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Abstract

Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not 

all smokers develop lung cancer, highlighting the importance of the interaction between host 

susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the 

interaction between metabolizing ability of tobacco carcinogens and smoking intensity in 

mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-

based associations of 43 tobacco carcinogen-metabolizing genes with lung cancer were analyzed 

using summary statistics and individual-level genetic data, followed by causal inference of 

Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke-

exposed cell models were used to detect gene expression patterns in relation to specific alleles. 

Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and 

UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 

C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk 

among smokers [odds ratio (OR) = 0.88, 95% confidence interval = 0.85–0.91, P = 2.18×10−16], 

which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) 
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by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity 

on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the 

rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, 

potentially through preferential recruitment of transcription factor HLTF. Together, this study 

provides additional insights into the interplay between host susceptibility and carcinogen exposure 

in smoking-related lung tumorigenesis.

Keywords

cancer susceptibility; causal inference; CYP2A6 ; cigarette consumption; lung cancer; 
carcinogenesis

Introduction

Lung cancer ranks second in cancer incidence but remains the leading cause of cancer-

related death worldwide (1). In the United States, lung cancer incidence and mortality have 

seen consistent annual declines, primarily attributed to the substantial reduction in smoking 

rates. These reductions, combined with advancements in early detection and treatment, have 

contributed collectively to this positive trend (2). However, it is important note that despite 

these improvements, cigarette smoking remains the predominant preventable cause of death, 

directly responsible for 82% of all lung cancer-related fatalities (3,4).

Tobacco smoke comprises a toxic mixture of more than 7,000 chemicals, 70 of which are 

well known to cause cancers (5,6). Among these, polycyclic aromatic hydrocarbons (PAHs) 

and tobacco-specific nitrosamines (TSNAs) are recognized as significant contributors to 

lung carcinogenesis. They require bioactivation by key enzymes before binding to DNA 

and initiate genomic alterations (7,8). The interaction between host susceptibility and 

environmental exposure is widely acknowledged as a crucial factor in tumorigenesis, such 

as the interplay between fine particulate matter (PM2.5) and genetic variants in colorectal 

cancer (9), as well as smoking and somatic mutations in lung cancer (10) reported in 

our previous studies. In addition, it has been suggested that genetic variation influenced 

the activity of cytochrome P450 family 2 subfamily A member 6 (CYP2A6), with high 

activity inducing more extensive and intense smoking, exposing the lungs to higher levels 

of carcinogens, and thus increasing lung cancer risk (11). Despite these findings, the causal 

relationship and underlying biological interpretation linking carcinogen exposure, toxic 

metabolism, and lung cancer remain unclear.

In this study, we postulate the existence of a causal cascade of tobacco carcinogen 

metabolism and dosage in smoking-related lung carcinogenesis. To investigate this 

hypothesis, we summarized 43 metabolizing enzymes involved in PAH and TSNA 

metabolism pathways and analyzed their genetic effects on lung cancer susceptibility, further 

performed causal inference and function study to interpret the potential biological role in 

lung tumorigenesis.
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Materials and Methods

Study subjects

Genome-wide association study (GWAS) summary statistics of lung cancer with 29,266 

cases and 56,450 controls of European ancestry, as well as individual OncoArray genotyping 

data (imputed genotypes included) for 14,803 lung cancer cases and 12,262 controls for 

association analysis, of which outcome information for survival analysis was available for 

6,129 cases, were obtained from the International Lung Cancer Consortium (ILCCO). Data 

for 378,484 available participants of European ancestry were obtained from the UK Biobank 

cohort, as conducted under Application #45611. This was a case-control study with a total 

of 2,155 incident and prevalent lung cancer cases and 376,329 controls. The details of 

both cohorts are described in Supplementary Methods and in previous studies (12,13). The 

study was conducted according to the principles of the Declaration of Helsinki. All research 

participants provided written informed consent, subject to oversight by the Institutional 

Review Board of all sites.

Gene and genetic variant selection

For genetic association analysis, 43 genes were carefully selected based on their 

known function in tobacco carcinogenesis metabolism pathways, including PAH and 

TSNA, as described in our previous studies (14,15). Selection of genes and single 

nucleotide polymorphisms (SNPs) and the corresponding quality control are described in 

Supplementary Methods.

Causal inference analytic framework

Causal mediation analysis via med4way command was implemented in STATA (16). Two-

sample Mendelian Randomization (MR) analysis was conducted using TwoSampleMR R 

package (17). CYP2A6 activity was assessed from the ratio of total trans-3’-hydroxycotinine 

(3HCOT) to cotinine (COT), as described in a previous study (11). Genetically instrumental 

variables (IVs) of each exposure [CYP2A6 activity and cigarettes per day (CigDay)] were 

obtained from previous large-scale GWAS summary statistics (11,18), and the corresponding 

F-statistic and statistical power of MR were calculated via mRnd online tool (19). The 

proportion of variance explained by IVs was calculated as in previous studies (20). The 

available lung cancer GWAS summary statistics as the outcome accompanied by the 

stratification by ever- and never-smoking status were obtained from ILCCO (12). Both 

MR Egger intercept test and MR Pleiotropy REsidual Sum and Outlier (MR-PRESSO) 

global test were used to detect horizontal pleiotropy (21). Reverse-direction MR analysis 

was also performed to assess potential reverse causal effects. Sobel test (22) was used to 

evaluate the mediation effect. We calculated the polygenic risk score (PRS) using IVs of 

CYP2A6 activity, which was used as a surrogate of CYP2A6 activity at the genetically 

predicted level in UK Biobank for ensuing analysis, as in our previous study (23). Structural 

equation modeling (SEM) by R package lavaan (24) and mediation analysis by R package 

mediation (25) were applied to predict the causal pathway. More details are described in 

Supplementary Methods.
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CYP2A6 expression pattern in bulk tissues

CYP2A6 expression in tissues was analyzed in a manner similar to that in our previous 

studies (26,27) by using Genotype-Tissue Expression (GTEx) project, Human Protein Atlas 

(HPA), Functional Annotation of The Mammalian Genome (FANTOM5), and The Cancer 

Genome Atlas (TCGA) Pan-Cancer (PANCAN) cohort, as well as transcriptome in lung 

tissues between ever-smokers and non-smokers from Gene Expression Omnibus (GEO), 

including GSE40419, GSE19667, GSE5058, GSE63127, and GSE7895. In addition, 31 

tissues, including 18 lung cancer tissues and 13 matched adjacent tissues, were selected 

from Harvard Lung Cancer Biobank of Boston Lung Cancer Study for RNA sequencing, 

which was a pilot study of lung cancer transcriptome analysis as a constituent of ILCCO. 

The Institutional Review Board of Massachusetts General Hospital and the Human Subjects 

Committee of the Harvard School of Public Health approved the study, and all participants 

signed consent forms. More details are described in Supplementary Methods.

Cigarette smoke exposure cell models

Cigarette smoke exposure cell models using human bronchial epithelial (HBE) cells 

subjected to 2% cigarette smoke extract (CSE) were carried out as in previous studies (28). 

The corresponding functional experiments are described in Supplementary Methods.

In silico analysis

Scalable and Accurate Implementation of GEneralized mixed model (SAIGE) (29) and 

PhenomeXcan (30) provided UK Biobank-based resources to annotate the pleiotropy of both 

rs56113850 and assigned CYP2A6 on multiple traits or diseases. HaploReg V4.1, FAVOR, 

and GeneCards were used for the functional annotation of candidate SNPs and genes. More 

details are described in Supplementary Methods.

Statistical analysis

Genetic association analyses were performed using logistic regression models with 

adjustments of the first three population structure principal components, as reported 

previously (12), and with adjustments of age, sex, and smoking status if appropriate. Multi-

marker Analysis of GenoMic Annotation (MAGMA) was used to enrich the genetic effect 

of each SNP into a gene set for gene-level association with lung cancer risk based on 

summary SNP P values from a large-scale sample size (31). The t test and Wilcoxon rank 

sum test were used for differential expression analysis as appropriate. Statistical analyses 

were performed with R (3.4.2), STATA (15), and PLINK (1.90). More details are described 

in Supplementary Methods.

Data availability

The data analyzed in this study were obtained from 

ILCCO at dbGaP https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001273.v4.p2; GEO at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE40419, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19667, https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5058, https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE63127, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
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acc=GSE7895; UK Biobank at https://www.ukbiobank.ac.uk/ (access to Application 

#45611); TCGA PANCAN at https://gdc.cancer.gov/about-data/publications/pancanatlas 

(RNA Final: http://api.gdc.cancer.gov/data/3586c0da-64d0-4b74-a449-5ff4d9136611); and 

HPA at https://www.proteinatlas.org/ENSG00000255974-CYP2A6/summary/rna (including 

expression data of FANTOM5 and GTEx).

Results

Evaluating genetic effects of tobacco carcinogen-metabolizing enzymes on lung cancer 
risk

The flowchart of this study is shown in Supplementary Fig. 1A. Among 43,483 SNPs 

located at 43 tobacco carcinogen metabolic genes, 5,423 SNPs passed the quality control; 

4,140 of them were defined via the GWAS summary statistics from ILCCO. Notably, 44 

SNPs reached statistical significance (P < 0.05/4,140; Supplementary Table 1), with eight 

having genome-wide significance (P < 5×10−8; Supplementary Fig. 1B) and located at 

EPHX2 (rs11780471) and CYP2A6 (seven SNPs distributed across three of seven linkage 

disequilibrium blocks; Supplementary Fig. 1C).

Deciphering genetic effects of rs56113850 on lung cancer risk by smoking status

Previous studies have indicated that rs56113850 C>T in CYP2A6 and rs11780471 

G>A in EPHX2 are two well-defined SNPs associated with cigarette consumption and 

corresponding nicotine metabolism (18,32); therefore, we stratified genetic associations by 

smoking status. As shown in Fig. 1A and Table 1, the genome-wide significant association 

of rs56113850 with lung cancer risk remained in smokers [odds ratio (OR) = 0.88, 95% 

confidence interval (CI) = 0.85–0.91, P = 4.35×10−13] but entirely not in non-smokers (P 
= 0.924), with large heterogeneity (Pheterogeneity = 0.002; I2 = 79.8%). Subsequently, we 

carried out interaction analysis using individual-level genetic data for rs56113850 in 14,803 

cases and 12,262 controls with smoking information. As expected, there was a significant 

interaction effect between rs56113850 and smoking status on lung cancer risk (Pinteraction = 

0.028; Fig. 1B and Supplementary Table 2), and the protective effect of T allele was greater 

in smokers (ΔOR = −0.13) than in non-smokers (ΔOR = −0.01; Fig. 1B). In contrast, the 

genetic effect of rs11780471, as well as other SNPs, on lung cancer risk was diminished by 

stratification of smoking status, without heterogeneity (Pheterogeneity = 0.348; I2 = 0; Fig. 1A 

and Table 1). Moreover, we obtained a similar finding as in single-variant analysis that the 

genetic effect aggregated at CYP2A6 gene was significantly associated with lung cancer risk 

(P < 0.05/43; Supplementary Fig. 2A and Supplementary Table 3), especially in smokers 

but not non-smokers. Independently, there was no association between rs56113850 and lung 

cancer survival [hazards ratio (HR) = 1.01, 95% CI = 0.97–1.06, PCox = 0.588, Plogrank = 

0.830; Supplementary Fig. 2B].

Furthermore, we performed four-way decomposition analysis to dissect the genetic effect of 

rs56113850 on lung cancer risk by smoking status (Supplementary Table 4). As illustrated 

in Fig. 1C, the total effect (TE) of rs56113850 was 0.876 (95% CI = 0.845–0.909), which 

could be divided into four parts: 1) the controlled direct effect (CDE; i.e., effect due to 

neither mediation nor interaction by fixing smoking status) was 0.857 (95% CI = 0.818–

Du et al. Page 7

Cancer Res. Author manuscript; available in PMC 2024 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7895
https://www.ukbiobank.ac.uk/
https://gdc.cancer.gov/about-data/publications/pancanatlas
http://api.gdc.cancer.gov/data/3586c0da-64d0-4b74-a449-5ff4d9136611
https://www.proteinatlas.org/ENSG00000255974-CYP2A6/summary/rna


0.898) in smokers but not in never-smokers; 2) the reference interaction (INTref; i.e., 

additive interaction effect activated only if smoking status was present when in the presence 

of rs56113850, capturing interaction only) was 1.034 (95% CI = 1.022–1.046); 3) the 

mediated interaction (INTmed; i.e., additive interaction effect activated only if rs56113850 

had an effect on smoking status, capturing both mediation and interaction) was 1.002 (95% 

CI = 1.001–1.003); and 4) the pure indirect effect (PIE; due to mediation only) via smoking 

status was 0.987 (95% CI = 0.980–0.994). These findings indicated the protective effect of 

the T allele of rs56113850 against lung cancer development in smokers.

Estimating causal cascade of CYP2A6 activity and smoking intensity on lung 
tumorigenesis

Considering that CYP2A6 is a key enzyme metabolizing tobacco carcinogens (33) and 

that its activity is dramatically affected by rs56113850 (11) (Supplementary Table 5), we 

conducted causal inference to evaluate the causality of rs56113850, CYP2A6 activity, and 

smoking intensity on lung cancer risk, with particular emphasis on the smoking population 

(Supplementary Fig. 1A). In terms of summary statistics-based causal inference underlying 

MR (Supplementary Fig. 3A), we observed that high CYP2A6 activity was causally 

associated with increased smoking intensity (indicated CigDay; βIVW = 0.267, SE = 0.094, 

PIVW = 4.61×10−3, F-statistic = 275.35, power = 1.00; Fig. 2A and Supplementary Table 

6–7), and that both high smoking intensity and elevated CYP2A6 activity dramatically 

increased the causal risk of lung cancer, especially in the smoking population (CYP2A6 

activity: βIVW = 0.333, SE = 0.048, PIVW = 5.67×10−12, F-statistic = 331.04, power = 0.81; 

CigDay: βIVW = 1.026, SE = 0.135, PIVW = 2.58×10−14, F-statistic = 2,505.10, power = 

1.00; Fig. 2B–C and Supplementary Table 6–7) but not in non-smokers (Supplementary 

Fig. 3B–C and Supplementary Table 6–7). There was no horizontal pleiotropy and no 

reverse causation among all MR analyses (Supplementary Table 6). Intriguingly, subsequent 

mediation analysis indicated that smoking intensity significantly mediated 82.3% of the 

causal effect of CYP2A6 activity on lung cancer risk in the smoking population (Fig. 2D).

Furthermore, we validated the above finding by using the individual-level genetic data 

from UK Biobank, including 2,155 cases and 376,329 controls (Supplementary Table 8), 

leveraging SEM and causal mediation. Similarly, rs56113850 remained the significant 

association with lung cancer risk only in the smoking population (OR = 0.89, 95% CI 

= 0.83–0.94, P = 1.08×10−4; ORmeta = 0.88, 95% CImeta = 0.85–0.91, P = 2.18×10−16; 

Table 1). Moreover, when including rs56113850 genotypes, CYP2A6 activity (surrogated 

by CYP2A6 PRS), and smoking intensity (indicated by pack-year of smoking) in SEM, 

we found that the effect of rs56113850 on lung cancer risk was totally amended through 

the pathway of CYP2A6 activity to smoking intensity (Supplementary Fig. 3D); and in the 

subsequent causal mediation, smoking intensity significantly mediated a 15.3% effect of 

genetically predicted CYP2A6 activity on the risk of lung cancer in the smoking population 

(Supplementary Fig. 3E).
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Expression pattern of CYP2A6 and biological function of rs56113850 in lung 
tumorigenesis

Next, we detected the expression pattern of CYP2A6 across human tissues and cells. 

CYP2A6 was well expressed in the liver but relatively low in the lung derived from normal 

tissues of HPA, GTEx, FANTOM5, and TCGA (Fig. 3A–B) and was significantly decreased 

in tumors of liver and lung compared with the corresponding normal tissues from TCGA 

and Harvard Biobank datasets (Fig. 3C). At the tissue level, pulmonary CYP2A6 expression 

was significantly downregulated in ever-smokers compared with non-smokers across each 

dataset (Supplementary Fig. 4A), and the following meta-analysis showed significantly and 

substantially decreased CYP2A6 expression by 24% in ever-smokers from TCGA and GEO 

datasets (95% CI = 16–31%; P = 2.71×10−9; Fig. 3D). Similarly in 2% CSE-exposed 

HBE cell models, CYP2A6 expression at both RNA and protein levels and its activity 

were downregulated compared with that observed in untreated cells (Fig. 3E); In pleiotropy 

analysis using the phenome-wide association study (PheWAS) strategy, CYP2A6 expression 

in both liver and lung correlated significantly with more than 100 phenotypes, specifically 

those clustered into smoking status or lung-relevant traits in accordance with the above 

findings (Supplementary Table 9).

In terms of the genetic regulation, we observed high function scores of seven at-risk 

SNPs in CYP2A6 across multiple categories according to two functional annotation tools 

(Supplementary Table 10). Preferentially, we included rs56113850 for further function study 

not only for its top genetic association, but also it had high scores of protein function 

and local nucleotide diversity, along with five altered motifs. In addition, we found that 

the T allele of rs56113850 significantly decreased CYP2A6 expression across tissues, 

especially in both lung and liver tissues (Supplementary Fig. 4B). Nevertheless, the T 

allele significantly rescued the downregulation of CYP2A6 expression and activity caused 

by 2% CSE exposure when compared with the C allele (Fig. 3F and Supplementary Fig. 

4C). Of note, helicase-like transcription factor (HLTF), one of five motifs assigned to 

TFs and involved in DNA damage/repair, preferentially bound to the rs56113850 T allele 

(Supplementary Table 11). Given this, we performed super-electrophoretic mobility shift 

assays with HLTF-containing nuclear extracts to independently verify the genetic regulation 

of rs56113850 on the TF binding. The supershift assays showed the preference of HLTF 

for the rs56113850 T allele probe (Fig. 3G). Taken together, this new evidence provided 

additional support for the regulatory function of rs56113850 and suggested the involvement 

of the transcription factor HLTF in mediating genetic effects on lung cancer susceptibility. 

Moreover, rs56113850 was dramatically associated with risks of cancer of the respiratory 

system and of the bronchus based on PheWAS scanning (Supplementary Fig. 4D).

Discussion

In this study, we found that rs56113850 played a critical role in affecting smoking-related 

lung cancer risk through both the cascade effect on CYP2A6 metabolic capacity to cigarette 

consumption and the genetic function on CYP2A6 activity against smoke exposure (Fig. 

3H). These findings provide knowledge for cancer interventions based on susceptible 

populations.
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Cigarette smoking is a heritable but modifiable individual behavior related to various 

diseases, with 8% of SNP heritability for CigDay (18). Notably, CYP2A6 is a highly 

polymorphic and heritable biomarker, and its genetic variation dramatically modifies the 

genetic correlation between CigDay and lung cancer risk (33,34). This finding might be 

due to two metabolic pathways (i.e., metabolism and subsequent excretion of nicotine and 

simultaneous activation of TSNA) involved in the CYP2A6 enzyme.

Nicotine is the main psychoactive component in tobacco, producing temporary pleasurable 

effects in the brain (35). The nicotine metabolite ratio (NMR; ratio of 3HCOT/COT) is 

an established index of nicotine metabolic inactivated mainly by the CYP2A6 enzyme, 

which represents CYP2A6 activity in this study. Extensive research has emphasized that 

a higher NMR indicates higher CYP2A6 activity and faster nicotine inactivation (11,32), 

resulting in greater cigarette consumption and lower rates of smoking cessation (36,37). 

Furthermore, CYP2A6 activity is independently associated with increased lung cancer risk 

(38). In the causal inference analytic framework of this study, we advanced this observed 

association to a quantitative causal relationship between higher CYP2A6 activity and greater 

CigDay nicotine uptake, both causally and quantitatively increased the risk of lung cancer 

in smokers. This is likely due to the influence of genetics (on the nature side) on smoking 

behavior (on the nurture side), as NMR is dramatically heritable in nicotine metabolism 

with a heritability estimate of 81%; of note, rs56113850 in CYP2A6 alone explains a 

considerable proportion (14–23%) of NMR variance (39). The data from this study suggest a 

causal inference that smoking status interacts and mediates the effect of rs56113850 on lung 

cancer risk as individuals carrying the rs56113850 T allele exhibit downregulated CYP2A6 
expression and activity, resulting in lower NMR, reduced smoking intensity, and lower 

exposure to tobacco carcinogens.

TSNAs are a class of procarcinogens known to be bioactivated by the CYP2A6 enzyme. 

N’-Nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) 

are the two most potent TSNAs present in unburned tobacco and tobacco smoke (6,40). 

They readily cause tumors in animal models and are classified by International Agency for 

Research on Cancer as “carcinogenic to humans”. Population-based studies have revealed 

an associated cascade of CYP2A6 activity, TSNA bioactivation, and smoking-related lung 

cancer risk (41,42). The data from this study are consistent with the findings that smokers 

with lower CYP2A6 activity due to the presence of the rs56113850 T allele are exposed 

to less levels of carcinogens overall in tobacco smoke, including lower level of TSNA 

bioactivation, and hence have a decreased risk of lung cancer.

NNN and NNK both form DNA adducts, which are misrepaired or not repaired to constitute 

a necessary, though not sufficient, prerequisite for inducing cancer (43). It is worth noting 

that a balance between DNA adduct formation and removal exists because of the highly 

variable capacity of DNA adducts to induce DNA damage, including mutations and 

chromosomal aberrations (43). At both tissue and cell levels, we observed downregulated 

CYP2A6 expression after smoke exposure, consistent with the findings of Gao et al. 
(44). These results suggest that DNA damage of CYP2A6 occurs simultaneously in both 

the target organ (lung) and the metabolizing organ (liver) during carcinogenesis. In this 

study, we observed preferential binding capacity of the transcription factor HLTF at the 
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rs56113850 T allele. HLTF plays a critical role in error-free post-replication repair of 

damaged DNA, maintaining genomic stability by acting as a ubiquitin ligase for ‘Lys-63’-

linked polyubiquitination of chromatin-bound proliferating cell nuclear antigen (45,46). 

Additionally, HLTF is inactivated in tumorigenesis due to promoter hypermethylation and 

truncated protein forms lacking functional domains, serving as a biomarker for lung cancer 

prognosis (47,48). The data of the present study provide biological knowledge of the 

protective role of the rs56113850 T allele on smoking-related lung cancer risk by driving 

DNA repair of CYP2A6 against smoke carcinogens via HLTF recruitment.

We acknowledge several limitations in this study. First, conclusive confirmation of all causal 

effects from MR may require a well-powered prospective cohort study or a well-designed 

randomized controlled trial of preventive interventions, especially that includes individual 

genetic data and CYP2A6 activity detection. Second, it remains to be determined whether 

many other genetic variants (such as indels) of tobacco carcinogen metabolic genes that 

were absent from the GWAS platform, far outside the −/+ 5 kb region, or less conserved 

based on association analysis also regulate relevant gene expression. Other driver genes, 

including but not limited to tumor-suppressor genes and transcription factors (e.g., HER2, 

BRAF, PTEN, FGFR1, SOX2), may also be causally related to smoking-related lung cancer. 

Thus, whole-genome and whole-exome sequencing based on next-generation sequencing 

technologies should be applied to identify novel driver genes and causal variants for 

lung cancer. Third, the sample size of the never-smokers is an order magnitude lower 

than for ever-smokers, which suggests that some of the effects observed may reflect 

differences in sample size, rather than true effects based on smoking status. Therefore, a 

large-scale population study focusing on never-smokers is essential to elucidate the genetic 

heterogeneity underlying lung cancer susceptibility. Forth, the direct or indirect biological 

mechanisms of reduced CYP2A6 expression by cigarette smoke exposure and in tumors 

remain unclear. Accordingly, comprehensive biological evidence, potentially at multiple 

omics levels (e.g., abnormal DNA methylation as well as dysregulation of gene expression, 

protein expression, and protein activity by cigarette smoking) and in various models (e.g., 

multiple cell types or smoke mouse models), is essential to convincingly demonstrate such 

an underlying mechanism.

In conclusion, rs56113850 and CYP2A6 gene are causally associated with lung cancer risk 

depending on smoking status and intensity. These findings may bridge the gap between host 

susceptibility and individual behaviors for the biological interpretation of cancer prevention.
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Statement of Significance:

The causal pathway connecting CYP2A6 genetic variability and activity, cigarette 

consumption, and lung cancer susceptibility in smokers highlights the need for behavior 

modification interventions based on host susceptibility for cancer prevention.
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Figure 1: 
Decomposition of the genetic effect of rs56113850 in CYP2A6 on lung cancer risk by 

smoking status. A, Manhattan plot for genetic effects of tobacco carcinogen metabolic genes 

on lung cancer risk stratified by smoking status. The x-axis represents each chromosome, 

with different colors assigned to each gene; the y-axis represents association P values 

(−log10 transformed) with lung cancer risk, derived from lung cancer GWAS summary 

statistics in subgroups of smoking populations deposited in ILCCO. Red dashed horizontal 

line indicates a P value equal to GWAS significance at 5 × 10−8. B, Interaction effects 

between rs56113850 in CYP2A6 and smoking status on lung cancer risk. Genotyping data 

of rs56113850 were acquired from ILCCO for 14,803 cases and 12,262 controls with 

individual smoking information. OR, odds ratio, calculated via logistic regression model 

underlying joint analysis approach. C, Four-way decomposition analysis of the rs56113850 

effect on lung cancer risk potentially mediated by smoking status. Y is the outcome: lung 

cancer; A is the exposure: rs56113850 genotypes obtained from ILCCO; M is the potential 

mediator: smoking status. The OR and corresponding 95% CI were calculated by mediation 

analysis, with causal effects estimated for exposure and at the mean level of covariates. The 

CDE and the reference interaction were computed by fixing smoking status as never (M=0) 

or ever (M=1).
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Figure 2: 
Causal inference for the causal pathway of CYP2A6 activity, cigarette consumption, and 

lung cancer risk. A-C, Scatter plots for genetic associations across CYP2A6 activity, 

CigDay, and lung cancer risk in the smoking population. The x-axis represents the per allele 

association of exposure-relevant SNPs and assigned outcomes, with the likelihood-based 

MR estimate for genetic IVs. D, Directed acyclic graph for the causal mediation pathway of 

CYP2A6 activity, CigDay, and lung cancer risk in the smoking population. E, exposure; M, 

mediator; O, outcome. IE, indirect effect. The Sobel test was used to evaluate the mediation 

effect upon the causal effect derived from the MR estimate.
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Figure 3: 
Expression pattern of CYP2A6 across tissues, smoking status, and allele-specific manners. 

A, CYP2A6 expression pattern in the top 10 tissues using the consensus normalized 

expression value (NX) derived from HPA, GTEx, and FANTOM5. NXliver = 199.5; 

NXlung = 0.2; NXothers = 0. B, CYP2A6 expression pattern in normal tissues derived 

from TCGA PANCAN. The x-axis is assigned to tumor type, including BLCA, bladder 

urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell 

carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon 

adenocarcinoma; ESCA, esophageal carcinoma; HNSC, head and neck squamous cell 

carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, 

kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, 

lung adenocarcinoma; LUSC, lung squamous cell carcinoma; NA, not available; PAAD, 

pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate 
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adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous 

melanoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; THYM, thymoma; 

UCEC, uterine corpus endometrial carcinoma. The y-axis represents CYP2A6 normalized 

expression. C, Differential expression analyses of CYP2A6 between tumor and normal 

tissues derived from publicly available TCGA PANCAN (lung and liver cancers; left) and 

Harvard Biobank (lung cancer; right). An unpaired t test was applied for comparison of 

CYP2A6 expression between tumor and normal tissues. D, Forest plot for the effect of 

smoking status on CYP2A6 pulmonary gene expression. The effect size of smoking status 

(ever-smoker vs. non-smoker) on CYP2A6 expression was calculated via linear regression 

model, accompanied by the 95% CI. The size of the square is proportional to the weight, 

which is estimated by the standard “inverse-variance” method for random-effects models 

in meta-analysis. E, CYP2A6 expression pattern at levels of RNA, protein, and activity 

after 2% CSE exposure in HBE cell line. Gene expression was normalized to that in cells 

treated with DMSO. An unpaired t test was applied for the group comparison. Both RNA 

and activity detection were performed in three biological replicates, with three technical 

replicates each, and protein was in three biological replicates. F, Allele-specific effect of 

rs56113850 on CYP2A6 expression pattern at levels of RNA, protein, and activity after 2% 

CSE exposure in HBE cell line. Allele-specific constructs containing the putative activity 

region flanking rs56113850 were cloned into the pcDNA3.1-basic vector and transfected 

into HBE cells. Gene expression was normalized to that in cells treated with DMSO. 

Both RNA and activity detection were performed in three biological replicates, with three 

technical replicates each, and protein was in three biological replicates. G, Allele-specific 

effect of rs56113850 on TF HLTF binding affinity through super-electrophoretic mobility 

shift assays. H, Graphical representation of the findings of this study. In smokers, a causal 

pathway model for relationships among CYP2A6 variants (rs56113850 C>T included), 

CYP2A6 activity, smoking intensity, and lung cancer risk exists, which may be biologically 

interpreted by nicotine metabolism (indicated by NMR) and TSNA activation after CYP2A6 

activity induced by cigarette smoke exposure in lung tumorigenesis.
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