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Abstract

Here we report the results from exploratory analysis using a Bayesian network approach
of data originally derived from a large North European study of type 2 diabetes (T2D)
conducted by the IMI DIRECT consortium. 3029 individuals (795 with T2D and 2234
without) within 7 different study centres provided data comprising genotypes, proteins,
metabolites, gene expression measurements and many different clinical variables. The
main aim of the current study was to demonstrate the utility of our previously developed
method to fit Bayesian networks by performing exploratory analysis of this dataset to
identify possible causal relationships between these variables. The data was analysed
using the BayesNetty software package, which can handle mixed discrete/continuous
data with missing values. The original dataset consisted of over 16,000 variables, which
were filtered down to 260 variables for analysis. Even with this reduction, no individ-

ual had complete data for all variables, making it impossible to analyse using standard
Bayesian network methodology. However, using the recently proposed novel imputa-
tion method implemented in BayesNetty we computed a large average Bayesian net-
work from which we could infer possible associations and causal relationships between
variables of interest. Our results confirmed many previous findings in connection with
T2D, including possible mediating proteins and genes, some of which have not been
widely reported. We also confirmed potential causal relationships with liver fat that were
identified in an earlier study that used the IMI DIRECT dataset but was limited to a
smaller subset of individuals and variables (namely individuals with complete data at pre-
defined variables of interest). In addition to providing valuable confirmation, our analy-
ses thus demonstrate a proof-of-principle of the utility of the method implemented within
BayesNetty. The full final average Bayesian network generated from our analysis is freely
available and can be easily interrogated further to address specific focussed scientific
questions of interest.

Author summary

Bayesian network analysis can be used to identify putative causal relationships between
measured variables, including clinical measurements and measurements of genetic and
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genomic factors. Here we report the results from Bayesian network analysis of data orig-
inally derived from a large North European study of type 2 diabetes (T2D). Data were
collected for 3029 individuals within 7 different study centres, with the data comprising
genotypes, proteins, metabolites, gene expression measurements and many different
clinical variables. The original dataset consisted of over 16,000 variables, which were
then filtered down to 260 variables for analysis. Even with this reduction, not one indi-
vidual had complete data for all variables. Using standard methodology it would not

be possible to a fit a Bayesian network as it requires complete data. However, using the
novel imputation method implemented in the BayesNetty software package, we were
able to compute a large average Bayesian network from which we could infer possible
associations and causal relationships between variables of interest.

Introduction

The IMI DIRECT (DIabetes REsearCh on patient straTification) consortium [1,2] was set up
to gather a wide range of data at different study centres throughout Northern Europe in order
to study different aspects of type 2 diabetes (T2D). Findings from this dataset have been on
topics as diverse as associations with liver fat [3] and inferring regulatory networks [4]. Here,
rather than focussing on a specific question related to T2D, we perform exploratory analy-

sis of the dataset to identify possible causal relationships between variables using Bayesian
network (BN) methodology as implemented in our own BayesNetty software [5,6]. BNs can
be used to infer possible causal relationships between variables based on their conditional
dependencies and independencies, which can be particularly useful in complex biological sce-
narios with many measured variables. Understanding the relationships between measured
biological and clinical variables can inform about underlying biological mechanisms, which
may ultimately have clinical implications. The main advantage of our approach is that it can
handle mixed continuous/discrete data with missing values, which is vital for these types of
multi-omics datasets, as such studies often contain a considerable amount of missing data,
with no individuals having complete data for every variable. Our approach also leverages the
information provided by genetic variables (which can be considered as causal anchors) to help
better resolve the direction of non-genetic edges when fitting the BN, in a conceptually similar
(but complementary) approach to Mendelian Randomization [5,7].

Previous studies focussed on T2D [8,9] have used colocalization analysis [10] of molecular
quantitative trait loci (QTL) to identify a number of potential “effector” variables, including
transcripts (gene expression) and protein levels, that may explain the genetic associations seen
with T2D. Mahajan et al. (2022) [9] identified 97 candidate effector genes, including ADCY5
and TCF7L2, based on circulating plasma proteins (pQTL) and gene expression (eQTL)
in diverse tissues, while Vifiuela et al. (2020) [8] focussed on expression in human pancre-
atic islets and showed colocalization between genetic variants influencing T2D or glycemic
traits and 47 islet cis-eQTL, including ADCY5, DGKB and TCF7L2. Colocalization indicates
that the two traits in question most likely share a causal genetic factor but does not identify
the directionality of the relationship; it is possible that either trait acts as a mediator for the
other, or that the genetic variant has independent horizontal pleiotropic effects on both traits.
Therefore, Viniuela et al. (2020) [8] recommend regarding the genes highlighted by coinci-
dent GWAS and eQTL signals as candidate effector transcripts that should be further inter-
rogated through experimental approaches that directly test for causality. In their own anal-
ysis of the IMI DIRECT dataset, Brown et al. (2023) [4] used Bayesian networks applied to
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triplets of variables (one genetic variant and two molecular phenotypes) to infer the direc-
tion of causality, but they did not expand this investigation to include clinical variables such
as T2D.

In this current investigation, we fitted a large average BN (see Methods) to the IMI
DIRECT dataset after it had been pre-processed to reduce the number of variables down to
a manageable size of 260 variables in 3029 individuals. We then used sub-networks (Markov
blankets) to focus on variables of interest, such as body mass index (BMI), liver fat and T2D,
replicating and confirming many previous findings.

Results
Bayesian Network of all variables

We fitted a large average BN (see Methods) to the IMI DIRECT dataset after data pre-
processing and plotted it using igraph [11] (Fig 1). The edge strength threshold used for
plotting (which represents the posterior probability that a given edge exists) was chosen

to be 0.5, the value analytically suggested for this average network by the methods of Scu-
tari et al. [12,13]. Thus, all edges shown in Fig 1 have posterior probabilities greater than 0.5.
S1 Table lists all edges from Fig 1 together with their strength and direction values, while S2
Table lists every edge in the average network without using any edge threshold.

The BN in Fig 1 has too many variables (n=260) and edges (n=1123) to make specific infer-
ences via visual inspection, but it nonetheless shows the patterns of overall network structure.
We found that variables of the same kind tended to be more connected (e.g. gene expression
with gene expression, metabolite with metabolite etc.) (Table 1). Although there were also
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Fig 1. Average BN constructed using imputed data of all variables with strength threshold 0.5. Edges are labelled with
the probability that they exist (strength), and, in brackets, the probability that they exist in the shown direction, given that
they exist (direction). The thickness of the edges is proportional to the edge strength. The nodes are coloured as follows: red
are metabolites; blue (with gene name) are proteins; purple (with gene name) are gene expression measurements; amber are
clinical variables; green (prefixed with AS) are allele scores.

https://doi.org/10.1371/journal.pgen.1011776.9001
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Table 1. Percentage of edges in Fig 1 going from/to variables of various types.

To variable type
From variable type  |clinical metabolite protein expression
clinical 68.30 14.69 7.47 9.54
metabolite 4.96 89.72 2.13 3.19
protein 0.63 1.27 93.67 4.43
expression 2.07 0.52 3.63 93.78

https://doi.org/10.1371/journal.pgen.1011776.t1001

connections between different kinds of variables, these were less common, so the same kinds
of variables tended to visually cluster together when using the automatic plotting feature of
igraph. The clinical variables (shown in amber) were often more connected to each other
and, to a lesser extent, to other kinds of variables. Allele score variables (shown in green),
which represent polygenic risk scores [14] (see Methods), were constrained to be parent vari-
ables, as the direction of causal effect only makes biological sense when going from genetic
variables to other variables. Allele score nodes in Fig 1 are thus placed around the nodes for
their corresponding child variables.

The directionality of the network identified using both strength and direction threshold 0.5
resulted in a mean of 4.53 edges per parent variable pointing towards child variables, while
the mean number of connections pointing towards any given child variable was 7.29, sug-
gesting that these child variables were potentially defined by the coordinated causal effects of
many other variables. The mean number of connections from clinical, metabolite, protein and
expression variables were (6.69, 8.29, 6.58, 6.43) respectively, while the mean number of con-
nections to clinical, metabolite, protein and expression variables respectively were (4.26, 3.18,
5.15, 6.76), suggesting that clinical variables, metabolites and proteins tend to produce more
edges than they receive.

From this large network we can focus on variables of interest by plotting their Markov
blankets, which consist of all variables that are needed to predict the behaviour of a chosen
variable and its children [13].

Markov blanket for Liver Fat recapitulates previous findings

As a proof-of-principle, we start by investigating a network centred on liver fat, as previously
studied by Atabaki et al. [3] using the same IMI DIRECT dataset. The focus of the analyses
by Atabaki et al. [3] was to better understand possible relationships of liver fat with T2D and
non-alcoholic fatty liver disease (NAFLD), which frequently co-occur. Atabaki et al. [3] also
used BN methodology for their analyses focusing on the complete data for their variables of
interest including clinical and proteomic measurements (331 individuals with T2D and 964
free from diabetes). In addition, Atabaki et al. conducted two-sample bidirectional Mendelian
Randomization [15] on some of the edges identified by BN, with genetic instruments lever-
aged from publicly available sources [3].

Because standard BN implementations usually require observations without missing
data, which can be costly and difficult to produce (particularly in the context of clinical data,
including data from Electronic Health Records), methods that can cope with missing data like
BayesNetty offer a considerable advantage. Incorporation of genetic variables such as allele
scores (as is routinely done in BayesNetty) can also help better resolve the direction of edges
when fitting the BN. S1 Fig shows the Markov blanket for liver fat derived from Fig 1, which
incorporates data from all 3029 individuals available and makes use of genetic variables in the
form of allele scores (as outlined in the Methods).
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The results of Atabaki et al. [3] had suggested that a higher insulin secretion rate (Basal
ISR) and excess visceral fat (VAT) accumulation were the most likely clinical factors in the
dataset to cause liver fat accumulation and therefore NAFLD. Our selected network for liver
fat (S1 Fig, S3 Table) found strong evidence of a causal relationship from VAT to liver fat, with
an edge strength value of 0.99 and a direction value of 0.86. There is also strong evidence of a
causal relationship of Basal ISR to liver fat with strength and direction values of 0.86 and 0.95
respectively.

Our network identifies both liver iron and VAT to have centre as a parent variable. This
node encodes the centre of origin of the samples, thus identifying differences in the mea-
surement of these variables between study centres, but also identifying differences in BMI,
as some centres provided samples from individuals with higher values, which introduces a
correlation between BMI and centre [1,2]. We also observed total abdominal adipose tissue
(TAAT) and abdominal subcutaneous adipose tissue (ASAT) as causal variables on liver fat
(S3 Table), providing an additional causal path from BMI to liver fat. This causal path (Cen-
tre - BMI — TAAT — VAT — Liver Fat) is not directly visible in S1 Fig, as BMI does not
form part of the Markov blanket for liver fat (which is formally defined as the variable of
interest and all parent variables, child variables and variables that are also parents of the child
variables [13]), however it can be deduced from the connections from Fig 1 listed in S1 Table.

In summary, BayesNetty was able to provide similar results to those from traditional BN
methods, with the added advantage of allowing the inclusion of data (including genetic data)
from all participants, even in datasets that include missing data.

Type 2 Diabetes

Given that the IMI DIRECT cohort was developed to study T2D, including both individu-

als diagnosed with T2D and those at risk of diabetes, we next evaluated a Markov blanket

for T2D (Fig 2). The aim of this investigation was to see to what extent known relationships
with T2D could be recapitulated, along with uncovering any novel or unexpected relation-
ships. There were several incoming arrows for the T2D variable (see a full list of all edges in
$4 Table). Not unexpectedly, fasting and mean glucose were found as parent (i.e. potential
causal) variables for T2D, as T2D is defined by the glucose level in the blood being too high.
The variable coding for Impaired Glucose Regulation (IGR) was also found to be a parent
variable for T2D. People with IGR have a high blood-glucose level but not high enough to be
diagnosed with T2D; this is sometimes referred to as pre-diabetes and is known to be a pre-
cursor to a T2D diagnosis [16]. It is known that males have a higher incidence rate of T2D
than females and this is shown by the sex variable also being a parent variable of T2D [17].
However, our network suggested this effect was both direct and indirect by also modulating
levels of expression for FADSI. The level of expression for FADS2 was also included in the
network, identifying the well known involvement of fatty acid levels and the genomic region
around those two genes on T2D [18,19]. Moreover, the network included the expression of
MYREF. A previous study [20] found a variant in MYRF (upstream of FADS2) to be associated
with lower LysoPC 20:2 and increased risk of T2D. In addition, a multimorbidity study aim-
ing to identify genes acting on multiple diseases was able to identify a cluster of genes includ-
ing MYRF and the FADS1-FADS2-FADS3 region to be involved in multiple traits such as T2D,
coronary artery, BMI and cholesterol among others [21]. Finally, it is perhaps less well known
that height has also been associated with T2D, where taller people have been found to have

a lower incidence rate of T2D [22-24], perhaps explaining the identification of height as a
parent variable of T2D.
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Fastin®dlucose

Fig 2. Markov Blanket of type 2 diabetes diagnosis taken from the average BN constructed using imputed data
of all variables with strength threshold 0.5. Edges are labelled with the probability that they exist (strength), and,

in brackets, the probability that they exist in the shown direction, given that they exist (direction). The thickness of
the edges is proportional to the edge strength. The nodes are coloured as follows: red are metabolites; blue (with gene
name) are proteins; purple (with gene name) are gene expression measurements; amber are clinical variables; green
(prefixed with AS) are allele scores.

https://doi.org/10.1371/journal.pgen.1011776.9g002

Our network for T2D revealed only a single outgoing edge, suggesting a potential causal
influence of T2D on HLA-DRB5 gene expression. While HLA-DRBS5 has been linked to type 1
diabetes (T1D) [25], its involvement in T2D remains unclear, with limited evidence support-
ing an association between the two [26], presumably in the direction of the gene causing the
disease rather than vice versa. We observed a potential causal connection between the abun-
dance of the plasma protein KCNQ1 and the expression of HLA-DRB5. The region around the
KCNQI gene is well known for the association to T2D [27], pointing to the gene as a likely
candidate gene mediating the activity of this locus. However, our network does not report
a direct connection between KCNQ1 and T2D, and the connection through HLA-DRB5
involves an arrow in the “wrong” direction for suggesting a causal effect of gene on disease
(going from T2D towards HLA-DRB5 gene expression rather than vice versa). Overall, these
relationships uncovered between HLA-DRB5, KCNQI1 and T2D require further investigation
and validation, perhaps using different (more targeted) types of data.

It is of interest to investigate to what extent the relationships uncovered by our Bayesian
Network approach are supported by evidence from Mendelian Randomization (MR). This
is complicated by the fact that many of the relationships we detect are pleoitropic, with the
same genetic variant(s) operating through multiple exposures, and with exposures operat-
ing through effects on one another. For example, in Fig 2, FADSI expression is inferred to
operate both directly on T2D and indirectly through FADS2, while FADS2 is inferred to oper-
ate both directly on T2D and indirectly through MYRF. These types of complicated depen-
dencies between variables causes problems for standard MR approaches[28], which gener-
ally require a single route from each exposure to an outcome. This necessitates the use of
more sophisticated approaches. We therefore used multivariable MR [29], as well as a recently
proposed method, MrDAG [28], to investigate the inferred relationships between FADSI,
FADS2, MYRF and T2D, taking advantage of the ability of these methods to operate on sum-
mary statistics from large-scale studies, rather than requiring individual-level data. We used

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011776 July 15, 2025 7120



https://doi.org/10.1371/journal.pgen.1011776.g002
https://doi.org/10.1371/journal.pgen.1011776

PLOS GENETICS Bayesian network imputation methods identify putative causal relationships in a type 2 diabetes dataset

genome-wide T2D summary statistics from a large-scale study of 180,834 affected individu-
als and 1,159,055 controls [9] and downloaded summary statistics for cis-expression quan-
titative trait loci (cis-eQTL) associations for FADS1, FADS2 and MYRF from the eQTLGen
consortium [30]. Filtering to only include independent genetic instruments (not in link-

age disequilibrium with one another) identified four SNPs that showed significant associa-
tion with (that thus could be used as instruments for) gene expression, but only one of these
(rs198462) also showed significant association with T2D (Table 2. This in itself suggests that
MR is unlikely to provide much evidence for causal effects of gene expression on T2D, as the
most “basic” implementation of MR essentially boils down to testing for association between
the instrument and the outcome[31]. Consistent with this expectation, multivariable MR
using the multivariable inverse-variance weighted method implemented within the R package
MendelianRandomization provided no significant evidence of causal effects of gene expres-
sion on T2D for FADS1, FADS2 and MYRF (p-values 0.610, 0.381, 0.232 respectively). Inter-
estingly, univariate analysis using the inverse-variance weighted method did show some evi-
dence for a causal effect of MYRF gene expression on T2D (p-value 0.012), although no sig-
nificant effects were seen at FADSI and FADS2 (p-values 0.292 and 0.550 respectively). This
discrepancy between the multivariable and univariate MR analyses can perhaps be attributed
to the fact that the variables of interest may indeed be involved in a complicated network of
mutual relationships, of which multivariable MR method only provides evidence of effects
over and above the effects that are already included in the model—in the case of causal effects
between risk factors, estimates represent the direct causal effect of each risk factor on the
outcome by a pathway that is not operating via the other risk factors[29].

Analysis using MrDAG also showed little evidence for relationships between FADSI,
FADS2, MYRF (considered as exposures) and T2D (considered as the outcome). The only
directed edge identified by MrDAG with an estimated probability larger than 0.01 was the
edge between FADSI and FADS?2, for which the direction could not be determined (FADSI
to FADS2 had edge probability 0.496 while FADS2 to FADSI had edge probability 0.486).

The various edges between these particular variables implied by our BN analysis of the IMI
DIRECT dataset do not, therefore, seem to be recapitulated in MR analysis of summary
statistics from large-scale GWAS. It is possible that there are some unique features of the
individual-level IMI DIRECT data that are being captured through our BN approach. Alter-
natively, it may be that the relationships uncovered in the IMI DIRECT dataset are simply
false positives. Ultimately, all of these methods (both the network-based methods and the
more traditional MR type methods) are perhaps best considered as exploratory analysis tools,
generating putative causal relationships between variables that ideally need further investiga-
tion/verification by other means (e.g. experimental laboratory work).

Table 2. Association test p-values from publicly available summary statistics for association between genetic
instruments and gene expression or T2D.

SNP FADSI FADS2 MYRF T2D
15198462 1.74e-23 7.07e-82 3.85e-132 7.70e-03
1517764389 1.28e-05 1.56e-34 0.338 0.111
rs149778219 1.10e-05 1.45e-03 0.106 0.340
152958533 6.41e-03 0.429 6.10e-06 0.888

https://doi.org/10.1371/journal.pgen.1011776.t002
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Body Mass Index

Next we explore a Markov blanket for body mass index (BMI) (Fig 3, S5 Table). BMI is
defined as weight divided by height squared, so strong associations with both weight and
height are expected. While the direction value of 0.5 from weight to BMI does not indicate a
clear causal relationship, the direction value of 0.99 from height to BMI suggests a potential
causal influence. However, this may partly reflect the mathematical structure of BMI rather
than a true causal effect. Despite BMI being directly calculated from weight and height, a
causal relationship could still exist if these variables co-vary in specific ways across individ-
uals. For instance, previous studies have shown that taller children tend to have higher BMI,
while in adults height is inversely associated with BMI—shorter individuals tend to have
higher BMI [32]—a pattern that may be captured in the network analysis.

The network suggests that BMI is causal on total abdominal adipose tissue (TAAT) and on
abdominal subcutaneous adipose tissue (ASAT), which are essentially measurements of fat
around the abdomen. It is generally accepted that obesity causes an increase in these kinds
of fat (as discussed, for example, by Verdu et al. [33]). A variable for the Stumvoll index is
shown; this is designed to measure insulin sensitivity, that is, how sensitive the body is to the
effects of insulin, and thus how able to lower blood glucose levels. As BMI is one of the vari-
ables used to define the index, a causal relationship from BMI would be expected. However,
this connection may also be identifying the known role of BMI on insulin sensitivity. There is
also a suggestion of a causal relationship between BMI and insulin from the oral glucose tol-
erance test (OGTT), which has previously been reported [34]. Overall, the BMI centred net-
work identified the intricate casual relationship between BMI and insulin sensitivity and adi-
pose accumulation, but, with the exception of a genetic variable, the network did not involve
any molecular phenotypes.

Fig 3. Markov Blanket of BMI. All edges and nodes show a Markov Blanket of BMI taken from the average BN
constructed using imputed data of all variables with strength threshold 0.5. Edges and nodes that are not faded show
a Markov Blanket of BMI from the average BN with a strength threshold of 0.85 applied instead of 0.5. The thickness
of the edges is proportional to the edge strength. Non-faded edges are highlighted in black and labelled in red with
the probability that they exist (strength), and, in brackets, the probability that they exist in the shown direction,
given that they exist (direction). Nodes are coloured as follows: red are metabolites; blue are proteins; purple are gene
expression measurements; amber are clinical variables; green are allele scores.

https://doi.org/10.1371/journal.pgen.1011776.9g003
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Body Mass Index and Type 2 Diabetes

As there is considerable evidence indicating that obesity is a leading cause of some types of
T2D, we attempted to find evidence in our average BN of the possible causal path from BMI
to T2D. The exact causal mechanisms linking BMI and T2D are not fully understood and,
from this dataset, there was no strong evidence linking them directly or indirectly. There is,
however, some weak evidence that there is a causal path via fasting glucose and perhaps mean
glucose, both of which appear in the Markov blankets for T2D (Fig 2) and BMI (Fig 3). As
well as a direct link between fasting glucose and T2D, Fig 2 also shows an indirect link via
IGR. We therefore examined the sub-network comprised of T2D, BMI, fasting glucose, mean
glucose, IGR and all edges between them (Fig 4, S6 Table). There have been some studies link-
ing BMI to fasting glucose [35], so, despite the weakness of the edges to/from fasting glucose
(0.43) and mean glucose (0.45), these may represent genuine relationships. The direction
value of BMI to mean glucose is around 0.5, so there is no strong evidence for the direction-
ality of this edge, while the edge from BMI to fasting glucose has a direction value of 0.68,
providing some evidence that the direction of causality is in the direction shown.

The reasons for the apparent weak evidence linking BMI to T2D in this dataset could be
numerous. The T2D variable is already adequately described by variables other than BMI, so
if there is a causal relationship from BMI to T2D in the dataset, it may well be captured via
other variables. As the mechanisms underpinning the involvement of BMI in T2D are com-
plex, it may not be captured in this dataset other than through multiple variables implicating
insulin resistance and glucose management, with weaker or no connections between BMI and
fB-cell function variables. Finally BMI is a constructed variable calculated from weight and
height, designed to indicate excess body fat, and it does not take into account other factors
implicated in the development of T2D including fat distribution or sex and ethnic differences.
For this reason, the use of BMI as a measure of the risk of T2D and other diseases has long
been criticised [36]. Ethnic—or other—heterogeneity between participants could potentially

Fig 4. Sub-network taken from the average BN constructed using imputed data of all variables consisting of
variables of interest with respect to T2D and BMI. Edges are labelled with the probability that they exist (strength),
and, in brackets, the probability that they exist in the shown direction, given that they exist (direction). The thickness
of the edges is proportional to the edge strength. The nodes are coloured as follows: amber are clinical variables and
green are allele scores.

https://doi.org/10.1371/journal.pgen.1011776.9004
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be another reason for the lack of strong evidence linking BMI to T2D in this dataset. Thus,
BMI may not stand out as a direct biological variable in the causal path with T2D.

Markov blanket for Centre explains correlations between technical and
biological variables

IMI DIRECT is a multi-centre study that used existing population-based cohorts from across
Northern Europe. The main study was divided into two cohorts with individuals at risk of dia-
betes sampled at four centres (Finland, The Netherlands, Denmark and Sweden) and with
T2D at six centres (The Netherlands, Denmark, Sweden and UK (Dundee, Exeter, Newcas-

tle upon Tyne)) [1,2]. As a result, the distribution of some clinically relevant variables is not
random. For example, individuals diagnosed with T2D had a mean BMI of 30.5 kg/m? while
those at risk of diabetes had a mean BMI of 27.9 kg/m?. We decided to include a variable
called “Centre” that identifies the cohort of origin of the data, as it captures subtle biologi-

cal differences across the dataset. A network focusing on the Centre variable (Fig 5, S7 Table)
shows connected clinical and molecular phenotypes associated to these subtle effects. For
example, with a very high edge threshold of 0.9, we observed variables relevant for T2D and
BM]I, included also on Figs 2 and 3. Given that one centre provided samples only for the study
of diabetes risk, and three only for the study of T2D, it is not surprising this network partially
recapitulates the same connections.

Discussion

This study aimed to demonstrate the utility of our previously developed method to fit BNs
using mixed discrete/continuous data (including missing data) [5,6] and apply it to an inter-
esting large dataset to investigate possible causal relationships therein. The IMI DIRECT study
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Fig 5. Markov Blanket of centre. All edges and nodes show a Markov Blanket of centre taken from the average BN
constructed using imputed data of all variables with strength threshold 0.5. Edges and nodes that are not faded show
a Markov Blanket of centre from the average BN with a strength threshold of 0.9 applied instead of 0.5. The thickness
of the edges is proportional to the edge strength. Non-faded edges are highlighted in black and labelled in red with
the probability that they exist (strength), and, in brackets, the probability that they exist in the shown direction, given
that they exist (direction); their connected nodes are also labelled and highlighted. Nodes are coloured as follows:
red are metabolites; blue (with gene name) are proteins; purple (with gene name) are gene expression measurements;
amber are clinical variables; green (prefixed with AS) are allele scores.

https://doi.org/10.1371/journal.pgen.1011776.9g005
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provided an ideal dataset for this, with many variables that had complete data (e.g. molecu-
lar data derived from sequencing methods), but a high missing rate for some sections of the
data. The clinical data variables, in particular, had many variables where blocks of individuals
had no data, while the non-clinical variables derived from sequencing and high-throughput
methods generally had complete data with the exception of a few individuals having no pro-
tein data. The missing data pattern for the clinical variables (S2 Fig) shows no individuals with
complete data for all variables, however with the use of our imputation method we were able
to impute all variables, thus allowing the discovery of possible relationships between variables
at an increased power over using a reduced dataset.

The large amount of missing data seen for some clinical variables might be expected
to have an impact upon the quality of the imputations for these variables. In our previous
work [6] we used computer simulations to explore the performance of our method under
varying amounts of missing data (including up to 90% for some variables), and found that our
approach was still generally successful in identifying the correct or close-to-correct network
structure in terms of connections between variables of interest. As previously noted [6], the
goal of our imputation approach is not to impute the missing values as accurately as possible,
but rather to impute the missing values in such a way as to allow us fo infer the underlying net-
work as accurately as possible. For this purpose, the increase in power obtained through per-
forming any type of imputation (albeit imprecise), and thus increasing the usable sample size,
was found to outweigh any limitations and loss of power due to inaccuracies in the imputed
values.

We sought to explore possible causal relationships between variables in the IMI DIRECT
diabetes dataset. We did this by firstly fitting a large average BN which revealed that vari-
ables of the same kind tend to be more connected to one another, for example, gene expres-
sion to gene expression. These results complement those from an earlier study using this same
dataset aimed at identifying causal relationships between genetically associated molecular
traits (QTLs) [4]. Similar to our current findings, this earlier study found that molecular phe-
notypes of the same class, e.g. expression-to-expression, show more often dependent relation-
ships between them than phenotypes of different classes. Because the dependencies identi-
fied represent causal effects of one phenotype on another, both sets of results likely indicate
the fact that variables of the same type are most probably influenced by the same regulatory
mechanisms.

We then focussed on the variables of interest by plotting their Markov blanket graphs,
in particular focussing on variables for T2D, BMI and liver fat. The graphs confirmed many
obvious relationships between variables, such as those between BMI, weight and height. The
findings in relation to liver fat corroborate, using a much larger dataset, the main findings of
Atabaki et al. [3]. The graphs also confirmed many other relationships that have some evi-
dence in the literature, such as FADSI and FADS2 being causal on T2D. However, by design,
we did not identify many of the genes reported in other large-scale studies (such as[8]) as
being associated with T2D, on account of the fact that, in order to reduce the number of vari-
ables to consider to a manageable size, we filtered gene expression variables to choose only
those likely to have potentially genetically mediated relationships with the already selected
metabolite and protein variables, rather than preferentially selecting gene expression variables
that were associated with any particular clinical variable (such as T2D).

A well established cause of T2D is obesity and so, notwithstanding the caveats above, we
investigated possible causal routes. There was no strong evidence in the data to support a
direct relationship but there was some weak evidence of BMI causing T2D via fasting glu-
cose, possibly implicating the role of insulin resistance. This likely reflects the complexity of
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the relationship of obesity with T2D and the possibility that there are missing variables that
are crucial to describing this relationship.

It was disappointing that not all of the relationships uncovered through BN analysis of the
IMI DIRECT dataset could be validated through MR analysis of publicly available summary
statistics. A full exploration of all connections identified is beyond the scope of the current
investigation and, in any case, would be difficult to implement from a practical point of view,
owing to the many pleiotropic and mutually connected relationships that we inferred, along
with the requirement to find independent genetic instruments acting on the various expo-
sures. It is possible that there are some unique features of the individual-level IMI DIRECT
data that are captured through our BN approach; this, along with the fact that, by design, our
approach captures complicated networks of dependencies rather than overall average effects,
could also explain why not all of our findings are recapitulated within the literature. BN and
MR can be considered as somewhat complementary approaches|5], both of which make var-
ious different (largely unverifiable) assumptions and can be sensitive to violations of these
assumptions. MR (and variations thereof) tends to be more useful for examining specific
hypothesized exposure—outcome relationships when the direction of relationships between
variables is already known (or can be plausibly assumed), while BN tends to be more useful
for exploring different possible configurations of relationships between all measured variables.
Ultimately, all of the approaches considered here are perhaps best considered as exploratory
analysis tools, generating putative causal relationships between variables that ideally need fur-
ther investigation/verification by other means (e.g. experimental laboratory work). However,
we note that this may be easier for some types of exposures (e.g. for biological measurements
such as gene expression) than for others.

In conclusion, we have applied our BN imputation approach to identify possible causal
relationships between variables in a large-scale clinical study of T2D, leading to the replica-
tion of many previously identified causal relationships in the final average BN. Our imputa-
tion method was vital for the analysis of this large dataset due to the structure of the missing
data, and the approach is applicable to large, complex networks containing many hundreds of
variables.

Methods
BayesNetty software

For details of the methodology implemented in our Bayesian network software package,
BayesNetty, please see our earlier publications [5,6]. The code for BayesNetty is open source,
implemented in C++ and is freely available to download from the BayesNetty website and
GitHub, where there is also documentation with working examples. The software includes
output to plot graphs of the identified BNs using the R package igraph [11], which is used for
the plots throughout this manuscript.

Average networks

An average network, as described by Scutari and Denis [13], is a useful device to account

for uncertainty in the direction of edges and in the network structure identified as a whole.
To compute the average network, the data is bootstrapped with replacement many times
(throughout this manuscript we use 1000 bootstrap replicates) and the best fit network is fit-
ted at each iteration. The best fit network is the directed acyclic graph (DAG) whose network
score suggests that it “best” represents the relationships between variables implied by the data;
the Bayesian information criterion (BIC) used to construct the network score [13] has the
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structure of a penalized negative log-likelihood, meaning that models with lower BIC scores
are considered to be a better fit, with the score for any hypothesized network inversely related
to its posterior probability (calculated under specific distributional assumptions, namely that
discrete nodes follow a multinomial distribution and continuous nodes a normal distribution,
conditional on their parent nodes).

The number of times that an edge appears between two nodes in each best fit network is
recorded, together with its direction. This allows us to calculate the strength and direction val-
ues (between 0 and 1) for each pair of nodes, where the strength is defined as the probability
(proportion of times) that an edge appears between the two nodes and the direction is the
proportion of times that the edge is in a given direction, given that it exists. We informally
refer to these strength and direction values as the “posterior probabilities” of an edge existing,
or being in a particular direction (given that it exists), although we note that, strictly speaking,
these are not posterior probabilities in the Bayesian sense, because they are not sampled from
the posterior distribution of the edges or networks.

If an edge has a high direction value, then it indicates that there may be a causal rela-
tionship in that direction, while, if the value is near 0.5, this suggests there is little evidence
provided by the data for the direction of the relationship. The resultant average network is
given by a table listing all possible edges with their strengths and directions. This typically
has many unlikely edges which appeared in only a few bootstrap best fit networks and so
have low strength. Thus, to plot the network while including only the most reliable edges, a
strength threshold can be used to omit weak edges from the plot. Rather than choosing an ad
hoc threshold, a suitable choice of threshold has been proposed based upon statistical argu-
ments [12,13]. This choice of threshold is used as the default when plotting the average graphs
calculated using BayesNetty.

Imputation of missing data

We previously proposed a novel approach for imputing missing data prior to fitting Bayesian
networks, designed to optimise accuracy when determining either the best fit or the average
network [6]. Here we use a slightly adapted version of this previous approach. In brief, we
use a variant of nearest neighbour imputation [37], where the missing data in one individ-
ual is replaced with data from another individual, the nearest neighbour. An advantage of this
approach is that it can be used with mixed discrete/continuous data, without imposing any
direction on the relationships between variables at the imputation stage. We start by fitting an
initial best fit network calculated on a dataset where the missing data are replaced with ran-
domly sampled values (with replacement) from the set of non-missing values. The algorithm
then proceeds through each individual that has missing data in turn. To decide which vari-
ables to use for determining the nearest neighbour for a given “index” individual, we use the
initial best fit network. For each variable with missing data in the index individual, a list of all
the other variables that have connecting edges and non-missing data for the index individual
is constructed. The values of these “nearby” variables are then used to calculate the distance
between the index individual and every other individual that has non-missing data both for
these nearby variables and for the variable with missing data that needs to be imputed. The
individual with the smallest distance is designated as the “nearest neighbour” with respect to
that missing variable, and their data for the missing variable is then copied across from the
nearest neighbour to the index individual. The process of determining the nearest neighbour
and copying across the relevant data is then repeated for each variable that is missing in the
index individual. The whole procedure is then repeated for each individual that has missing
data.
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IMI DIRECT data

The IMI DIRECT (Dlabetes REsearCh on patient straTification) consortium [1,2] is engaged
in research on diabetes and was initially funded by the European Union’s Innovative
Medicines Initiative (IMI). The IMI DIRECT data used for the analyses in the current paper
consists of data collected at baseline from 7 different centres (Amsterdam, Copenhagen,
Dundee, Exeter, Kuopio, Lund and Newcastle upon Tyne) and comprises blood/plasma-based
measurements of metabolites, proteins and gene expression, clinical variables and SNP geno-
types. There were 795 individuals diagnosed with T2D and 2234 individuals without (albeit at
risk of) T2D, giving a total of 3029 individuals with a mean age of 61.7 years (standard devi-
ation 6.9 years), 70.7% of whom were male. Full details of the sample collection, laboratory
processing and data availability can be found in the publication by Brown et al. (2023) [4].

Data pre-processing

The initial dataset consisted of 119 metabolites, 377 proteins, 16,219 gene expression vari-
ables and 65 clinical variables (which, apart from age and sex, were inverse normal trans-
formed), measured at a single (baseline) timepoint, together with over 81 million imputed
SNP genotypes. The metabolites, proteins and gene expression variables were considered pri-
marily as potential mediators for one another (and for the clinical variables). In common
with Mendelian Randomization approaches to inferring causality, Bayesian network anal-
ysis approaches applied to data from a single timepoint make use of the measured genetic
factors as causal anchors to orient the direction of edges in a directed acyclic graph, rather
than requiring (or making use of) longitudinal measurements [5]. We restricted our focus

to the targeted (rather than untargeted) metabolite data generated by IMI DIRECT in order
to limit the number of variables considered. As this was still too large a dataset to perform
Bayesian network analyses, due to computational limitations and the potential for a high
number of false positive edges [38], it was considered appropriate to first reduce the dataset
to a more manageable size, retaining only those variables showing the strongest relationships
with genetic factors (which can be used to orient the direction of edges). Firstly, we decided
to keep only metabolites and protein variables passing a p-value threshold of 0.01 adjusted
for multiple testing using Bonferroni correction for association with at least 20 different SNPs
from genome-wide association study (GWAS) analyses. Five genetic principal components
(PCs) were included as covariates to model any population stratification/substructure. This
GWAS of metabolites and proteins resulted in 34 metabolite and 27 protein variables. Requir-
ing association with at least 20 SNPs (many of which would have been in linkage disequi-
librium) helped to decrease the possibility that these SNP associations were spurious arte-
facts. The 4564 SNPs contributing to these associations were then used to perform association
analyses (again including PCs as covariates) for each of the 16,219 gene expression variables,
retaining those passing a p-value threshold of 0.01 adjusted for multiple testing using Bon-
ferroni correction. Each gene expression variable with more than one significant SNP was
retained for BN analyses, resulting in 33 gene expression variables that would be expected,

by design, to have potential genetically mediated relationships with the selected metabolite
and protein variables. We note that this procedure necessarily removes many gene expression
variables that might be of interest with respect to any particular clinical phenotype (such as
T2D, for example). If a particular clinical trait were of interest, then an alternative filtering
algorithm, that preferentially retains molecular variables on the basis of their association with
the chosen clinical phenotype, might be preferred. However, for the purposes of the current
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investigation, we were more interested in exploring the relationships between different molec-
ular variables than in singling out a particular clinical variable on which to focus. All 65 clini-
cal variables were kept, including a discrete variable for the administrative centre in which the
individual data was gathered.

Weighted allele score variables (polygenic risk scores) were created for each retained
metabolite, protein and gene expression variable following standard practice [14]. Specifically,
these scores were constructed as the sum of the number of risk alleles possessed at each signif-
icant SNP, weighted by their estimated allelic effect (as estimated from the relevant metabo-
lite, protein or gene expression GWAS), while pruning SNPs for linkage disequilibrium (to
retain only independent genetic predictors) using standard clumping analysis methods. Use
of genetic variables such as allele scores (also known as polygenic risk scores) is an important
step to better resolve the direction of edges when fitting a BN. Another allele score was also
created for BMI using previously identified significant SNPs [39]. Further allele scores were
created for any clinical variables with significant SNPs from GWAS analysis carried out using
the IMI DIRECT dataset. The threshold used for significant clinical variable-SNP associations
was 0.05 adjusted for multiple testing using a Bonferroni correction. This gave 8 more vari-
ables with allele scores (fasting HDL, fasting LDL, fasting TG, fasting ALT, fasting cholesterol,
glucose sensitivity, rate sensitivity, and liver fat). No significant genetic associations were
identified with diabetes, which is perhaps not surprising given that the many genetic associ-
ations with type 2 diabetes previously identified through large-scale GWAS [9] have required
sample sizes for discovery in the hundreds of thousands. This resulted in a final dataset of 261
variables, from which one duplicate sex/gender variable was removed, leaving 260.

Analysis

Before any analyses were performed, the data were preprocessed as described above. The
resultant dataset consisted of 260 variables for 3029 individuals, however not a single individ-
ual had complete data for every variable. Most of the missing data were for clinical variables
(S2 Fig) where some variables had no data for either the cases or controls. All of the data for
other variables was complete except for 14 individuals with no protein data. As BNs cannot be
fitted to data with missing values, we first used our BayesNetty software to impute the miss-
ing data as described previously [6]. The imputed dataset was then used to fit an average BN
as described above. In the fitting process some constraints were placed on the edges between
variables. Allele score variables were constrained as parents for the variable for which they
had been constructed and no other edges were permitted to or from the allele score variables.
The variable for sex was constrained to have no parent variables and, as the variable for cen-
tre was discrete, it was automatically constrained to have no parent nodes that are continu-
ous. T2D was treated as a continuous trait in order to allow it to have parent nodes that are
continuous.

The final average network was used to extract sub-networks known as Markov blan-
kets [12], which consist of one variable of interest and all parent variables, child variables and
variables that are also parents of the child variables. The Markov blanket thus consists of all
information necessary to infer the variable of interest and its child variables.

Analysis run times

It took around 9 minutes 45 seconds to impute data for each individual, so for the 3029 indi-
viduals this would take over 20 days if ran sequentially, however using a computer cluster it
was possible to impute the data in parallel, reducing the computation time to less than one
day.
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To compute the average network, 1000 best fit networks were computed taking around 12
minutes and 41 seconds each to fit, giving a total time of over 8 days to calculate. Again it was
possible to do the computation in parallel reducing the computation time to less than one
day.

Acknowledgments

The IMI DIRECT Consortium which provided the data used in this publication has received
support from the Innovative Medicines Initiative Joint Undertaking under grant agreement
115317 (DIRECT), resources of which are composed of financial contribution from the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in
kind contribution. Information on the initiatives and activities of the IMI DIRECT Consor-
tium is available at http://www.directdiabetes.org/. Andrew Hattersley and Tim McDonald
acknowledge material support from Exeter NIHR CRF and Exeter NIHR BRC.

Supporting information
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S2 Fig. Missing data pattern of the clinical variables. Each column represents one of the
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