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Abstract
Background  Altered plasma N-glycosylation is increasingly recognized as a contributor to metabolic dysregulation. 
This study aimed to investigate the role of plasma N-glycans in glucose metabolism and the progression from 
normoglycemia to prediabetes and type 2 diabetes (T2D).

Methods  We analyzed longitudinal data from 473 participants in the Cooperative Health Research in the Region 
of Augsburg (KORA) cohort over 7 years. N-glycan profiles were measured using hydrophilic interaction ultrahigh-
performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLR). Glycan associations with 
incident prediabetes/T2D and related traits, such as body mass index (BMI), fasting glucose, homeostasis model 
assessment of insulin resistance (HOMA-IR) were evaluated using longitudinal models based on N-glycan 
measurements obtained at F4 and FF4. Classification performance at FF4 was assessed using machine learning 
models interpreted with SHapley Additive exPlanation (SHAP) values. Mendelian randomization (MR) and glycan 
quantitative trait loci (glycan-QTL) analyses were conducted to explore causality and genetic determinants.

Results  During follow-up, 231 individuals progressed to prediabetes/T2D, while 242 remained normoglycemic. 
Nineteen glycans were associated with diabetes progression in the basic model; 12 remained significant after full 
adjustment. Glycans such as GP18 and GP32 were also linked to metabolic traits. A glycan-clinical model achieved 
high classification accuracy (AUC = 0.895). MR supported causal roles for GP18, GP19, and S1. Glycan-QTL analysis 
revealed SNPs and genes (FUT8, ST3GAL4) are associated with key glycans.

Conclusions  Plasma N-glycans are diagnostic of early glycemic deterioration and supported by genetic and causal 
evidence, highlighting their potential as biomarkers for diabetes risk stratification.
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Background
Diabetes has emerged as a global health burden owing to 
its high incidence, associated disability, and mortality. It 
is estimated to be the eighth leading cause of death and 
disability worldwide [1, 2]. Approximately 537 million 
adults are affected by diabetes globally, with the major-
ity having type 2 diabetes (T2D). This figure is projected 
to increase to 783 million by 2045 [3]. Furthermore, 
approximately 352 million individuals are diagnosed 
with impaired fasting glucose (IFG) or impaired glucose 
tolerance (IGT) [4] conditions that have the potential to 
progress to T2D at an annual rate of 5–10% within this 
population [5]. For years, venous blood glucose and lab-
oratory-based hemoglobin A1c (HbA1c) have served as 
standard biomarkers and diagnostic tools for diabetes 
screening. However, research continues to explore new 
potential biomarkers. Clinically validated biomarkers, 
such as glycated albumin (GA) and fructosamine (FA), 
have demonstrated high specificity and sensitivity for dia-
betes diagnosis. These biomarkers serve as valuable alter-
natives when HbA1c measurements are not feasible [6]. 
Additionally, novel markers identified through metabo-
lomics, including fetuin-A, branched-chain amino acids 
(BCAAs), adipokines, linoleoylglycerophosphocholine 
(L-GPC), and lysophosphatidylcholine (LysoPC), have 
shown strong correlations with HbA1c and blood glu-
cose levels, suggesting their potential as future diagnostic 
tools [6, 7]. Although there are numerous T2D biomark-
ers, many are based on pathophysiological changes. 
There remains a significant need for biomarkers that can 

identify at-risk individuals at earlier stages, such as indi-
viduals with prediabetes or even those with normal glu-
cose tolerance (NGT).

N-glycosylation is the most prevalent type of protein 
glycosylation that is enzymatically mediated by glycosyl-
transferases. It involves the attachment of glycans, which 
are complex carbohydrate molecules, to the asparagine 
residues of proteins [8]. Glycosylation alters and regu-
lates the biological activity of many proteins, significantly 
contributing to their functional diversity [9]. As glycan 
biosynthesis is highly responsive to the cellular state and 
environment, altered glycosylation may reflect various 
pathophysiological changes [10]. Moreover, the composi-
tion of plasma protein N-glycans within healthy individu-
als is remarkably stable [11]. The role of plasma protein 
N-glycans in diabetes development has been highlighted 
in several previous studies, however, most of these were 
cross-sectional in design or involved glycomic profiling at 
a single time point, limiting their ability to capture gly-
can dynamics during disease progression. For example, 
in a case‒control study of 562 T2D patients and 599 
healthy controls, α(1,6)-linked arm monogalactosylated, 
core-fucosylated diantennary plasma N-glycans (FA2[6]
G1) were significantly reduced in T2D patients com-
pared with controls, regardless of complications [12]. 
Similarly, increased α1,6-fucosylation of N-glycans has 
been observed in db/db mice, a model of T2D with obe-
sity [13]. Moreover, the TwinsUK study suggested that 
plasma N-glycan changes might serve as early indicators 
of diabetes, identifying individuals at risk before clinical 
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symptoms arise [14] and have also shown that selected 
plasma N-glycans improve T2D prediction beyond estab-
lished risk markers [15].

To address these limitations, our study is the first to 
utilize two-time-point longitudinal glycomic data from 
the KORA F4/FF4 cohort. F4 consists of healthy indi-
viduals, and FF4 includes individuals diagnosed with pre-
diabetes/T2D and healthy controls. This study aimed to 
identify plasma N-glycans associated with the incidence 
of prediabetes or T2D in 473 individuals (231 individuals 
with incident prediabetes/T2D, 242 controls), providing a 
unique opportunity to explore how plasma N-glycan pro-
files associated with prediabetes/T2D change and evolve. 
Additionally, we explored the relationships between the 
plasma N-glycome and disease diagnosis, causal relation-
ships, and genetic-level alterations.

Methods
Study population
The KORA study is a population-based German cohort. 
KORA S4 (1999–2001) enrolled 4261 adults (25–
74  years) with German citizenship in Augsburg. The 
follow-ups included KORA F4 (2006–2008, n = 3080) 
and KORA FF4 (2013–2014, n = 2,279). The study 
was approved by the Ethics Committee of the Bavar-
ian Chamber of Physicians, all procedures followed the 
ethical standards of the Declaration of Helsinki. All par-
ticipants provided written and informed consent. More 
details of the study design have been described previ-
ously in detail [16].

In this study, we utilized KORA F4 and FF4 to design 
a matched case‒control study. We analyzed the plasma 
protein N-glycome in 1000 plasma samples from KORA 
F4/FF4 via hydrophilic interaction ultrahigh-perfor-
mance liquid chromatography with fluorescence detec-
tion (HILIC-UHPLC-FLR). From participants with paired 
plasma samples at both F4 and FF4, we identified 250 
cases who progressed from NGT to prediabetes (n = 150) 
or T2D (n = 100). Controls with persistent NGT were 
1:1 age (± 2 years)-, sex-matched, and randomly selected 
from eligible individuals. Subjects with fever, infections, 
or acute gastrointestinal diseases were excluded from the 
test. After excluding 26 individuals with missing values, 
such as HbA1c, homeostasis model assessment of insu-
lin resistance (HOMA-IR), urine albumin-to-creatinine 
ratio and insufficient fasting duration (< 8  h, n = 1), 473 
participants remained for analysis (NGT = 242, prediabe-
tes/T2D = 231) (Supplementary Fig. 1). The World Health 
Organization diagnostic criteria were applied to the clas-
sification of KORA participants. Prediabetes comprises 
isolated IFG, isolated IGT, and combined IFG and IGT, 
details are provided in Supplementary Methods.

Clinical measurements and assessments of risk factors
All participants underwent standard physical and 
medical examinations at KORA F4 and FF4. A detailed 
description of the measurement methods can be found in 
the Supplementary Methods.

Plasma N-glycome measurements
The plasma samples (10 μL) were denatured by adding 20 
μL of 2% (w/v) sodium dodecyl sulfate (SDS, Invitrogen, 
USA) and incubating at 65  °C for 10  min. After adding 
10 μL of 4% (v/v) Igepal CA-630 (Sigma‒Aldrich, USA), 
the mixture was shaken for 15 min, followed by 18 h of 
incubation at 37  °C with 1.2 U of PNGase F (Promega, 
USA) to release the N-glycans. The released N-glycans 
were labeled with the fluorescent dye 2-aminobenzamide 
(2-AB). Solid-phase extraction (SPE) was then performed 
via HILIC to purify the labeled glycans. The labeled 
N-glycans were separated via HILIC-UHPLC-FLR, and 
the chromatograms were all separated in the same man-
ner into 39 plasma glycan peaks (GPs). In addition to the 
39 glycan peaks, 16 derived traits representing glycosyl-
ation features were calculated. More details on the glyco-
analytical procedure are reported in the Supplementary 
Methods. A complete description of the glycan struc-
tures, derived trait calculation formulas, and reference 
data sources is provided in Supplementary Tables 1 and 
2.

Statistical analysis
Glycan data normalization and batch correction
Raw glycan peak data, expressed as areas under the 
curve, were normalized to reduce experimental noise by 
dividing each peak area by the total integrated area of 
all peaks, multiplying by 100 to represent percentages, 
and enabling comparisons across samples regardless of 
intensity differences. To further address experimental 
variation during sample preparation and analysis, batch 
correction was applied to the normalized data. After the 
data were log-transformed to correct for right-skewed 
distributions, the ComBat method from the R package 
‘sva’ was used, incorporating the sample plate order as a 
batch covariate. Batch correction was performed for each 
glycan peak individually. The values were subsequently 
transformed back to the original scale.

Characteristics of KORA F4/FF4
The characteristics of the study population are presented 
as mean ± standard deviations (SDs) or medians (25th 
and 75th percentiles) for continuous variables with nor-
mal or nonnormal distributions, respectively. Categorical 
variables are presented as frequencies (percentages).
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Longitudinal analysis of the 2 time points
General estimating equation (GEE) [17] models were 
used to identify glycan structures that were significantly 
different in individuals before the diagnosis of prediabe-
tes or T2D compared with controls. For each glycan, the 
values were transformed to a standard normal distribu-
tion before fitting the models via the R package GenA-
BEL [18]. Disease status was used as an independent 
variable, adjusting for additional covariates, such as age, 
sex, and BMI, and was included in the basic model. In 
the full model, we also included smoking status, alcohol 
consumption, physical activity, high-density lipoprotein 
(HDL), and systolic blood pressure (SBP). This process 
was repeated for the 39 glycan peaks and 16 derived gly-
can traits. In the sensitivity analysis, we compared dif-
ferences in glycan levels between the subgroups NGT 
and prediabetes, NGT and T2D, prediabetes and T2D to 
evaluate glycan alterations across different stages of glu-
cose metabolism dysregulation. The associations of BMI 
and T2D-related traits (fasting plasma glucose (FPG), 
HOMA-IR, and HbA1c) with each plasma glycan were 
tested via a linear mixed model (LMM), adjusting for 
both the basic and full models. In the LMM, the individ-
ual ID was considered a random effect. For multiple test-
ing via the Bonferroni method, an adjusted p < 0.05 was 
considered significant.

Glycan-based diagnostic modeling and explainability at FF4
The discriminatory potential of individual glycan peaks 
was further evaluated via the  area under the curve 
(AUC). The set of 19 glycan peaks was significantly 
associated with disease status in the previous step. The 
random forest (RF) model [19] was used to construct 
diagnostic classification models for the KORA FF4 data-
set. Tenfold cross-validation was employed to tune the 
model's parameters. Three models including different 
sets of features were developed for comparison, includ-
ing a 19-glycan-only model, the Framingham Offspring 
Risk Score (FORS) model [20], and a combined 19-gly-
can + FORS model. The receiver operating characteris-
tic (ROC) curves and AUC values were generated and 
analyzed via the'pROC' package [21]. SHapley Additive 
exPlanation (SHAP) [22] values were used to assess fea-
ture importance in the best-performing model.

Mendelian randomization analysis
We performed two-sample Mendelian randomization 
(MR) analysis using large-scale European GWAS data 
to select instrumental variables (IVs). Details on GWAS 
selection are provided in the Supplementary Methods. 
For the labeling of harmonized glycan traits, we refer-
enced the definitions provided by the TwinsUK study 
[23, 24]. IVs were chosen based on p value < 5 × 10−⁸ and 
limited to cis regions. Single-nucleotide polymorphisms 

(SNPs) in linkage disequilibrium (r2 > 0.01) and ambig-
uous palindromic SNPs (A/T or G/C alleles) were 
excluded. Outcome GWAS results were then extracted 
for the selected IVs. The Wald ratio test was used for 
single IV analyses, while the inverse variance weighted 
(IVW) method was applied for at least two IVs [25, 26]. 
Instrument heterogeneity and pleiotropy were assessed 
using Cochran’s Q test and MR-Egger regression. The 
core assumptions of MR—relevance, independence, and 
exclusion restriction—were considered and supported by 
the instrument selection strategy and statistical sensitiv-
ity tests. A significance threshold adjusted via the Ben-
jamini‒Hochberg procedure was implemented to control 
the false discovery rate (FDR) to be < 0.05. Analyses were 
conducted by the R package “TwoSampleMR” (version 
0.5.7) [27].

Glycan quantitative trait loci analysis
Glycan quantitative trait loci (Glycan-QTL) analysis was 
conducted in KORA FF4 using linear regression models 
implemented via the MatrixEQTL [28] R package, adjust-
ing for age and sex. SNP filtering and quality control were 
followed by standard protocols using PLINK v2.0 [29]. 
Details of genotyping, imputation, and functional anno-
tations are provided in the Supplementary Methods.

All analyses were conducted using Python (version 
3.8.5), R statistics (version 4.3.3) and RStudio (version 
2023.09.1 + 494).

Results
Characteristics of the KORA F4/FF4
The follow-up time for this study was 7  years. At base-
line (F4), all participants were classified as NGT. Among 
the 473 participants in KORA FF4, 231 had prediabetes 
or were diagnosed with T2D, whereas 242 remained nor-
moglycemic. In KORA F4, participants were categorized 
based on whether they were later diagnosed with predia-
betes/T2D in FF4. Table 1 summarizes the baseline char-
acteristics of the study participants in KORA F4, while 
Table 2 provides details specific to KORA FF4.

Associations between glycans and prediabetes/T2D
Using the HILIC-UHPLC-FLD method, we analyzed 
the plasma N-glycome of 473 participants at two points 
from the KORA F4/FF4. In addition to analyzing differ-
ences in directly measured initial glycans, we examined 
derived traits, which represent averages of shared glyco-
sylation features (including the degree of glycan branch-
ing, galactosylation, sialylation, and fucosylation) across 
various glycan structures (Supplementary Table  1) and 
are calculated from the initial glycan traits (Supplemen-
tary Table 2). To identify glycan changes associated with 
this progression, we employed a longitudinal model to 
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compare differences between NGT and prediabetes/T2D 
patients.

Out of 39 directly measured glycans and 16 derived 
traits, 19 glycans demonstrated statistically significant 
differences in the basic model (adjusted for age, sex, and 
BMI). Among these, GP18, S0, GP5, G1, GP13, GP10, LB, 
GP4, and GP11 decreased, whereas GP32, GP19, GP34, 
S2, GP26, GP20, GP22, GP35, S3, and HB increased 
in prediabetes/T2D patients (Fig.  1; Supplementary 
Table 3). Further adjustment for smoking status, alcohol 
consumption, physical activity, HDL, and SBP in the full 
model revealed that 12 glycans (GP32, S2, GP35, GP19, 
GP34, GP22, GP20, GP26 increased, and S0, GP18, G1, 
GP5 decreased) remained significant (Supplementary 
Table 4). Notably, GP32 emerged as the most significant 
glycan, exhibiting a strong positive association with the 
progression of prediabetes/T2D.

Sensitivity analyses
In the sensitivity analysis, we further examined glycan 
differences between subgroups: NGT versus prediabe-
tes, NGT versus T2D, and prediabetes versus T2D (Fig. 1; 
Supplementary Tables 5 and 6). Among the 39 directly 
measured glycans and 16 derived traits, distinct patterns 
emerged across these comparisons, indicating progres-
sive alterations in the plasma N-glycome. For example, in 
the basic model, glycans such as GP32, GP19, GP22, and 
GP34 exhibited a consistent upward trend from NGT 
to prediabetes and T2D, underscoring their potential as 
early indicators of disease progression. Conversely, GP18 
demonstrated a downward trend, particularly during the 
transition from NGT to prediabetes and T2D. Addition-
ally, in the transition from prediabetes to T2D, GP32 

Total 
(n = 473)

Future 
NGT cases 
(n = 242)

Future 
prediabetes 
/ T2D cases 
(n = 231)

p 
valueb

Mean (standard deviation) or number 
(%)

Age (years) 57.4 ± 12.2 57.4 ± 12.3 57.3 ± 12.2 0.901
Sex, N (%) female 215 (45.5) 110 (45.5) 105 (45.5) 1
Body mass index 
(kg/m2)

27.9 ± 4.5 26.5 ± 4 29.3 ± 4.6  < 0.001

Waist circumfer-
ence (cm)

95 ± 12.8 91 ± 11.9 99.2 ± 12.5  < 0.001

Waist height ratio 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1  < 0.001
Smoking status, 
N (%)

0.813

Current smoker 189 (40) 99 (40.9) 90 (39)
Former smoker 211 (44.6) 108 (44.6) 103 (44.6)
Never smoker 73 (15.4) 35 (14.5) 38 (16.5)
Alcohol con-
sumption (g/day)

15.7 ± 19.7 15.7 ± 19.2 15.7 ± 20.3 0.983

Physically active, 
N (%)

272 (57.5) 152 (62.8) 120 (51.9) 0.022

Systolic blood 
pressure (mm 
Hg)

123.3 ± 17.4 120.5 ± 16.5 126.2 ± 17.8  < 0.001

Diastolic blood 
pressure (mm 
Hg)

76.3 ± 9.6 74.6 ± 8.6 78.1 ± 10.3  < 0.001

Total cholesterol 
(mmol/L)

1.4 ± 0.3 1.5 ± 0.3 1.3 ± 0.3  < 0.001

Triglycerides 
(mmol/L) a

3.6 ± 0.9 3.6 ± 0.8 3.7 ± 0.9 0.059

High‑density 
lipoprotein cho-
lesterol (mmol/L)

1.2 (0.8, 1.7) 1.1 (0.7, 1.5) 1.4 (1, 1.9)  < 0.001

Low‑density 
lipoprotein cho-
lesterol (mmol/L)

5.7 ± 1 5.7 ± 0.9 5.8 ± 1 0.276

HbA1c (%) 5.4 ± 0.3 5.3 ± 0.3 5.6 ± 0.3  < 0.001
HbA1c (mmol/
mol)

36 ± 3 34 ± 4 38 ± 3  < 0.001

HOMA-IR 1.2 ± 0.7 0.9 ± 0.4 1.5 ± 0.9  < 0.001
HOMA-B (%) 90.9 ± 30.4 85.4 ± 22.3 96.6 ± 36.2  < 0.001
No-use of anti-
diabetic medica-
tions, N (%)

473 (100) 242 (100) 231 (100) 1

Cardiovascular 
diseases, N (%)

13 (2.7) 3 (1.2) 10 (4.3) 0.076

Table 1  Baseline characteristics of participants in KORA F4 
(2006–2008) Total 

(n = 473)
Future 
NGT cases 
(n = 242)

Future 
prediabetes 
/ T2D cases 
(n = 231)

p 
valueb

Mean (standard deviation) or number 
(%)

Urine albumin-
to-creatinine 
ratio

15.1 ± 65 10.4 ± 24.5 19.9 ± 89.5 0.12

eGFRcr (ml/
min/1.73 m2)

87.2 ± 15.3 88.2 ± 15.4 86.1 ± 15.1 0.136

Continuous variables are presented as the means ± SDs for normally distributed 
data and as medians (25th, 75th) for nonnormally distributed data. Categorical 
variables are presented as n (%)
aReported as the median (interquartile range)
bP value was estimated by t test (continuous variables) or χ2 test (categorical 
variables)
cHbA1c, hemoglobin A1c; BMI, body mass index; WC, waist circumference; WHR, 
waist-height ratio; mm Hg, millimeters of mercury; HOMA-IR, homeostasis model 
assessment of insulin resistance; HOMA-B, homeostasis model assessment of 
β-cell function; T2D, type 2 diabetes; NGT, normal glucose tolerance; eGFRcr, 
estimated glomerular filtration rate based on serum creatinine

Table 1  (continued) 
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showed a notable upward trend. In the full model, the 
glycans GP32, GP22, GP34, and GP18 maintained these 
same trends, reinforcing their relevance in the progres-
sion of glucose dysregulation.

Analysis of glycans related to diabetes traits
The LMM analysis revealed significant associations 
between the plasma N-glycome and BMI, as well as 
T2D-related traits, including FPG, HOMA-IR, and 
HbA1c. The inclusion of individual ID as a random 
effect accounted for intraindividual variability. In the 
basic model (adjusted for age and sex), 20 glycans dem-
onstrated significant associations with BMI. Specifically, 
GP32, GP26, GP19, GP34, GP22, HM, GP35, GP31, and 
S3 were positively associated with BMI, whereas GP18, 
GP29, GP12, GP10, GP24, S1, LB, GP8, GP11, B, and 
GP9 were negatively associated with BMI (Fig. 1; Supple-
mentary Table 7). Among these, 11 glycans (GP32, GP19, 
GP34, GP26, GP22, GP35, S3, LB, GP11, GP10, and 
GP18) were also associated with prediabetes/T2D in pre-
vious analyses.

Furthermore, GP26, GP32, and GP22 were signifi-
cantly associated with all three T2D-related traits—FPG, 
HOMA-IR, and HbA1c (Supplementary Fig.  2; Supple-
mentary Table  8). After adjusting for additional covari-
ates, including smoking status, alcohol consumption, 
physical activity, HDL, and SBP, in the full model, GP32 
and GP18 retained their significance for BMI, FPG, and 
HOMA-IR, demonstrating their robust and consistent 
associations with these traits (Supplementary Tables 9 
and 10).

Glycan-based diagnostic modeling and explainability at 
FF4
Based on the KORA FF4 dataset, we developed RF mod-
els to classify glycemic status via three distinct sets of 
features: (1) 19 glycans associated with prediabetes/T2D; 
(2) 9 FORS variables, including age, sex, BMI, SBP, HDL, 
triglyceride (TG), parental history of diabetes, waist 
circumference, and FPG; (3) a combined model incor-
porating both 19 glycans and 9 FORS variables. Model 
optimization was tuned via tenfold cross-validation to 
determine the optimal hyperparameters. The classifica-
tion performance, as assessed by the AUC, demonstrated 
that the glycan model yielded an AUC of 0.698 (0.603–
0.793), the FORS model achieved an AUC of 0.822 
(0.750–0.893), and the combined model outperformed 
the individual models, with an AUC of 0.895 (0.836–
0.952) (Supplementary Table  11; Supplementary Fig.  3). 
To provide insights into the contributions of individual 
features within the combined model, SHAP values were 
calculated, which identified FPG, waist circumference, 
GP18, and GP32 as the most important contributors to 
the model’s classification accuracy (Fig. 2; Supplementary 

Table  12). These findings underscore the potential of 
integrating glycans with established clinical risk factors 
to enhance the diagnosis of IR/T2D.

Mendelian randomization analysis
We conducted two-sample MR analysis for all glycans 
to explore the causal relationships between the plasma 
N-glycome and T2D, BMI, FPG, HOMA-IR, HbA1c 
(Supplementary Table 13), using glycan and derived traits 
GWAS summary statistics from the Twins UK dataset 
(n = 2763). Glycan ID mappings are provided in Supple-
mentary Tables 14 and 15. GP19 (Wald ratio, β = − 0.208, 
FDR < 0.001), S1 (Wald ratio, β = 0.138, FDR = 0.002), 
GP18 (Wald ratio, β = − 0.045, FDR = 0.020) were the 
glycans for which we observed a statistically signifi-
cant causal effect on T2D. GP19 (Wald ratio, β = − 0.063, 
FDR < 0.001), GP22 (Wald ratio, β = − 0.027, FDR < 0.001), 
GP36 (Wald ratio, β = − 0.030, FDR = 0.023) were sig-
nificantly associated with BMI. For HbA1c, GP19 (Wald 
ratio, β = − 0.136, FDR < 0.001) and S1 (Wald ratio, 
β = − 0.055, FDR < 0.001) were significant. For the MR 
analysis of other traits, no evidence of a causal associa-
tion was observed between the IVs and the respective 
outcomes after multiple testing was corrected. Addition-
ally, we performed in the inverse direction; after harmo-
nizing, no IVs remained for further analysis.

Glycan quantitative trait loci analysis
In the KORA FF4 data, analysis was performed to identify 
associations between the plasma N-glycome and genetic 
variants, adjusting for age and sex. A total of 1,476,026 
SNPs showed nominal significance (p < 0.05) across 19 
glycans, and after FDR correction, 189 SNPs remained 
significant and were associated with four glycans (GP28, 
GP22, GP32, and GP34) (Supplementary Table 16). Nota-
bly, GP34 was associated with 142 SNPs. Among these, 
rs3967200, previously reported in the TwinsUK study 
[30], was confirmed to be associated with the plasma 
N-glycome. Further gene annotation revealed that GP34 
is mostly associated with FUT8, RPL21P8, MIR625, and 
EIF1AXP2; GP18 is associated with ST3GAL4; GP22 is 
linked with FUT8; and GP32 is associated with ST3GAL4 
(Supplementary Table  17). These findings highlight key 
loci and genes contributing to the genetic regulation of 
the plasma N-glycome.

Discussion
In this study, we provide a comprehensive analysis of 
the plasma N-glycome and its associations with glucose 
metabolic dysregulation progression via longitudinal 
data from KORA F4/FF4. Importantly, plasma N-glycans 
were measured at both baseline (F4) and follow-up (FF4), 
allowing us to capture glycan alterations during the pre-
clinical phase of diabetes development. Over a median 
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follow-up of 7  years, we identified dynamic changes in 
specific glycans, particularly GP32 (triantennary tri-
sialylated glycan A3G3S3), GP22 (biantennary, core 
fucosylated, disialylated FA2G2S2), GP34 (triantennary, 
core fucosylated, trisialylated FA3G3S3), and GP18 (bian-
tennary, disialylated A2G2S2), which showed significant 
associations with the transition from normoglycemia to 
prediabetes and T2D. Glycans such as GP36 (tetraan-
tennary, trisialylated A4G4S3), GP32, and GP22 were 
strongly associated with BMI and T2D-related traits, 
including FPG, HOMA-IR, and HbA1c, emphasizing 
their potential role in early diabetes pathophysiology. 
Classification models integrating glycans with estab-
lished FORS factors in KORA FF4 demonstrated superior 
performance, with GP18 and GP32 showing high SHAP 
values, highlighting their critical contributions to model 
classification performance. Furthermore, MR analyses 
provided evidence of causal relationships between gly-
cans and T2D, BMI, and HbA1c. Glycan–QTL analyses 
identified key genetic variants regulating plasma N-gly-
come traits, including associations between GP32 and 
ST3GAL4 and between GP34 and FUT8, shedding light 
on the genetic underpinnings of glycan–disease asso-
ciations. These findings underscore the value of plasma 
N-glycans as diagnostic biomarkers for the early detec-
tion of glucose dysregulation and provide novel insights 
into their mechanistic roles in T2D pathophysiology.

Our analysis revealed that GP32 was the only glycan 
that was consistently significant across all the compari-
sons (Fig. 1). GP32 exhibited the most significant changes 
as NGT progressed to prediabetes and T2D and dem-
onstrated high importance in the diagnostic classifica-
tion model combining glycans with FORS factors. This 
finding is consistent with the TwinsUK study, which also 

Total 
(n = 473)

NGT cases 
(n = 242)

T2D/pre-
diabetes 
cases 
(n = 231)

p 
value b

Mean (standard deviation) or number 
(%)

Age (years) 63.8 ± 12.3 63.8 ± 12.3 63.7 ± 12.3 0.93
Sex, N (%) female 215 (45.5) 110 (45.5) 105 (45.5) 1
Body mass index 
(kg/m2)

28.6 ± 5.1 26.9 ± 4.4 30.3 ± 5.2  < 0.001

Waist circumfer-
ence (cm)

99.5 ± 14 94.7 ± 12.6 104.5 ± 13.6  < 0.001

Waist height ratio 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1  < 0.001
Smoking status, 
N (%)

0.793

Current smoker 202 (42.7) 101 (41.7) 101 (43.7)
Former smoker 211 (44.6) 108 (44.6) 103 (44.6)
Never smoker 60 (12.7) 33 (13.6) 27 (11.7)
Alcohol consump-
tion (g/day)

16.3 ± 20 16.6 ± 18.3 16.1 ± 21.6 0.81

Physically active, 
N (%)

264 (55.8) 156 (64.5) 108 (46.8)  < 0.001

Systolic blood 
pressure (mm Hg)

120.5 ± 17.3 118.7 ± 15.9 122.5 ± 18.5 0.018

Diastolic blood 
pressure (mm Hg)

73.5 ± 9.7 72.6 ± 8.4 74.5 ± 10.8 0.035

Total cholesterol 
(mmol/L)

1.7 ± 0.5 1.8 ± 0.5 1.5 ± 0.4  < 0.001

Triglycerides 
(mmol/L) a

3.5 ± 0.9 3.5 ± 0.9 3.6 ± 1 0.6

High‑density lipo-
protein cholesterol 
(mmol/L)

1.2 (0.9, 1.7) 1.1 (0.8, 1.4) 1.5 (1, 2)  < 0.001

Low‑density lipo-
protein cholesterol 
(mmol/L)

5.6 ± 1 5.7 ± 1 5.6 ± 1.1 0.815

HbA1c (%) 5.6 ± 0.6 5.3 ± 0.3 5.8 ± 0.6  < 0.001
HbA1c (mmol/
mol)

38 ± 6 34 ± 4 40 ± 6  < 0.001

HOMA-IR 1.4 ± 1 1 ± 0.5 1.8 ± 1.2  < 0.001
HOMA-B (%) 86.6 ± 32.9 84.7 ± 24.8 88.7 ± 39.6 0.194
Use of antidiabetic 
medications, N (%)

26 (5.5) 0 (0) 26 (11.3)  < 0.001

Cardiovascular 
diseases, N (%)

23 (4.9) 8 (3.3) 15 (6.5) 0.162

Table 2  Follow-up characteristics of participants in KORA FF4 
(2013–2014) Total 

(n = 473)
NGT cases 
(n = 242)

T2D/pre-
diabetes 
cases 
(n = 231)

p 
value b

Mean (standard deviation) or number 
(%)

Urine albumin-to-
creatinine ratio

16.9 ± 45.6 13 ± 31.6 21 ± 56.5 0.058

eGFRcr (ml/
min/1.73 m2)

78.8 ± 16.1 79.6 ± 15.8 78 ± 16.4 0.288

Continuous variables are presented as the means ± SDs for normally distributed 
data and as medians (25th, 75th) for nonnormally distributed data. Categorical 
variables are presented as n (%)
aReported as the median (interquartile range)
bP value was estimated by t test (continuous variables) or χ2 test (categorical 
variables)
cHbA1c, hemoglobin A1c; BMI, body mass index; WC, waist circumference; WHR, 
waist-height ratio; mm Hg, millimeters of mercury; HOMA-IR, homeostasis model 
assessment of insulin resistance; HOMA-B, homeostasis model assessment of 
β-cell function; T2D, type 2 diabetes; NGT, normal glucose tolerance; eGFRcr, 
estimated glomerular filtration rate based on serum creatinine

Table 2  (continued) 



Page 8 of 12Niu et al. Cardiovascular Diabetology          (2025) 24:321 

identified GP32 as a significant marker for insulin resis-
tance (IR) and T2D [14]. Additionally, GP32, along with 
GP19, was the only plasma glycan to significantly respond 
to a challenge meal in the PREDICT study, showing the 
strongest association with postprandial glucose spikes 
and fasting glucose levels [31]. GP32 is a glycan structure 
with trigalactosylation and trisialylation in a triantennary 
form (A3G3S3). The A3G3S3 structure in plasma mainly 
originates from α1-acid glycoprotein (AGP). AGP, also 
referred to as orosomucoid (ORM), is among the most 
abundant acute-phase proteins in humans and one of the 
most glycosylated proteins found in human plasma [32]. 
Previous studies have also confirmed that AGP levels are 
elevated in obese mice [33] and humans with metabolic 
syndrome and T2D [34, 35]. A recent study revealed that 
the AGP N-glycome profile could serve as a marker to 
distinguish individuals at risk for T2D [36].

The integration of glycan profiles with FORS factors 
significantly improved the diagnosis of prediabetes/T2D 
in KORA FF4, achieving an AUC of 0.895 in the com-
bined model. This outperformed model is based solely on 
19 glycans (AUC = 0.698) or FORS factors (AUC = 0.822). 
The superior performance of the combined model 
underscores the added value of incorporating glycomic 
data into existing diabetes risk assessment tools. Simi-
lar approaches have been explored in the prediction of 
future T2D, where multiomics integration enhances pre-
dictive accuracy [37]. Based on the prospective European 
Prospective Investigation of Cancer (EPIC)-Potsdam 
cohort (n = 27,548), a study demonstrated that the base-
line plasma N-glycome (analyzed in 2,813 participants 
for T2D subset) effectively identified high-risk individu-
als ~ 6.5  years before T2D onset, achieving an AUC of 
0.83 in distinguishing T2D patients from controls [15]. 

Fig. 1  The circular plot displays glycan associations across 5 comparisons: from the outermost to the innermost circles, glycans differentiating NGT vs. 
prediabetes/T2D, glycans associated with BMI, glycans distinguishing NGT vs. T2D, glycans separating prediabetes vs. T2D, and glycans differentiating NGT 
vs. prediabetes. The red and blue segments represent positive and negative associations, respectively, with glycan names labeled around the outermost 
layer
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Our SHAP analysis further identified FPG, waist cir-
cumference, GP32, and GP18 as the most important 
classification-related features, highlighting the potential 
of these glycans as biomarkers for personalized diabetes 
risk assessment.

Using MR analysis, we identified causal links between 
specific glycans (GP19, S1, GP18) and T2D. Notably, 
high-mannose M9 glycan (GP19) had a negative causal 
effect on T2D risk, BMI, and HbA1c, suggesting a 
potential protective role. GP19 is thought to be derived 
primarily from apolipoprotein B-100 (ApoB-100) in 
plasma [38]. High-mannose glycans on vascular endo-
thelial cells play critical roles in inflammation and leuko-
cyte trafficking [39], which may explain their protective 
effect against T2D. The presence of GP19 in plasma may 
modulate inflammatory responses, thereby reducing the 
risk of metabolic dysfunction and diabetes progression. 
Although previous observational studies, including ours, 
reported positive associations between high-mannose 
glycans and T2D, our MR findings suggest a potential 
protective, context-dependent role of GP19. This dis-
crepancy may reflect stage-specific effects, where GP19 
could exert anti-inflammatory or compensatory effects 
during early metabolic dysregulation. Additionally, our 

glycan-QTL analysis revealed genetic loci (e.g., FUT8 
and ST3GAL4) associated with plasma N-glycans, pro-
viding mechanistic insights into the genetic regulation of 
glycosylation. FUT8, a key enzyme in core fucosylation 
[40], regulates various biological processes, including 
immune response, signal transduction, proteasomal deg-
radation, and energy metabolism [41]. Abnormal core 
fucosylation, which is mediated by FUT8, is frequently 
associated with the development of various cancers [42]. 
ST3GAL4, involved in α2,3-sialylation [43], has been 
shown to induce a selective increase in the expression of 
sialyl Lewis x (sLex) [44]. The increase in sLex is associ-
ated with inflammatory infiltration and immune modula-
tion within tumors [45], mechanisms that have also been 
demonstrated to be linked to diabetes [46, 47]. A study 
on proliferative diabetic retinopathy (PDR) demonstrated 
that high-glucose stimulation upregulated the expression 
of the sialyltransferase ST3GAL4 [48]. The identification 
of GP19 as a protective glycan and the role of FUT8 and 
ST3GAL4 in glycan metabolism have significant clinical 
implications. GP19 could serve as a potential biomarker 
for early diabetes detection and prevention. Addition-
ally, targeting FUT8- and ST3GAL4-mediated glycosyl-
ation pathways may offer new therapeutic strategies for 

Fig. 2  SHAP value plot illustrating the contributions of features to the RF classification model for prediabetes/T2D. The model incorporated 19 glycans 
and 9 FORS score components. Each point represents the SHAP value for a specific feature and its impact on the model output. The features are ranked 
by importance, with FPG, waist circumference, and GP18 and GP32 showing the highest contributions. Positive SHAP values indicate that higher feature 
values increase the probability of prediabetes/T2D, whereas negative SHAP values indicate that higher feature values act as protective factors, reducing 
the probability. The color gradient (blue to red) reflects feature values, with higher values in red and lower values in blue. This plot demonstrates the 
relative importance and direction of each feature's association with the model classification. Abbreviations: FPG, fasting plasma glucose; BMI, body mass 
index; TG, triglycerides; T2D, type 2 diabetes; SHAP, Shapley additive explanations; RF, random forest
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managing T2D and its complications. Although our MR 
and QTL analyses were performed independently, both 
converge to support the biological relevance of specific 
glycans and their genetic regulators in diabetes patho-
genesis. This convergence of glycomic and genomic evi-
dence aligns with the emerging perspective that glycans 
may serve as a “third layer” of biological information, 
complementing nucleic acids and proteins in cellular reg-
ulation and expanding our understanding of molecular 
mechanisms in complex diseases [49, 50].

Our study has several notable strengths. First, this 
study is the first to utilize two time-point glycomic mea-
surements to investigate the dynamic changes in glycan 
levels during the 7-year transition from NGT to predia-
betes/T2D. Second, in comparison with the TwinsUK 
study, we expanded the analysis by exploring the causal 
relationships between glycans and T2D, as well as related 
traits such as BMI, FPG, HOMA-IR, and HbA1c. Third, 
by integrating glycomic data with genetic data from the 
KORA S4, we provide novel insights into how genetic 
variations influence glycans associated with prediabetes/
T2D. However, our study also has certain limitations. 
First, participants were selected based on data availability, 
without formal comparison to the rest of the F4 cohort, 
potentially introducing selection bias. Second, as our 
data were derived from individuals of European ances-
try and lacked external longitudinal validation cohorts, 
the generalizability of our findings to other populations 
may be limited. Glycemic status was determined at two 
discrete time points approximately seven years apart, 
which may not fully capture transient glycemic changes 
between visits. Furthermore, the underlying mechanisms 
through which these glycans influence protein function 
and how glycans are causally altered at the genetic level 
remain poorly understood. To translate glycan profiling 
into clinical or public health applications, further efforts 
are needed in assay standardization, cost reduction, and 
reproducibility. However, this work is underway and 
significant effort is being invested in bringing glycomics 
closer to clinics.

Conclusion
In conclusion, our longitudinal study highlights the criti-
cal role of the plasma N-glycome in the transition from 
normoglycemia to prediabetes and T2D. T2D, which is 
known to take years to develop and present symptoms, 
highlights the importance of early detection strategies. 
Our findings revealed that plasma N-glycome alterations 
preceded the onset of prediabetes and diabetes by sev-
eral years, indicating their close connection to the patho-
physiology of T2D. Incorporating glycans associated with 
prediabetes/T2D into the FORS model yielded valuable 
diagnostic classification performance. MR analysis fur-
ther established a causal relationship between all plasma 

N-glycomes and T2D and associated metabolic traits, 
such as BMI and HbA1c. Additionally, glycan-QTL anal-
ysis sheds light on the genetic underpinnings of glycans 
linked to prediabetes/T2D, enhancing our understand-
ing of the genetic influences on glycomic changes during 
disease progression. These insights offer new avenues for 
prevention, early diagnosis and targeted intervention.
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