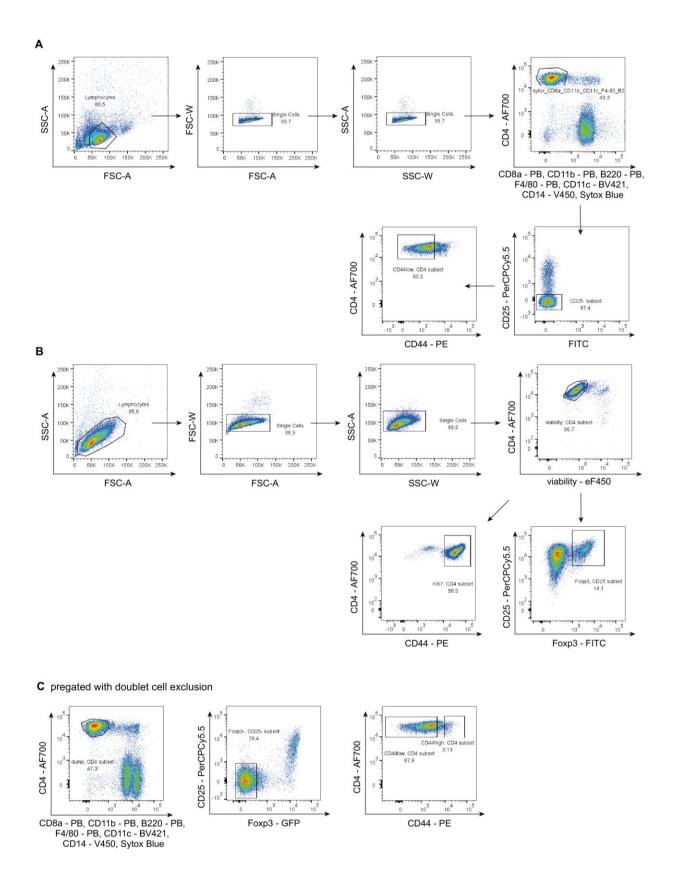


Fig. S1. IMU-935 reduces responses of naïve and memory CD4⁺ T cells towards SEB antigens.


- (A) Representative gating strategy to analyze the proliferation of human CD4⁺ T cells in response to influenza vaccine in T cell proliferation assays.
- (**B**) Representative gating strategy to sort naïve (CD45RA-CD45RO+), memory (CD45RA+CD45RO-) CD4+ T cells and CD4+ FACS depleted PBMC.
- (**C-E**) Human T cell proliferation assay to assess TCRVβ-specific CD4⁺ T cell response to SEB. (**C**) Representative FACS plots. Analysis of proliferating TCRVβ17⁺CellTrace Violet CTV⁺ CD4⁺ T cells in response to SEB of (**D**) memory or (**E**) naïve CD4⁺ T cells with 5nM of IMU-935 or a vehicle control, n = 3.

Each data point represents one subject. Student's t test. **=p<0.01.

Fig. S2. IMU-935 enhances CD25⁺CD127⁻ Tregs in human Treg induction *in vitro*.

- (A) Representative gating strategy for human naïve and previously activated memory T cells.
- (B) Representative FACS plots for the analysis of human Treg induction in vitro.
- (**C**, **D**) Human Treg induction *in vitro* using subimmunogenic TCR stimulation and naïve T cells isolated from PBMCs of healthy subjects or T1D donors in presence or absence of 3.5 nM IMU-935. Summary plots for the frequency of (**C**) induced CD25⁺CD127⁻CD3⁺CD4⁺ Tregs and (**D**) proliferating CD25⁺Ki67⁺CD3⁺CD4⁺ T cells. Healthy n = 10, T1D n = 9.
- (**E**) Representative FACS plots of FOXP3 staining among sorted activated human T cells, pregated on CD3⁺CD4⁺ T cells.
- (**F-H**) Human Treg induction *in vitro* using continuous TCR stimulation and naïve T cells isolated from PBMCs of healthy subjects or T1D donors in presence or absence of 1 μM IMU-935. Summary plots for the frequency of (**F**) IL-10⁺ producing cells, (**G**) IFNγ⁺ producing cells and (**H**) LAG3⁺ expressing cells of induced CD25⁺CD127⁻FOXP3⁺ Tregs. Healthy n = 3, T1D n = 3. Each data point represents one subject, experiments were performed in 2-3 technical replicates. Student's t test. *=p<0.05; ***=p<0.001.

Fig. S3. Gating strategy for FACS sorting and analysis of murine T cells.

- (A) Representative FACS plots for the sort of murine naïve T cells.
- **(B)** Representative FACS plots for the analysis of CD25⁺Foxp3⁺ Tregs and Ki67⁺ T cells after Treg induction *in vitro*.
- (**C**) Representative FACS plots for the sort of naïve and activated T cells from Foxp3^{GFP} Balb/c mice.

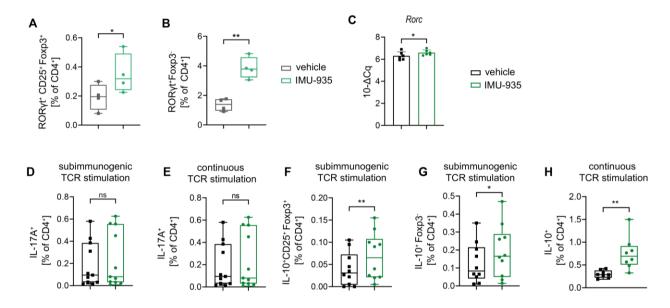


Fig. S4. IMU-935 enhances RORγt expression while fostering an anti-inflammatory phenotype after Treg induction *in vitro*.

- (**A**, **B**) Murine Treg induction *in vitro* using subimmunogenic TCR stimulation and naïve T cells from LN of ROR γ t^{GFP}Foxp3^{RFP} reporter mice in presence of 1 μ M IMU-935 or the vehicle control. Summary plot for (**A**) ROR γ t⁺CD25⁺Foxp3⁺ Tregs and (**B**) ROR γ t⁺Foxp3⁻ T cells, n = 4.
- (**C**) qPCR analysis of *Rorc* gene expression of sorted live CD4⁺ T cells after Treg induction *in vitro* using continuous TCR stimulation and naïve T cells isolated from LN of NOD mice in presence or absence of IMU-935. Gene expression was normalized to *Histone H3*, n = 6.
- (**D**, **E**) Frequency of IL-17⁺ T cells after Treg induction *in vitro* using naïve T cells isolated from LN of NOD mice and (**D**) subimmunogenic (n = 11) or (**E**) continuous TCR stimulation (n = 7) in presence of 1 μ M IMU-935 or the vehicle control.
- (**F**) Frequency of IL10⁺CD25⁺Foxp3⁺ Tregs and (**G**) IL10⁺Foxp3⁻ T cells after Treg induction *in vitro* using subimmunogenic TCR stimulation and naïve T cells isolated from LN of NOD mice in presence of 1 μ M IMU-935 or the vehicle control, n = 10.
- (H) Frequency of IL10⁺ cells among all live CD4⁺ T cells after Treg induction *in vitro* using continuous TCR stimulation and naïve T cells isolated from LN of NOD mice in presence of 1 μ M IMU-935 or the vehicle control, n = 8.

Each data point represents one subject, experiments were performed in 2-3 technical replicates. Student's t test. *=p<0.05; **=p<0.01; ***=p<0.001.

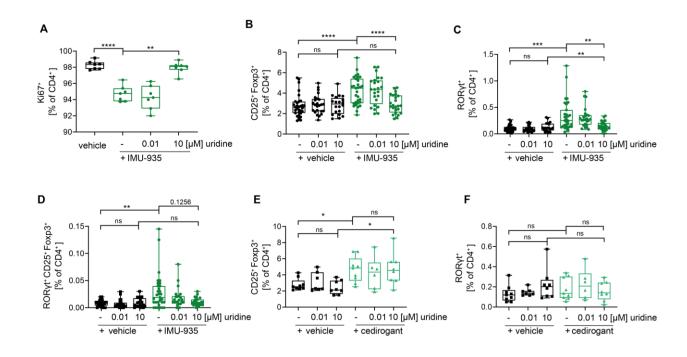


Fig. S5. Excess of uridine diminishes effects of IMU-935 on Treg induction in vitro.

- (A) Frequency of proliferating Ki67⁺ T cells after murine subimmunogenic Treg induction *in vitro* using naïve T cells isolated from LN of NOD mice in presence or absence of 1 μ M IMU-935 and increasing concentrations of uridine, n = 7.
- (**B-D**) *In vitro* Treg induction in the presence of the proinflammatory cytokines IL-6, IFN-γ and IL-1β and using naïve T cells isolated from LN of NOD mice with or without 1 μ M IMU-935 and increasing concentrations of uridine. Summary plots for the frequency of (**B**) CD25⁺Foxp3⁺ Tregs (**C**) RORyt⁺ T cells and (**D**) Roryt⁺CD25⁺Foxp3⁺ Tregs, n = 20-31.
- (**E**, **F**) *In vitro* Treg induction in the presence of the proinflammatory cytokines IL-6, IFN- γ and IL-1 β using naïve T cells isolated from LN of NOD mice with or without the ROR γ t inverse agonist cedirogant (10 μ M) and increasing concentrations of uridine. Frequency of (**E**) CD25⁺Foxp3⁺ Tregs and (**F**) ROR γ t⁺ T cells, n = 6-9.

Each data point represents one subject, experiments were performed in 2-3 technical replicates. One-way ANOVA with Tukey's post hoc test for multiple comparisons. *=p<0.05; **=p<0.01; ***=p<0.001; ****=p<0.0001.

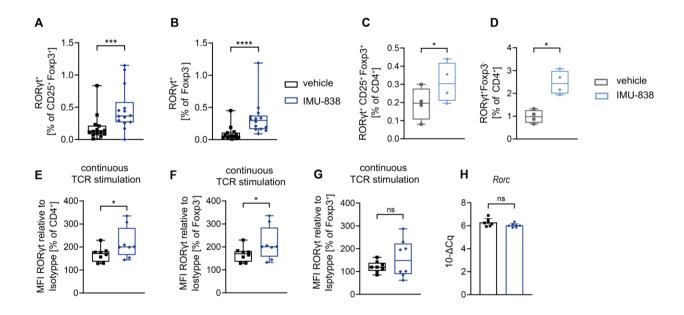
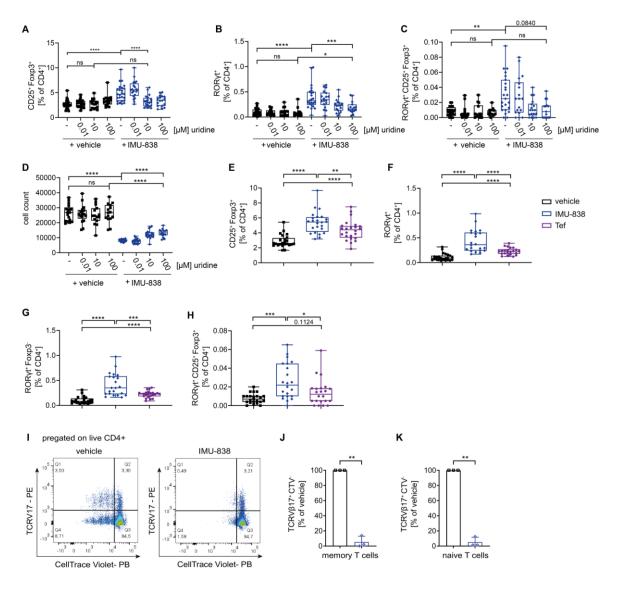
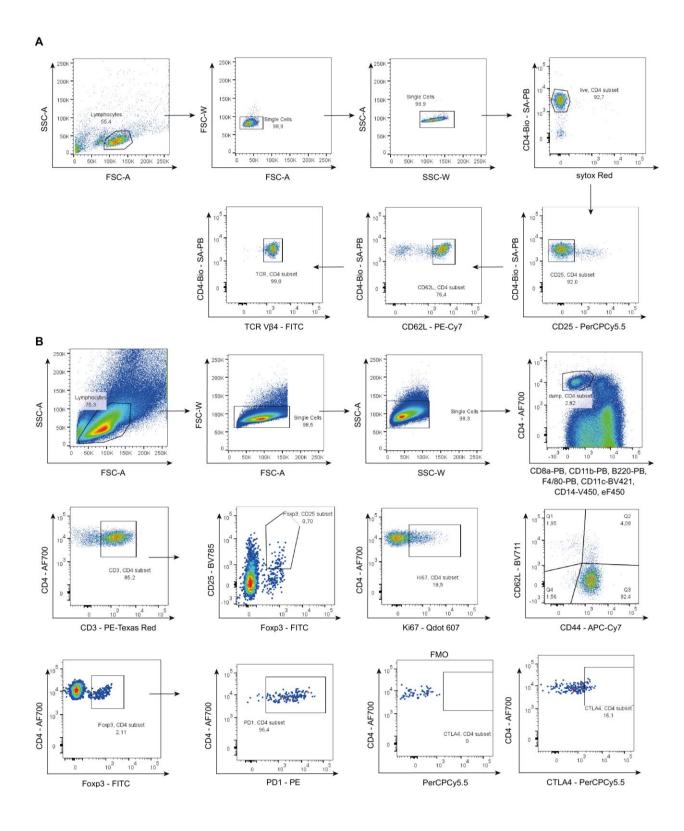


Fig. S6. IMU-838 enhances RORγt⁺ Treg and non-Treg frequency after Treg induction *in vitro*.

- (**A**, **B**) Frequency of ROR γ t in (**A**) CD25⁺Foxp3⁺ Tregs or (**B**) Foxp3⁻ non-Tregs after Treg induction *in vitro* using subimmunogenic TCR stimulation and naïve T cells from LN of NOD mice in presence or absence of 50 μ M IMU-838, n = 14.
- (**C**, **D**) Frequency of (**C**) RORγt+CD25+Foxp3+ Tregs or (**D**) RORγt+Foxp3- non-Tregs after Treg induction *in vitro* using subimmunogenic TCR stimulation and naïve T cells from LN of RORγt^{GFP}Foxp3^{RFP} reporter mice in presence or absence of 50 μM IMU-838, n = 4.
- (**E-G**) Isotype-normalized MFI of RORγt in (**E**) total CD4⁺ T cells, (**F**) Foxp3⁻ non-Tregs and (**G**) CD25⁺Foxp3⁺ Tregs after Treg induction *in vitro* using continuous TCR stimulation and naïve T cells from LN of NOD mice in presence or absence of 50 μM IMU-838, n = 8.
- (H) qPCR analysis of *Rorc* gene expression of sorted live CD4⁺ T cells after Treg induction *in vitro* using continuous TCR stimulation and naïve T cells isolated from LN of NOD mice in presence or absence of 50 μ M IMU-838. Gene expression was normalized to *Histone H3*, n = 7.

Each data point represents one subject, experiments were performed in 2-3 technical replicates. Student's t test. *=p<0.05; ***=p<0.001; ****=p<0.0001.




Fig. S7. DHODH inhibition enhances murine Treg induction in vitro.

(**A-D**) *In vitro* Treg induction in the presence of the proinflammatory cytokines IL-6, IFN- γ and IL-1 β and using naïve T cells isolated from LN of NOD mice with or without 50 μ M IMU-838 and increasing concentrations of uridine. Summary plots for the frequency of (**A**) CD25⁺Foxp3⁺ Tregs (**B**) ROR γ t⁺ T cells (**C**) Ror γ t⁺CD25⁺Foxp3⁺ Tregs (**D**) cell count of total recovered cells, n = 14-26 experiments with 2-3 technical replicates.

(**E-H**) Frequency of (**E**) CD25⁺Foxp3⁺ Tregs, (**F**) RORγt⁺ T cells, (**G**) RORγt⁺Foxp3⁻ non-Tregs and (**H**) RORγt⁺CD25⁺Foxp3⁺ Tregs after Treg induction *in vitro* in the presence of the proinflammatory cytokines IL-6, IFN-γ and IL-1β and using naïve T cells isolated from

LN of NOD mice with or without 50 μ M IMU-838 or 7.5 μ M Teriflunomide (Tef), n = 22-24 experiments with 2-3 technical replicates.

(**I-K**) Human T cell proliferation assay to assess TCRVβ-specific CD4⁺ T cell response to SEB. (**I**) Representative FACS plots. Analysis of proliferating TCRVβ17⁺CellTrace Violet CTV⁺ CD4⁺ T cells in response to SEB of (**J**) memory or (**K**) naïve CD4⁺ T cells with 10 μ M of IMU-838 or a vehicle control, n = 3. Each data point represents one subject, (A-H) experiments were performed in 2-3 technical replicates. (A-H) One-way ANOVA with Tukey's post hoc test for multiple comparisons, (J, K) Student's t-test. *=p<0.05; **=p<0.01; ***=p<0.001; ****=p<0.001.

Fig. S8. Analysis of IMU-838 treatment in a T1D mouse model induced by adoptive transfer.

- (A) Representative gating strategy for the FACS sort of live CD4+CD25-CD62L+TCRV β 4+ T cells from NOD BDC2.5 mice.
- (B) Representative FACS plots for the gating strategy for the analysis from Fig. 5.

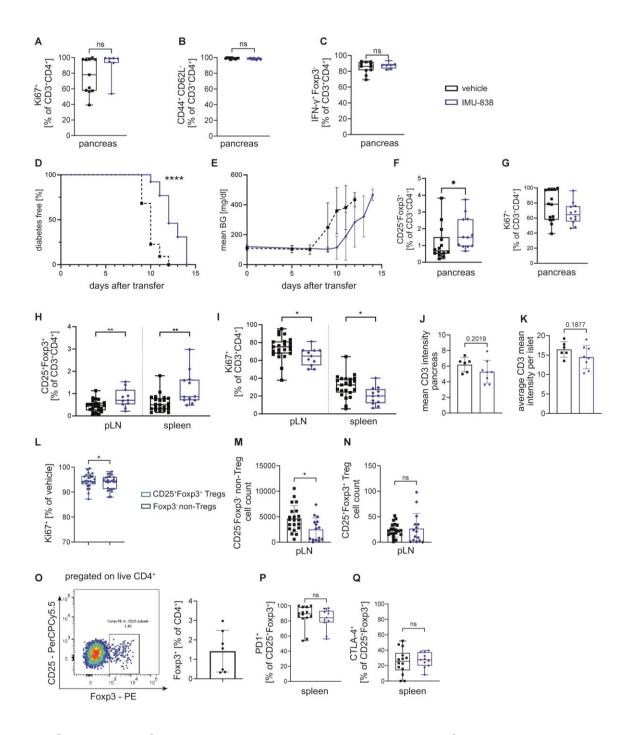


Fig. S9. Impact of IMU-838 treatment in a mouse model of accelerated T1D.

(**A-C**) Frequency of (**A**) proliferating Ki67⁺CD3⁺CD4⁺ T cells, (**B**) activated CD44⁺CD62L⁻CD3⁺CD4⁺ T cells and (**C**) IFN γ ⁺CD3⁺CD4⁺ T cells in the pancreas in mice treated with the vehicle control or IMU-838 in the mouse model of accelerated T1D, vehicle n = 11, IMU-838 n = 7.

- (**D**) Follow up incidence study in the mouse model of accelerated T1D, vehicle n=22, IMU-838 n=13.
- (E) Mean blood glucose values of the mice in D.
- (**F**, **G**) Frequencies of (**F**) CD25⁺Foxp3⁺ T cells and (**G**) proliferating Ki67⁺CD3⁺CD4⁺ T cells in the pancreas of mice treated with the vehicle control or IMU-838 in the mouse model of accelerated T1D, vehicle n = 14, IMU-838 n = 12.
- (H, I) Frequencies of (H) CD25⁺Foxp3⁺ T cells and (I) of proliferating Ki67⁺CD3⁺CD4⁺ T cells in the pLN and in the spleen of mice treated with the vehicle control or IMU-838 in the mouse model of accelerated T1D, vehicle n = 23, IMU-838 n = 11-12.
- (J) Mean of the CD3 intensity in the whole pancreas quantified after immunofluorescence staining from pancreatic tissue slides from control mice or mice treated with IMU-838, vehicle n = 6, IMU-838 n = 8.
- (K) Mean of the CD3 intensity averaged over all insulin-producing islets quantified after immunofluorescence staining from pancreatic tissue slides from control mice or mice treated with IMU-838, vehicle n = 6, IMU-838 n = 8.
- (L) Ki67⁺CD25⁺Foxp3⁺ Tregs or Ki67⁺Foxp3⁻ non-Tregs after *in vitro* Treg induction in the presence of the proinflammatory cytokines IL-6, IFN- γ and IL-1 β and using na $\ddot{\nu}$ 0 T cells isolated from LN of NOD mice with or without IMU-838, represented here as % of vehicle, n = 25.

Cell count of (M) CD25⁻Foxp3⁻ non-Tregs and (N) CD25⁺Foxp3⁺ Tregs in pLN of control or IMU-838-teated mice, vehicle n = 21, IMU-838 n = 15.

(O) Representative FACS plot and quantification for Foxp3 expression in sorted $CD4^+CD25^-CD62L^+TCRV\beta4^+$ T cells from NOD BDC2.5 mice, n = 7.

Frequency of (P) PD1 and (Q) CTLA-4 in Tregs isolated from spleen of control or IMU-838-treated mice, vehicle n = 14, IMU-838 n = 11.

Each data point represents one subject, (A-E, G-K) experiments were performed in up to seven independent experiments, (F) experiments were performed in 2-3 technical replicates. Student's t test. *=p<0.01; **=p<0.01.

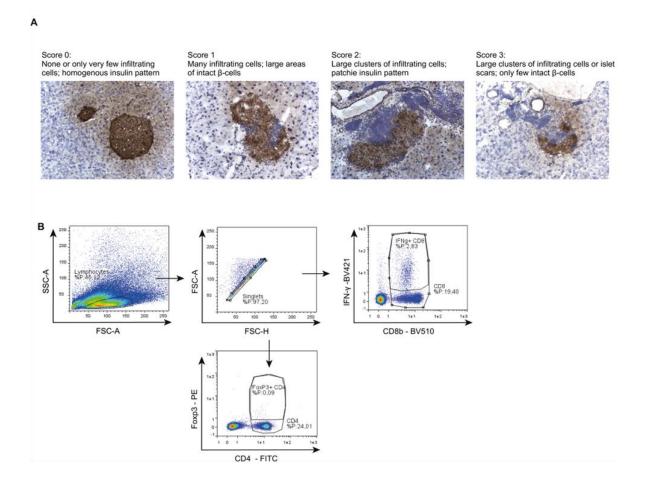


Fig. S10. Analysis of IMU-838 treatment in the virus-induced T1D RIP-LCMV-GP mouse model.

- (A) Representative images of insulin, CD8 and hematoxylin-staining of pancreas cryosections. To evaluate the insulitis score.
- (**B**) Representative FACS plots for the analysis of GP33-specific IFN γ +CD8+ T cells and Foxp3+CD4+ Tregs.

Table S1.List of primers

Gene	Forward (5'-3')	Reverse (5'-3')
Histone H3	ACTGGCTACAAAAGCCG	ACTTGCCTCCTGCAAAGCAC
TCRVβ4 transgene	CATGTTTCCCTGCACATC	CCAGATCCAAAGATGAGTTGC
Rorc	GGGTGCAAGGGCTTCTTCC	CTGCTTCTTGGACATTCGGC
Dhodh	AAGATTGCCCCTGACCTCAC	GATGATGGGAATCGTGCCTTG

Table S2. Flow Cytometry Antibodies Anti-Mouse

antibody (anti-	clone	fluorophore	source
mouse)			
CD11b	M1/70	PB	BioLegend
CD11c	N418	BV (Brilliant Violet) 421	BioLegend
CD14	rmC5-3	V450	BD Bioscience
CD25	PC61	PerCP-Cy5.5, BV785	BioLegend
CD28	37.51	Purified	BD Bioscience
CD3	145-2C11	BV711, PE-Texas Red Purified	BioLegend BD Bioscience
CD4	GK1.5 GK 1.5 RM4-5 RM4-5	Biotin FITC Alexa Fluor 700, PE-Cy7	BioLegend Southern Biotech BD Bioscience
CD44	IM7	PE APC-Cy7	BioLegend eBioscience/Invitrogen
CD45R/B220	RA3-6B2	PB	BioLegend
CTLA-4	UC10-4B9	PerCP-Cy5.5	Biolegend
CD62L	MEL-14	BV510, APC, PE- Cy7, BV711	BioLegend
CD8a	53-6.7	PB	BioLegend
F4/80	CI:A3-1	PB	BioLegend
Foxp3	FJK-16S	FITC, PE	Invitrogen
IFN-γ	XMG1.2	Alexa Fluor 647	BioLegend
IL-10	JES5-16E3	PE	Biolegend
IL-17A	TC11- 18H10.1	BV605	Biolegend
Isotype control Rat IgG2a, κ	RTK2758	PE	Biolegend
Ki67	16A8	BV605, APC	Biolegend
PD-1	29F.1A12	PE	Biolegend
RORyt	AFKJS-9	PE	eBioscience/Invitrogen
TCRVβ4	KT4	FITC	BD Pharmingen
Strep		PB	Invitrogen

Table S3. Flow cytometry anti-human antibodies

antibody (anti-	clone	fluorophore	source
human) CD11B	ICRF44	PB	BioLegend
CD14	HCD14	PB	BioLegend
CD19	HIB19	PB	BioLegend
CD127	A019D5	PE-Cy7	BioLegend
CD25	2A3	APC	BD Bioscience
	M-A251	PE	BD Bioscience
CD28	28.2	Purified	BioLegend
CD3	UCHT1	Purified, BV421	BioLegend
	HIT3a	PerCp-Cy5.5	
CD4	RPA-T4	V500	BD Horizon
	RPA-T4	BV421	BD Bioscience
	OKT4	BV785	BioLegend
CD45RA	HI100	FITC, AF700, BV650	BioLegend
	ALB11	FITC	Beckman Coulter
CD45RO	UCHL1	APC-Cy7	BD Pharmingen
		PE-Cy7	BioLegend/BD
			Bioscience
CD8A	RPAT8	PB	BioLegend
	SK-1	AF700	BioLegend
FOXP3	PCH101	FITC	eBioscience/Invitrogen
	236A/E7	PE	
KI67	16A8	BV605	Biolegend
IFNγ	4S.B3	PerCp-Cy5.5	Biolegend
IL-10	JES3-9D7	AF488	eBioscience
LAG3	11C3C65	BV711	Biolegend
TCRVβ17	IM2048	PE	Beckman Coulter