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Summary 15 

 16 

As the number of single-cell datasets continues to grow rapidly, workflows that map new data to 17 

well-curated reference atlases offer enormous promise for the biological community. In this 18 

perspective, we discuss key computational challenges and opportunities for single-cell 19 

reference mapping algorithms. We discuss how mapping algorithms will enable integration of 20 

diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse 21 

species, and will eventually replace manual and laborious unsupervised clustering pipelines. 22 

 23 

Introduction  24 

 25 

Reference datasets (see Glossary) and mapping algorithms are transforming analytical 26 

workflows for single-cell sequencing datasets. This mirrors similar trends that resulted from the 27 

construction of the first human genome map1. reference-based analysis shifts data interpretation 28 

from an unsupervised to a supervised domain, enabling information accumulated from multiple 29 

prior experiments to help interpret new data. When analyzing genome sequence data, the 30 

existence of a reference map ensures that each new experiment does not require a re-assembly 31 

of the genome from the data itself, dramatically simplifying analytical workflows and reducing 32 
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requirements on read length and data quality. Similarly, for single-cell analysis, efficient 33 

reference-mapping workflows can replace manual, laborious, and subjective unsupervised 34 

clustering and labeling tasks with automated mapping and annotation.  35 

The widespread use of reference mapping for genome sequence analysis also provides a 36 

roadmap for similar potential applications in single-cell sequencing. Human genome references 37 

enable the mapping of genomic data from millions of individuals, placing data into a 38 

standardized space that allows comparative analysis (Fig1. a), and identifying genetic variants. 39 

Genome references can also serve as a scaffold for diverse data types and modalities, including 40 

epigenomic profiling technologies such as chromatin immunoprecipitation sequencing (ChIP-41 

seq) and high�throughput chromosome conformation capture technique (Hi-C). Moreover, 42 

exploring differences across multi-species genomic references is a powerful evolutionary and 43 

comparative genomics technique. There are analogies for each of these applications for single-44 

cell sequencing, underscoring the potential for reference-mapping algorithms to process 45 

multiple data types beyond just single-cell RNA-sequencing (scRNA-seq) such as spatial 46 

molecular profiles. However, genomic analysis has also revealed challenges for reference-47 

mapping approaches that users of single-cell tools are beginning to encounter. These include 48 

technical challenges, including the ability to map genomes with structural variations to healthy 49 

references, and data-driven challenges, such as the necessity to update references based on 50 

newly available data continually. 51 

For these reasons, there has been substantial interest in developing computational methods to 52 

assemble single-cell reference datasets and map new datasets onto them. Popular techniques 53 

encompass a diverse set of approaches, including statistical approaches based on 54 

dimensionality reduction, machine-learning based discretized classification techniques, and 55 

deep artificial neural networks2–6. These advances enabled construction of single-cell atlases for 56 

human organs like lung7, tonsil8, and brain9, and enabled researchers to study diseases10 and 57 

development11 by integrating data from across multiple studies. These tools are being 58 

increasingly paired with collections of reference datasets that are already being assembled by 59 

multiple collaborative efforts, including the Human Cell Atlas and Human Biomolecular Atlas 60 

Project. While the most common analytical task is automated cell annotation (or ‘label transfer’), 61 

reference-mapping workflows can also transfer continuous data sources, including 62 

developmental trajectories and additional cellular modalities. Computational development 63 

continues in this area, with new methods improving robustness, accuracy, and scalability. 64 

In this perspective, we start by reviewing exciting possibilities and pressing challenges for the 65 

field of single-cell reference mapping. We also explore the scope of broad applications that can 66 



 

be encompassed by reference-mapping workflows, and the diverse set of query datasets that 67 

can be mapped. These include perturbed cells (reflecting disease states but also biochemical or 68 

drug-induced perturbations), cross-species and evolutionary analyses, and spatially-resolved 69 

datasets that contain information about cellular position and morphology. Lastly, we explore 70 

inherent challenges in constructing authoritative references in a dynamic field and argue for 71 

open source atlasing that can rapidly and reliably update references as new data becomes 72 

available. 73 

 74 

Reference mapping workflows 75 

 76 

The concept of mapping newly generated biological ‘query’ data to curated references is a 77 

powerful idea that predates single-cell genomics. For example, genomic reference assembly 78 

algorithms are computationally intensive, require high-quality long-read data, and typically 79 

involve extensive manual curation. In contrast, read-mapping algorithms are highly efficient, 80 

compatible with short-read data, and fully automated. The ability to map new query datasets to 81 

established references instead of performing de novo assembly and annotation for each dataset 82 

has a transformative impact, and substantially improved analytical data workflows. Moreover, 83 

genomic references can serve as a single scaffold to consistently interpret and compare data 84 

from multiple samples. This enables in-depth analysis of genetic variation, but also integrative 85 

analysis across a wide variety of functional genomics technologies, including ChIP-seq, Hi-C, 86 

and RNA-seq.  87 

The recent growth of single-cell sequencing technologies has led to the emergence of high-88 

quality single-cell tissue, organ or even whole-species ‘atlases’12–16. As with genome assembly, 89 

the construction of these atlases is often laborious, computationally intensive, and requires 90 

manual curation and annotation. The reference data often contain multiple single-cell datasets 91 

across one or multiple modalities and metadata (Fig. 1b), typically characterizing up to 92 

thousands of cell types and where they are found12,17 Analytical strategies and challenges for 93 

single-cell data integration and reference construction have been reviewed before18 and 94 

compared19 . Briefly, single-cell reference datasets often consist of at least two components. 95 

The first component is a data transformation which projects data measurements into a low-96 

dimensional space. This transformation can include multiple linear or non-linear steps and often 97 

aims to facilitate data integration by placing cells in similar biological states in similar positions, 98 

even if they originate from different datasets. Ideally, such a transformation should be able to 99 

integrate multiple data views across different non-overlapping features (e.g., gene, peaks) while 100 



 

correcting for technical variations originating from different sequencing protocols and 101 

environments, also known as “batch effect”19,20. There has been substantial progress in 102 

developing methods in the overarching theme of data integration, solving either batch correction 103 

in one modality or multimodal integration, which we later discuss in detail. The second 104 

component of a reference is the manual assignment of metadata, typically a set of annotations 105 

provided for each cell in the dataset, which can optionally conform to established cell ontologies 106 

and exhibit a hierarchical structure.  107 

Different analytical techniques for mapping new samples, or ‘query’ datasets, onto the reference 108 

also tend to follow a common strategy. First, the same data transformation that is learned when 109 

assembling the reference dataset, is applied to the query. This projects the query cells into a 110 

reference-defined space and effectively integrates the two datasets. Neighbor relationships can 111 

then be utilized to transfer discrete or continuous information onto query cells based on the 112 

most similar reference data points. While the accuracy of these techniques depends on the 113 

quality of the reference-defined transformation and annotations, supervised mapping offers 114 

substantial advantages compared to unsupervised analysis. These advantages include higher-115 

quality annotations in particular with noisy and sparse query data, improved detection of rare or 116 

molecularly subtle cell states, compatibility with fully automated workflows that do not require 117 

manual steps or parameter tuning, and substantial improvements in speed and memory 118 

requirement7. Most importantly, reference mapping offers the ability to interpret query datasets 119 

without the need to recluster and reannotate (Fig. 1c).  120 

Reference mapping methods can be categorized according to the type of transformation learned 121 

to assemble the reference. The first group of approaches learns a data transformation using 122 

statistical approaches and their variants. For example, Seurat uses reference low-dimensional 123 

representation (such as single-modality Principal Component Analysis (PCA) or multimodal 124 

supervised PCA) projection and anchor-based integration to map query cells onto the 125 

reference6,21 Similarly, Symphony5 learns a low-dimensional transformation (e.g., principal 126 

component analysis) in which cells are softly assigned to clusters representing different cell 127 

states to build the reference model. Alternatively, scArches3 exploits probabilistic neural 128 

networks22–24 to learn a non-linear transformation of the data while correcting for technical effect 129 

between datasets. Once the initial reference transformation is learned, it is applied to query 130 

datasets to map them to the reference subject to the criteria outlined in the previous section.    131 

Regardless of the specific computational method chosen to perform reference mapping, these 132 

workflows have the potential to support a wide array of applications. While mapping datasets 133 

from healthy individuals to healthy reference atlases is possible, interpreting diseased samples 134 



 

using healthy atlases is highly desirable but accompanied by distinct challenges. Similarly, while 135 

most mapping approaches are tailored for scRNA-seq datasets, a key computational challenge 136 

is to map data types originating from diverse data types, including alternative modalities and 137 

spatial profiles. Finally, reference atlases may enable robust interpretation datasets from 138 

different species to explore evolutionary changes, or to samples originating from genetic 139 

perturbations to reconstruct molecular networks. We discuss these potential applications, and 140 

their associated challenges and opportunities, below (Fig. 1c). 141 

Identification of disease states by contextualizing disease within a healthy 142 

reference  143 

Understanding disease pathology requires the identification and characterization of affected cell 144 

types. Single-cell datasets provide an unprecedented opportunity to study disease mechanisms 145 

by comparing disease cells to matched control samples to characterize cellular changes caused 146 

by the disease25. Users leverage metrics to assess compositional cell-type changes in 147 

combination with statistical methods to obtain genes and pathways altered by the perturbation 148 

to assess overall molecular changes26. Reference mapping methods have successfully been 149 

applied to map cells from COVID-19 patients from Bronchoalveolar lavage fluid (BALF) or 150 

Human peripheral blood mononuclear cells (PBMCs) 3,6,27 to healthy atlases based on cells from 151 

same or multiple tissues and detected disease-associated cell-types. Further, tumor-derived 152 

cells from patients with renal cell carcinoma (RCC) have been successfully mapped to healthy 153 

kidney atlas, revealing the separation of tumor-compartment cells from  reference cells while 154 

immune/stromal compartments integrated into the reference5. 155 

If diseased samples display variance that is not evident in the healthy reference, robust 156 

detection of compositional or cell-state alterations in disease can be challenging28. Thus, 157 

mapping a disease dataset to a sufficiently large and diverse healthy reference atlas enables 158 

rapid identification of disease states. Successful mapping of disease queries should meet the 159 

following criteria: (1) conservation of the heterogeneity of healthy cell states in the reference, (2) 160 

integration of identical cell types in reference and query and (3) preservation of previously 161 

uncharacterized cell types and states emerging in disease datasets that are not present in the 162 

reference. This reflects the well-known trade-off of maintaining biological variation but reducing 163 

batch variation from standard data integration19 in the context of mapping new samples. 164 

Despite advances in data integration, the automatic identification of disease states remains 165 

challenging. The robust recovery of defined disease populations needs an uncertainty metric to 166 

discriminate new cell states from existing references (Fig. 1c). For example, a simple K-nearest 167 



 

neighbors (Knn) classifier trained with a distance metric could  identify previously 168 

uncharacterized cell types and states using the uncertainty of transfer labels from reference to 169 

the query 3, 29. In addition, HLCA authors identify disease-specific populations during SARSCoV-170 

2 pneumonia and idiopathic pulmonary fibrosis. Similarly, Symphony exploits the query cells' 171 

cell-based or cluster base Mahalanobis distance to reference cells to detect unknown cell types 172 

or disease states. Finally, a recent approach30 combines scArches with hierarchical classifiers31 173 

to learn and extend hierarchical representations of cell types. The hierarchical representation 174 

enables the identification of specific populations (e.g., disease) when adding the query 175 

population not fitting the existing hierarchy.  These examples show that there is ample need for 176 

new methods or improvements toward more robust detection of disease states. Unsupervised 177 

disease-state identification using reference mapping is related to out-of-distribution (OOD) 178 

detection28, an unsolved challenge in the machine-learning community. While methods 179 

leveraging deep generative models (DGMs) can build upon model likelihood to detect the OOD 180 

samples (i.e., novel states in the query), however they may assign a higher likelihood to OOD 181 

samples compared to in-distribution (reference data)32. As these and other methods improve, 182 

we note that disease-specific references can also be constructed. While the construction of 183 

multiple healthy and diseased references may be a laborious effort, this approach will provide 184 

contextual flexibility to map a wide variety of query datasets. 185 

Once multiple samples have been mapped into a shared space, a suite of statistical methods 186 

have been developed to prioritize (i.e., rank) cell types according to the magnitude of responses 187 

to perturbations. Responses can be quantified either based on a change in the proportion of cell 188 

types in perturbed datasets, or alternately, based on the magnitude of gene expression changes 189 

within a cell type.  For compositional changes, the methods MASC33  and scCODA34 identify 190 

compositional changes based on discrete cell-type clusters, while Milo35 and MELD36 use cell-191 

type independent, continuous approaches to quantify compositional changes at the level of 192 

neighborhoods or single cells. These approaches have been used to analyze the compositional 193 

changes that occur upon disease perturbation, such as COVID-19 or liver cirrhosis, or aging. 194 

Complementing these tools are methods that focus on quantifying subpopulation-specific state 195 

transitions by comparing gene expression profiles from cell groups detected in multiple 196 

conditions. For example, Robinson and colleges  introduce robust statistical tools for multi-197 

sample comparison37, while Augur 38, trains classifiers to identify the most responsive 198 

populations to perturbations in single-cell data.  199 

Overall, these approaches demonstrate how scRNA-seq combined with reference mapping 200 

becomes a powerful tool to identify how complex populations respond to perturbation. Looking 201 



 

ahead, we see potential in addressing interpretability of multi-sample comparisons. Disease 202 

perturbations in particular are unlikely to affect only a single cell subpopulation, and instead will 203 

represent complex responses that are both shared across cell types, and unique to particular 204 

cell states. Methods that can help to decompose these differential sources of variation and 205 

prioritize particular cell populations for downstream analysis, will be highly beneficial to the 206 

broader community. 207 

Population-scale reference mapping 208 

 209 

Reference mapping approaches also have important potential to analyze and explore large-210 

scale variation across populations of samples. In the same way that large genetic databases of 211 

human variation, such as gnomAD, catalog and compare hundreds of thousands of samples 212 

after mapping into a consistent reference framework, single-cell reference mapping tools enable 213 

similar types of meta-analysis. An example is a meta-analysis39 of 22 separate scRNA-seq 214 

studies of COVID-19 blood samples. These studies encompassed a total of more than 3 million 215 

cells varying in age, sex, and ethnicity, disease state, and disease severity. In order to facilitate 216 

robust comparisons, all samples were mapped to a single reference, facilitating the automated 217 

harmonization of cell type labels and metadata. Standardization facilitates the performance of 218 

large-scale meta-analysis, and in particular, the ability to identify reproducible COVID-induced 219 

changes in cell type composition across hundreds of different donors. As single-cell studies 220 

routinely present data not just from a large number of cells, but also from a large number of 221 

individuals, reference mapping is likely to play an essential role in interpreting these datasets. 222 

In addition to facilitating standardization of cell labels, reference mapping may also help to infer 223 

and classify disease state40 and severity in query samples. For example, a class of machine 224 

learning algorithms called multi-instance learning (MIL) enables learning such mappings. The 225 

MIL algorithm allows learning a transformation for each sample (e.g., patient) and classifying it 226 

as a whole without knowing individual labels (disease affected or healthy). In addition, MIL 227 

methods can identify cell populations responsible for disease severity. Such applications will 228 

enable the automation of disease severity classification, facilitating diagnostics while helping 229 

potential (personalized) treatments by identifying disease-associated cell types for each patient 230 

and disease (Fig. 2).   231 

Construction of cellular perturbation atlases  232 

 233 



 

Single-cell healthy atlases are increasingly available via consortia such as the human cell 234 

atlas12. However, human cell atlas -generated data is focused on healthy homeostatic 235 

conditions, and large-scale perturbation experiments here referred to as “perturbation atlases”41  236 

aimed toward drug discovery and regenerative medicine, represent a new frontier. The concept 237 

of mapping query datasets to perturbation atlases has been widely explored for bulk studies. In 238 

particular, large scale bulk molecular profiling technologies have been utilized to generate maps 239 

of molecular responses to thousands of perturbations, including genetic perturbations, small 240 

molecules, cytokines, and drugs. Databases such as Connectivity Map (CMap), LINCS 1000, 241 

and ChemPert assemble these perturbations into data, and can be used to interpret the broad 242 

sets of transcriptional signatures42.  243 

This conceptual framework has clear promise for perturbations measured at single-cell 244 

resolutions. Recently, the development of barcoding technologies 43,44 enables high-throughput 245 

characterization of the effect of small molecules 43, or CRISPR-Cas9/13-based single-gene or 246 

combinatorial genes perturbations 45,46. These approaches are being increasingly applied to 247 

organoid systems and iPSC-derived models47 , in-vivo models48, and can even extend to 248 

genome-wide perturbation experiments49.  249 

As these approaches continue to develop, reference mapping can help connect these datasets 250 

to single-cell profiles from healthy and diseased samples, drawing connections between 251 

experimentally driven perturbations and naturally observed disease states. However, the 252 

explorative space of perturbations and their combinations is enormous and experimentally 253 

infeasible to test (Fig. 1c). This hinders the construction of comprehensive perturbation atlases 254 

similar to healthy counterparts. Data integration algorithms can reduce the sample sparsity in 255 

this scenario by allowing the integration of multiple sparse perturbation experiments into a more 256 

thorough atlas. While integration can potentially increase the discovery power, there is a trade-257 

off between data integration and preserving biological variability, requiring careful metrics and 258 

assessment19  An alternative approach involves machine-learning algorithms to ‘impute’ missing 259 

perturbations, using initial reference datasets to infer the effect of previously unseen 260 

perturbations on cellular behavior 41.  261 

Initial approaches based on dynamical models50,51 have been proposed to predict proliferation 262 

measurements or gene expression effects across many perturbations. However, dynamical 263 

approaches require prior knowledge about the regulatory system for model design, and often 264 

rely on time-resolved measurements, which are hard to obtain at the single-cell level. This 265 

results in parameter identifiability and fitting challenges. In contrast, linear approaches are 266 



 

easier to fit but have limited generalization to unseen perturbations or modeling complex cell-267 

type specific behaviors52.  268 

Deep learning methods have been developed to address these challenges to predict cellular 269 

behaviors. Variational autoencoders (VAE)53 have been the main tool for learning low-270 

dimensional latent representation from single-cell data. An example is scGen52, a VAE 271 

combined with latent space vector arithmetics to predict single-cell response to disease and 272 

chemical perturbations across cell types and species. Following on from this work, the 273 

compositional perturbation autoencoder (CPA)54 has been proposed to extend existing methods 274 

to predict combinatorial responses to drugs or genetic perturbations. CPA learns a cell 275 

representation as the composition of a basal state combined with learned representation for 276 

perturbations and covariates (e.g., cell type, patient, species). Finally, recent efforts have 277 

extended pre-existing methods to forecast the effects of previously unprofiled chemical 278 

perturbations or genetic deletions55,56. All of these methods propose a clear vision to predict 279 

molecular response to unseen perturbations, either individually or in combination, and reveal an 280 

exciting path forward to augmenting perturbation atlases. Going forward, combination of large-281 

scale perturbation experiments with deep-learning based imputation and integration across 282 

multiple studies, potentially together with experimental augmentation via active learning 283 

approaches 57 will lead to the assembly of systematic perturbation atlases. 284 

 285 

Single-cell data mapping across molecular modalities 286 

 287 

While the techniques above focus on the mapping of scRNA-seq query datasets onto scRNA-288 

seq reference atlases, the field of single cell genomics is rapidly transitioning to routinely profile 289 

alternative molecular modalities. In particular, there is substantial interest in profiling genomic 290 

features, such as chromatin accessibility58,59, DNA-protein interaction maps60,61, or chromosome 291 

contact interactions62. Creating a new reference dataset to enable mapping query datasets from 292 

each new modality would represent a crippling burden on the research community. Therefore, 293 

there is interest in exploring the potential for cross-modality mapping. One example would be to 294 

map scATAC-seq query datasets onto scRNA-seq defined reference atlases. If successful, 295 

these approaches would extend the widespread benefits of reference-mapping framework63,64 to 296 

a diverse set of modalities and technologies extending beyond scRNA-seq. The fundamental 297 

challenge in cross-modality mapping is a lack of correspondence features that are measured in 298 

different datasets. For example, scATAC-seq datasets measure chromatin accessibility at 299 



 

genomically defined regions, while scRNA-seq measures quantitative levels of gene expression. 300 

The lack of overlapping features between reference and query datasets invalidates the use of 301 

scRNA-seq reference mapping tools, and necessitates the development of new methods. 302 

 303 

Feature Conversion 304 

 305 

The first set of cross-modality mapping methods attempted to solve the issue of feature 306 

correspondence by converting one type of measurement into another (Fig. 3a). For example, 307 

the Cicero algorithm quantified the total accessibility of ATAC-seq peaks located within each 308 

gene-body and 2 kilobase upstream regions65. Noting that genes located in regions of open 309 

chromatin tend to be actively expressed, Cicero referred to these accessibility quantifications as 310 

‘gene activity’ scores, which were a proxy for transcriptional output. Importantly, this feature 311 

conversion transforms the features measured from ATAC-seq into the same set of features 312 

measured by scRNA-seq, representing a first step towards integration. 313 

After feature conversion, existing integration and mapping algorithms can be used to perform 314 

cross-modality alignment and mapping. For example, Seurat v321 utilizes canonical correlation 315 

analysis to identify a conserved biological subspace between a gene activity score matrix 316 

estimated from scATAC-seq, and scRNA-seq measurements. This conserved subspace 317 

enables the identification of cell-to-cell correspondences across datasets, termed anchors. 318 

These anchors enable the automated annotation of scATAC-seq profiles based on established 319 

transcriptomic reference maps of the mammalian brain. Similarly, the LIGER algorithm66 utilizes 320 

non-negative matrix factorization to infer a set of linear latent factors that represent shared 321 

biological signals across modalities. While LIGER successfully mapped chromatin accessibility 322 

data, DNA methylation measurements tended to be inversely correlated with gene expression, 323 

which would also allow for the mapping of methylation query datasets. Chiefly, both Seurat v3 324 

and LIGER methods utilize cross-modality mapping to explore relationships between a cell’s 325 

regulatory landscape and its transcriptional output, leading to the inference of cell-type specific 326 

regulatory networks.  327 

Building upon these advances, MultiMAP67 uses a manifold learning method for the 328 

dimensionality reduction and integration of multiple datasets after feature conversion, 329 

generalizing the UMAP distance metrics to learn a single latent manifold where data from 330 

multiple modalities is evenly distributed. Another method, GLUE68 , implements a variational 331 

autoencoder for adversarial alignment across modalities, guided by a prior-knowledge based 332 

‘guidance graph’ which links individual genomic peaks to their associated genes. Both methods 333 



 

MultiMAP and GLUE demonstrate the potential for ‘tri-omics’ integration, successfully 334 

integrating scATAC-seq, scRNA-seq, and DNA methylation profiles from different cells. The 335 

diversity of methods demonstrates the potential for feature conversion-based approaches to 336 

generate meaningful mappings. However, all these approaches rely on rigid and simplistic 337 

biological assumptions that are inherent to the conversion process. When these features 338 

correlation assumptions fail to hold true, the conversion method could transform uncertainties 339 

into errors. For example, while open chromatin is often associated with active transcription, this 340 

may not always be the case, particularly in developing systems where a ‘lag’ between dynamic 341 

changes in chromatin accessibility and transcriptional output have been well-documented69–71.  342 

 343 

  344 

Bridging with multi-omic datasets 345 

 346 

An alternative approach to cross-modality mapping exploits the recent development of a suite of 347 

‘multi-omic’ single cell technologies, where more than one molecular modality is simultaneously 348 

measured in single cells72. For example, CITE-seq73 utilizes barcoded antibodies to jointly 349 

profile RNA and protein levels in single-cells, while the SHARE-seq74, SNARE-seq75, and 10x 350 

multiome technologies enable paired single-cell measurements of chromatin accessibility 351 

profiles and gene expression levels. While powerful, multi-omic profiling typically has a higher 352 

financial cost than the combination of two separate modalities. Beyond this, increased technical 353 

noise, and decreases in throughput76  limits its widespread application. However, in cases 354 

where multi-omic profiles are available, a suite of computational methods can leverage these 355 

datasets to assist in cross-modality mapping (Fig. 3a). 356 

For example, Seurat v571 accomplishes cross-modality mapping by utilizing a multi-omic dataset 357 

as a ‘bridge’. Since the bridge dataset includes paired measurements of the modalities that are 358 

individually represented in the reference and query datasets, all reference and query cells can 359 

be accurately represented as weighted combinations of the bridge cells. This procedure 360 

effectively transforms datasets from different modalities into a common feature space, but 361 

without making any underlying biological assumptions. Similarly, the StabMap algorithm77 362 

constructs a mosaic data topology that connects reference, bridge, and query cells - and then 363 

performs cross-modality mapping by identifying shortest paths across this topology. Both bridge 364 

integration and StabMap demonstrate how a multi-omic bridge can substantially improve the 365 

accuracy of cross-modality integration compared to previous approaches based on feature 366 

conversion. Moreover, they demonstrate how utilizing diverse bridge datasets, including 10X 367 



 

multiome (scRNA-seq+scATAC-seq)78, Paired-Tag (scCUT&Tag+scRNA-seq)79, and CITE-368 

seq73 bridge datasets can enable the mapping of a wide variety of query datasets to pre-existing 369 

scRNA-seq references. 370 

In addition, a suite of deep learning tools also leverages multi-omic datasets to integrate 371 

datasets measuring different molecular modalities. For example, the BABEL algorithm80 utilizes 372 

multi-omic data to learn a ‘translation’ that maps one data modality to another, based on an 373 

interoperable neural network model. Based on this model, BABEL can generate ‘predicted’ 374 

values for one modality based on measured values from another, and demonstrates the ability 375 

to translate across chromatin, RNA, and protein modalities. Recently a body of published work 376 

such as MultiVI81, Cobolt82 and CLUE83 and also a preprint84 all leverage multimodal variational 377 

autoencoders (MVAEs). MVAEs represent a recent advance in deep learning where individual 378 

neural networks initially perform individual modeling of separate datasets, but they are then 379 

subsequently projected into a uniform biological subspace. Since this subspace encompasses 380 

both unimodal and multi-modal cells, this approach effectively enables cross-modality mapping. 381 

Each technique highlights powerful features of the MVAE framework, including the tailoring of 382 

modality-specific noise models (MultiVI), the application of a hierarchical generative model 383 

(Cobolt), the application of cross-encoders to learn cross-modality representations (CLUE), and 384 

simultaneous correction of batch effects alongside cross-modality integration (Multigrate). 385 

As the suite of cross-modality integration tools continues to mature, we anticipate a greater 386 

emphasis on computational tools to analyze and interpret their outputs. We also expect a more 387 

systematic comparison to evaluate these tools, applying diverse metrics that concentrate on 388 

different performance metrics. In particular, cross-modality integration enables a flexible 389 

experimental design where different modalities are collected in different experiments, but can 390 

then be analyzed together. This serves as an alternative to true multi-omic (i.e. simultaneous 391 

measurement) technologies, but may also allow for increased per-modality data quality and 392 

higher cellular throughput. For example, SCENIC+85, learns gene regulatory networks from 393 

paired measurements of chromatin accessibility and gene expression, exploiting co-variation 394 

across both modalities in order to infer key transcriptional regulators and their target genes. 395 

Similarly, MultiVelo86 integrates chromatin accessibility and gene expression to estimate 396 

chromatin switch and gene splicing states. This multimodal inference also allows researchers to 397 

study the dynamics between transcription factor expression and its binding sites accessibility. 398 

While originally developed for multi-omic measurements85,86, these and similar approaches can 399 

also be applied to the results of cross-modality integration, which would greatly broaden the 400 



 

scope of datasets that could be utilized to help identify relationships across molecular 401 

modalities. 402 

Cross species mapping 403 

Single-cell sequencing has now been able to scale molecular characterization of cells to entire 404 

organisms at the "whole-animal" scale, encompassing worm87, fly88, zebrafish89, frog90, mouse14, 405 

and even human fetus16. These datasets not only enable a detailed characterization of cellular 406 

heterogeneity within organisms, but they also allow for a comparison of cell types and states 407 

across organisms. Comparative genomics represents an invaluable tool for the annotation and 408 

identification of human genomic elements, including both ultra-conserved91 and rapidly evolving 409 

regions92. We anticipate single-cell analysis following a similar roadmap, and for cross-species 410 

analysis to substantially improve our evolutionary understanding of shared and unique cell 411 

states across species. 412 

Even in the face of broad transcriptional differences, evolutionarily shared molecular patterns 413 

can facilitate the identification of homologous cell types across species. One such example is 414 

the discovery of a subset of evolutionarily conserved markers in pancreatic islets separated 415 

from humans and mice93. Despite representing only a fraction of the transcriptome, shared 416 

markers were sufficient to accurately align cell types cross-species via canonical correlation 417 

analysis94. Similar approaches have been used repeatedly to explore evolutionary cell type 418 

conservation in the mammalian brain. For example, cross-species mapping tools can be used to 419 

identify broad and surprising conservation across excitatory, inhibitory, and non-neuronal cell 420 

types between the human and mouse cortex95. The initial alignment step enabled a detailed 421 

exploration of cross-species differences in cell-type abundance, localization, as well as the 422 

identification of substantial differentially expressed gene modules. The results are comparable 423 

to a comprehensive atlas of the motor cortex in humans, mice, and marmosets96. 424 

Cross-species alignment also enables the prediction of cellular properties across species. One 425 

example is the characterization of van Economo neurons (vENs)96, which exhibit a distinct 426 

morphology and maybe associated with neuropsychiatric conditions, but whose functional 427 

properties are poorly understood. By identifying a rare group of these cells in human scRNA-seq 428 

data and performing cross-species mapping, a multimodal cell census and atlas of the 429 

mammalian primary motor cortex identified strong homology to a particular subset of extra 430 

telencephalic (ET) excitatory neurons that project to subcerebral targets. These findings 431 

ultimately support the hypothesis that vENs project to subcortical targets, and  point to particular 432 

partners with whom vENs may form circuits. 433 



 

Cross-species mapping approaches can also help to identify distinct differences across species. 434 

One example is the alignment of neuronal scRNA-seq samples from turtles, lizards, and 435 

mammalian datasets97. Strikingly, it revealed clear (one-to-one) homology between broad 436 

GABAergic interneurons subsets across all amniotes, suggesting a deep conservation and 437 

shared evolutionary origin of these cell types. In contrast, glutamatergic neurons were detected 438 

in all species but lacked clear molecular homology, suggesting significant evolutionary 439 

diversification. Despite broad conservation, distinctions in the primate inhibitory interneuron 440 

repertoire were found when compared to other mammals, including an abundant striatal 441 

interneuron subgroup that exhibited no molecular homology with mice98. 442 

Usually, cross-species mapping depends on a reference from one species. The creation of a 443 

universal multi-species reference is a promising approach to enhance identification of genes 444 

that are functionally related and co-expressed across species. It may even allow to uncover 445 

potentially divergent functions along the evolution. For example, the SATURN algorithm99 which 446 

incorporates the protein language model ESM2100 integrates Aqueous Humor Outflow cell 447 

atlas101,102 scRNA-seq data from five species (humans, cynomolgus macaques, rhesus 448 

macaques, mice, and pigs) into a shared low-dimensional embedding space based on gene 449 

expression and the protein structural similarity. One notable finding with SATURN was that 450 

human Myoc gene function is divergent from its orthologous genes in other species. Such 451 

universal references enable us to understand the relationship between gene sequences and 452 

functions across a vast array of species. 453 

We anticipate continued improvement in cross-species mapping methods which remain 454 

challenging19,  particularly given lack of clear definition of homologous features across species, 455 

and the broader challenge of identifying biological homology amidst widespread evolutionary 456 

changes. Nonetheless, we expect that cross-species analyses at single-cell resolution will 457 

continue to inform our understanding of the function, uniqueness, and evolutionary origins of 458 

human cell types. In particular, cross-species comparisons of developmental processes103, offer 459 

a powerful opportunity to compare developmental stages based on molecular profiles. 460 

Moreover, cross-species alignment of alternative modalities, especially chromatin features 461 

measured at single-cell resolution through techniques like single-cell ATAC-seq and single-cell 462 

CUT&Tag, will set a new direction in genomic research. Utilizing genome liftover translating 463 

genomic coordinates from one species assembly to another, these chromatin features from 464 

diverse species can be harmonized into a unified genomic space, which enables subsequent 465 

cross-species alignment. The alignment of functional genomic modalities will represent a unique 466 



 

approach to annotate and characterize regulatory elements that drive cellular state and 467 

diversification across species. 468 

Path toward machine learning based open source atlasing    469 

Above, we have outlined how reference mapping enables integration of perturbation, 470 

multimodal, patient cohorts and even cross-species data sets. A key question for the community 471 

is how references will be made, released, and iteratively updated. Moreover, there are multiple 472 

consortia such as the Human Cell Atlas104, Human Biomolecular Atlas Program13, LifeTime 473 

Initiative, and Chan Zuckerberg Initiative105, all of whom aim to generate substantial datasets 474 

and release them openly to the community.  475 

version control in software development, such as Git and GitHub, is a fitting analogy to this. 476 

Assigning version numbers to reference models (e.g., Human lung cell atlas v1.0.0) allows for 477 

clear tracking of changes and updates. When new data is generated, a "pull request" can be 478 

made, suggesting an updated version of the reference model (e.g., V1.1.0) along with the 479 

corresponding updated data. This mechanism facilitates collaborative review and integration of 480 

the updates by different working groups and researchers, ensuring accuracy and relevance. 481 

Moreover, with the proliferation of large-scale machine learning models106–110 and open-source 482 

repositories like Hugging Face, the practical implementation of this version-controlled approach 483 

becomes feasible. Researchers can leverage and contribute to shared machine learning model 484 

repositories, promoting collaboration and democratization of the reference models. 485 

While it is tempting to turn to the human genome project to explore community-based solutions, 486 

there are key differences between genomic references and single-cell references that drive 487 

unique challenges. Most importantly, the iterative releases of the human genome project cleanly 488 

built upon each other, with each subsequent reference adding new data primarily to fill in 489 

existing gaps. This has led to a stable, well-curated, and authoritative reference genome for the 490 

community. By contrast, single-cell references updates often refine, change, and add to 491 

previous versions. This reflects the highly dynamic nature of cells, their ability to take on a wide 492 

variety of states, and our incomplete understanding of their heterogeneity.  493 

Addressing this challenge will require overcoming both logistical and computational challenges 494 

that do not yet have clear solutions. For example, multiple groups may initially release 495 

overlapping reference datasets for the same human tissues. Different biological communities 496 

will also explore different approaches for how and when to update references, for example 497 

based on a set timeline, or in response to the generation of new landmark datasets. In contrast 498 

to the standardization of the Human Genome Project, this will likely lead to a wide variety of 499 



 

distinct references for the same set of human tissues because they were generated by different 500 

groups. The scientific community benefits from having a variety of options for testing and 501 

iterative refinement, and over-enforced standardization can limit the process of discovery. Yet, 502 

the current human cell atlas reference seems like a puzzle with many missing pieces. Instead of 503 

parallel efforts to profile similar organs or tissues, the idea of an open-source atlas can help 504 

guide experimental design toward identifying cells or tissues that haven't been profiled yet  and 505 

should be prioritized. It is essential for both the computational and experimental communities to 506 

work together as part of smaller networks that focus on different organs to lay out such a plan. 507 

It is tempting to enforce standardization and adoption of a unique community-accepted 508 

reference atlas for each human tissue to alleviate this concern. In principle, benchmarking 509 

approaches could be used to compare different reference atlases and select a “winner.” In 510 

practice, however, enforcing strict standardization is likely to be detrimental given the current 511 

early stage of the field. No single reference atlas is likely to be “correct”, and multiple groups 512 

who approach the same problem will likely produce references that have distinct or 513 

complementary strengths. The biological community benefits from a variety of options for testing 514 

and iterative refinement, and over-enforced standardization can limit the process of discovery. 515 

A middle-ground approach, where multiple groups can construct independent reference atlases, 516 

but elected institutions or leaders oversee eventual pooling of datasets and resources, may be 517 

an attractive approach. For example, multiple groups have released reference atlases of the 518 

Mouse Brain, but the Allen Brain Atlas and NIH BICCN have led efforts to bring these groups 519 

and datasets together to establish a more thorough and authoritative cell ontology. As the 520 

comprehensive scale of this reference atlas grows, groups that create new references should be 521 

encouraged (though not required) to contribute their data into this framework. However, 522 

deciding on a “winner” or merging datasets into one reference is not always ideal. The Human 523 

Cell Atlas and NIH LungMAP initiative for example have each constructed scRNA-seq atlases of 524 

the human lung. Both initiatives bring together a wide diversity of labs and expertise for data 525 

generation, integration, and annotation. Though their resulting atlases substantially overlap, the 526 

differences between them represent cutting-edge discoveries of molecular lung cell states that 527 

would be diminished by choosing only a single “winner.” Individual labs can map their datasets 528 

to both atlases, compare and contrast results, and provide feedback that will yield a more 529 

comprehensive and standardized reference atlas over time. 530 

Advanced high-throughput sequencing technologies enable detailed investigation of previously 531 

uncharacterized tissues and species in millions of cells. However, the absence of well-532 

established references for these novel biological entities complicates the analysis of these 533 



 

large-scale datasets. Constructing a reference atlas from millions of cells becomes critical, 534 

especially when conventional methods fail due to high computational time and memory 535 

demands. This challenge can be aptly termed 'data compression'. There are three primary 536 

strategies for this purpose: 1) Aggregating homogenous cells to form meta cells; 2) Sketching 537 

representative cells from the entire dataset; and 3) Segmenting the entire dataset into 538 

manageable chunks. These strategies aim to preserve the inherent cellular heterogeneity while 539 

demanding minimal computational resources. Notably, these three types of approaches are not 540 

mutually exclusive but can be complementary for different tasks. Innovations like the single-cell 541 

large-language foundation models further broaden the horizons of reference atlas creation, 542 

diversifying its utility in downstream analyses.  543 

Reference mapping approaches depend on the quality of reference building algorithms, leading 544 

to inherent limitations. For instance, scArches relies on conditional generative models and deep 545 

representation learning. These algorithms necessitate extensive training datasets 546 

encompassing various experimental protocols to model complex batch effects effectively. 547 

Without sufficient data, they may struggle to map query datasets, especially if the query data 548 

comes from different technologies or species not present in reference3. Addressing this 549 

challenge requires the development of more robust neural network architectures capable of 550 

generalizing well under low data conditions. On the other hand, non-deep learning algorithms 551 

(e.g. Seurat and Harmony) for reference mapping may not be data-hungry. Still, they may 552 

encounter scalability issues with tens of millions of datasets. Overcoming this hurdle involves 553 

down-sampling 111 or pseudo-bulking strategies 99,112, potentially introducing biases into the 554 

models. Finally, existing reference mapping algorithms primarily operate in a latent space 555 

instead of a corrected feature matrix. To enable downstream analysis using the corrected 556 

feature matrix calls, more robust reference-building algorithms that operate directly on the input 557 

space must be developed113. 558 

In addition to the computational hurdles, the effectiveness of transferring knowledge from the 559 

reference to the query is impacted by the quality of reference metadata, particularly cell type 560 

annotations. This is important in a scenario where one organ has multiple references, each 561 

annotated by different groups with distinct sets of annotations. Diversity in annotations makes 562 

choosing the most suitable atlas a challenge. Hence, a more systematic approach is crucial to 563 

establish a consensus annotation across similar references. A reference cell ontology 99 or 564 

frameworks similar to a "reference cell tree" 114 can aid in harmonizing and integrating diverse 565 

annotation sources into a cohesive set (tree). This integration mitigates the ad hoc 566 

nomenclature of cell types and states. Machine learning methods 30,115 can be employed to 567 



 

construct and continually update these hierarchical references, assigning a tree to each organ. 568 

This principled and unified approach allows practitioners to systematically name and annotate 569 

cell types and states. 570 

The here described examples and use cases highlight the broad potential for reference-571 

mapping algorithms to transform the basic analytical pipelines by which users analyze, interpret, 572 

and explore single-cell data. Going forward, we envision that reference mapping will, slowly but 573 

surely, begin to replace unsupervised clustering and manual annotation workflows. In doing so, 574 

single-cell analysis will transition from an expert-centric and tedious pipeline to a rapid, 575 

accessible, and accurate procedure for beginners and experts alike. 576 
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 821 

Figure Legends 822 

Fig1. Automated analysis of single-cell data using reference mapping. (a) Mapping RNA or 823 

DNA short reads to the reference genome using reference mappers as an alternative for 824 

computationally expensive de novo reference assembly. (b) Assembly of a single-cell reference 825 

- similar to a reference genome - enables automated analysis of newly generated query 826 

datasets by mapping them into the reference using a reference mapping algorithm. (c) 827 

Applications of single-cell reference mapping are automated cell-type annotation of query data 828 

(first row), analyzing single-cell perturbations such as disease states or missing perturbations to 829 

be imputed in the query data (second row), imputing  continuous information for the query data 830 

including spatial location for scRNAseq using a spatial atlas or chromatin accessibility for query 831 

data using a multimodal reference including scRNAseq and scATACseq  (third row).  832 

 833 



 

Fig2. Reference mapping at population scale. (a) The availability of Cohort-level single-cell 834 

references enables the assembly of resources composed of many samples (or patients) to learn 835 

heterogeneity across populations and cells (b). (c)  Query samples are mapped to both cell and 836 

sample-level representations. (d) After mapping the new samples leveraging cell embedding 837 

and supervised analysis, the disease phenotype for query samples can be classified (e.g. type 838 

of the tumor type). (e) Sample-level representation can infer sample-sample similarity maps 839 

between reference and query directly linked to cell-level representation. The circle represents a 840 

group of donors in query with different cellular compositions, as reflected in the reference 841 

embedding.   842 

 843 

Fig3. Single-cell data reference mapping across molecular modalities. (a) Two frameworks 844 

to build cross modality feature correspondence. Feature conversion: transforming one type of 845 

measurement into another. For example, ATAC-seq peaks within gene bodies can be converted 846 

into gene activity scores, the same set of features measured by scRNA-seq. Multi-omics bridge: 847 

leveraging multi-omic datasets to establish connections between different modalities. For 848 

example, bridging ATAC-seq peaks and RNA-seq genes using datasets that measure both 849 

ATAC peaks and gene expression. (b) Expanding RNA reference to other query modalities 850 

using single-cell multi-omics datasets. By using single-cell multi-omics technologies as 851 

molecular bridges, RNA references can be expanded to include additional modalities such as 852 

DNA methylation (DNA met), ATAC peaks, surface proteins, CUT&Tag (cleavage under targets 853 

and tagmentation) , and Spatial data. snmC2T-seq, single-nucleus methylCytosine, Chromatin 854 

accessibility and Transcriptome sequencing; SNARE-seq, single-nucleus chromatin accessibility 855 

and mRNA expression sequencing; ASAP-seq, ATAC with select antigen profiling by 856 

sequencing; CITE-seq, cellular indexing of transcriptomes and epitopes by sequencing; Paired-857 

Tag, parallel analysis of individual cells for RNA expression and DNA from targeted 858 

tagmentation by sequencing; CUT&Tag-Pro, single-cell cleavage under targets and 859 

tagmentation with cell surface proteins ; Spatial-CUT&Tag, spatial cleavage under targets and 860 

tagmentation. 861 

 862 

 863 
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Text Box: 865 

Glossary 866 

 867 

Multimodal reference: A reference atlas that is built using more than one modality (for 868 

example. RNA and ATAC). 869 

 870 

Multimodal omics: Technologies capable of capturing multiple data types from the same 871 

sample  872 

 873 

Supervised vs unsupervised learning: in this context, data integration while leveraging cell-874 

type labels in the reference and query dataset (supervised) compared to the scenario in which 875 

the method has no access to these labels (unsupervised). 876 

 877 

Principal Component Analysis( PCA): a linear dimensionality reduction technique used to 878 

reduce the dimensionality of datasets. 879 

 880 

Low-dimensional representation: in this context, the reduced dimensional space of a dataset 881 

after applying a transformation (e.g. PCA). 882 

 883 

Hierarchical classifier: a machine learning model that organizes and categorizes data into 884 

multiple levels or layers of nested classes, allowing for a structured and granular classification 885 

approach. 886 

 887 

Deep generative models: The class of artificial intelligence algorithms that use deep neural 888 

networks to learn and generate new data samples, exhibiting the ability to create novel and 889 

realistic outputs in diverse domains such as images, text, or audio. 890 

 891 

Out of distribution detection: a machine learning task focused on identifying instances or data 892 

points that differ significantly from the patterns learned during training, helping models recognize 893 

and flag inputs lying outside the known distribution, thus enhancing robustness and reliability in 894 

real-world application. 895 

 896 

Multi-instance learning: A machine learning paradigm where the training data is organized into 897 

bags, each containing multiple instances (examples). The model is tasked with making 898 

predictions at the bag level, and while the labels are provided for the bags, the specific instance-899 

level labels within each bag are uncertain or unknown. This approach is often used in scenarios 900 

where only partial information about the labels is available, making it suitable for tasks like 901 

image classification, drug discovery, and anomaly detection. 902 

 903 

Dynamical models: Mathematical representations that capture the time-dependent behavior 904 

and evolution of a system. These models describe how variables change over time based on a 905 



 

set of differential equations or iterative rules, enabling the simulation and prediction of system 906 

dynamics in various fields such as physics, biology, economics, and engineering. 907 

 908 

Variational autoencoders (VAEs): types of generative model in machine learning that combine 909 

elements of autoencoders and variational inference. VAEs aim to learn probabilistic mapping 910 

between the input data and a latent space, allowing for the generation of new data points. The 911 

encoder network maps input data to a probability distribution in the latent space, and the 912 

decoder network generates data from samples drawn from this distribution. VAEs are commonly 913 

used for tasks like generating novel data samples, data compression, and unsupervised 914 

learning. 915 

 916 

Manifold learning: a set of techniques in machine learning and data analysis focused on 917 

capturing the underlying structure, or manifold, of high-dimensional data in a lower-dimensional 918 

space. The goal is to represent complex data in a way that preserves its underlying geometric 919 

relationships.  920 

 921 

Latent space:  in the context of machine learning, a lower-dimensional space in which the 922 

representations of data are learned and encoded. It is a crucial concept in different model 923 

architectures including both autoencoders and generative models (variational autoencoders and 924 

generative adversarial networks). 925 

 926 

Reference atlas: extensively annotated and curated single cell data that show a comprehensive 927 

view of cellular heterogeneity of specific tissues or samples serving as a detailed map of cellular 928 

and molecular characteristics. 929 

 930 

Label Transfer: Projecting labels from a well annotated reference atlas onto a newly generated 931 

query dataset.  932 

 933 

Reference mapping for genome sequence: Aligning DNA/RNA sequencing short reads to a 934 

reference genome to get genomic identify of reads. 935 

 936 

Single-cell reference mapping: Aligning genetic profiles, such as the transcriptome of 937 

individuals cells, to a reference atlas in order to obtain annotations at the single cell level. 938 

 939 

Single-cell RNA-sequencing: A sequencing technique for profiling the gene expression 940 

profiles of individual cells. 941 

 942 

Single-cell ATAC-sequencing: A sequencing technique used to profile the open chromatin 943 

regions within individual cells. 944 

 945 

Cross-modality mapping: A specialized type of single-cell reference mapping in which the 946 

query and reference belong to two different modalities, such as mapping scATAC profiles onto a 947 

scRNA reference.  948 

 949 



 

Canonical correlation analysis: A statistical method used to understand the relationships 950 

between two datasets,  capturing shared variance and identifying correlated patterns. 951 

 952 

Non-negative matrix factorization: An algorithm decomposing high-dimensional data into a 953 

lower-dimensional representation ensuring that all components of the decomposed matrices are 954 

non-negative. 955 

 956 

Adversarial alignment: An algorithm that harmonizes datasets from different sources or 957 

platforms by reducing batch effects and other confounding variations. 958 

 959 

Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq): a multimodal 960 

sequencing technique that enables the simultaneous measurement of protein and RNA in single 961 

cells.  962 

 963 

SHARE-seq, SNARE-seq, and 10x multiple: Three different sequencing techniques that 964 

enable the simultaneous measurement of open chromatin regions and RNA in single cells.  965 

 966 

Multi-omics bridge: A single-cell multi-omics dataset used in cross-modality mapping as a 967 

bridge between query and reference. 968 

 969 

Paired-Tag: Parallel analysis of individual cells for RNA expression and DNA from targeted 970 

tagmentation by sequencing (Paired-Tag) is a sequencing technique that simultaneously 971 

profiles of different histone modifications and transcriptome in single cells. 972 

 973 

Multimodal variational autoencoders: A type of variational autoencoder used to integrate 974 

multiple modalities of data and learn one single joint latent representation. 975 

  976 

Representative cells sketching: An algorithm to sample a subset of cells from the entire data. 977 

The sampled cells are expected to effectively preserve cellular heterogeneity and gene 978 

expression covariance from the full dataset. 979 

 980 

Metacell: A computational concept for grouping homogeneous cells based on the similarity of 981 

their genetic molecular to represent distinct cell types or states.  982 

 983 

Cross species mapping: A type of single-cell reference mapping in which the query and 984 

reference are from two different species, used to understand conserved and diversified cell 985 

types and gene programs in terms of evolutionary relationships. 986 

 987 

Protein language model Evolutionary Scale Modeling 2 (ESM2): a transformer-based 988 

language model designed to predict protein structure and function based on amino acid 989 

sequences. 990 

 991 



 

Genome liftover: Converting genomic coordinate information from one genome assembly to 992 

another, enabling the comparison of genomic data across different versions or different species 993 

of reference genomes. 994 

 995 
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