
Biological
Psychiatry
794

Biolog
Archival Report
Multiomics Analysis of the Molecular Response
to Glucocorticoids: Insights Into Shared Genetic
Risk From Psychiatric to Medical Disorders

Janine Knauer-Arloth, Anastasiia Hryhorzhevska, and Elisabeth B. Binder
ABSTRACT
BACKGROUND: Alterations in the effects of glucocorticoids have been implicated in mediating some of the negative
health effects associated with chronic stress, including increased risk for psychiatric disorders and cardiovascular
and metabolic diseases. In this study, we investigated how genetic variants influence gene expression and DNA
methylation in response to glucocorticoid receptor (GR) activation and their association with disease risk.
METHODS: We measured DNA methylation (n = 199) and gene expression (n = 297) in peripheral blood before and
after GR activation with dexamethasone, with matched genotype data available for all samples. A comprehensive
molecular quantitative trait locus (QTL) analysis was conducted, mapping GR-response methylation (me)QTLs, GR-
response expression (e)QTLs, and GR-response expression quantitative trait methylation (eQTMs). A multilevel
network analysis was employed to map the complex relationships between the transcriptome, epigenome, and
genetic variation.
RESULTS: We identified 3772 GR-response meCpGs corresponding to 104,828 local GR-response meQTLs that did
not strongly overlap with baseline meQTLs. eQTM and eQTL analyses revealed distinct genetic influences on gene
expression and DNA methylation. Multilevel network analysis uncovered GR-response network trio QTLs,
characterized by SNP–CpG-transcript combinations where meQTLs act as both eQTLs and eQTMs. GR-response
trio variants were enriched in a genome-wide association study for psychiatric, respiratory, autoimmune, and
cardiovascular diseases and conferred a higher relative heritability per SNP than GR-response meQTL and
baseline QTL SNPs.
CONCLUSIONS: Genetic variants modulating the molecular effects of glucocorticoids are associated with psychiatric
as well as medical diseases and not uncovered in baseline QTL analyses.

https://doi.org/10.1016/j.biopsych.2024.10.004
Glucocorticoids (GCs) are the main effectors of the
hypothalamus-pituitary-adrenal axis and play a crucial role in
mediating the acute stress response. They are also implicated
in the negative health effects of chronic stress, which include
increased risk for a variety of psychiatric disorders, cardio-
vascular diseases, diabetes, and cancer (1). Studies have
shown that chronic exposure to GCs can increase morbidity
and even reduce life span (2,3). In addition, synthetic GCs are
effective in the treatment of different medical disorders but are
also accompanied by side effects, both in short-term and
chronic administration (4). GCs exert their influence on all tis-
sues, including the immune system, where they acutely sup-
press the immune response (5). This immunosuppressive
effect is leveraged in the treatment of autoimmune disorders.
On the other hand, chronic stress has been associated with a
decrease in the function of this inhibition and is often associ-
ated with a proinflammatory profile, which is a risk factor for a
number of medical and psychiatric disorders (6). However,
large interindividual differences are reported in the
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consequences of acute or chronic stress exposure as well as
side effects experienced from GCs.

GCs exert their effects via mineralo- and glucocorticoid
receptors (GRs), which are types of nuclear steroid hormone
receptors. These receptors directly bind to gene regulatory
elements at the DNA level and can either stimulate or repress
gene transcription, leading to local epigenetic alterations (7).
Individual variations in systemic response to GC exposure can
be mediated in part by altered effects at the level of gene
regulation. Using massively parallel reporter assays in cell lines
and stimulated expression quantitative trait locus (eQTL) ana-
lyses in peripheral blood, we have previously reported that
genetic variants can alter the effects of GCs at gene regulatory
elements (8). These variants have been linked to a spectrum of
outcomes, including altered risk for psychiatric disorders,
variation in amygdala reactivity to threat, startle response, and
cortisol response to a psychological stressor (8–10) as well as
stress-related changes in brain physiology, such as the peak
latency of the hemodynamic response function in limbic brain
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regions (11). In addition to genetic variation, the activity of GC
response elements is also influenced by the local epigenetic
landscape, including at the level of DNA methylation (DNAm)
(7,12). Furthermore, it has been shown that GR activation can
lead to changes in DNAm at its direct binding sites, mainly
through DNA demethylation (13–15). Beyond the effects of
transcription factors on chromatin accessibility and DNAm at
gene regulatory elements (16), which are likely main mediators
of the extensively explored environmental influences on DNAm
(17), DNAm patterns can also be influenced by genetic variants
known as methylation QTLs (meQTLs). A recent study high-
lighted the association between DNAm and single nucleotide
polymorphisms (SNPs) in a large meta-analysis, mapping the
role of meQTLs in shaping the epigenome (18). Furthermore,
tissue-specific meQTLs have been identified (19), and studies
that have focused on cell type–specific meQTLs have provided
insights into the cell-specific effects of genetic variants on
DNAm patterns (20,21). In addition to influencing baseline
DNAm levels, genetic variation may alter the above-described
impact of GR activation on DNAm in various tissues (13,14).
However, to date, no study has systematically explored how
common genetic variation can moderate this impact, which is
the primary focus of this article.

As indicated above, the regulation of genes by GCs, and
consequently its impact on disease risk or treatment out-
comes, is multifactorial, involving genetic, epigenetic, and
transcriptional factors. Multiomics approaches have emerged
as powerful tools to disentangle such complex regulation (22),
allowing for a comprehensive investigation of the molecular
landscape that contributes to disease risk because these
different levels are interrelated (23,24). For example, we have
shown that lasting GR activation–induced alterations in DNAm
within gene regulatory regions can influence the subsequent
effects of GR activation on gene expression levels (18). This
supports that changes in DNAm in response to stress-related
stimuli can impact cellular responses and potentially
contribute to the pathogenesis of various diseases.

In this study, we conducted the first multiomics analysis
investigating the genetic moderation of the effects of GR
activation via the agonist dexamethasone on changes in
DNAm and gene expression. By integrating stimulus-
dependent molecular QTLs into a comprehensive network
analysis, we jointly analyzed DNAm and gene expression in
response to GR activation in the context of common genetic
variations. This analysis revealed a multiomics signature
associated with GC-induced responses in peripheral blood as
well as novel connections between functional, molecular GC
effect–modulating variants, and disease risk variants.

METHODS AND MATERIALS

For detailed methods, see the Supplement.

Study Samples

The study involved 202 Caucasian participants from the Max
Planck Institute of Psychiatry. Of these, 88 individuals were
diagnosed with major depressive disorder (dataset
GSE64930). Blood samples were collected at baseline and 3
hours after a single oral dose of 1.5 mg dexamethasone. The
study was approved by the ethics board of the Ludwig
Biological
Maximilians University (approval No. 244/01) and conducted in
accordance with the Declaration of Helsinki.

DNAm Profiling

In our study, DNAm was evaluated using Illumina EPIC v1
Methylation arrays, with a total of 404 blood samples analyzed,
comprising 202 samples for each of the 2 time points (baseline
and GR response). Data processing involved several steps
performed on both time points together, which led to a final
dataset comprising 740,357 CpGs across 398 samples and
199 individuals.

Differential DNAm Analysis

A linear mixed effects model identified differentially meth-
ylated positions (DMPs) at a false discovery rate (FDR) of
,.05, accounting for sex, age, body mass index, depression
status, estimated white blood cell count, and genotype
principal components. Differential methylation regions were
identified using the ENmix R Bioconductor package and the
comb-p function with a distance of 1000 bp and a seeded
p value of .05.

Genotype Data and Imputation

Human DNA from EDTA blood samples was genotyped using
Illumina Human610-Quad (n = 79) and OmniExpress (n = 120)
BeadChips followed by quality control and imputation as pre-
viously described (9). The final dataset included 5,617,712
SNPs across 199 samples.

meQTL Analysis

The cis-meQTL analysis focused on evaluating the association
of SNP-CpG pairs within a 61-Mb region at baseline utilizing
standardized methylation changes (differences in DNAm
postdexamethasone treatment relative to baseline standard-
ized against the baseline). The latter are termed GR-response
meQTLs. Significant meQTLs were identified at FDR ,.05
using MatrixEQTL (25).

Gene Expression Data

Baseline and GC-induced gene expression in blood from 199
individuals were assessed using Illumina HumanHT-12 Bead-
Chips (GSE64930) (9). This data underwent quality control
processing for both time points together, resulting in a dataset
encompassing 11,944 transcripts from 398 samples.

Expression Quantitative Trait Methylation Analysis

Expression quantitative trait methylation (eQTM) analysis was
performed to assess the relationship between DNAm and gene
expression. We examined 11,944 transcripts and 740,357 CpG
sites within a 61-Mb window. For GR-response eQTMs,
standardized methylation and expression values were corre-
lated using MatrixEQTL, adjusting for covariates including
those used in meQTL analysis and surrogate variables derived
from gene expression data. Significant cis-eQTMs were iden-
tified at an FDR threshold of ,.05.

Expression Quantitative Trait Analysis

We leveraged previously identified cis-GR-response eQTL re-
sults reported in (9) from the same cohort, which were based
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on data from 297 individuals. Only a subset of 202 individuals
(199 included in the meQTL analysis) had matched methylation
data available. In the current analysis, we focused on identi-
fying overlapping variants by comparing expression SNPs
(eSNPs) from the eQTL analysis with meQTL methylation SNPs
(meSNPs).

Functional Genomic Annotation and
Characterization

Differentially methylated CpGs and GR-response meQTLs
were annotated for genomic features using the minfi R pack-
age and the University of California Santa Cruz (UCSC)
Genome Browser data from the R package ChIPseeker (26).
meQTLs were also annotated for GR binding sites, and chro-
matin state enrichment was assessed using ChromHMM
annotation (27,28).

Multiomics Network Inference and Analysis

Multiomics network inference and analysis were performed
using KiMONo (29), which incorporated standardized changes
in expression and methylation together with genetic variants
and established relationships.

Gene Ontology Enrichment Analysis

For the Gene Ontology enrichment analysis, we used FUMA
GENE2FUNC (30) with default parameters. The background list
consisted of the 11,994 transcripts from our dataset.

Gene Overlap With Genes Induced by GR Activation
in the Mouse Brain

To compare GR-response network trio QTL genes, specifically
SNP-CpG-transcript combinations where meQTLs function as
both eQTLs or eQTMs, we utilized GR-response genes in
mouse brain tissue data from DiffBrainNet (31). Orthologs were
mapped by using the R package orthologsBioMART. The
significance of overlap was determined using Fisher’s exact
test in the R package GeneOverlap.

Genome-Wide Association Study Enrichment
Analysis

We performed genome-wide association study (GWAS)
enrichment analysis for GR-response trio SNPs. Linkage
disequilibrium (LD)–independent SNPs were identified using
PLINK (version 1.90b5.3) and matched to GWAS variants
across psychiatric, metabolic, immune, and other phenotypes.
GR-response meSNPs served as background. Enrichment was
assessed with 1000 permutations, calculating empirical p
values and odds ratios (ORs) with FDR correction (10%).

Mediation Analysis

Mediation analysis was conducted using the R package
mediation to assess the indirect effect of SNPs on gene
expression via DNAm. The model controlled for potential
confounders.

Heritability Estimation

SNP-based heritability for 6 diseases (asthma, bipolar disor-
der, inflammatory bowel disease, multiple sclerosis, schizo-
phrenia, stroke) was estimated using LD score regression
796 Biological Psychiatry April 15, 2025; 97:794–805 www.sobp.org/jo
version 1.0.1 and GWAS summary statistics. GR-response trio
variants (n = 172) and GR-response meSNPs were assessed
for their contribution to disease heritability using partitioned
heritability.

RESULTS

We conducted a multiomics analysis assessing gene expres-
sion in 297 individuals and DNAm in 199 individuals, with
genome-wide genotypes available for all participants. Blood
samples were collected before and after dexamethasone
administration.

Uncovering In Vivo GC-Induced Differential DNAm

We identified 3280 GR-response DMPs (Figure 1C and
Table S1), with 76.4% hypomethylated and 23.6% hyper-
methylated. Most GR-response DMPs were located outside
of CpG islands (72.3%), differing from the EPIC array’s dis-
tribution (55.5%, Wilcoxon p value = .03). GR-response DMPs
were not significantly different from the EPIC array’s distri-
bution in terms of genomic location (Figure 1D, E;
Supplement). Differential methylation region analysis identi-
fied 4230 significant regions (Table S2), with 84.8% over-
lapping with DMPs.

Overlapping and Distinct Mechanisms of Genetic
Control: Contrasting GR-Response meQTLs With
Baseline meQTLs

We identified 104,828 GR-response meQTLs involving 3772
CpGs and 88,585 SNPs. Only 12 meCpGs were shared with
DMPs (Table S3 and Figure 2A). The average distance between
GR-response meSNPs and meCpGs was 105 kbp. Among the
GR-response meCpGs, 69% overlapped with baseline
meCpGs (n = 2618 CpGs) (Table S4). Examples of GR-
response meQTLs with and without a baseline meQTL are
illustrated in Figure 2B and C. GR-response meCpGs were
primarily located in open sea regions (60.1%). GR-response
meSNPs were located in introns (54.6%) and distal intergenic
regions (32.7%), differing from baseline meSNPs (Wilcoxon p
value = .05) (Figure 2D–F; Supplement). Furthermore, GR-
response meCpGs were more frequently located within GC
response elements (25.1%) than baseline meCpGs (20.3%)
(Figure 2G, H).

Validation of baseline meQTLs using Genetics of DNAm
Consortium (GoDMC) data showed a 77.6% replication rate.

Consistent Regulatory Patterns of GR-Response
meQTLs Across Blood Cell Types

To understand the functional implications of GR-response
meQTLs, we examined their distribution across functional
genomic regions using ChromHMM epigenetic states in blood
and T and B cell lines. Our analysis indicated that GR-response
meCpGs were more frequently found in promoters and en-
hancers than GR-response meSNPs (Figure 3A, B). Addition-
ally, we found that 44.6% of GR-response meCpG sites were
associated with SNPs localized to the same chromatin state.
Interestingly, neither GR-response meCpGs nor meSNPs
showed significant differences in the distribution of epigenetic
states across single blood cell types (pairwise Wilcoxon p
value . .05) (Figure 3A, B).
urnal
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Figure 1. Overview of the GR-response meQTL study. (A, B) The stepwise experimental design used to investigate the genetic effects on the GR response
in human whole blood involves several key steps: 1) treatment of 199 individuals with 1.5 mg dexamethasone per os; 2) transcriptome and methylome
measurements were obtained from the entire cohort at 2 time points, baseline and 3 hours posttreatment; this included DNAm patterns assessed using the
Illumina MethylationEPIC BeadChip, aligning with the time point of messenger RNA expression measures (same blood draw with Paxgene RNA and EDTA
tubes); 3) genotype profiling was performed, utilizing a subset of our previously published GR-response eQTL analysis, to map GR-response meQTLs; 4) GR-
response eQTM analysis was conducted to explore the relationships between gene expression and methylation; and 5) multiomics network inference and
analysis were carried out, integrating the data to understand the genetic impact on GR responses. (C) Mean methylation profiles of DMPs (n = 3280, false
discovery rate 5%) in 199 individuals, illustrating changes between baseline and GC-induced conditions. The top 100 DMPs are depicted. (D, E) Annotation of
DMPs: (D) CpG islands; N(S) shore, 2-kb-long regions flanking both sides of a CpG island; N(S) shelf, 2 kb upstream/downstream of the farthest limits of the
CpG shores, excluding CpG islands and CpG shores; OpenSea, encompassing the remaining genomic regions, with a significant difference in distribution of
GR-response DMPs compared with the EPIC array following GC stimulation (Wilcoxon p value = .03). (E) Gene locations are indicated for a comprehensive
understanding of the genomic context of the identified GR-response DMPs, with no significant difference in distribution compared with the EPIC array
(Wilcoxon p value = .76). DMP, differentially methylated position; eQTL, expression quantitative trait locus; eQTM, expression quantitative trait methylation; GC,
glucocorticoid; GR, glucocorticoid receptor; meQTL, methylation QTL; SNP, single nucleotide polymorphism; UTR, untranslated region.
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Because cell type–specific meQTLs have been reported, we
further explored the cell-type specificity of GR-response
meCpGs by reanalyzing GR-response meQTLs without adjust-
ing for blood cell compositions. This revealed 102,051 meQTLs,
Biological
of which 90.6% overlapped with those identified in the original
analysis that included white blood cell compositions (Figure 3C).
These findings suggest that GR-response meQTLs do not show
strong cell type–specific effects in peripheral blood.
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Figure 3. GR-response meQTLs and blood cell types. (A, B) This shows histone mark enrichment for GR-response meCpGs (A) and GR-response-meSNPs
(B) across 15 chromatin states in 18 primary blood cell types. The top panel illustrates the distribution in baseline meQTLs, with GR-response meCpGs being
more frequent in promoters (17.6% vs. 2.3% in GR-response meSNPs) and enhancers (14.8% vs. 6.9% in GR-response meSNPs). The bottom panel focuses
on GR-response meQTLs, noting that 44.6% of meCpG sites are associated with SNPs in the same chromatin state but different positions. Analyzed
chromatin states include TssA (active TSS), TssAFlnk (flanking active TSS), TxFlnk (transcr. at gene 50 and 30), Tx (strong transcription), TxWk (weak tran-
scription), EnhG (genic enhancers), Enh (enhancers), ZNF/Rpts (ZNF genes and repeats), Het (heterochromatin), TssBiv (bivalent/poised TSS), BivFlnk (flanking
bivalent TSS/Enh), EnhBiv (bivalent enhancer), ReprPC (repressed PolyComb), ReprPCWk (weak repressed PolyComb), and Quies (quiescent/low). (C) A Venn
diagram highlights the overlap between GR-response meQTLs adjusted for white blood cell counts and those without adjustment. 102,051 meQTLs (86,834
meSNPs and 3839 meCpGs) were identified without BCC adjustment, of which 90.6% (n = 92,471 meQTLs) were found to be common with the original GR-
response meQTL analysis that accounted for white BCCs. BCC, blood cell count; GC, glucocorticoid; GR, glucocorticoid receptor; meCpG, methylation CpG
site; meQTL, methylation quantitative trait locus; meSNP, methylation single nucleotide polymorphism.
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Figure 2. GR-response meQTL analysis. (A) Manhattan plot displaying the results of the GR-response meQTL analysis, illustrating the distribution of
104,828 local GR-response meQTLs (88,585 unique GR-response meSNPs) across the genome. (B, C) Boxplots showing the residualized beta methylation
values of significant GR-response meQTLs as examples. Methylation levels are stratified based on the genotypes of the meSNPs. (B) A GR-response meQTL
(rs2678333-cg15535573) located on chromosome 12 with a postdexamethasone-specific effect (false discovery rate = 8.24 3 10215). (C) A GR-response
meQTL (rs11055602-cg07195891) located on chromosome 12, exhibiting effects both before and after dexamethasone treatment, with a notable decrease
in individuals with major genotype and an increase in individuals with the minor allele genotype in postdexamethasone in comparison to baseline (false
discovery rate = 5.1 3 10230). (D, E) Genomic characteristics of GR-response meCpGs and baseline meCpGs in relation to (D) CpG islands and (E) nearby
genes. Various genomic regions were analyzed: CpG islands; N(S) shore, 2-kb-long regions flanking both sides of a CpG island; N(S) shelf, 2 kb upstream/
downstream of the farthest limits of the CpG shores, excluding CpG islands and CpG shores; OpenSea, encompassing the remaining genomic regions. The
distribution of GR-response meCpGs across the features in (D) and (E) did not show statistically significant differences between baseline and GR stimulation
(Wilcoxon p value . .05). (F) Characteristics of GR-response meSNPs are detailed in relation to the genomic location of nearby genes, with a significant
difference in distribution between baseline and GR stimulation with Wilcoxon p value = .05. (G, H) GR-response and baseline meCpGs and meSNPs annotated
for GRE proximity. The distribution of meCpGs and meSNPs did not show statistically significant differences between baseline and GR stimulation (Wilcoxon p
value . .05). GC, glucocorticoid; GR, glucocorticoid receptor; GRE, glucocorticoid response element; meCpG, methylation CpG site; meQTL, methylation
quantitative trait locus; meSNP, methylation single nucleotide polymorphism; UTR, untranslated region.
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Absence of Shared Genetic Control: No Overlap
Between Genetic Variants Moderating GC-Induced
DNAm and GC-Induced Gene Expression Changes

To investigate the genetic control of gene expression and
DNAm, we compared the patterns of GR-response meQTLs
and GR-response eQTLs (Table S5). By leveraging our previ-
ously identified cis-GR-response eQTL results (9), with 717
GR-response eQTL transcripts and 10,078 GR-response
eQTL(e)SNPs across 297 individuals, we discovered a total
of 9688 non-overlapping eSNPs. Strikingly, a significant pro-
portion (96%) of these eSNPs were exclusively detected by
GR-response eQTL analysis and not in the GR-response
meQTL analysis (Figure 4A). Among the GR-response
meSNPs, only 0.44% (n = 390) were also identified as GR-
response eSNPs impacting 591 meQTLs. In contrast, our
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baseline analysis revealed a substantial overlap of 89%
(n = 150,057) between our previously reported baseline eSNPs
(n = 167,885) and meSNPs (n = 2,274,829).

Large Number of Associations Between GC-
Induced DNAm and GC-Induced Gene Expression

To explore the relationship between GC-induced changes in
DNAm and changes in gene expression, we conducted an
eQTM analysis using the gene expression data from our
sample. Employing the same analytic approach as for GR-
response meQTLs, we identified a substantial number of
28,688 cis-GR-response eQTM associations (consisting of
14,364 GR-response eQTM CpGs and 4039 GR-response
eQTM transcripts) in our dataset at an FDR of 5% (Table S6).
However, only a small proportion of 162 GR-response eQTM
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CpGs overlapped with our GR-response meCpG sites
(Figure 4B), suggesting that while GR-response mechanisms
exhibit correlation at both DNAm and gene expression levels,
only a small fraction (4%) are under genetic influence. Inter-
estingly, a larger proportion (9.7%) of GR-response eQTM
CpGs overlapped with GR-response DMP CpGs (1388 CpGs)
than the minimal overlap with GR-response meCpGs. It is
noteworthy that we identified merely 1307 eQTMs at baseline
(consisting of 1126 eQTM CpGs and 512 eQTM transcripts)
(Tables S5 and S7).

Integration of GR-Response me/eQTLs and GR-
Response eQTMs via Multiomics Network Analysis:
Capturing Immune-Related Pathways

We conducted a physical position overlap analysis to identify
common GC-induced QTL loci. Limited overlap was observed
between GR-response meQTLs, eQTLs, and eQTMs
(Figure 4A; Supplement). The CLEC4C gene demonstrated
multiple omics associations and significant eQTMs correla-
tions both at baseline and after GR stimulation (Figure 4B, C).
However, when adjusting for the me/eSNP effect, the baseline
correlation disappeared (Figure 4C). This highlights the
importance of multiomic analysis for identifying true associa-
tions. Consequently, we generated a multiomic GR network
(7193 nodes and 30,332 edges) reflecting the complex inter-
play between transcripts, SNPs, CpGs, and biological factors
(Supplement and Table S8).

We further examined GR-response network trios
(Figure 5A), which are GR-response meQTLs that also act as
GR-response eQTLs or GR-response eQTMs, thus forming
SNP-CpG-transcript combinations or trios. Our analysis
revealed 552 eQTMs and 297 eQTLs (Figure 5B and Table S9).
Among these, we discovered 613 GR-response trio genes
enriched in immune-related pathways (Figure 5C) and signifi-
cant overlap with dexamethasone-regulated genes in the
mouse brain (OR = 1.8, p value = 1.4 3 1026) (Figure 5D, E;
Table S10; Supplement) (31). These findings highlight the
pivotal role of these trio genes in stress impacts on the brain
and their critical influence in mediating GC effects on brain
function and behavior.

A key hub within this network was identified as a single CpG
site (cg09614808) in the APP gene, connected with 164 genes
across all 22 autosomes. Additional notable hubs included
cg09614808 in the YWHAZ gene and cg17764313 in the
MCM2 gene, connected to 14 and 25 genes, respectively.

The GR-Response SNP-Methylation-Messenger
RNA Trios Are Relevant to Psychiatric-Related
Diseases

Given the established impact of stress on various health
conditions, particularly inflammation, autoimmune disorders,
and psychiatric traits, we investigated the functional relevance
of GR-response trio variants, i.e., 1) variants influencing both
DNAm (GR-response meQTLs) and gene expression (GR-
response eQTLs) following GR stimulation or 2) variants
associated with GR-response meCpGs that also exhibit reg-
ulatory effects on gene expression upon GR stimulation (GR-
response eQTMs) in our network analysis.
Biological
We identified 7591 GR-response trio SNPs (including 321
LD-independent SNPs) (Table S10), enriched in diverse traits
(FDR # 10%), including psychiatric and autoimmune dis-
eases (detailed in the Supplement). Enrichments were
calculated over nontrio GR-response meSNPs and included
bipolar disorder (OR = 1.36), schizophrenia (OR = 1.38), mul-
tiple sclerosis (OR = 1.45), asthma (OR = 1.32), stroke (OR =
1.51), and inflammatory bowel disease (OR = 1.77) (Figure 5F).

To explore causal pathways, we conducted a mediation
analysis focusing on 172 GR-response trio SNPs associated
with at least one of the 6 enriched diseases (Table S12). DNAm
was found to mediate gene expression for 26.3% of these
SNPs (p , .05), with a strong average causal mediation effect
in 89.7% of cases. However, 35.3% of the SNPs also exerted a
direct effect on gene expression independent of DNAm (see
the Supplement for additional details).

To further understand the clinical relevance of the identi-
fied 172 GR-response trio SNPs, we performed partitioned LD
score regression analysis using the 6 GWASs with significant
GR-response trio SNP enrichment. This analysis revealed a
modest absolute contribution of GR-trio SNPs to overall
heritability (0.21%–1.51%, depending on phenotype)
(Table S12). However, considering the limited number of
SNPs (n = 172), the relative heritability (SNP-based heritability
divided by the number of SNPs) demonstrated a higher in-
formation content per SNP within these GWASs for
GR-response trio SNPs than for GR-response meQTLs and
baseline QTL SNPs (Figure S2). This finding underscores the
potential disease relevance of GR-response trio SNPs and
warrants further investigation.
DISCUSSION

In this study, we used advanced network analysis and multi-
level GR-response data to explore 1) the influence of genetic
variants on DNAm patterns in response to GC exposure, 2) the
consequent effects of these changes on gene expression
when induced by GCs, and 3) the associated genetic risk for
various medical diseases and traits. While recent in-
vestigations have begun exploring multiomics data in various
fields [for example (32–35)], none have yet integrated data that
reflect dynamic changes following a disease-relevant stimulus.
Here, we leveraged such data with repeated measures before
and after GC stimulation in 199 individuals, integrating across
genetic, DNAm, and gene expression data. Our network model
incorporated 88,585 GR-response meSNPs and 3772 GR-
response meCpGs and approximately 12,000 transcripts. Our
analysis highlights not only the dynamic changes in DNAm
following GR activation but also the different levels of regula-
tions with distinct effects of genetic variants on changes in
GC-induced gene expression and DNAm. Additionally, GR-
response meQTLs were distinct from baseline meQTLs, sug-
gesting that some QTLs are only revealed through exposures,
including exposure to GCs. This finding underscores the
importance of challenge experiments to fully understand the
role of associated variants identified in GWASs. In fact,
focusing on GR-response trio variants from our multiomics
model, we showed that genetic variants that alter the molec-
ular impact of GCs in immune cells are enriched for variants
associated with risk for psychiatric disorders, autoimmune
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disorders, respiratory diseases, and cardiovascular disease,
even over nontrio GR-response meQTL SNPs. This supports
the observation that chronic stress, partly mediated by GC
exposure, is a shared risk factor across psychiatric and med-
ical diseases. Our findings suggest that the genetic variants
that moderate the effects of GCs may underlie some of the
genetic correlations that have been observed across these
traits [for example (36–38)].

In our study, we identified 3280 CpG sites displaying sig-
nificant differential DNAm (DMPs) after GR activation. Most
DMPs showed hypomethylation (76.4%) and were mainly
located in open sea regions. These findings are consistent with
existing reports suggesting that GR binding can lead to active
DNA demethylation through DNA repair mechanisms (15).
Furthermore, it is consistent with recent insight from Isbel et al.
(16), which indicates similar mechanisms for local epigenetic
changes following transcription factor binding in general.

While we discovered a substantial number of GR-response
meQTLs (n = 104,828), 99.7% of them showed no change in
average DNAm across all genotypes but only exhibited sig-
nificant DNAm changes upon GR activation in an allele-
specific manner (Figure S1). These GR-response meQTLs
exhibited distinct patterns and mechanisms compared with
previously identified GR-response eQTLs (9), with ,1% over-
lap at the SNP level. Discrepant levels of overlap, ranging from
substantial (39) to ,5% (40), have previously been reported,
likely highlighting the contextual nature of the interaction be-
tween meQTLs and eQTLs.

The cell-type specificity of baseline DNAm, even within
blood cell types, is well established (41). In contrast to this
pattern, we found in the current study that only a smaller
subset of GR-response meQTLs displayed such specificity.
This suggests that epigenetic modifications related to stress
may have shared genetic regulation across a diverse range of
immune cell types and possibly even beyond the immune
system. Moreover, the transcripts within the GR-response trio
genes from our network analysis were responsive to GCs in
various mouse brain regions (31). This observation aligns well
with previous findings indicating that GR-responsive se-
quences, as identified in eQTL and massively parallel reporter
assays, are enriched in cross-tissue enhancers (8,10).
Consistent with these findings, the shared genetic associa-
tions that we observed within the GR-response trio SNPs
encompass a range of psychiatric and medical disorders and
=

Figure 5. GR-response trios: (A) The GR-response trio network is composed o
between SNPs, CpG sites, and transcripts. The network is color coded, with SNP
number of connections that a node has (node degree). Nodes with a node degre
eQTM and eQTL relationships within the GR-response trio network. (C) The GR-r
pathways such as myeloid leucocyte–mediated immunity, cell activation involved
related to cell activation, cell motility, and locomotion. (D) Venn diagram displa
regulated in the mouse brain following dexamethasone administration. Of the ov
cortex following dexamethasone. (E) A bar plot depicting the distribution of the
genome-wide association study associations for the GR-response trio SNPs acr
disorders, psychiatric traits, cytokines, metabolic markers, autoimmune diseases
nontrio GR-response methylation SNPs, with significant enrichment indicated by r
body mass index; CRP, C-reactive protein; eQTL, expression quantitative trait lo
rate; GR, glucocorticoid receptor; IL, interleukin; MIP, macrophage inflammatory
mean square of successive difference; SDNN, standard deviation of normal-to-n
necrosis factor.

Biological
suggest a potential role in moderating stress effects across
multiple systems. Notably, the GR-response trio genes were
significantly enriched in immune-related pathways as well as
brain-related pathways including neurotransmitter signaling
(Figure 5C). This raises the intriguing possibility that these
SNPs may influence stress-induced changes in the immune
system, which in turn could impact brain function both directly
as well as indirectly via cytokine signaling within inflammatory
pathways. Furthermore, our mediation analysis highlights
DNAm as a potential regulatory layer that links these genetic
variants to altered gene expression. Our study focused on
peripheral immune cells, so it is important to acknowledge that
additional relationships may exist in other tissues.

The GR-response trio SNPs may also contribute to disease
heritability beyond other QTLs. Although partitioning heritabil-
ity analysis revealed a modest absolute contribution of GR-
response trio SNPs to overall heritability, their relative herita-
bility per SNP suggests a potentially greater impact on disease
risk than other QTL SNPs. This highlights the importance of
investigating response QTLs with disease-relevant stimuli to
better understand genetic disease risk. Future studies should
explore such response QTLs in tissues relevant to the disor-
ders of interest.

While our study contributes significant insights, there are
limitations that should be considered. Our sample included
199 individuals, limiting the power to detect smaller effect sizes
or trans-effects. Future studies should use single-cell resolu-
tion methods to explore cellular heterogeneity, as highlighted
in the human brain cell atlas (42). Additionally, investigating
different exposure lengths and timings of GR stimulation may
provide further insights into the temporal dynamics of the
molecular response. Furthermore, additional experiments
exploring different layers of epigenetic regulation are needed to
investigate the role of DNAm in regulatory elements and its
impact on gene expression upon GR stimulation. While our
multiomic network analysis considers trans-effects, it is
important to note that our GR-response meQTL analysis pri-
marily focuses on cis-meQTLs. Therefore, network nodes with
many potential trans-effects, such as the CpG site within APP,
warrant cautious interpretation and replication studies. In our
study, we identified that the GC-induced methylation changes
of this CpG site, residing within the APP gene, was associated
with changes in gene expression of many genes (n = 164) but
not with APP itself, reducing the likelihood of direct
f methylation QTLs acting as both eQTLs and eQTMs, forming interactions
s in yellow, genes in blue, and CpG sites in green. Node size represents the
e .5 are labeled by their name. (B) A barplot illustrating the distribution of
esponse trio genes displayed enrichment in immune-related Gene Ontology
in immune response, and myeloid leucocyte activation, as well as pathways
ying the overlap between GR-response trio genes and genes differentially
erlapping genes, 59% were differentially regulated in the mouse prefrontal
overlapping genes across various brain regions. (F) Enrichment of nominal
oss various genome-wide association study datasets, including psychiatric
, and asthma. The y-axis represents the enrichment p value compared with
ed labels. Bars are color coded according to their disease or trait class. BMI,
cus; eQTM, expression quantitative trait methylation; FDR, false discovery
protein; pvRSAHF, peak-valley respiratory sinus arrhythmia; RMSSD, root
ormal interbeat interval; SNP, single nucleotide polymorphism; TNF, tumor
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associations with neurodegenerative disease or other disor-
ders that APP has been implicated in.

Conclusions

By generating multiomic networks of the regulation of the mo-
lecular response to GC in immune cells, we identified shared
genetic influences of stress-moderating variants on a range of
diseases—from psychiatric to medical—that have previously
been reported to be affected by chronic stress and GC exposure.
SNPs moderating the response to GC on the level of DNAm and
gene expression seem to be of particular interest because they
are enriched for GWAS variants and may explain a relatively
larger fraction of heritability than other QTL SNPs. If this is
extrapolated to QTLs that use additional relevant stimuli in
additional tissues, response QTLs may end up explaining large
fractions of disease heritability. By pinpointing such key multilevel
dynamic regulators, we enhance the pathomechanistic under-
standing of how stress can serve as a transdiagnostic risk factor.

ACKNOWLEDGMENTS AND DISCLOSURES
This work was supported by the European Union’s Horizon 2020 Research
and Innovation Programme (Grant No. 860895), part of the European
Training Network grant, Translational SYStemics: Personalized Medicine at
the Interface of Translational Research and Systems Medicine, and by the
European Research Council (Grant No. 281338 [to EBB]). JK-A was sup-
ported by the Brain & Behavior Research Foundation through NARSAD
Young Investigator grant (Grant No. 28063).

We thank Linda Dieckmann, Darina Czamara, and the members of the
medical genomics group for their invaluable insights and discussions
throughout the project’s execution. Our heartfelt appreciation goes to all the
study participants, whose involvement was essential for the success of this
research. We also thank OpenAI for providing assistance through ChatGPT
during the process of writing this manuscript.

JK-A conducted the computational analysis, generated data visualiza-
tions, and drafted the initial manuscript. EBB contributed intellectually,
conducted substantial manuscript revisions, and provided critical feedback
as well as funding. JK-A and EBB collaboratively conceptualized, designed,
and supervised the study. AH was responsible for the quality control of the
methylation data. All authors had the opportunity to review, offer feedback
on, and approve the final manuscript.

A previous version of this article was published as a preprint on medRxiv:
https://www.medrxiv.org/content/10.1101/2023.12.05.23299430v2.

The computational code developed for this study has been made
available on GitHub (https://github.com/jArloth/GR-meQTLs/), and the
DNAm data are accessible in the GEO repository (GEO: GSE249113).

The authors report no biomedical financial interests or potential conflicts
of interest.

ARTICLE INFORMATION
From the Department Genes and Environment, Max Planck Institute of
Psychiatry, Munich, Germany (JK-A, AH, EBB); Institute of Computational
Biology, Helmholtz Munich, Neuherberg, Germany (JK-A); and Department
of Psychiatry and Behavioral Sciences, Emory University School of Medi-
cine, Atlanta, Georgia (EBB).

Address correspondence to Janine Knauer-Arloth, Ph.D., at arloth@psych.
mpg.de, or Elisabeth B. Binder, M.D., Ph.D., at binder@psych.mpg.de.

Received Mar 6, 2024; revised Sep 24, 2024; accepted Oct 2, 2024.
Supplementary material cited in this article is available online at https://

doi.org/10.1016/j.biopsych.2024.10.004.
REFERENCES
1. Seiler A, Fagundes CP, Christian LM (2020): The impact of everyday

stressors on the immune system and health. In: Choukèr A, editor.
Stress Challenges and Immunity in Space. Springer: Cham, 71–92.
804 Biological Psychiatry April 15, 2025; 97:794–805 www.sobp.org/jo
2. Brown DW, Anda RF, Tiemeier H, Felitti VJ, Edwards VJ, Croft JB,
Giles WH (2009): Adverse childhood experiences and the risk of pre-
mature mortality. Am J Prev Med 37:389–396.

3. Bjørndal LD, Kendler KS, Reichborn-Kjennerud T, Ystrom E (2023):
Stressful life events increase the risk of major depressive episodes: A
population-based twin study. Psychol Med 53:5194–5202.

4. Williams DM (2018): Clinical Pharmacology of corticosteroids. Respir
Care 63:655–670.

5. Quatrini L, Ugolini S (2021): New insights into the cell- and tissue-
specificity of glucocorticoid actions. Cell Mol Immunol 18:269–278.

6. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S,
Franceschi C, et al. (2019): Chronic inflammation in the etiology of
disease across the life span. Nat Med 25:1822–1832.

7. Klengel T, Binder EB (2015): Epigenetics of stress-related psychiatric
disorders and gene 3 environment interactions. Neuron 86:1343–
1357.

8. Penner-Goeke S, Bothe M, Rek N, Kreitmaier P, Pöhlchen D, Kühnel A,
et al. (2023): High-throughput screening of glucocorticoid-induced
enhancer activity reveals mechanisms of stress-related psychiatric
disorders. Proc Natl Acad Sci U S A 120:e2305773120.

9. Moore SR, Halldorsdottir T, Martins J, Lucae S, Müller-Myhsok B,
Müller NS, et al. (2021): Sex differences in the genetic regulation of the
blood transcriptome response to glucocorticoid receptor activation.
Transl Psychiatry 11:632.

10. Arloth J, Bogdan R, Weber P, Frishman G, Menke A, Wagner KV, et al.
(2015): Genetic differences in the immediate transcriptome response
to stress predict risk-related brain function and psychiatric disorders.
Neuron 86:1189–1202.

11. Elbau IG, Brücklmeier B, Uhr M, Arloth J, Czamara D, Spoormaker VI,
et al. (2018): The brain’s hemodynamic response function rapidly
changes under acute psychosocial stress in association with genetic
and endocrine stress response markers. Proc Natl Acad Sci U S A
115:E10206–E10215.

12. Bartlett AA, Lapp HE, Hunter RG (2019): Epigenetic mechanisms of the
glucocorticoid receptor. Trends Endocrinol Metab 30:807–818.

13. Provençal N, Arloth J, Cattaneo A, Anacker C, Cattane N,
Wiechmann T, et al. (2020): Glucocorticoid exposure during hippo-
campal neurogenesis primes future stress response by inducing
changes in DNA methylation. Proc Natl Acad Sci U S A 117:23280–
23285.

14. Wiechmann T, Röh S, Sauer S, Czamara D, Arloth J, Ködel M, et al.
(2019): Identification of dynamic glucocorticoid-induced methylation
changes at the FKBP5 locus. Clin Epigenetics 11:83.

15. Kress C, Thomassin H, Grange T (2006): Active cytosine demethyla-
tion triggered by a nuclear receptor involves DNA strand breaks. Proc
Natl Acad Sci U S A 103:11112–11117.

16. Isbel L, Grand RS, Schübeler D (2022): Generating specificity in
genome regulation through transcription factor sensitivity to chro-
matin. Nat Rev Genet 23:728–740.

17. Martin EM, Fry RC (2018): Environmental influences on the epigenome:
Exposure- associated DNA methylation in human populations. Annu
Rev Public Health 39:309–333.

18. Hawe JS, Wilson R, Schmid KT, Zhou L, Lakshmanan LN, Lehne BC,
et al. (2022): Genetic variation influencing DNA methylation provides
insights into molecular mechanisms regulating genomic function. Nat
Genet 54:18–29.

19. Oliva M, Demanelis K, Lu Y, Chernoff M, Jasmine F, Ahsan H, et al.
(2023): DNA methylation QTL mapping across diverse human tissues
provides molecular links between genetic variation and complex traits.
Nat Genet 55:112–122.

20. Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, et al.
(2016): Genetic drivers of epigenetic and transcriptional variation in
human immune cells. Cell 167:1398–1414.e24.

21. Bergstedt J, Azzou SAK, Tsuo K, Jaquaniello A, Urrutia A, Rotival M,
et al. (2022): The immune factors driving DNA methylation variation in
human blood. Nat Commun 13:5895.

22. Kreitmaier P, Katsoula G, Zeggini E (2023): Insights from multi-omics
integration in complex disease primary tissues. Trends Genet 39:46–58.

23. Zhu Y, Strachan E, Fowler E, Bacus T, Roy-Byrne P, Zhao J (2019):
Genome-wide profiling of DNA methylome and transcriptome in
urnal

https://www.medrxiv.org/content/10.1101/2023.12.05.23299430v2
https://github.com/jArloth/GR-meQTLs/
mailto:arloth@psych.mpg.de
mailto:arloth@psych.mpg.de
mailto:binder@psych.mpg.de
https://doi.org/10.1016/j.biopsych.2024.10.004
https://doi.org/10.1016/j.biopsych.2024.10.004
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref1
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref1
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref1
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref2
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref2
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref2
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref3
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref3
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref3
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref4
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref4
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref5
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref5
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref6
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref6
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref6
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref7
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref7
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref7
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref7
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref8
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref8
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref8
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref8
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref9
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref9
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref9
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref9
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref10
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref10
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref10
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref10
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref11
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref11
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref11
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref11
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref11
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref12
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref12
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref13
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref13
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref13
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref13
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref13
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref14
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref14
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref14
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref15
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref15
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref15
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref16
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref16
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref16
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref17
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref17
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref17
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref18
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref18
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref18
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref18
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref19
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref19
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref19
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref19
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref20
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref20
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref20
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref21
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref21
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref21
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref22
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref22
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref23
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref23
http://www.sobp.org/journal


Medical Insights Via Multiomics Analysis
Biological
Psychiatry
peripheral blood monocytes for major depression: A monozygotic
Discordant Twin Study. Transl Psychiatry 9:215.

24. Chen C, Zhang C, Cheng L, Reilly JL, Bishop JR, Sweeney JA, et al.
(2014): Correlation between DNA methylation and gene expression in
the brains of patients with bipolar disorder and schizophrenia. Bipolar
Disord 16:790–799.

25. Shabalin AA (2012): Matrix eQTL: Ultra fast eQTL analysis via large
matrix operations. Bioinformatics 28:1353–1358.

26. Yu G, Wang L-G, He Q-Y (2015): ChIPseeker: An R/Bioconductor
package for ChIP peak annotation, comparison and visualization.
Bioinformatics 31:2382–2383.

27. Ernst J, Kellis M (2010): Discovery and characterization of chromatin
states for systematic annotation of the human genome. Nat Biotechnol
28:817–825.

28. Road map Epigenomics Consortium, Kundaje A, Meuleman W,
Ernst J, Bilenky M, Yen A, et al. (2015): Integrative analysis of 111
reference human epigenomes. Nature 518:317–330.

29. Ogris C, Hu Y, Arloth J, Müller NS (2021): Versatile knowledge guided
network inference method for prioritizing key regulatory factors in
multi-omics data. Sci Rep 11:6806.

30. Watanabe K, Taskesen E, van Bochoven A, Posthuma D (2017):
Functional mapping and annotation of genetic associations with
FUMA. Nat Commun 8:1826.

31. Gerstner N, Krontira AC, Cruceanu C, Roeh S, Pütz B, Sauer S, et al.
(2022): DiffBrainNet: Differential analyses add new insights into the
response to glucocorticoids at the level of genes, networks and brain
regions. Neurobiol Stress 21:100496.

32. Pineda-Cirera L, Cabana-Domínguez J, Lee PH, Fernàndez-Castillo N,
Cormand B (2022): Identification of genetic variants influencing
methylation in brain with pleiotropic effects on psychiatric disorders.
Prog Neuropsychopharmacol Biol Psychiatry 113:110454.

33. Korologou-Linden R, Leyden GM, Relton CL, Richmond RC,
Richardson TG (2023): Multi-omics analyses of cognitive traits and
Biological
psychiatric disorders highlight brain-dependent mechanisms. Hum
Mol Genet 32:885–896.

34. Lin D, Chen J, Duan K, Perrone-Bizzozero N, Sui J, Calhoun V, Liu J
(2021): Network modules linking expression and methylation in pre-
frontal cortex of schizophrenia. Epigenetics 16:876–893.

35. Kamali Z, Keaton JM, Haghjooy Javanmard S, International Con-
sortium Of Blood Pressure, Million Veteran Program, eQTLGen Con-
sortium, et al. (2022): Large-Scale Multi-Omics Studies Provide New
Insights into Blood Pressure Regulation. Int J Mol Sci 23:7557.

36. Seligowski AV, Misganaw B, Duffy LA, Ressler KJ, Guffanti G (2022):
Leveraging large-scale genetics of PTSD and cardiovascular disease
to demonstrate robust shared risk and improve risk prediction accu-
racy. Am J Psychiatry 179:814–823.

37. Baltramonaityte V, Pingault J-B, Cecil CAM, Choudhary P, Järvelin M-
R, Penninx BWJH, et al. (2023): A multivariate genome-wide associ-
ation study of psycho-cardiometabolic multimorbidity. PLoS Genet 19:
e1010508.

38. Zeng Y, Suo C, Yao S, Lu D, Larsson H, D’Onofrio BM, et al. (2023):
Genetic associations between stress-related disorders and autoim-
mune disease. Am J Psychiatry 180:294–304.

39. Pierce BL, Tong L, Argos M, Demanelis K, Jasmine F, Rakibuz-
Zaman M, et al. (2018): Co-occurring expression and methylation
QTLs allow detection of common causal variants and shared biological
mechanisms. Nat Commun 9:804.

40. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA,
Lai S-L, et al. (2010): Abundant quantitative trait loci exist for DNA
methylation and gene expression in human brain. PLoS Genet 6:
e1000952.

41. Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A,
et al. (2023): A DNA methylation atlas of normal human cell types.
Nature 613:355–364.

42. Maroso M (2023): A quest into the human brain. Science 382:166–
167.
Psychiatry April 15, 2025; 97:794–805 www.sobp.org/journal 805

http://refhub.elsevier.com/S0006-3223(24)01653-6/sref23
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref23
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref24
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref24
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref24
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref24
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref25
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref25
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref26
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref26
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref26
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref27
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref27
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref27
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref28
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref28
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref28
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref29
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref29
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref29
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref30
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref30
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref30
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref31
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref31
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref31
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref31
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref32
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref32
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref32
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref32
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref33
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref33
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref33
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref33
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref34
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref34
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref34
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref35
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref35
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref35
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref35
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref36
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref36
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref36
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref36
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref37
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref37
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref37
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref37
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref38
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref38
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref38
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref39
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref39
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref39
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref39
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref40
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref40
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref40
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref40
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref41
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref41
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref41
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref42
http://refhub.elsevier.com/S0006-3223(24)01653-6/sref42
http://www.sobp.org/journal

	Multiomics Analysis of the Molecular Response to Glucocorticoids: Insights Into Shared Genetic Risk From Psychiatric to Med ...
	Methods and Materials
	Study Samples
	DNAm Profiling
	Differential DNAm Analysis
	Genotype Data and Imputation
	meQTL Analysis
	Gene Expression Data
	Expression Quantitative Trait Methylation Analysis
	Expression Quantitative Trait Analysis
	Functional Genomic Annotation and Characterization
	Multiomics Network Inference and Analysis
	Gene Ontology Enrichment Analysis
	Gene Overlap With Genes Induced by GR Activation in the Mouse Brain
	Genome-Wide Association Study Enrichment Analysis
	Mediation Analysis
	Heritability Estimation

	Results
	Uncovering In Vivo GC-Induced Differential DNAm
	Overlapping and Distinct Mechanisms of Genetic Control: Contrasting GR-Response meQTLs With Baseline meQTLs
	Consistent Regulatory Patterns of GR-Response meQTLs Across Blood Cell Types
	Absence of Shared Genetic Control: No Overlap Between Genetic Variants Moderating GC-Induced DNAm and GC-Induced Gene Expre ...
	Large Number of Associations Between GC-Induced DNAm and GC-Induced Gene Expression
	Integration of GR-Response me/eQTLs and GR-Response eQTMs via Multiomics Network Analysis: Capturing Immune-Related Pathways
	The GR-Response SNP-Methylation-Messenger RNA Trios Are Relevant to Psychiatric-Related Diseases

	Discussion
	Conclusions

	References


