
1

A
ssessm

entofU
ncertainty

Q
uantification

in
U

niversalD
ifferentialE

quations
-S

chm
id

etal.
..............................................................................................

Supplementary Material
A. Discussion of additional UQ methods
In this manuscript, we evaluate ensemble-based methods, Markov Chain Monte Carlo (MCMC),
and Variational Inference (VI) for Uncertainty Quantification (UQ) in Universal Differential
Equations (UDEs). We consider these methods due to their positive evaluation results in previous
studies and their general scalability to complex models.

Some UQ approaches commonly used in mechanistic modelling, such as Profile Likelihoods
(PLs), were not employed in this study. Profile Likelihoods [1] evaluate the shape of the posterior
distribution p(θ|D) by fixing one parameter θi to a value z and re-estimating the maximum-
likelihood estimate feasible for this fixed value, i.e.,

PL(z) = max
θ∈{θ | θi=z}

p(D|θ). (A 1)

This procedure is performed multiple times, scanning over a series of fixed values z. Profile
Likelihoods are a comparatively fast method to evaluate plausible values in one dimension of θ.
For predictive uncertainty, all dimensions of θ have to be evaluated, which is still comparatively
fast if the parameters are not correlated. However, this becomes infeasible for higher dimensions
of θ that are highly correlated. Moreover, previous studies have reported limited capabilities of
PL calculations for large-scale Ordinary Differential Equation (ODE) models, making them less
suitable for the high-dimensional parameter spaces encountered in UDEs. The computational
burden and scalability issues associated with PLs render them impractical for models that
integrate machine learning components like neural networks. Hence, while Profile Likelihoods
can be used to gain a deeper understanding of the uncertainty of the mechanistic parameters of
the UDE, they are not suitable for the evaluation of prediction uncertainty of UDEs.

Similarly, methods based on the Fisher Information Matrix (FIM) were not used. FIM-based
approaches require the calculation of state sensitivities, which are difficult to assess for high-
dimensional models. More importantly, asymptotic confidence intervals via the FIM [2] provide
only a local assessment and depend on the inversion of the FIM to obtain the covariance matrix
of a maximum likelihood estimate. While effective in settings with identifiable parameters,
these methods become unsuitable if the parameters are partially non-identifiable. This case is
to be expected in UDEs, as the ANN adds a large number of degrees of freedom. Accordingly,
the FIM is likely not invertible, meaning that confidence intervals for parameters and model
predictions are ill-determined [3]. Indeed, UDEs share similar issues with neural networks:
Overparameterization and the presence of plateaus in the loss landscape are likely, rendering
FIM-based methods less applicable.

Given these considerations, we focus on ensemble-based methods, MCMC, and VI for UQ in
UDEs. These methods are better suited to handle the challenges posed by the high dimensionality
of the parameter space and the complex structure of the loss or posterior function landscape
inherent in these models.

B. Problem overview
In the following, we list a few tables that provide an overview over the different problem
scenarios, its initial conditions and parameter values. Furthermore, we provide a visualisation
of the values of β for the SEIR Waves and SEIR Pulse settings in Figure 1.
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Table S1: Overview of the synthetic problem scenarios considered, including information about
the time span, number of time points nt and parameters nθ.

Dynamic model Noise model Noise parameter time span nt nθ

Quadratic Dynamics Gaussian
σ= 0.01

(0.0, 10.0) 12 22
σ= 0.05

SEIR Waves
Gaussian

σ= 0.01

(0.0, 130.0) 30 64
σ= 0.03

σ= 0.05

Negative Binomial
d= 1.2

d= 2.2

SEIR Pulse
Gaussian

σ= 0.01

(0.0, 130.0) 30 64
σ= 0.03

Negative Binomial
d= 1.2

d= 2.2

Table S2: Overview of the initial condition for the synthetic problem scenarios considered
simulating data.

Dynamic model Noise model Initial condition
Quadratic Dynamics Gaussian (0.1)

SEIR Waves
Gaussian (0.995, 0.004, 0.001, 0.0)

Negative Binomial (995.0, 4.0, 1.0, 0.0)

SEIR Pulse
Gaussian (0.995, 0.004, 0.001, 0.0)

Negative Binomial (995.0, 4.0, 1.0, 0.0)

Table S3: Overview of the mechanistic parameters of the differential equations for the synthetic
problem scenarios considered.

Dynamic model α β γ

Quadratic Dynamics 1.0 2.0 -
SEIR Waves 0.9 - 0.1

SEIR Pulse 0.33 - 0.05

Figure 1: Visualization of the values of β for the data generation process of the SEIR Pulse and
SEIR Waves problem scenarios.
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C. Quadratic dynamics
This problem is a comparatively small problem with only two non-identifiable mechanistic
parameters. While finding local optima in the loss space should be feasible, the identification
of distributions of non-identifiable parameters is more complex.

To generate synthetic data for the quadratic dynamic problem, we simulate the differential
equation

dx

dt
= αx− βx2,

x(0) = 0.1

(A 1)

with t∈ (0, 10), α= 1 and β = 2. We assume, that the observable mapping is the identity, i.e. x is
directly observed. Noise is added to the observable x according to Table S1. We assume that only
one of the components of the mechanistic terms in the differential equation is known. Hence, the
UDE is defined as

dx̂

dt
= α̂x̂− fnet(x̂;θnet),

x(0) = 0.1

(A 2)

where fnet is a fully connected neural network with parameters θnet. To ensure the positivity
of α we parametrize α as log(α). Both the initial value of log(α) and that of the noise parameter σ
are sampled from a log-uniform distribution with a minimal value of 0.1 and maximum value of
10.0.

D. Implementation details
All experiments were conducted on the Unicorn cluster (CPU cores: 2x AMD EPYC 7F72; 3.2 GHz,
1 TB RAM) at the university of Bonn.

Due to its variety of available solvers and automatic differentiation support, we implemented
all experiments in Julia [4]. The ensemble-based parameter estimation was conducted using
packages introduced with SciML [5]. For Variational Inference and most of the MCMC sampling
algorithms, we used Turing [6]. For parallel tempering, the package Pigeons [7] provided
sampling algorithms with an interface to Turing models. A full list of packages is provided in
the environment’s Manifest and Project files.

As is commonly done in the context of dynamical modelling [8], we transformed the
mechanistic parameters for estimation. The standard deviation was optimized in log scale.
Furthermore, we implemented a tanh-based transformation for the other mechanistic parameters
to ensure consistency with parametric bounds independent of the optimization algorithm (see
Appendix (b) for details).

The neural network architecture was the same throughout all reported experiments.
Specifically, after a short initial hyperparameter search, we used a feed-forward neural network
with 2 hidden layers with 6 neurons each and tanh activation functions for all layers apart from
the output layer.

Synthetic data was created according to the problem description, noise model and ground-
truth parameters provided in the sections above. All UQ methods used the same data per problem
scenario.

(a) Ensemble-based UQ
The neural networks’ initial parameter values are sampled according to the default setting (Glorot
uniform [9] for weights, zero for biases) with one exception: We observed a more stable training
process with fewer numerical instabilities during the solving process of the dynamic equation
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when the initial parameters of the neural network were initialized to values equal to zero. The
mechanistic parameters were sampled according to the prior distributions specified in Appendix
D (c). Similar to [5], optimization was realised using the optimization algorithms ADAM (for
the first 4000 epochs) and then BFGS (up to 1000 epochs). To avoid overfitting, we introduced
a small L2 regularization on the neural network parameters (with penalty factor 10−5) and
retrospectively stored those parameters per model training that minimized the negative log-
likelihood on the respective validation set. The train-validation split was implemented using one
individualized random seed per potential ensemble member. The selection of ensemble members
from the candidate models was conducted using a significance level of 0.05.

(b) Tanh-based parameter transformation
While box-constraints are available for many optimization algorithms in Julia, this is not the
case for the BFGS algorithm. Ensuring that parameters stay within physically plausible bounds
is, however, often necessary to define a solvable differential equation. Furthermore, encoding
more prior knowledge can narrow down the hypothesis space of the model and, hence, make the
exploration of the loss landscape more feasible.

BFGS is a standard optimization algorithm for UDEs [5]. For purely mechanistic dynamical
models, primarily other optimizers with customized box-constraint implementations are used
[10]. We use a tanh-based transformation of the parameters that allows enforcing box-constraints
independent of the optimization algorithm:

Let θpi be the parametrized version of a mechanistic parameter θi. By setting θi = a ·
tanh (θpi − c) + b for suitable a, b, c∈R, we can ensure that for any θpi ∈R, θi stays within given
bounds. The constant c allows for symmetry around θpi = 0.

For the SEIR based problems, the latent period (inverse of α) could reasonably be anywhere
from an hour (e.g. for certain foodborne illnesses) to several years (e.g. certain malaria cases),
hence we assume α∈ (0, 24) to be known. Similarly, we assume that a person stays infectious for
at least one day, i.e. γ ∈ (0, 1) and that β(t)∈ (0, 3). As described in Appendix C, no tanh bounds
were used for the quadratic dynamics problem.

(c) Prior definition for the mechanistic and neural network parameters
Table S4 gives an overview of the prior definition of the mechanistic parameters for the different
problem scenarios. For Variational Inference and MCMC based sampling, the neural network
parameters’ prior was defined as N (0, 3 · I).

Table S4: Overview of the priors for the mechanistic parameters of the considered problems. Note
that the noise parameters σ and d are only defined in a Gaussian and negative Binomial noise
setting, respectively. The mentioned Normal distribution is defined by its mean and standard
deviation, the (Log-)uniform distribution by its lower and upper bounds and the Beta distribution
by its two shape parameters.

Problem Parameter
Prior on transformed

Prior
parameter space

Quadratic Dynamics α True LogUniform(0.1, 10)

Quadratic Dynamics σ2 True Uniform(-10,10)
SEIR Waves/Pulse α True Normal(0,1)
SEIR Waves/Pulse γ True Normal(0,1)
SEIR Waves/Pulse σ2 True Uniform(-10,10)
SEIR Waves/Pulse d True Beta(2,2)
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Figure S1: Visualization of trajectories generated from new initial conditions for the SEIR Waves
problem.

Table S5: Evaluation of the performance of the MCMC and ensemble-based methods on 100
unseen initial conditions. Shown are the area covered by the posterior distribution (approximated
using an Euler scheme calculation) and the squared distance between the ground truth and
posterior mean per compartment.

Area Squared Distance (10−4)
S E I R S E I R

MCMC 10.44 8.29 7.77 6.20 5.79 7.52 2.77 1.32

Ensemble 15.07 17.91 11.79 11.08 52.91 6.21 29.36 30.19

E. Evaluation of MCMC and ensemble-based methods based on
new initial conditions

To evaluate the predictive performance of the MCMC and ensemble based methods on new
initial conditions of the SEIR Waves problem, we sampled 100 initial conditions (see Figure S1)
and calculated the area covered by the posterior distribution and the squared distance between
posterior mean and ground truth without retraining the models. The initial conditions were
sampled according to

S0 ∼U([0.6, 0.999])

E0 ∼U([0.001,min(0.2, 1− S0)])

I0 ∼U([0,min(0.05, 1− (S0 + I0))])

R0 = 1− (S0 + E0 + I0).

(A 1)

Our analysis of these ICs revealed that MCMC-based uncertainty quantification yields a
smaller posterior area as well as a smaller squared distance to the ground truth than ensemble-
based uncertainty quantification; see Table S5. For the hidden state E, the performance of the
MCMC and ensemble-based methods are comparable. This study indicates that there is a clear
trend for MCMC to perform better than the ensemble-based method on new initial conditions.
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Figure S2: Mean squared error (MSE) between ground truth and posterior mean in dependence
of the noise.

Figure S3: Squared error (SE) between reference value and posterior mean in dependence of the
noise.

F. Influence of σ on the accuracy of the posterior distributions
To account for the potential impact of noise on method performance, we compared the
uncertainty quantification methods on the SEIR Waves problem with Gaussian noise and
standard deviation values 0.01, 0.03 and 0.05. The mean squared error between the ground truth
and posterior mean of the three methods increases with increasing noise; see Figure S2. Variational
inference struggles even for a noise setting of 0.01, while MCMC and the ensemble-based method
perform comparatively well.

The squared error between mean posterior parameter values and reference parameter values
tends to favour variational inference for the parameter α and the other methods for σ and γ,
see Figure S3. However, the approximation of the posterior distribution of α obtained using
variational inference does not cover the ground truth (as is exemplary shown in Figure 2 for
a noise value of 0.01). While the respective ensemble- and MCMC-based posteriors indicate a
higher uncertainty, the distributions cover the ground truth value.

We believe the mean-field assumption of the applied variational inference method to be too
simple to capture the properties of the posterior distributions of dynamical systems. In future
work, more complex assumptions of the variational distribution should be investigated.
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Figure S4: Prediction of the ensemble-based approach given mechanistic knowledge of β(t).

Figure S5: Posterior of the mechanistic parameters of the ensemble-based approach given
mechanistic knowledge of β(t).

G. Investigation of a mechanistic formulation for β
For all presented problems scenarios, we assumed only partial knowledge of the mechanistic
formulation used to generate the data. In the following, we showcase the performance of
the ensemble-based approach when - instead of simply using a neural network for β - some
mechanistic knowledge is available. Let

β(t) =

{
b1 if b3 < t< b3 + b4,

b2 else.
(A 1)

where b1, b2 ∈ [0, 3], b3 ∈ [0, 130] and b4 ≥ 0. With this, β(t) has the same image as previous
parametrisations and the data generation process described in Equation 4.2 can be described by
the equation above given suitable parameter values. Using data generated for the SEIR Pulse
problem (Gaussian noise, σ= 0.01), the ensemble-based method does not fit the observed states
well; it overestimates the noise and struggles to identify b4 (see Figures S4 and S5).

Since the best negative log-likelihood of the ensemble members (-3.83) is larger than the
negative log-likelihood of the ground truth parameters (-4.17) this indicates that the optimiser
tends to get stuck in suboptimal local minima. Note, that the initial parameter values are sampled
in a range that contains the ground truth values.



8

A
ssessm

entofU
ncertainty

Q
uantification

in
U

niversalD
ifferentialE

quations
-S

chm
id

etal.
..............................................................................................

Figure S6: UMAP for the set of parameters obtained using the MCMC and ensemble-based
method on the SEIR Pulse problem (Gaussian noise, 0.01). The ensemble members were selected
based on a threshold using a significance level of 0.01, 0.05 and using no threshold. The parameter
vectors contained mechanistic and neural network parameters.

Figure S7: UMAP for the set of parameters obtained using the ensemble-based method for the
SEIR Waves, SEIR Pulse and Quadratic Dynamics problems with a Gaussian noise of 0.01. The
parameter vectors contained mechanistic and neural network parameters.

H. Extended UMAP analysis
To investigate the clustering behaviour of the ensemble-based method visible in Figure 4, we
extended the analysis. Changing the significance level from 0.05 to 0.01 to obtain a threshold, as
well as not using a threshold value, does not change the general clustering behaviour observed;
see Figure S6. Furthermore, we investigated the ensembles obtained on the SEIR Waves, SEIR
Pulse and Quadratic Dynamics problems with a Gaussian noise of 0.01. Again, we find that
the clustering seems to be a general behaviour of the ensemble based method; see Figure S7.
Both analysis indicate that further research for the ensemble-based method is necessary to avoid
clustering, e.g. by using advanced optimizers that overcome local minima or deepening the work
on the definition of a suitable threshold.
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I. Additional figures

(a) Additional figures for UDE ensembles

Figure S8: Waterfall plot for the SEIR Pulse problem with Gaussian noise (0.01) for all models
(left), the best 8500 models (middle) and the best 300 models (right) according to the negative
log-likelihood values (negative LL). The y-values are shifted by the minimal value obtained. The
cut-off value clearly discards failed model trainings. Unlike many mechanistic systems, UDEs
tend to not converge to a global minimum when using multistart optimization.

Figure S9: Visualization of the ensemble-based parameter uncertainty estimation assuming a
constant β instead of the proposed neural network for the SEIR Waves scenario with Gaussian
noise (0.01). Four observations of the state R lie not within the prediction bands.
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Figure S10: Visualization of the ensemble-based epistemic predictive uncertainty estimation of
the SEIR Waves scenario with Gaussian noise (0.01). (a) Area covered by all ensemble members
per state in comparison to the data generating dynamics (ground truth). (b) Area coverages for
99%, 80% or 50% of the best ensemble members. (c) Visualization of the trajectories of the 10
best ensemble members (according to the negative log-likelihood). While the 10 best ensemble
members approximately follow the same trajectories, they do not coincide with the posterior
mean for the states S and E.

Figure S11: Visualization of the ensemble-based uncertainty of the neural network prediction of
β for the SEIR Waves scenario with Gaussian noise (0.01).
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Figure S12: Comparison of different noise model scenarios for the SEIR Pulse problem when using
the ensemble-based UQ method.

Figure S13: Visualisation of the ensemble-based UQ method for the Quadratic Dynamics problem
(Gaussian noise, σ= 0.01)
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(b) Additional figures for UQ based on MCMC

Figure S14: Visualization of the MCMC-based uncertainty of the neural network prediction of β
for the SEIR Waves scenario with Gaussian noise (σ= 0.01).

(c) Additional figures for UQ based on Variational Inference

Figure S15: Visualization of UQ of the neural network prediction of β for the SEIR Waves scenario
with Gaussian noise (σ= 0.01) using Variational Inference.
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(d) Additional figures for the method comparison

Figure S16: Comparison of the UQ methods on the SEIR Pulse problem (Gaussian noise, σ= 0.03).

Figure S17: Comparison of the mechanistic parameters of samples of the posterior distributions
for the SEIR Waves problem (Gaussian noise, σ= 0.01).
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