition in these diseases. Additional mutations
in the gene BICD1 (bicaudal D homolog 1), which regulates microtubule-based cargo loading on the
dynein motor complex, have also been identified as playing a role in telomere attrition, leading to
increased emphysema risk [15]. In addition, DNA methylation patterns associated with accelerated ageing
have been found in diseased lungs with environmental exposures.

Loss of proteostasis and reduced autophagy
Proteostasis and autophagy prevent misfolded protein accumulation. Defects activate the integrated stress
response (ISR) and the unfolded protein response, triggering activating transcription factor (ATF) 4, ATF3
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FIGURE 2 Interconnection of hallmarks of the ageing lung. A schematic framework highlighting the interconnection between primary hallmarks,
secondary hallmarks and integrative hallmarks related to tissue homeostasis and function. These interconnected features underlie the progressive
decline in lung function and the development of age-related pulmonary diseases. Figure created using BioRender. AT1/2: alveolar type 1/2; IRS:
insulin receptor substrate; mtDNA: mitochondrial DNA; SASP: senescence-associated secretory phenotype.
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and CHOP (CCAAT/enhancer-binding protein homologous protein transcription factor) to restore
homeostasis or induce apoptosis. Lysosome function, critical for quality control of macromolecules, is
significantly impaired in senescent cells, including a dramatic expansion in lysosomal size and
accumulation of lipofuscin and upregulation of lysosomal enzymes such as β-galactosidase. Dysfunctional
lysosomes or autophagy have been shown to cause senescence potentially associated with the accumulation
of misfolded proteins and dysfunctional mitochondria, which in turn may impair DNA repair mechanisms
leading to increased DNA damage. High levels of ISR inhibit AT2–AT1 differentiation and are associated
with mitochondrial dysfunction [16–19].

In IPF, alveolar epithelial cells exhibit endoplasmic reticulum (ER) stress markers [20, 21]. Accumulation
of defected surfactant protein due to genetic alterations promotes AT2 cell dysfunction, causing
intracellular aggregate formation, ER-associated degradation disruption, unfolded protein response
activation, autophagy inhibition and mitochondrial homeostasis alterations [22]. ER stress also influences
IPF progression by promoting macrophage pro-fibrotic phenotype transitions [23]. Activation of the 26S
proteasome has been found in myofibroblast and basal cells of the bronchiolar epithelium in lungs of
patients with IPF, which is accompanied by enhanced protein polyubiquitination [24]. Similarly, epithelial
cells and fibroblasts of IPF lungs have defective autophagy markers that are associated with senescence,
altered cell differentiation and apoptosis resistance [25, 26]. In COPD, ER stress can be induced by
cigarette smoke exposure and α1-antitrypsin mutations [27–30]. Cigarette smoke impairs the
immunoproteasome function impacting adaptive immune responses and adding to prolonged infections and
exacerbations in COPD and IPF [31].

Mitochondrial dysfunction
Mitochondria, the main organelle responsible for cellular metabolism, becomes increasingly dysfunctional
with age, leading to mitochondrial DNA (mtDNA) mutations, deficient proteostasis and reduced
mitophagy. Mitochondria are major regulators of cell fate, including apoptosis and senescence, and they
contribute to the SASP by activating DNA sensors with mtDNA release. Defective autophagy causes
dysfunctional mitochondria accumulation that occurs in most lung cell types during ageing leading to
systemic release of mtDNA and intracellular DNA sensor signalling pathway activation that promotes
proinflammatory immune cell phenotypes and contributes to cellular dysfunction, senescence and cell
death [32, 33]. AT2 cells from older lungs show increased frequency of enlarged mitochondria. In IPF
lungs, damaged mitochondria accumulate in AT2 cells and have predominant defects in complex I activity
and mitochondrial autophagy, known as mitophagy [34]. In addition, AT2 cells from ageing and IPF lungs
downregulate β-oxidation enzymes, which was associated with promotion of transforming growth factor-β
(TGF-β) pathway activation [35, 36].

Furthermore, reduced expression of the mitochondrial ATP-ADP transporter adenine nucleotide translocase
type (ANT) 1 in IPF alveolar epithelial cells drives cellular senescence [37]. In contrast, alveolar
macrophages exhibit increased fatty acid oxidation promoting apoptosis resistance [37, 38]. Notably,
acetyl-coenzyme A and α-ketoglutarate, metabolites generated through the mitochondrial tricarboxylic
cycle, have been recognised as critical for epigenetics, contributing to histone marks and nuclear DNA
methylation patterns, suggesting that epigenetic changes found in ageing and IPF lung cells can be
connected with mitochondria dysfunction.

In COPD, mitochondrial dysfunction is observed in cells exposed to cigarette smoke [39, 40]. Low ANT2
expression impairs ciliary motility [41], while reduced levels of the E3 ubiquitin ligase PARK2 protein
leads to the accumulation of damaged mitochondria [42] and increased reactive oxygen species (ROS)
[43]. COPD patients exhibit reduced mitochondrial membrane potential and electron chain transport
complex proteins I and II [40]. Increased short isoforms of OPA1 (optic atrophy protein 1), which
maintains mitochondrial structure and function, alters interactions with proteins such as prohibitins 1 and
2, disrupting mitochondrial quality and mitophagy [44].

Secondary hallmarks: consequences of damage
Cellular senescence
Senescent cells exhibit irreversible proliferation arrest, apoptosis resistance and SASP expression. While
senescence aids development, wound healing and tumour suppression, senescent cell accumulation causes
persistent SASP factor secretion of highly heterogeneous profiles or “genotypes”, regulated by factors such
as cell type, stimuli and age, ultimately influencing age-related disease pathology [2]. Although
physiological senescence is associated with development, wound healing and tumour suppression,
persistence and accumulation of senescent cells has been associated with organ dysfunction and disease.
Calculation of the transcriptomic senescence score in human lungs have confirmed a significantly higher
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senescent cell accumulation in aged rather than young lungs. Resident and monocytic macrophages exhibit
the highest transcriptomic senescence scores, followed by endothelial cells, epithelial AT2, AT1 and club
epithelial cells [4, 45].

In IPF lungs, senescent cell markers are detected in AT2 cells, airway epithelial cells, immune cells and
fibroblasts [46, 47]. Senescent fibroblasts, which are resistant to apoptosis, contribute to lung fibrosis by
secreting collagens and other extracellular matrix (ECM) proteins as part of their SASP. In ex vivo
organoid models, these fibrotic fibroblasts express collagen triple helix repeat containing 1 (CTHRC1)
[48]. Transcriptomic features of senescent cells have been found in AT2 cells, AT2–AT1 transitional cells,
and aberrant basaloid alveolar epithelial cells expressing keratin (KRT) 17. Within the IPF lung, these cells
are associated with the activation of p53 signalling pathway and high levels of CD38 [49, 50].

In COPD, cigarette smoke induces cellular senescence [51], particularly in lung fibroblasts, which express
proinflammatory SASP factors and exhibit impaired responsiveness to repair signals such as TGF-β [52,
53]. Senescence markers are also detected in AT2, airway basal, endothelial and smooth muscle cells,
where they are linked to NF-κB signalling pathway activation and an enhanced proinflammatory SASP
repertoire [54]. This contributes to impaired lung repair and increased emphysema risk [55].

Stem cell exhaustion
Local stem cells play a critical role in tissue maintenance and repair by differentiating and replacing
damaged cells. Lineage tracing studies in young mice indicate that AT2 cells serve as the primary
progenitors of alveolar epithelial cells, supporting self-renewal and AT1 differentiation. Approximately 7%
of AT2 cells undergo turnover per year during homeostatic renewal [56, 57]. However, with ageing, stem
cell niches decline, reducing the capacity of tissue regeneration and repair after injury. Consistently, AT2
cells from ageing mice exhibit impaired sphere-forming ability compared to those from young mice
[58, 59]. Basal and club airway progenitor cells also decline progressively during ageing.

Progenitor AT2 cells are described as Wnt-activated with Axin2 expression, positioning them near
Wnt-secreting mesenchymal cells. A decline in canonical Wnt signal has been observed in the ageing lung
microenvironment [60], while an increase in active WNT signalling in AT2 cells has been described,
leading to oncogene-induced senescence [59]. Additionally, fibroblasts have been reported to secrete
Wnt5A, an inhibitor of canonical Wnt signalling and a promoter of ageing-like phenotypes in
hematopoietic stem cells, which disrupts alveolar epithelial cell function and contributes to emphysema
development [60–62]. Similarly, ageing endothelial progenitor cells exhibit both numerical and functional
declines, including reduced proliferative capacity and impaired migration to injury sites, leading to defects
in vascular repair [63]. Additionally, after injury, lung neuroendocrine stem cells in the lung function as
airway sensors and shape immune responses and tissue remodelling [64]. Although functional
perturbations and declining production of hormones, peptides and enzymes have been described in the
brain, the impact of ageing on lung neuroendocrine cells is currently unknown.

In COPD, the differentiation capacity of both AT2 and endothelial progenitor cells is impaired [65–68].
Additionally, COPD lungs exhibit defects in basal cells, the resident airway epithelial stem cells
responsible for differentiating into ciliated and secretory cells [68].

Disrupted cell plasticity
Ageing is characterised by cumulative injuries over a lifetime and it is hypothesised that ageing-associated
shifts in cell identity promote dedifferentiation, biased differentiation and the acquisition of features from
alternative lineages, contributing to the pathogenesis of age-related diseases [69]. For instance, loss of
plasticity has been observed on immune cells. Lymphocytes become less flexible to adapt to immune
challenges with limited capacity to switch between different effector functions [70]. Using single-cell RNA
sequencing (scRNA-seq) in the lung, several groups have identified an alveolar epithelial transitional cell
state, characterised by downregulation of AT2 markers, mild upregulation of AT1 markers and expression
of high levels of unique markers including KRT8, Cldn4, Sfn and TGF-β pathway genes including integrin
β6 [71]. This is in contrast to the physiological AT2 proliferation and differentiation into AT1 in
physiological conditions after injury. It is not well understood why differentiation is stalled in the
transitional cell state and if it remains unclear whether ageing works to sustain an expansion of transitional
cells or impairs their differentiation to AT1 cells. Studies in animal models suggest that primary hallmarks
of ageing, like loss of proteostasis with ISR activation or mitochondrial dysfunction, stall AT2–AT1
differentiation, leading to transitional cell accumulation that impairs alveolar regeneration and promotes
fibrosis [19, 34, 72]. Consistently, an increase in transitional cells has been observed in fibrotic lungs and
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severe lung injuries such as COVID-19. Loss of plasticity is also observed on immune cells. For instance,
lymphocytes become less flexible to adapt to immune challenges with limited capacity to switch between
different effector functions. The transitional cell state in human IPF has been termed basaloid due to the
expression of markers of basal airway cells including KRT17. Basaloid cells have high expression of
senescence markers. Pseudotime analysis in mouse models and human IPF lungs predicted that basaloid
cells represent an alternative terminal cell fate for transitional cells other than AT1 cells [71, 73]. In human
adult bronchioles, new progenitor cell populations have been identified that express airway secretory
(secretoglobin family 3A member 2 (SCGB3A2) and secretoglobin family 1A member 1 (SCGB1A1)) and
AT2 cell markers (surfactant protein C (SFPC) and surfactant protein B (SFPTB)), suggesting their
potential to generate both airway and alveolar epithelial lineages [74, 75]. Similar respiratory alveolar
secretory cells have been described in nonhuman primates and human organoids. In these models, AT2
cells can transiently acquire a progenitor state referred to as AT0 (SFPTB+/SCGB3A2/SFPTC+), with the
ability to differentiate into AT1 or terminal bronchiolar secretory cells (TRB-SCs) or terminal alveolar
stem cells (SFTPB+/SCGB3A2+) [76]. AT0 cells have been observed in lungs affected by acute lung
injury, COPD and IPF, but not in healthy lungs. In contrast, TRB-SCs were exclusively found in mildly
affected or bronchiolised areas of IPF lungs and other fibrotic interstitial lung diseases (ILDs), suggesting a
role for these progenitor cells in lung fibrosis [76]. Notably, the number, proliferative capacity and
differentiation potential of TRB-SCs decline with ageing in human lungs, possibly contributing to the
age-related decline in COPD pathobiology. Interestingly, AT2 cells with inhibited epidermal growth factor
signalling or a deficiency in the mitochondrial metabolic pathway of fatty acid oxidation exhibit a bias
towards the A0 differentiation state. Metabolomic studies suggest that active fatty acid oxidation is crucial
for healthy ageing and influences biological ageing [75–84].

Similarly to AT2 cells, ageing and IPF endothelial cells have an activated cell state phenotype enriched for
hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ (atypical chemokine receptor 1) venous and TrkB+

(tropomyosin receptor kinase B) capillary endothelial cells. These findings offer insights into
ageing-related lung epithelial and endothelial cell dysfunction that may contribute to defective lung injury
repair and persistent fibrosis [85].

Integrative hallmarks: tissue homeostasis and function
Immunodeficiency and inflammageing
Ageing individuals experience a decline in immune function along with other physiological impairments,
such as reduced mucociliary clearance, diminished elastic recoil of the lung, decreased respiratory muscle
capacity, increased gut and lung lymphatic permeability, loss of the lung barrier, and heightened aspiration
that increases chronic infection risk. The ageing immune system experiences a decline in its ability to
mount specific and rapid responses to challenges, along with a reduced capacity for memory responses, a
phenomenon known as immunosenescence. This decline is accompanied by an increase in nonspecific
proinflammatory and autoimmune reactions, a process known as inflammageing [86]. In concordance,
ageing lungs exhibit a higher number of neutrophils, eosinophils and T-cells, along with increased levels
of proinflammatory mediators [87]. Exposure to cigarette smoke exacerbates this inflammatory
environment and disrupts normal lung immune function. Transcriptomic analyses of the ageing human
lung found that monocyte-like macrophages were among the cell populations with the highest
transcriptional changes, followed by FABP4 (fatty acid-binding protein 4) resident macrophages.

Resident alveolar macrophages play a crucial role in maintaining lung homeostasis and preventing
excessive inflammation. However, with ageing, their numbers decline in the lung, accompanied by reduced
proliferative capacity due to high concentrations of hyaluronan in lung lining fluid, inhibiting proliferative
responses to growth factors such as granulocyte-macrophage colony-stimulating factor. Additionally,
ageing and repeated lung injury reshapes macrophage populations, leading to the replacement of resident
alveolar macrophages with monocytic-derived alveolar macrophages, which adopt a profibrotic phenotype
over time. In line with these changes, IPF lungs predominantly contain profibrotic monocytic macrophages
characterised by high expression of osteopontin (also known as secreted phosphoprotein 1 (SPP1)) and
C-C motif chemokine ligand 16 [88–92].

Notably, IPF lungs also exhibit a reduction in natural killer (NK) cells [87], which play a vital role in
clearing senescent cells. Mouse models of bleomycin-induced lung fibrosis with NK cell depletion
demonstrate increased senescent cell accumulation and persistent collagen deposition [88]. Additionally,
B-cell activation, along with memory IgA+ B-cells and plasma cells, have been observed in the IPF lung,
leading to fibroblast activation [93]. Overall, these disruptions in intracellular communication contribute to
increased senescence, matrix stiffness and promotion of fibrotic responses.
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Dysbiosis
The microbiome plays a key role in lung ageing, including bacterial overgrowth and loss of distinct
anaerobic bacteria. Fungal infections are more prevalent in ageing and immunosuppressed individuals and
impaired epithelial barrier integrity in the ageing lung promotes translocation of fungal organisms and/or
cell wall components promoting innate immune response activation [94]. Dysbiosis triggers inflammation
and immune dysfunction, promoting age-related diseases. In IPF, lung microbiome disruption leads to
immune cell recruitment and subsequent inflammation making lung dysbiosis a potential disease
progression and mortality predictor [78]. The microbiome of IPF and healthy lung tissue is diverse and the
composition can be linked to diagnosis, mortality and disease severity [95]. Despite these findings, other
studies have not found evidence of microbiome alterations in IPF lungs, making this topic controversial
within the field of age-related lung diseases [96]. Similarly, in COPD, both lung and gut dysbiosis are
associated with disease development, suggesting that local and systemic dysbiosis can exacerbate disease
[79]. In COPD lung tissue from Global Initiative for Chronic Obstructive Lung Disease stage 4 patients,
differences in the abundance of major lung microbiome phyla have been detected, suggesting a host
immune response to microorganisms within the lung microbiome that might contribute to the disease
pathogenesis [97].

Cell competition
In response to challenges such ageing, specific lung cell populations must dynamically adjust their
numbers by expanding or contracting based on their fitness. Cellular fitness is influenced by a variety of
factors, including epigenetic patterns, metabolism, microenvironmental exposures and both primary and
secondary hallmarks of ageing. Ultimately, changes in cellular fitness and competition underlie the cell
population imbalances observed in the ageing lung [98].

Lineage tracing experiments in mice suggest that AT2 cells play an essential role in maintaining alveolar
homeostasis during steady state. Following severe injury, bronchial alveolar stem cells (BASCs), which are
stem cells that only exist in the mouse, are found at the junction between bronchioles and alveoli and club
cells in terminal bronchioles and contribute to alveolar repair [80]. With ageing, AT2 cells decline, while
bronchiolar club cells and BASCs predominate [76]. This imbalance between alveolar and bronchiolar
progenitor cells has been associated with reduced histone H3 lysine 9 di-methylation (H3K9me2) mediated
by the methyltransferase G9a, which increases chromatin accessibility of bronchiolar genes, enhances the
frequency of BASCs and promotes their repair responses after injury [76]. Progenitor cells exhibit varying
capacities for alveolar differentiation and repair. While club cells exhibit lower conversion efficiency, they
retain remarkable cell plasticity and can regenerate most damaged alveoli when AT2 cells are depleted or
senescent, as observed in ageing lungs. Epithelial stem cell fitness levels are determined by Myc, which is
tuned by the Hippo and Wnt pathway, both known to be differentially regulated during ageing and lung
injury [99, 100]. Cells expressing high Myc levels become supercompetitors and lowering the fitness of
AT2 stem cell fitness drives expansion of airway stem cells and might cause bronchiolisation of distal
regions of the lung in case of severe lung injury [99]. Notably, niche signals including interacting
mesenchymal cells can dictate cellular fitness [101, 102]. Airway subepithelial resident lung fibroblasts
expressing p16 senescence marker, develop a secretory phenotype after injury promoting regeneration of
SCGB1A1+ epithelial airway stem cells [102]. These p16+ fibroblasts have been shown to be reduced
during alveologenesis but accumulate in the ageing lung [102].

Perturbed fibroblast crosstalk and matrix stiffness
Lung fibroblasts play an essential role in maintaining lung homeostasis and modulating repair responses.
Advances in scRNA-seq have enabled the identification of diverse fibroblast subpopulations, including
LGR5+ (leucine-rich repeat-containing G-protein coupled receptor 5) resident alveolar fibroblasts, which
support epithelial progenitor cells [102, 103]. In organoid systems, ageing fibroblasts co-cultured with AT2
cells exhibit an impaired capacity to induce AT2 differentiation, which can be at least partially rescued by
treatment with retinoic acid [104–107].

Proteomic analysis of lung aged mouse fibroblasts secretome reveals high expression of secreted
frizzled-related protein 1 (sFRP1), a regulator of cell growth and differentiation. In the injured lung, sFRP1
is secreted on extracellular vesicles and contributes to the accumulation of KRT8-positive transitional ATII
cells [108]. sFRP1/RUNX1 (runt-related transcription factor 1) fibroblasts are alveolar fibroblasts that
respond to the accumulation of transitional state epithelial cells [109]. Notably, sFRP1+ aged fibroblasts
promote the reactivation of dormant cancer cells, leading to metastatic tumour formation [110]. Changes in
the secretion of components of the ECM have been also shown in the human and mouse ageing lungs with
predominance of collagen type I, VI, IX, fibulin (FBLN2) and the latent transforming growth factor beta
binding protein 4 (LTBP4), resulting in loss of elasticity.
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In IPF, lung fibroblasts acquire a senescent phenotype, resisting apoptosis while secreting ECM
components that contribute to fibrosis [33, 107]. Various lung cell types contribute to the ECM by
secreting multiple proteins. Proteomic studies in the ageing lung indicate significant alterations in ECM
components, including a predominance of collagen IV and reduced solubility of fibrillar collagens [86].
These changes increase lung parenchymal and blood vessels stiffness, activating mechanoreceptor
signalling that promotes epithelial cell differentiation into transitional cells and fibroblasts into
myofibroblasts and fibrotic phenotypes, further exacerbating lung fibrosis.

Body fluid markers of ageing in CLDS
Biomarkers offer insight into health, aiding in diagnosis, therapy and prognosis. Effective biomarkers
should be noninvasive, cost-effective, reproducible, sensitive and disease- and disease severity-specific.
While the previous section reviewed potential biomarkers of ageing in lung tissue and biopsies, this
section will focus on putative biomarkers found in various bodily fluids of patients with IPF and COPD.
The selection of an appropriate sample source is critical, as different fluids may capture distinct aspects of
the ageing process. Table 1 provides an overview of key ageing biomarkers identified in bodily fluids and
lung tissue of patients with IPF and COPD, highlighting their relevance to disease pathology. Additionally,
figure 3 illustrates how different sample sources enable the detection of specific ageing hallmarks. The
transparency within the figure indicates the strength of detection for each biomarker type, emphasising the
varying utility of different specimens in capturing the biological signatures of lung ageing. Together, table
1 and figure 3 provide a comprehensive view of how ageing biomarkers in bodily fluids and tissue can aid
in understanding and monitoring IPF and COPD.

Blood
Blood is an easily accessible and widely utilised source of biomarkers, providing valuable insights into
systemic physiological changes associated with disease progression, treatment response and early disease
detection. Technological advances have enhanced their precision and sensitivity.

Lung senescence is primarily assessed in blood through analysing systemic SASP factors. In IPF and
COPD, elevated levels of SASP factors, including growth differentiation factor 15 (GDF15) and interleukin
(IL)-6, have been detected in whole blood, plasma, and serum [111–118]. Similarly, COPD blood
outgrowth endothelial cells (BOECs) exhibit nuclear foci of γH2AX and 53BP1, markers of DNA
double-strand breaks, along with increased expression of senescence proteins p16 and p21 [67].
Additionally, COPD peripheral blood mononuclear cells (PBMCs) show increased levels of sirtuin (SIRT) 1
inhibitor miR-570-3p [119]. Further, elevated talin-1 and high mobility group box 1 levels have been found
in extracellular vesicles from IPF plasma [120]. Long noncoding RNAs, known regulators of stem cell
function, are differentially expressed in both IPF and COPD blood, plasma, serum and PBMCs [121–124].
Furthermore, higher levels of myeloid-derived suppressor cells and enrichment of stemness-associated
pathways, such as Wnt and Notch signalling, have been observed in IPF blood and serum [125, 126].

Both IPF and COPD are characterised by chronic inflammation, partly SASP-mediated. In IPF serum,
elevated C-reactive protein levels are associated with reduced 5-year survival rates [127–129].
Additionally, blood neutrophil levels are associated with IPF fibrosis progression and COPD disease
severity and mortality [130, 131]. COPD patients with elevated blood eosinophil levels have an increased
risk of exacerbations [132].

In IPF, higher levels of Krebs von den Lungen-6 (KL-6) in blood and serum amyloid A in serum have
been detected [114, 133].

Telomere attrition is a driver of cellular senescence and a central hallmark of ageing [134–136].
Importantly, telomerase reverse transcriptase (TERT) mutations are a main cause of familial pulmonary
fibrosis and have been linked to telomere attrition [8]. Shorter telomeres have been observed in IPF and
COPD blood samples [9, 14]. In COPD, shorter telomeres are associated with higher risks of exacerbation,
increased mortality and worsened lung function, including impaired alveolar gas exchange, hyperinflation
and more severe extrapulmonary complications [12, 13].

Epigenetic clocks, which measure DNA methylation levels and other factors in blood, provide a way to
assess biological versus chronological age and indicate whether the body maintains proper homeostatic
epigenetic regulation. Initially developed to integrate chronological age with epigenetic changes, these
clocks now include lifestyle factors that influence disease risk and mortality [137]. Both COPD and IPF
are associated with epigenetic changes and accelerated ageing clocks, further linking these diseases with
biological ageing processes. Several 5′-cytosine-phosphate-guanine-3′ (CpG) sites are strongly associated
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TABLE 1 Comprehensive list of putative ageing fluid and tissue biomarkers in as idiopathic pulmonary fibrosis (IPF) and COPD

Ageing hallmark IPF COPD

Cellular senescence Lung: ↑ SA-β-gal [86, 219], ↑ SASP [86, 111–113, 219–223],
↓ proliferation and apoptosis [67, 224], ↑ lamin A/C
isoform [225]

Blood: ↑ SASP [111–116], ↑ mosaic loss of Y chromosome
[226, 227]

BALF: ↑ SASP [111]
Sputum: ↑ SASP [193]

Lung: ↑ SASP [119, 228–231], ↑ cellular damage/stress [159, 228,
232], ↓ lamin B1 [228]

Blood: ↑ SASP [117, 118], ↑ cellular damage/stress [66, 117],
↑ mosaic loss of Y chromosome [227]

BALF: ↑ SASP [173, 174]
Sputum: ↑ SASP [193], ↑ cellular damage/stress [119, 194]

Telomere attrition Lung: ↓ telomere length [233], ↓ hTERT and hTERC [177]
Blood: ↓ telomere length [8, 9], mutant TERT [8]
BALF: ↑ hTERT and hTERC [177]

Lung: ↓ telomere length [230], ↓ telomere activity [230]
Blood: ↓ telomere length [14]
BALF: ↑ ultrashort telomeres [176]

Epigenetic
alterations

Lung: Δ DNA methylation [33, 234–236], Δ CpG island methylation
[237], ↓/↑ miRNA [238–242]

Blood: ↓/↑ miRNA [141, 142]

Lung: Δ DNA methylation [243], ↓/↑ miRNA [140, 244]
Blood: ↑ miRNA [140], ↓ CpG island methylation [139]
BALF: ↓/↑ miRNA [187]
Sputum: ↓ miRNA [203]

Chronic
inflammation

Blood: ↑ Inflammation and fibrosis [114, 127, 133, 245]
BALF: ↑ alveolar macrophages [167], ↑ immune response/

inflammation [166, 167]
Sputum: ↑ inflammatory/defence immune cells [193], ↑ KL-6 [193]

Lung: ↑ inflammatory/defence immune cells [92, 246],
↑ inflammation and fibrosis [92, 238], ↑ Ki-67 [92]

BALF: ↑ inflammatory/defence immune cells [92]
Sputum: ↑ inflammatory/defence immune cells [190]

Mitochondrial
dysfunction

Lung: ↑ mitochondrial stress/damage [16, 247, 248], ↓ ANT1 [37]
Blood: ↑ mtDNA [32, 179], ↑ mtDNA/nDNA [249], ↑ oxidative

stress [147]
BALF: ↑ mtDNA [32, 108, 179], ↓ mitochondrial quality control

[181], ↑ ROS [181]

Lung: ↑ mitochondrial stress/damage [44, 250], ↓/↑ mitochondrial
function [16, 247]

Blood: ↓ mtDNA-CNs [144, 145], ↑ cell-free mtDNA [146]
BALF: ↑ ATP [180]
Sputum: ↑ MDA [196], ↑ oxidative stress [197]

Loss of proteostasis Lung: ↓/↑ HSPs [239, 251], ↑ autophagy and protein degradation
[252, 253], ↑ UPR [239, 252], ↑ PGK1 [239], ↓ LC3II [252],
differentially expressed proteins [239], dysregulated oxidative
phosphorylation [254]

Blood: ↑ HSP47 [255], ↑ anti-HSP70 IgG autoantibody [256]
BALF: ↑ S100A9 [168], ↑ oxidatively modified proteins [187]

Lung: ↑ HSP70 [257], ↑ autophagy and protein degradation [229,
258, 259], ↑ proteasome and protein degradation [260],
↑ inflammation [198, 241], ↑ caspase-3 activity [260], ↓ CHOP
[261], ↓ LAMP2A [262]

Blood: ↑ HSPs [260, 261], ↑ protein damage [262, 263], ↑ protein
quality control [264], ↑ autophagy [265], ↓ sCD163 [264],
↓ p62 [265]

BALF: ↑ innate immune system [166], ↓ immune processing/
presentation [30]

Sputum: ↑ cellular stress response [195, 197]
Deregulated

nutrient-sensing
Lung: ↓ nutrient-sensing pathways [242, 266], ↓/↑ insulin/IGF

signalling [267, 268], ↓/↑ energy-sensing and metabolism
[242, 253, 269], ↑ protein synthesis regulation [242],
↑ leptin [158]

Blood: ↓/↑ nutrient-sensing pathways [150], ↑ insulin/IGF signalling
[152], ↑ adipokines [158, 159]

BALF: ↓/↑ insulin/IGF signalling [181, 183], ↑ IGF-1+ alveolar
lymphocytes [184], ↑ BCL-2 [184]

Sputum: ↑ IGFBP-2 [193]

Lung: ↓ nutrient-sensing pathways [229, 269–271], ↑ leptin
[272, 273]

Blood: ↓/↑ nutrient-sensing pathways [66, 151, 162], ↓/↑ insulin/
IGF signalling [152–154, 156], ↑ metabolism [153], ↑ adipokines
(19344528, 23525184, 29552529)

BALF: ↑ adiponectin [186]
Sputum: ↑ leptin [160], ↑ glucose [200], ↓ FOXO3 [201]

Stem cell
exhaustion

Lung: ↑ lncRNAs [274, 275], ↑ stem cell maintenance/self-renewal
[276], ↑ Wnt signalling pathways [173, 174, 277, 278], ↑ Notch1
[279], ↓/↑ bone morphogenetic protein pathways [280–282]

Blood: ↑ MDSC [125], ↑ Wnt [126], ↑ Notch [126], ↓/↑ lncRNAs
[121, 283]

BALF: ↑ Wnt5A [173]

Lung: ↓/↑ lncRNAs [284, 285], ↓/↑ signalling pathways [190, 286,
287], ↓/↑ stem cell maintenance/renewal [276, 288]

Blood: ↑ lncRNAs [122–124], ↑ exosomes [289]
Sputum: ↑ Wnt5A [61], ↓/↑ bone morphogenetic protein

pathways [195]

Dysbiosis Lung: diverse microbiome composition [78]
Blood: ↑ calprotectin [163]
BALF: ↑ bacterial burden [188], ↑ Streptococcus, Pseudobutyrivibrio

and Anaerorhabdus [189], ↑ ABC transporter systems [189],
↑ biofilm formation [189], ↑ two-component regulatory
system [189]

Lung: ↑ Proteobacteria and Actinobacteria [97], ↓ Firmicutes and
Bacteroidetes [189]

Blood: ↑ TMAO [164], ↑ zonulin [164, 165]
BALF: ↑ LBP [190]
Sputum: ↑ Moraxella and Haemophilus [204]

↑: higher concentration/amount or upregulated; ↓: lower concentration/amount or downregulated; ↑/↓: variably up or downregulated; Δ: alterations;
ABC: ATP-binding cassette; ANT1: adenine nucleotide translocase 1; BALF: bronchoalveolar lavage fluid; BCL-2: B-cell lymphoma 2; CHOP: CCAAT/
enhancer-binding protein homologous protein transcription factor; CpG: 5′-cytosine-phosphate-guanine-3′; FOXO3: forkhead box O3; HSP: heat
shock protein; hTERC: human telomerase RNA component; hTERT: human telomerase reverse transcriptase; IgG: immunoglobulin G; IGF: insulin-like
growth factor; IGFBP: insulin-like growth factor-binding protein; KL-6: Krebs von den Lungen-6; LAMP2A: lysosomal-associated membrane protein
2A; LBP: lipopolysaccharide-binding protein; lncRNA: long non-coding RNA; MDA: malondialdehyde; MDSC: myeloid-derived suppressor cell; miRNA:
micro RNA; mtDNA: mitochondrial DNA; mtDNA-CN: mtDNA copy number; nDNA: nuclear DNA; PGK1: phosphoglycerate kinase 1; ROS: reactive
oxygen species; SA-β-gal: senescence-associated beta-galactosidase; SASP: senescence-associated secretory phenotype; S100A9: S100
calcium-binding protein A9; sCD163: soluble cluster of differentiation 163; TERT: telomerase reverse transcriptase; TMAO: trimethylamine N-oxide;
UPR: unfolded protein response; Wnt: wingless-related integration site.
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with smoking and smoke exposure, contributing to COPD pathogenesis [138]. In COPD, CpG sites are
hypomethylated and have been linked with disease presence and severity [139]. One study found that two
DNA methylation-based epigenetic clocks, DNAmGrimAge and DNAmTL, were predictive of 1-year
mortality in COPD patients, while another demonstrated a strong correlation between epigenetic measures
of age, such as DNA methylation-based telomere length in blood, and physical indicators, including
exercise capacity and activity levels. Additionally, various micro RNAs (miRNAs) are differentially
regulated in IPF and COPD blood, further implicating epigenetic regulation in disease progression
[140–142]. Another emerging tool in ageing research, the proteomic ageing clock, has identified several
plasma proteins that mediate the link between chronological age and survival in IPF and COPD [143].

Mitochondrial dysfunction has recently gained interest in the study of ageing-associated CLDs. In IPF,
elevated plasma mtDNA levels and a higher ratio of mtDNA and nuclear DNA in blood have been
observed. In COPD, decreased mtDNA copy numbers in peripheral leukocytes and increased levels of
plasma cell-free mtDNA have been detected [144–146]. Additionally, the amount of oxidative stress
marker oxidised glutathione (GSSG), and the ratio of GSSG to glutathione were significantly increased in
IPF blood [147]. Furthermore, production and generation of superoxide anions were significantly higher in
IPF. In COPD serum, elevated levels of mitokine fibroblast growth factor 21 (FGF21), produced due to
mitochondrial dysfunction, were associated with a higher risk of exacerbation [148]. Interestingly,
circulating proteins such as lipopolysaccharide (LPS)-binding protein or Crk-like protein have also been
found to be useful in identifying subjects with preclinical pulmonary fibrosis [149].

SIRT1 and SIRT3, key regulators of cellular ageing, are differentially expressed in IPF or COPD BOECs,
PBMCs and serum [67, 150, 151]. Additionally, insulin-like growth factor-binding protein (IGFBP)-1 and
IGFBP-2 levels are higher in IPF, whereas blood, plasma and serum IGF-1 levels are lower in COPD
[152–155]. Higher insulin and glucose levels along with increased homeostasis model assessment of
insulin resistance have been detected in COPD blood [156]. Similarly, elevated blood glucose levels have
been associated with a higher risk for IPF, suggesting that hyperglycaemia may contribute to IPF
progression [157]. In both IPF and COPD, leptin and adiponectin levels are elevated in serum and plasma
with increased levels during acute exacerbations [154, 158–161]. Further, mTOR (mechanistic target of
rapamycin) levels are higher in COPD blood [162].
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FIGURE 3 Markers of lung ageing in different sample sources. Biomarkers of ageing can be detected in different bodily fluids as well as lung tissue.
Different sources allow for the detection of different hallmarks of ageing that are displayed here. Transparency indicates how well the ageing
hallmark can be detected in the sample source. Figure created using BioRender. IPF: idiopathic pulmonary fibrosis; BALF: bronchoalveolar lavage
fluid.
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In IPF, significantly higher levels of serum calprotectin, which is known to have antimicrobial properties,
correlated with disease severity [163]. In COPD, elevated plasma trimethylamine-N-oxide levels were
found to be related to long-term all-cause mortality independent of exacerbation type [164]; however, this
link may be explained by age and comorbidities. Further, increased plasma zonulin levels, a protein that
regulates the intestinal barrier, have been observed in male COPD patients [165].

Fungal colonisation and impaired barrier integrity in the lung have been associated with elevated levels
of 1,3-beta-d-glucan (BDG), a key polysaccharide component of the fungal cell wall that acts as a
pathogen-associated molecular pattern promoting inflammation. High levels of circulating BDG have been
associated with the severity of acute respiratory failure in the absence of fungal infection as well as worse
function, morbidity and matrix degradation markers in COPD patients [166, 167].

Bronchoalveolar lavage fluid (BALF)
BALF is a valuable source for lung disease biomarkers as it reflects the local lung environment and
contains a variety of cell types. However, obtaining BALF is invasive, requires sedation and specialised
equipment, and cannot be performed on patients at every clinical visit, making longitudinal analysis and
continuous monitoring of biomarkers challenging.

Chronic inflammation is a hallmark of many CLDs and is detectable in BALF. In IPF BALF, KL-6 levels are
higher compared to other ILDs [168]. Additionally, IPF BALF contains an elevated number of alveolar
macrophages. In co-cultures of T-cells with IPF alveolar macrophages, IL-4 and IL-5 levels are increased
[169]. In COPD bronchial washing fluid, neutrophils and eosinophils are also increased [170]. Both IPF and
COPD BALF show elevated levels of the inflammatory marker S100A9 [171, 172]. Moreover, concentrations
of S100A8 and neutrophil defensins 1 and 2 are elevated in COPD BALF [172]. SASP factors, such as matrix
metalloproteinases (MMPs), contribute to chronic inflammation and are increased in both IPF and COPD
BALF [111, 173, 174]. However, their specific expression patterns differ between the diseases. MMP1,
MMP8 and MMP9 are elevated in emphysema patients, whereas MMP1 and MMP7 are higher in IPF.
Additionally, extracellular vesicles from IPF BALF show upregulation of Wnt pathway components, Wnt5a
and sFRP1, suggesting that age-related effects on stem cell function are detectable in BALF [108, 175].

Telomere attrition is also observed in BALF cells. In COPD, higher levels of ultra-short telomeres have
been detected, correlating with disease severity [176]. In IPF, human (h) TERT and h-TERC mRNA levels
are elevated [177], though some IPF patients exhibit a transcriptional endotype of telomere and
mitochondrial dysfunction [178]. Along these lines, mtDNA levels in IPF are higher, especially during
acute exacerbations [32, 179, 180].

Mitochondrial dysfunction is also evident in BALF. In IPF BALF cells, reduced expression of
PTEN-induced kinase 1 (PINK1) and E3 ubiquitin ligase (PARK2), along with elevated mitochondrial
ROS levels, has been observed [181]. In COPD supernatants, increased ATP concentrations and
deregulated nutrient-sensing have been detected signs [182]. In IPF, IGFBP-3 levels and numbers of
IGF-1-positive alveolar lymphocytes are increased [183, 184], whereas IGF-1 expression is downregulated
in healthy lung cells [35]. Furthermore, BCL-2 (B-cell lymphoma 2) expression has been shown to be
higher in IPF BALF cells [184] and increased adiponectin levels have been found in COPD BALF [185].

Signs of impaired proteostasis resulting in immune dysfunction have been found in COPD BALF cells
with reduced immunoproteasome and major histocompatibility class I (MHC I) gene expression [31]. In
addition, higher concentrations of oxidatively modified proteins in IPF BALF were observed [186]. Several
miRNAs were also found to be differentially regulated in COPD BALF [187].

Significant correlation between airway microbiota and alveolar inflammation has been observed in IPF.
Lung bacterial burden is twice as high in IPF patients and is predictive of disease progression, while
microbiota composition was found to correlate with elevated alveolar profibrotic cytokines [78, 188]. The
IPF microbiome is enriched in microbes associated with ABC transporter systems, biofilm formation and
two-component regulatory systems [189]. In BALF from patients with diffuse lung diseases, the highest
LPS concentrations were found in individuals with eosinophilic disorders, while LPS levels were lower in
those with sarcoidosis, lung fibrosis or smoking-related ILDs. Interestingly, significantly elevated levels of
LPS-binding protein have been observed in smokers and COPD patients [190]. In addition, Actinobacteria,
Firmicutes and Proteobacteria have been found to be the most prevalent species in COPD BALF [191].

Sputum
Sputum is an easily accessible sample source, allowing for frequent, longitudinal sampling and biomarker
monitoring during disease progression or treatment. Despite its potential, it is not widely used clinically
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and is primarily used in preclinical studies to identify novel biomarker candidates [192]. One limitation is
the uncertainty of how well sputum reflects lung-specific processes.

Elevated levels of chronic inflammation markers such s neutrophils, eosinophils, macrophages and KL-6
have been identified in both IPF and COPD sputum [193]. Additionally, elevated concentrations of SASP
factors IL-6, IL-8, TNF-α, TGF-β, MMP-7 and MMP-9 have been detected in both COPD and IPF sputum
supernatants. Interestingly, sputum levels of MMP-7 were higher in IPF than in COPD, whereas
concentrations of IL-6 and TNF-α were higher in COPD. Furthermore, COPD sputum contains higher
concentrations of SIRT1 inhibitor miR-570-3p and chemokines GROα (growth-regulated oncogene α) and
MCP-1 (monocyte chemoattractant protein-1) [119, 194].

In COPD sputum, dysregulated developmental pathways mediating stem cell function, mitochondrial
dysfunction and altered proteostasis can also be detected. Notably, Wnt5A expression in sputum of COPD
patients has been found to correlate with disease severity [61]. Additionally, during acute COPD
exacerbations, bone morphogenetic protein (BMP)-4 is upregulated, whereas BMP-6 is downregulated in
sputum [195].

Oxidative stress is another hallmark of COPD, with elevated markers such as 27-OHC
(27-hydroxycholesterol) and HSP70 (heat shock protein 70) found in sputum [196–199]. Nutrient-sensing
and metabolic alterations can also be detected in sputum, including elevated IGFBP-2 in IPF and increased
levels of leptin and glucose in COPD, both of which tend to rise with disease severity [160, 193, 200].
Additionally, FOXO3 (forkhead box O3) is reduced in COPD sputum cells [201].

Sputum analysis has also revealed epigenetic alterations in smokers with wood smoke exposure and
aberrant promoter methylation of p16 or GATA4 genes, which is associated with reduced lung function
and other COPD-related phenotypes [202]. Furthermore, several miRNAs are downregulated in COPD
sputum supernatants, suggesting a role for epigenetic regulation in disease progression [203].

Finally, dysbiosis of the COPD microbiome has been demonstrated by a significant increase in respiratory
tract-associated bacteria of COPD sputum, further highlighting the role of microbial imbalance in disease
pathology [204].

Limitations and outlook for ageing biomarkers
Biomarkers of lung ageing offer valuable insights into CLDs, but limitations should be considered when
interpreting their clinical relevance [205, 206]. Inflammageing, the chronic low-grade inflammation
associated with ageing, can alter biomarker levels independently of lung disease, making it difficult to
distinguish between normal ageing and disease-related changes [207]. Additionally, comorbidities such as
cardiovascular disease, diabetes and chronic kidney disease are closely related and share overlapping
biomarkers, potentially confounding lung-specific ageing signatures [208]. Individual variability in
genetics, lifestyle and environmental exposures further complicates biomarker-based assessments, as
ageing is highly heterogeneous, leading to differences in disease progression and treatment response
[209, 210]. Moreover, many older individuals with CLDs take multiple medications, including
corticosteroids, immunosuppressants and statins, which can influence biomarker levels and obscure true
age-related changes in lungs. These factors highlight the need for multi-biomarker approaches that account
for systemic influences and individualised assessments to improve the accuracy and applicability of lung
ageing biomarkers in CLD diagnosis, prognosis and treatment strategies.

Less invasive alternatives for sample collection, such as exhaled breath analysis, nasal swabs, urine tests
and “mini-bronchoalveolar lavage” (mini-BAL) offer promising solutions. Exhaled breath analysis captures
volatile organic compounds and metabolic byproducts that reflect lung disease. Nasal swabs are an
accessible sampling method that can serve as a surrogate for lung-specific biomarkers. Urine tests offer
systemic biomarker readouts, particularly useful for monitoring oxidative stress, metabolic shifts and
inflammatory mediators. Mini-BAL presents a lower-cost, bedside alternative to standard BAL, reducing
risks for critically ill or mechanically ventilated patients [211]. The sampling is adequate for
microbiological analysis, biomarkers, or immune profiling. While less invasive sample collection methods
allow for more frequent serial sampling that can elucidate disease progression, treatment response or
biomarker validation, data on their effectiveness is still sparse.

Conclusions and future directions
Biological as opposed to traditional chronological age years that an individual has lived accounts for
physiological changes and environmental exposures that increase susceptibility to age-related diseases such
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as IPF and COPD. The hallmarks of ageing drive lung function decline and offer valuable insights for
diagnosis and prognosis of CLDs, emphasising the need for reliable biomarkers to assess lung health and
disease pathogenesis. The use of easily accessible bodily fluids as biomarkers sources presents a unique
opportunity for early disease diagnosis and stratification of at-risk patients. However, challenges remain
regarding precision and clinical integration.

Current models of lung ageing do not fully account for the relationships related to genetics, environmental
exposures and ageing. Biological age can be assessed by ageing clocks that use various modelling
approaches to assess interindividual variations in ageing rate based on different hallmark changes. Most
prominently, biological ageing has been determined by the use of epigenetic clocks, including in the lung
[137–139]. However, these do not fully capture the complexity of the ageing process [212, 213] and
further clocks based on transcriptomic, proteomic and metabolomic signatures have been introduced [214].
To advance our understanding of lung ageing, an integrated approach that combines multiomic analysis of
ageing hallmarks and environmental factors is necessary to account for both chronological and biological
ageing on multiple levels. This approach would more comprehensively model how genetic predisposition
determines disease susceptibility and how the timing of environmental exposures impacts premature lung
ageing [215, 216]. Figure 4 illustrates the variability of biological ageing among individuals, showing how
certain factors accelerate ageing while others promote a protective phenotype. This schematic highlights
the multifactorial determinants of ageing, emphasising the need for a holistic approach in studying lung
ageing and disease progression.

An emergeing framework addressing this complexity is GETomics, which seeks to elucidate the dynamic
interactions between genes (G) and environment (E) by integrating data from fundamental omics (e.g.
genomics, epigenomics and proteomics) and clinical omics (e.g. phenomics, physiomics and radiomics)
with environmental exposures (exposome) over time (T) [217]. GETomics underscores the dynamic nature
of gene-environment interactions, emphasising that their effects are influenced not only by an individual’s
chronological age but also by prior exposures, epigenetic modifications and immune memory. The
cumulative nature of these interactions plays a crucial role in determining lung health outcomes.
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FIGURE 4 Multifactorial determinants of biological ageing. Plot of biological age (y-axis) versus chronological
age (x-axis) illustrates the variability of biological ageing among individuals. Schematic representation of the
ageing continuum: on the left, factors associated with accelerated ageing, including telomere attrition, sun
exposure, obesity, smoking and industrial environmental exposures, shift the phenotype upward, while on the
right, protective factors such as exercise, maintenance of healthy chromosomes and beneficial supplements
promote a protective ageing phenotype. Figure created using BioRender.
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Building on this, we propose the concept of AgEnOmics, an approach that expands the temporal
dimension of lung ageing by distinguishing between chronological age and accelerated lung ageing
phenotypes based on the analysis of multiple ageing hallmarks. By assessing biological age in a multiomic
approach rather than chronological age, AgEnOmics enhances disease risk prediction and enables early
interventions by identifying accelerated ageing phenotypes. Building on GETomics, it integrates genetic
predisposition, environmental exposures and their timing and frequency to better characterise lung ageing
and CLD progression [218], such as by epigenetic reprogramming, immune system alterations and
metabolic shifts.

Figure 5 illustrates the AgEnOmics framework, which integrates multiomics with environmental exposure
data to refine our understanding of lung ageing. This model incorporates novel technological tools,
preclinical models and computational biology to identify biomarkers and develop personalised
interventions for lung diseases.

AgEnOmics has the potential to enhance clinical decision-making by enabling more precise patient
stratification, allowing for targeted prevention and personalised therapeutic strategies. Identifying
individuals with accelerated lung ageing phenotypes may provide opportunities for early intervention,
particularly in diseases such as COPD and IPF, where early-stage detection and treatment can significantly
improve outcomes. Moreover, incorporating ageing biomarkers into clinical practice could refine disease
classifications, providing a more nuanced understanding of lung health across the lifespan.

Despite its promise, implementing AgEnOmics presents several challenges. Determining multiomic
biological age requires the identification and validation of multiple ageing biomarkers, demanding
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FIGURE 5 Strategies for future advances in biology of lung ageing and diseases. A central “AgEnOmics” framework integrates multiomics
(genomics, epigenomics, proteomics, clinical omics) with environmental exposure data to distinguish biological from chronological lung ageing,
identify biomarkers and inform therapeutic strategies. Surrounding this core concept are layers of novel technological tools, omics approaches,
preclinical models and computational biology methods, all convergeing to expand basic knowledge and drive personalised interventions for lung
diseases. Figure created using BioRender. BMI: body mass index; SASP: senescence-associated secretory phenotype.
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substantial financial, temporal and biological resources. Additionally, integrating these biomarkers into
routine clinical workflows requires significant infrastructure, much like other omics-based approaches.
However, through international collaborations and large-scale cohort studies, an initial phenotyping
framework could be established to identify the most relevant and clinically feasible biomarkers for
widespread use.

Looking ahead, incorporating ageing biomarkers into clinical trials and routine medical practice may
advance our understanding of lung disease and ageing mechanisms. By prioritising early detection, the
future of age-related lung diseases can be transformed, reducing the healthcare burden associated with the
“silver tsunami”.

Questions for future research

• How do markers for lung ageing correlate with biomarkers for disease?

• Are accelerated ageing hallmarks cause or consequence of disease?

• How do environmental factors drive premature lung ageing in relation to timing of exposure and the
underlying genetics?

• How can we combine multiomics and environmental factors to account for both chronological and
biological ageing?

• How does microbial dysbiosis influence disease progression, immune response and treatment outcomes in
patients with IPF and COPD?
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