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Posttranscriptional depletion of ribosome biogenesis
factors engenders therapeutic vulnerabilities in
NPM1-mutant AML
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KEY PO INT S

• Preleukemic and
leukemic NPM1-mutant
cells have reduced
levels of several
ribosome biogenesis
proteins.

• Targeted therapeutic
disruption of ribosome
biogenesis is a potential
strategy against NPM1-
mutant AML.
f 
NPM1 is a multifunctional phosphoprotein with key roles in ribosome biogenesis among
its many functions. NPM1 gene mutations drive 30% of acute myeloid leukemia (AML)
cases. The mutations disrupt a nucleolar localization signal and create a novel nuclear
export signal, leading to cytoplasmic displacement of the protein (NPM1c). NPM1c
mutations prime hematopoietic progenitors to leukemic transformation, but their precise
molecular consequences remain elusive. Here, we first evaluate the effects of isolated
NPM1c mutations on the global proteome of preleukemic hematopoietic stem and pro-
genitor cells (HSPCs) using conditional knockin Npm1cA/+ mice. We discover that many
proteins involved in ribosome biogenesis are significantly depleted in these murine
HSPCs, but also importantly in humanNPM1-mutant AMLs. In line with this, we found that
preleukemic Npm1cA/+ HSPCs display higher sensitivity to RNA polymerase I inhibitors,
including actinomycin D (ActD), compared with Npm1+/+ cells. Combination treatment
by guest on 11 Septem
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with ActD and venetoclax inhibited the growth and colony-forming ability of preleukemic and leukemic NPM1c+ cells,
whereas low-dose ActD treatment was able to resensitize resistant NPM1c+ cells to venetoclax. Furthermore, using
data from CRISPR dropout screens, we identified and validated TSR3, a 40S ribosomal maturation factor whose
knockout preferentially inhibited the proliferation of NPM1c+ AML cells by activating a p53-dependent apoptotic
response. Similarly, to low-dose ActD treatment, TSR3 depletion could partially restore sensitivity to venetoclax in
therapy-resistant NPM1c+ AML models. Our findings propose that targeted disruption of ribosome biogenesis should
be explored as a therapeutic strategy against NPM1-mutant AML.
Introduction
Nucleophosmin, coded by the NPM1 gene, is a highly abun-
dant phosphoprotein involved in diverse cellular processes.1-6 It
can shuttle between the nucleus and cytoplasm, but at a steady
state, it is primarily located at the nucleolus, the main site of
ribosomal RNA (rRNA) transcription and early ribosome
biogenesis.7 More specifically, nucleophosmin is located at the
outer, granular component of the nucleolus,8 contributes to
maintaining the organelle’s structure,9,10 and is involved in
rRNA 2′-O-methylation.11

Somatic mutations affecting the NPM1 gene are found in ~30%
of cases of acute myeloid leukemia (AML)12,13 and define the
most common AML subtype. AML-associated NPM1 mutations,
usually 4-base pair duplications/insertions within the gene’s
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final exon, disrupt a nucleolar localization signal and create a
novel nuclear export signal. As a result, mutant nucleophosmin
is aberrantly localized to the cytoplasm (NPM1c) through
interaction with XPO1, a major effector of nucleocytoplasmic
traffic.14 The current standard-of-care treatment for patients
with NPM1c-mutant AML is 3+7 chemotherapy, whereas for
patients carrying FLT3 comutations, such as internal tandem
duplications (ITDs), a FLT3 inhibitor is incorporated into the
first-line treatment.15,16 Most patients enter complete remis-
sion, but approximately half relapse and most succumb to their
disease, highlighting the need for new therapies.17

Despite its high prevalence in AML, the molecular conse-
quences of the NPM1c mutation are incompletely understood,
which poses an obstacle to the design of effective therapeutic
strategies.18 Recent advances have given insights into the
transcriptomic and epigenetic effects of NPM1c mutations,19

but less is known about its global posttranscriptional and pro-
teomic consequences.

In this study, we determined the global proteomic consequences
of isolated NPM1c mutations in preleukemic hematopoietic
progenitors from knockin Npm1c-mutant mice, which faithfully
recapitulate the human mutations.19-21 We then investigated
which changes were also detected in full-blown NPM1-mutant
AML22 and evaluated these against CRISPR knockout screens23-25

to identify potential therapeutic targets. Notably, we found sig-
nificant decreases in abundance of multiple ribosome biogenesis
factors in NPM1c+ preleukemia which were also observed in
human NPM1c+ AML and were associated with increased sensi-
tivity to the RNA polymerase (pol) I inhibitor actinomycin D (ActD)
alone and particularly in combination with the Bcl-2 inhibitor
venetoclax. Focusing on individual targets, we discovered that
NPM1c-mutant cells are dependent on TSR3, a normally nones-
sential maturation factor of the 40S ribosomal subunit. Finally, we
demonstrated that both low-dose ActD treatment and TSR3
knockout induce resensitization to venetoclax in previously
resistant NPM1c+ leukemia cells.
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Methods
Also see the supplemental Methods (available on the Blood
website).

Mouse model
Mx1-Cre; Npm1flox−cA/+ mice have been described previ-
ously.19,20 Cre expression was induced in 8 to 10 weeks old
Mx1-Cre; Npm1flox−cA/+ mice by administration of poly-
inosinic:polycytidylic acid (catalog no. P1530; Sigma-Aldrich).
Blood counts were calculated by a SciI Vet abc hematology
analyzer. All mice were kept in a pathogen-free environment,
and all procedures were performed according to the regulation
of the UK Home office, under project license PP3797858, in
accordance with the Animal Scientific Procedures Act 1986.

Proteomic analysis of preleukemic murine
hematopoietic progenitors
A total of 7 Npm1cA/+ and 5 control Npm1+/+ mice were
collected 8 weeks after polyinosinic:polycytidylic acid, and the
bone marrow lineage-negative (lin–) cells were subjected to
proteomic analysis (supplemental Table 1). Sample preparation,
1240 4 SEPTEMBER 2025 | VOLUME 146, NUMBER 10
mass spectrometry analysis, and data processing are described
in detail in the supplemental Methods.

Proteomic and RNA expression analysis of samples
from patients with AML
Experimental procedures and data sets can be found in Kramer
et al.22 t test was used to calculate P values for differences
between the NPM1wt and NPM1c+ AML groups, followed by
multiple hypothesis correction using the Benjamini-Hochberg
method.

Study of patient-derived NPM1-mutant AML cells
For patient-derived xenograft (PDX) studies, 1 × 106 cells of a
luciferase-expressing NPM1-mutant AML PDX were injected IV
into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice, and animals
were treated with intraperitoneal ActD or vehicle from day 35
after transplantation and monitored for AML tumor volume and
survival. Detailed experimental procedures are provided in the
supplemental Methods.

NPM1-mutant normal karyotype AML cells were obtained from
a 33-year-old man with the patient’s informed consent as part of
the Hémopathies Inserm Midi-Pyrénées collection (BB-0033-
00060). According to French law, the Hémopathies Inserm
Midi-Pyrénées collection has been declared to the Ministry of
Higher Education and Research (DC 2008-307 collection 1) and
a transfer agreement (AC 2008-129) was obtained after
approbation by the Comité de Protection des Personnes Sud-
Ouest et Outremer II (ethical committee). The study was per-
formed in accordance with the Declaration of Helsinki.
Results
Npm1cA/+ hematopoietic progenitors have
reduced levels of ribosome biogenesis proteins
We collected bone marrow lineage-depleted (lin–) hematopoi-
etic stem/progenitor cells (HSPCs) 8 weeks after activation of
the conditional Npm1cA allele in Mx1-Cre; Npm1flox-cA/+

mice.20 At that stage, the mice displayed normal hematological
parameters and no signs of leukemia (supplemental Figure 1A-
D), but the characteristic Npm1c-associated HoxA and HoxB
gene upregulation was clearly evident in HSPCs (supplemental
Figure 1E; supplemental Table 2). In line with this, Npm1cA/+

HSPCs demonstrated enhanced serial replating in colony-
forming unit assays, compared with their wild-type counter-
parts (supplemental Figure 1F-G).

To capture the global impact of isolated Npm1c mutations at
the protein level, we performed tandem mass tag (TMT)-based
quantitative proteomics in HSPCs from Npm1cA/+ mutant (n = 7)
vs Npm1+/+ (n = 5) mice (Figure 1A). Of 7409 proteins detected
overall, we found 58 high-confidence proteins whose abun-
dance was significantly different (Padj < .05) between Npm1cA/+

and Npm1+/+ HSPCs (Figure 1B; supplemental Table 3).
Notably, NPM1 protein levels were found to be significantly
reduced in Npm1cA/+ mice. However, evaluation of the identi-
fied peptide spectra revealed that this was because the only
NPM1-derived peptide detected was unique to the wild-type
protein (amino acids 276-289). With no mutant-specific pep-
tides identified, this resulted in an apparent reduction in NPM1
protein levels in heterozygous mice.
DAMASKOU et al
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Figure 1. Reduced abundance of ribosomal proteins in Npm1cA/+ hematopoietic progenitors. (A) Workflow for global quantitative proteomic study of lineage-negative
(lin–) bone marrow–derived hematopoietic progenitors using TMT. Preleukemic Npm1cA/+ (n = 7) vs Npm1+/+ (n = 5) murine hematopoietic progenitors were collected 8
weeks after Mx1-Cre induction with pIpC. (B) Volcano plot revealing relative protein abundances in preleukemic Npm1cA/+ vs Npm1+/+ lin– progenitors. (C-F) Relative
abundance of selected ribosome-related proteins in Npm1cA/+ vs Npm1+/+ lin– progenitors. (G) Overlap between messenger RNAs (RNA-seq) and proteins (LC-MS) that were
significantly over- or under-expressed in preleukemic Npm1cA/+ vs Npm1+/+ lin– cells. Panel B, unpaired t test with multiple-hypothesis–testing correction (FDR; Benjamini-
Hochberg). (C-F) Unpaired t test with multiple-hypothesis–testing correction (FDR; Benjamini-Hochberg). *P ≤ .05; **P ≤ .01; ***P ≤ .001; ****P ≤ .0001. Data represent n = 7
(Npm1cA/+) or n = 5 (Npm1+/+) biological replicates (mean ± SD). FDR, false discovery rate; LC-MS TMT, liquid chromatography mass spectrometry, tandem mass tagging;
pIpC, polyinosinic:polycytidylic acid. Panels A and G were created with BioRender.com. Vassiliou, G. (2025) https://BioRender.com/9tt8kww.
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The top 3 proteins with the most significantly increased levels
were the polyol pathway enzyme SORD (sorbitol dehydroge-
nase), the centrosomal protein CEP44 (centrosomal protein 44),
and the F13A1 (coagulation factor XIII A chain) blood
TARGETING RIBOSOME BIOGENESIS IN NPM1-MUTANT AML
coagulation factor (supplemental Figure 2A-C). In addition,
among proteins having increased abundance were several
members of the Karyopherin family (supplemental Figure 2D),
mirroring recent findings in human NPM1c-mutant AML.22
4 SEPTEMBER 2025 | VOLUME 146, NUMBER 10 1241
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Interestingly, NPM1c+ OCI-AML3 cells were found to be
particularly sensitive to KPNA2 knockout (DepMap24,25;
supplemental Figure 2F-G).

Among the 31 proteins having decreased abundance in
Npm1cA/+ HSPCs, there were several ribosome-related pro-
teins, including ribosome biogenesis factors and structural
constituents of ribosomes.7 Significantly depleted proteins
included KRI1 (KRI1 homolog),26 RIOX1 (ribosomal oxygenase
1),27 RRS1 (ribosome biogenesis regulator 1 homolog),28,29 and
RPL22L1 (ribosomal protein L22 like 1)30 (Figure 1C-F), none of
which demonstrated reduction at the messenger RNA level
(Figure 1G). Gene ontology term analysis of all depleted pro-
teins (n = 270) among the top 500 differentially abundant
proteins demonstrated enrichment for the preribosome and
biological processes involving rRNA processing and ribosome
biogenesis (supplemental Figure 3A; supplemental Table 4).
Polysome profiling of whole bone marrow cells from Npm1cA/+

and control Npm1+/+ mice revealed no major differences,
although there was a trend toward higher abundance for the
40S ribosomal subunit in the mutant cells (supplemental
Figure 3B-E).

Ribosome biogenesis factors are depleted in
human NPM1c+ AML
To pinpoint which changes identified in NPM1c+ preleukemic
cells can also be detected after progression to AML, we eval-
uated recently reported TMT proteomics data from bone
marrow samples of 44 patients with de novo AML, including 8
with NPM1c+ AML.22 By comparing protein levels between
NPM1c+ and NPM1wt AMLs, we identified only 11 significantly
differentially abundant proteins (Padj < .05), among which KRI1
was the most depleted (Figure 2A-B; supplemental Table 5).
Importantly, gene ontology analysis of all depleted proteins
(n = 191) among the top 500 differentially abundant proteins
revealed an enrichment for ribosome biogenesis factors, rRNA
processing enzymes, and maturation factors of rRNA precursors
(supplemental Figure 4A; supplemental Table 6), similar to the
murine preleukemic cells. RIOX1, RRS1, and RPL22L1, all of
which were significantly depleted in preleukemic Npm1cA/+

cells, also demonstrated reduced abundance in NPM1c+ AML
(Figure 2C-E), albeit without reaching significance after cor-
recting for multiple testing. Other ribosome-related proteins
that were depleted in NPM1c+ AML included KRR1 (KRR1 small
subunit processome component homolog), an important inter-
actor of KRI1,26 RPS9 (ribosomal protein S9), and RBIS (ribo-
somal biogenesis factor) (supplemental Figure 4B-D). Notably,
none of the abovementioned candidates demonstrated down-
regulation in RNA-seq data from the same patients, suggesting
that these genes/proteins are regulated posttranscriptionally
(Figure 2F-I; supplemental Figure 4E-G). Finally, no significant
differences were observed in the abundance of the above-
mentioned proteins between NPM1c+, FLT3-ITD+, and all other
NPM1c+ AMLs (supplemental Figure 4H), suggesting that these
changes were not related to FLT3-ITD, the most common
comutation of NPM1c in AML.

Preleukemic Npm1cA/+ HSPCs demonstrate
enhanced sensitivity to RNA pol I inhibitors
In light of the mislocalization of mutant and the reduced levels
of NPM1wt, targeting ribosome homeostasis has been
1242 4 SEPTEMBER 2025 | VOLUME 146, NUMBER 10
previously proposed as a therapeutic strategy against NPM1-
mutant AML.31-33 Our data suggest that, in addition to the
reduced levels of NPM1wt in the nucleolus, mutant cells are
depleted of several ribosome biogenesis factors. We hypothe-
sized that this depletion creates a vulnerability that can be
therapeutically exploited to specifically target mutant cells. To
test this, we compared the responses of preleukemic Npm1cA/+

vs control Npm1+/+ HSPCs to drugs that modulate ribosome
biogenesis, including ActD and other RNA pol I inhibitors.
Indeed, we found that compared with Npm1+/+ cells, pre-
leukemic Npm1cA/+ lin– cells were significantly more sensitive to
ActD treatment (Figure 3A-C), particularly at lower concentra-
tions where the drug effects are known to be on-target
(supplemental Figure 5A).34 Following treatment with low-
dose ActD (1 nM), both mutant and wt HSPCs exhibited char-
acteristic features of nucleolar stress, including a shift in
nucleolar shape from irregular to round conformation
(Figure 3D).35,36 This suggests that both cell types activate a
nucleolar stress response, although impact on survival is greater
for NPM1c+ cells. Nucleoplasmic dislocation of NPM1wt,
another indicator of nucleolar stress,33,36,37 was observed in
preleukemic Npm1cA/+ lin– cells treated with higher drug doses
(5 nM) (supplemental Figure 5B). No DNA damage was
observed in Npm1cA/+ lin– cells after treatment with 2.5 nM
ActD for 48 hours (supplemental Figure 5C).
To further test whether the preferential sensitivity of Npm1cA/+

cells to ActD was due to RNA Pol I inhibition, and not due to off-
target effects, we then tested BMH-21 and CX-5461, 2 more
recently developed small-molecule inhibitors with different
modes of RNA pol I inhibition.38-40 Similarly to ActD, we found
that Npm1cA/+ HSPCs were significantly more sensitive to both
agents compared with wild-type Npm1+/+ cells (Figure 3E-F;
supplemental Figure 5D-G). Although off-target effects cannot
be entirely excluded, the consistent phenotype observed across
the 3 chemically distinct compounds suggests that Npm1c
specificity is primarily driven by on-target RNA pol I inhibition.
By contrast, we did not observe differential sensitivity between
Npm1cA/+ and Npm1+/+ HSPCs to cycloheximide, a drug that
inhibits translational elongation (Figure 3G).
Single-agent ActD inhibits expansion of an
NPM1-mutant AML PDX
To investigate the effects of ActD treatment in vivo using a
clinically relevant AML model, we used a luciferase-expressing
NPM1-mutant PDX harboring DNMT3A R882H, FLT3-ITD, and
RAD21 R146G comutations. One million NPM1c+ AML PDX
cells were injected IV into 12 NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ mice (Figure 4A; supplemental Figure 6A). After 35 days,
mice were allocated into 2 groups of similar AML burden
(Figure 4B) to receive ActD (0.1 mg kg−1) or vehicle twice
weekly for 5 weeks. Repeat bioluminescent imaging revealed a
significant reduction of AML burden in ActD-treated animals at
45 and 58 days after IV injection (Figure 4C-E). Dosing was
reduced to 0.06 mg kg−1 once weekly for another 3 weeks, and
animals were monitored until they developed leukemia symp-
toms. ActD-treated animals had a significantly longer survival at
90 days (P = .031), but this became nonsignificant soon after
stopping the treatment and until the end of the study (median
survival ActD 84.5 days vs vehicle 99 days) (supplemental
DAMASKOU et al
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Figure 2. Depletion of ribosome processing factors in human NPM1c+ AML. (A) Volcano plot of protein abundance in bone marrow samples from NPM1c+ (n = 8) vs
NPM1wt (n = 36) human de novo AMLs.22 (B-I) Relative protein (B-E) or RNA abundance (F-I) of selected ribosome-related candidates in NPM1c+ (n = 8) vs NPM1wt (n = 36)
AML patients (mean ± SD). Panel A, unpaired t test with multiple-hypothesis–testing correction (FDR, Benjamini-Hochberg method). (B-I) Unpaired t test was used to calculate
P values between groups. *P ≤ .05; **P ≤ .01; ****P ≤ .0001. ns, nonsignificant. Data available in Kramer et al.22
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Figure 6B). Notably, at collection, ActD-treated mice exhibited
milder AML-related pathological findings, including signifi-
cantly smaller spleens, lower white blood cell, and higher
platelet counts (Figures 4F-H). The antileukemic effect of ActD
was also confirmed by the significant reduction of circulating
human CD45+ AML cells in the blood (Figure 4I) and trends
toward lower levels in the bone marrow and spleen
(supplemental Figure 6C-D). Overall, these data reveal that
single-agent ActD has antileukemic activity in vivo against
TARGETING RIBOSOME BIOGENESIS IN NPM1-MUTANT AML
human NPM1-mutant AML. Nonetheless, further studies will be
needed to assess the selectivity of this treatment for patients
with NPM1c+ AML vs patients with NPM1wt AML.
ActD potentiates the effects of venetoclax against
preleukemic and leukemic NPM1c+ cells
Because venetoclax has become the standard of care for the
older/unfit patients with AML and is particularly effective
4 SEPTEMBER 2025 | VOLUME 146, NUMBER 10 1243
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against NPM1-mutant AML,41,42 we next wanted to evaluate
whether the ActD-venetoclax combination could synergistically
suppress the growth of NPM1c+ hematopoietic cells. We found
that doses of ActD or venetoclax that had mild effects on cell
proliferation in isolation significantly inhibited the growth of
preleukemic Npm1cA/+ hematopoietic progenitors in liquid
culture when combined (Figure 5A). Moreover, the combination
of ActD and venetoclax synergistically reduced the number of
total colony-forming unit colonies in semisolid media at doses
TARGETING RIBOSOME BIOGENESIS IN NPM1-MUTANT AML
that had minimal anticlonogenic effect when each drug was
used in isolation (Figure 5B-C).

In a similar fashion, ActD treatment synergistically enhanced the
antileukemic effects of venetoclax in murine Npm1cA/+; Flt3ITD/+

AML cells (Figure 4D). In the same model, high zero interaction
potency synergistic scores were obtained in 3-(4,5-dimethyl-
thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium (MTS) proliferation assays when venetoclax was
4 SEPTEMBER 2025 | VOLUME 146, NUMBER 10 1245
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combined with low concentrations of ActD (Figure 5E;
supplemental Figure 7A).

Low-dose ActD treatment resensitizes resistant
NPM1-mutant AML cells to venetoclax
NPM1c-mutant OCI-AML3 cells carry biallelic loss-of-function
BAX mutations and are resistant to venetoclax (supplemental
Figure 7B-C). We pretreated OCI-AML3 cells for 24 hours
with low-dose ActD (0.5 nM), a concentration that did not affect
cell viability (supplemental Figure 7D). We, then, removed ActD
and exposed the pretreated cells to a range of doses of ven-
etoclax (Figure 5F). We found that ActD pretreated OCI-AML3
were significantly more sensitive to venetoclax compared with
dimethyl sulfoxide (DMSO)-pretreated cells, with a dramatic
fivefold reduction in 50% inhibitory concentration (IC50)
(Figure 5G; supplemental Figure 7E). In addition, Annexin V
staining demonstrated a significant increase in apoptosis
induction in NPM1-mutant cells after combination treatment
with low-dose ActD and venetoclax (supplemental Figure 7F).

To test whether this observation held true for acquired ven-
etoclax resistance outside immortalized cell lines, we turned to
our Sleeping Beauty transposon-driven NPM1c+ AML model.20

In brief, we exposed murine NPM1c+ AML cells harboring
active (jumping) transposons to gradually increasing doses of
venetoclax, until they developed resistance. The derivative
resistant AML cells displayed a 4 to 7 times higher IC50 value for
venetoclax compared with the parental cells. However, as with
the OCI-AML3 cells, pretreatment with low concentration of
ActD restored their sensitivity to venetoclax in a dose-
dependent manner (Figure 5H-J; supplemental Figure 7G-H).

NPM1c+ AML cells are preferentially sensitive to
inhibition of the 40S maturation pathway
Ribosome biogenesis is a highly orchestrated process involving
more than 200 different factors.7 ActD targets the first step in
the process, namely transcription of the polycistronic 47S pre-
rRNA precursor, but in higher concentrations can have pleio-
tropic effects and associated toxicities.38 Thus, we next wanted
to explore whether ribosome biosynthesis could be targeted in
NPM1c+ AML cells in alternative ways, by inhibiting specific
ribosome-related factors.

To investigate this, we started by evaluating the DepMap
database, which contains CRIPSR knockout data for hundreds of
different cancer cell lines.24,25 We isolated the top 500 prefer-
entially essential genes for OCI-AML3 (the only NPM1c+ cell
line in the database), whose knockout is more detrimental to
this cell line vs other cancer cell lines. From this list, we selected
all genes with a known role in ribosome biogenesis, including
ribosomal components and factors involved in rRNA transcrip-
tion, modification, assembly, and maturation (Figure 6A). Can-
didates recovered in the list included NPM1 itself, the rDNA
transcription factor UBTF, NOP56, which is a core component
Figure 5 (continued) DMSO for 24 hours and then tested for sensitivity to venetoclax. (G
with Ven at the indicated doses (MTS assay). (H) Outline of approach to generate Ven-resis
Ven. Ven-resistant cells were then pretreated with ActD for 24 hours and their sensitivity t
pretreated murine NPM1c+ AML cells after 4 days incubation with Ven at the indicated d
from 1 of 2 biological replicates, performed in triplicate). (J) IC50 values of DMSO or ActD p
data from 1 of 2 biological replicates, performed in triplicate). (A,C-D,G,J) t test was used
ZIP, zero interaction potency. Panels F and H were created with BioRender.com. Vassilio

TARGETING RIBOSOME BIOGENESIS IN NPM1-MUTANT AML
of box C/D small nucleolar ribonucleoprotein particles, and
RPS6KA1, a member of the RSK family of kinases that is
involved in the phosphorylation of RPS6 and is druggable43,44

(supplemental Figure 8A-F).

Notably, among the list of preferentially essential genes for
OCI-AML3 cells, we found an enrichment for factors that are
involved in related steps of the 40S ribosome maturation
pathway, including the ribosome assembly factors BYSL, TSR1,
and TSR3. BYSL and TSR1 bind early 40S precursors in the
nucleoplasm and are exported bound to the pre-40S subunit to
the cytoplasm, where TSR3 is then recruited for the final stages
of maturation.7 Loss of any of these 3 factors had a strong,
preferential antileukemic effect against OCI-AML3 cells,
compared with a panel of 37 different AML cell lines (Figure 6B-
D; supplemental Figure 9A).

TSR3 is an aminocarboxypropyl (acp) transferase responsible for
the hypermodification of the 18S rRNA during late 40S matu-
ration steps in the eukaryotic cytoplasm. Unlike BYSL and TSR1
which are common essential genes,24,25 TSR3 is not broadly
essential for cell survival,45,46 making it an attractive therapeutic
target. Notably, an independent CRISPR knockout screen also
identified TSR3 as a specific vulnerability of OCI-AML3 cells,
but not of the other 4 different AML cell lines tested (OCI-
AML2, MOLM-13, HL-60, and MV-4-11)23 (Figure 6E). We
decided to focus on TSR3 for validation studies for the following
reasons: (1) specificity against NPM1c+ AML; (2) cross-validation
in 2 independent CRISPR screens23-25; (3) participation in the
40S subunit maturation, disruption of which is particularly
detrimental for NPM1c+ cells; (4) nonessential function in
normal cells45,46; and (5) potentially druggable profile.46 We
confirmed that TSR3 knockout inhibits the growth of OCI-AML3
cells (Figure 6F) but has little or no effect on the proliferation of
NPM1wt cell lines (supplemental Figure 9B). In addition, Tsr3
targeting reduced the proliferation of murine Npm1cA/+; Flt3ITD/+

leukemic cells (Figure 6G), but not of murine AML cells driven by
Flt3ITD/+ and oncogenic MLL gene fusions (supplemental
Figure 9C). Finally, Tsr3 knockout did not affect the growth of
the non-leukemic murine hematopoietic progenitor line 32D
(Figure 6H).

Upregulation of p53 targets and induction of
apoptosis in TSR3-depleted NPM1c+ AML cells
Next, we wanted to investigate the effects of TSR3 knockout on
NPM1c+ AML cells. RNA-seq analysis revealed the upregulation
of many direct p53 target genes, including CYFIP2, CDKN1A,
and PHLDA3, shortly after TSR3 depletion (Figure 7A;
supplemental Table 7). We performed gene set enrichment
analysis of RNA-seq from TSR3-depleted OCI-AML3 cells and
found an enrichment for genes involved in apoptosis and a
depletion of E2F targets and G2M checkpoint
genes (supplemental Figure 10A-C). Conversely, no apoptosis
or cell cycle-related gene sets were significantly altered in
) IC50 values of DMSO or ActD pretreated OCI-AML3 cells after 4 days of incubation
tant murineNpm1c-mutant AML cells by treatment with escalating concentrations of
o Ven was assessed using the MTS assay. (I) Relative proliferation of DMSO or ActD
oses. Absorbance values were normalized to DMSO-treated cells (mean ± SD, data
retreated murine NPM1c+ AML cells after 4 days of incubation with Ven (mean ± SD,
to calculate P values between groups. *P ≤ .05; **P ≤ .01; ***P ≤ .001; ****P ≤ .0001.
u, G. (2025) https://BioRender.com/9tt8kww.
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TSR3-depleted OCI-AML2 cells (NPM1wt) at the same time point
(supplemental Figure 10D-F).

Reflecting these findings, TSR3 knockout increased apoptosis in
OCI-AML3 cells and murine Npm1cA/+; Flt3ITD/+ leukemia cells
1248 4 SEPTEMBER 2025 | VOLUME 146, NUMBER 10
(Figure 7B-7D; supplemental Figure 10G-I), while also affecting
cell cycle distribution (Figure 7E; supplemental Figure 10J). In
contrast, we did not observe any significant alterations
in apoptosis or the cell cycle distribution on TSR3 knockout in
OCI-AML2 cells (supplemental Figure 10K-M).
DAMASKOU et al
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percentage was monitored for a course of 5 days by flow cytometry. (J) Percentage of BFP+ gTSR3 or gControl-transduced cells on treatment with Ven at the indicated doses.
BFP percentage was normalized to the reading of day 1. (A) Unpaired t test with multiple-hypothesis–testing correction (FDR, Benjamini-Hochberg method). (C-E,G-H,J) t test
was used to calculate P values between groups. *P ≤ .05; **P ≤ .01; ***P ≤ .001; ****P ≤ .0001. Data represent 3 to 6 independent experiments (mean ± SD). (G-H) Absorbance
values were normalized to DMSO-treated cells. Data represent 3 independent experiments (mean ± SD). MFI, mean fluorescence intensity. Panels F and I were created with
BioRender.com. Vassiliou, G. (2025) https://BioRender.com/9tt8kww.
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TSR3 depletion resensitizes resistant NPM1c+

AML cells to venetoclax
Finally, we wanted to investigate whether TSR3 depletion could
restore venetoclax sensitivity of resistant NPM1c+ leukemia
cells, as found with low-dose ActD treatment. For this, we
knocked out TSR3 in OCI-AML3 cells and reassessed response
TARGETING RIBOSOME BIOGENESIS IN NPM1-MUTANT AML
to venetoclax (Figure 7F). Strikingly, we observed that on TSR3
depletion, OCI-AML3 cells responded to concentrations as low
as 50 nM, whereas control guide RNA (gRNA)-transduced cells
required 100 to 200 times higher concentrations to display a
similar effect (Figure 7G; supplemental Figure 11A-B). Overall,
IC50 was four and a half-fold lower in TSR3-depleted compared
4 SEPTEMBER 2025 | VOLUME 146, NUMBER 10 1249
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with control OCI-AML3 cells (Figure 7H; supplemental
Figure 11C).

Next, we mixed BFP-expressing control gRNA and TSR3 gRNA-
transduced OCI-AML3 cells with nontransduced cells and
treated with increasing venetoclax concentrations for a course
of 5 days, while also monitoring the gRNA abundance using
flow cytometry (Figure 7I). As expected, control gRNA-
transduced cells demonstrated no decreased survival in the
evaluated concentrations. In contrast, gTSR3-transduced cells
demonstrated decreased survival that was also reduced on
venetoclax treatment, further revealing the selective sensitivity
of the TSR3-depleted cell population (Figure 7J; supplemental
Figure 11D-G).

Discussion
NPM1c mutations are found in 30% of all AML cases.13 Yet,
despite some recent advances in understanding their molecular
consequences,47,48 current therapeutic outcomes remain sub-
optimal, highlighting the need for new effective treatments.18 In
this study, we identified NPM1c-induced proteomic changes
and investigated their therapeutic potential. The use of a
faithful conditional knockin mouse model allowed us to study
the proteomic effects of NPM1c mutations in isolation, by
overcoming the confounding effects of different comutations19

or other sources of biological variation, including potential
in vitro adaptive changes in transformed cell lines. This enabled
us to establish a direct connection between the mutated
NPM1c protein and observed phenotypes.

Our findings revealed that levels of many proteins involved in
ribosome biogenesis are significantly reduced in NPM1c+ cells,
without significant changes in expression of their cognate
messenger RNAs (RNA-seq), in keeping with altered post-
transcriptional regulation. This downregulation could be either
directly or indirectly triggered by the reduced levels of NPM1wt
in mutant cells, although the precise mechanisms involved
require further investigation. Potential scenarios include the
following: (1) the interaction of NPM1wt with rRNA and ribo-
some biogenesis factors may stabilize them, with loss of this
interaction in the mutant cells leading to protein degradation
and (2) NPM1 haploinsufficiency may alter the availability of its
chaperone partners or disrupt the structural organization of the
nucleolus,9,10 affecting interactions, levels, and stability of
ribosome biogenesis factors. Interestingly, the altered nucleolar
structure was recently found to be detectable by holotomog-
raphy.49 On the basis of the observed depletion of ribosome
biogenesis factors, we hypothesized that targeting nucleolar
homeostasis may selectively affect NPM1c+ cells. Indeed,
NPM1-mutant cells were selectively more sensitive to multiple
RNA pol I inhibitors (ActD, CX-5461, and BMH-21) but dis-
played no differential response to translation inhibitors such as
cycloheximide.

Importantly, reduced ribosomal factor levels are also evident
after leukemia development, providing a rationale for reevalu-
ating the concept of targeting ribosome biogenesis in NPM1c+

AML, as first suggested and tested by Falini et al.31,32 More
recently, Gionfriddo et al33 revealed that ActD could induce
complete remission in patients with relapsed/refractory NPM1-
mutant AML, with evidence that the treatment initiated a
1250 4 SEPTEMBER 2025 | VOLUME 146, NUMBER 10
nucleolar stress response. Interestingly, Wu et al50 discovered
an additional effect of ActD in the mitochondria which
contributed to its antileukemic effects.

In the second part of this study, we explored whether specific
ribosome biogenesis factors can be targeted in NPM1-mutant
leukemic cells. Using DepMap24,25 and another independent
genome-wide AML CRISPR screen,23 we identified TSR3, a gene
whose knockout preferentially reduced the proliferation of
NPM1c+ AML cells. TSR3 acts at the late cytoplasmic stages of
the 40S ribosome maturation and is responsible for introducing
the N1-methyl-N3-aminocarboxypropylpseudouridine (m1acp3Ψ)
mark on 18S rRNA.46 Interestingly, loss of the m1acp3Ψ is a
common event in cancer,45 though it is unclear whether this loss
confers a growth advantage or is simply a byproduct of the high
ribosome production rates in cancer cells.

Currently, the mechanism underlying the dependency of
NPM1c+ AML on TSR3 is poorly understood, and it remains
uncertain whether it relates to its enzymatic activity. The
significantly reduced levels of the ribosome factors KRI1 and its
interactor KRR1, both of which are acting upstream of TSR3 in
40S maturation,7 could provide a potential link to explain this
vulnerability. In this model, TSR3 knockout, similarly to RNA pol
I inhibition, could be exacerbating an already impaired ribo-
some biogenesis process in NPM1c+ AML, lowering the
threshold for p53 activation and leading to apoptosis.

Notably, both low-dose ActD treatments and TSR3 knockout
synergized with venetoclax and displayed the ability to induce
at least partial resensitization in NPM1-mutant, venetoclax-
resistant AML models. Previous studies have revealed that
nucleolar stress, such as that caused by RNA pol I inhibition,
leads to the diffusion of ribosomal proteins into the nucleo-
plasm, where they bind and sequester MDM2, resulting in p53
stabilization and upregulation of key apoptotic genes.35,51-53 In
addition, induction of p53-driven apoptosis was demonstrated
in ActD-treated NPM1-mutant AML cells.33 In line with these
findings, our RNA-seq analysis of TSR3-depleted NPM1c+ cells
revealed the upregulation of direct p53 targets, including
CDKN1A (p21), and an enrichment for genes involved in
apoptosis. Importantly, p53 and the apoptotic response
network have a central role in controlling sensitivity to ven-
etoclax.54,55 Taken together, these data suggest that activation
of p53 and its targets by ActD or TSR3 knockout works syner-
gistically with BCL-2 inhibition (venetoclax) to promote
apoptosis in NPM1-mutant AML cells.

Overall, our findings lead us to propose that acquisition of
NPM1c and the accompanying loss of 1 NPM1wt allele result in
the posttranscriptional depletion of multiple players involved in
ribosome biogenesis, a consequence that can be exploited
therapeutically to target NPM1-mutant AML cells (supplemental
Figure 12).
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