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Abstract

Over the last decade, single-cell genomics technologies have allowed scalable profiling of cell
type-specific features, which substantially increased our ability to study cellular diversity and
transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of

gene regulation or the rules that govern interactions between cell types is still limited. Advent

of new computational pipelines and new technologies, such as single-cell epigenomics and
spatially resolved transcriptomics, has created opportunities to explore two new axes of biological
variation: cell intrinsic regulation of cell states and expression programs and interactions between
cells. Here, we summarize the most promising and robust technologies in these areas, discuss
their strengths and limitations, and discuss key computational approaches for analysis of these
complex datasets. We highlight how data sharing and integration, documentation, visualization,
and benchmarking of results contribute to transparency, reproducibility, collaboration, and
democratization in neuroscience, and discuss needs and opportunities for future technology
development and analysis.

Introduction

Cells in our bodies contain roughly the same genomic information encoded within the

DNA, but develop remarkably different properties as a consequence of intrinsic gene
expression regulation and inter-cellular communication. Nowhere is this clearer than the
mammalian brain, where hundreds of molecularly distinct cell subpopulations have recently
been mapped using a combination of single-cell technologies and shown to be organized into
neighborhoods and circuits that can be visualized using spatially resolved technologies .
Intrinsic gene expression regulation and cell-cell interactions represent two orthogonal, and
yet interrelated axes of biological variation in complex tissues, that frequently become
altered in disease states. Emerging technologies for mapping these modalities create exciting
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opportunities for uncovering disease changes with fewer a priori assumptions than has been
possible before. In turn, unbiased profiling of disease tissues has the potential to uncover
new disease relevant changes that could be targeted therapeutically.

Here, we strive to provide an overview of the main technologies and approaches currently
present in single-cell epigenomics and spatially resolved transcriptomics fields, as well

as discuss various strategies for data analysis and considerations in experimental design.
In particular, we highlight the proliferation of single-cell epigenomic data collection that
has provided exciting opportunities to reveal gene regulatory networks, while highlighting
the paucity of methods for functional validation of these predictions. By contrast,
spatially resolved transcriptomics approaches vary widely depending on the specific
tissue preservation method, size and resolution needed. When coupled with single-cell
transcriptomics and rigorous data analysis, such as deconvolution, trajectory analysis and
cell-cell interactions prediction, such experiments can provide invaluable insights into tissue
biology (Fig. 1).

We recommend technology choices as well as computational schemes should be motivated
by the biological questions, while balancing discovery, analysis, and validation wherever
possible to maximize biological insights. Best practices in computational analysis should
guide the experimental design and be considered prior to data generation, taking into
consideration the required number of samples, coverage of cells per sample, and design of
experimental batches, to facilitate accurate analysis. In turn, the design of the computational
scheme for the data analysis should be tailored to the specific features of the dataset as

well as to the biological questions, guiding the choices such as de-novo vs. reference-based
annotations or discrete vs. continuous analysis of cell states.

Technical considerations in study design

High-throughput genomic technologies have created unprecedented opportunities for data-
driven discovery of biological processes underlying normal tissue structure, function, and
disease changes. Considering the cost of many such studies, responsible experimental design
is often required to maximize biological insights, and should start with considerations

of best practices in data analysis (Fig. 2). We recommend considering the following
components for single cell and spatial genomic studies.

Sample size—Evaluation of the necessary sample size for robust analysis is essential,
especially when testing changes in cell abundance, differential genes, or trait associations
with experimental or clinical conditions. Computational methods should be tailored to

the sample size and to the corresponding statistical power of the dataset. There are

tools and resources that can be used to estimate the necessary number of biological
replicates and technical replicates ideally required for single-cell/nucleus RNA sequencing
(sc/snRNAseq) studies®-14, As fewer spatial transcriptomics studies have been conducted
so far, recommendations of sample size estimation are driven largely by theoretical and
statistical considerations'®16, Adhering to the power estimations discussed can greatly
increase the confidence in biological findings derived from single-cell RNA sequencing
studies, and we predict that the rapid increase in the number of spatial transcriptomic and

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

Page 5

epigenomic datasets will lead to better understanding of technical variation in the data

and inform new methods for quantifying effect sizes that may be specific to the assay

or data generation platform. Beyond the number of samples, the number and design of
batches should be carefully considered as well. Specifically, ensuring balanced batches
across different experimental groups can greatly facilitate batch correction to mitigate
technical artifacts. It is important to note that the required sample size is contingent on

the intrinsic variation between samples, which may vary depending on the genetic diversity
of study population, and could furthermore be influenced by the technical idiosyncrasies of
individual platforms or dataset quality.

Underpowered studies may still provide biologically meaningful insights, but require
specific considerations. We advise incorporating strategies for orthogonal validation using
methods discussed in Companion Piece 3. Alternatively, leveraging large cohorts of bulk
datasets can augment the sample size, enabling the correlation of gene and pathway
signatures to conditions and traits. For example, different strategies have been suggested

to utilize sc/snRNAseq data to deconvolve signatures of cell type abundance hidden

within bulk tissue measurements using algorithmic approaches based on deconvolution’:18
and increasingly deep-learning®-21, This strategy significantly reduces the time and cost
of experiments, and may be essential in instances where obtaining sufficient biological
replicates of tissue specimens is challenging. In essence, acknowledging and accounting for
sample size and diversity among samples is crucial for ensuring the reliability and validity of
research conclusions.

Cellular coverage—Each profiling experiment involves a decision step to profile a subset
of cells present in the tissue, and due to financial and tissue availability constraints, every
study will balance the numbers of biological or technical replicates involved with the
number of cells that will be profiled. Understandably, heterogeneous tissues such as the
brain pose an additional challenge where cell types are not present in equal proportions, and
thus effective cell number involved in a study will vary from cell type to cell type.

Thus, consideration for cellular coverage and sequencing depth should guide the
computational strategy applied for cell annotations as well as for association analysis
depending on the biological question?2:23, Data downsampling can offer a data driven
approach to determining whether a given observation or conclusion is robust, and has
been effectively employed to analyze the saturation of cell cluster discovery in mouse
brain scRNAseq data’. Unfortunately, similar considerations have not been developed yet
for spatial transcriptomics or epigenomic studies. Analysis of spatial transcriptomics data
in particular will require deep assessment as datasets become more common, and we
predict that lessons from stereology?* may be helpful in interpreting the results of spatial
transcriptomics based experiments.

Ideally, when experimental design limitations prohibit from obtaining adequate cellular
coverage to comprehensively profile cells in a given tissue, strategies that enrich for a
desired cell population can be employed (see companion paper | for methods mining rare
cells). Importantly, the computational study design should be guided by the coverage of the
dataset, as different clustering algorithms have different sensitivities for detecting rare cell
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types2®. Moreover, rare cells can be mis-assigned to transcriptomically similar population if
not enough cells are sampled. Mapping cells against a well powered reference atlas dataset
can help to overcome this limitationZ, and such atlases are increasing in availability for the
brain across various species!—9, ages, and conditions, offering an important resource that can
be leveraged to annotate cell types in smaller studies (see companion paper 1).

Data Quality and Sequencing depth—The sequencing coverage (3’-end, 5’-end,
whole coding region), data quality and sequencing depth (number of unique reads/unique
molecular identifiers (UMIs), and number of genes detected per cell) represent important
metrics of underlying data quality and should ideally be compared to published studies from
the same tissue or cell type, and reported across technical and biological replicates in a
study. See box 1 for an overview of quality control data analysis. For sc/snRNA-seq assays,
high-quality data are important to ensure that differences in expression programs within
specific cell types can be robustly detected. Insufficient coverage may overlook biological
insights, a factor that must be considered during the differential expression analysis of genes
and pathways. While the exact specific number of sequencing reads per cell will depend

on both the technology and the nature of the sample, for the most common experimental
platform from 10X Genomics, gene expression libraries sequenced at or above 25,000 reads
per cell/nucleus would generally be considered as reasonable to identify individual sub
types, but may remain too shallow for some cell-type specific responses to disease and
infection (e.g. microglia and astrocytes) where 50,000 reads per cell/nucleus is more often
required to detect subtle gene expression changes. Published reference atlases can provide
approximate numbers of genes detected across brain cell types, while data derived from
whole dissociated cells typically yield higher numbers of genes detected per cell compared
to nuclei.

Epigenetic assays cover a larger sample space (whole genome vs. transcriptome) and

thus consequently the sequencing depth per cell should be appropriately higher, with
recommended of minimal sequencing depth of 50,000 reads/cell for sSnATAC-seq libraries.
For reliable discovery of gene regulatory elements from snATAC-seq data, the number of
cells depends on data quality and the analytical context, yet we advise to have at least 200
cells/nuclei per cell population with biological replicates to ensure reproducibility. These
metrics are based on experience and lack systematic and quantitative metanalysis, and
therefore should be taken as general guidelines as opposed to prescriptive guidelines. Large
scale consortia efforts will likely define these parameters in increasingly greater detail.

These estimates are intended to provide general guidance, and we recommend consulting
several published studies prior to embarking on experimental data generation.

While sc/snRNAseq data analysis has reached a point of relative consensus, and broadly
applicable recommendations can be proposed, guidelines for analysis and assessing data
quality of more recent technologies such as epigenomics and spatial transcriptomics will
likely emerge as the number of datasets increase.
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Biological considerations in study design

Cellular architecture guiding study design—Apart from technical aspects, the
computational study design should also be informed by the distinct characteristics of each
cell type and the specific research questions of the study. These elements should guide the
choice between a discrete clustering-based analysis of cellular diversity with a case-control
differential expression analysis to uncover changes due to conditions and traits, or rather a
continuous analysis of gene programs to describe cellular diversity and alignment of cells
along continuous trajectories (Fig.3). The particular research questions will further shape
subsequent downstream analysis steps, which could encompass regulatory networks, cellular
interactions, intersection with genetics and other modalities, and more.

Beyond the diversity of cell types, studies have revealed the vast diversity of cell
subpopulations and cell states within the brain. Conventional approaches identify cellular
diversity by clustering, commonly applying nearest neighbor graphs and community
detection algorithms, to subset cells of a specific cell type to sub-clusters capturing
transcriptionally distinct cell subsets. Yet, cellular diversity might not be always adequately
captured by a discrete model, such as microglia and astrocyte cells that rapidly respond

to the changing environment to maintain brain homeostasis, or oligodendrocyte lineage
cells that change along the maturation process. Alternative methods that model the
continuous variation in gene expression have been developed. For example, inference

of gene expression programs enable to model the complexity of cellular functions and
response to diverse stimuli, by modeling cells as a combination of expression programs
(e.g. topic modeling?’, non-negative matrix factorization?8, weighted gene co-expression
matrix analysis2?). Algorithms aligning cells along continuous trajectories of change (e.g.
Palantir39, Monocle3), as typically applied in developmental datasets (as described in
companion piece 1), can also be applied to study the transitions between cell states in

the adult brain, specifically along aging or disease processes. Importantly, as physiological
processes involve cooperation of multiple cell types within the brain, new frameworks
expand the analysis from the traditional focus on the diversity of individual cell types to
multi-cellular environments?.

Addressing complex cellular microenvironments in study design—The complex
spatial arrangement of cells in the central nervous system (CNS) is what enables it to
execute its numerous, highly specialized functions, as physiological processes involve
multiple cell types working in cooperation. Investigation of changes in cellular communities
or microenvironments instead of independent investigation of individual cell types could be
a more effective and accurate approach despite the added complexity. Furthermore, future
development of effective drugs and therapies will likely require targeting a community of
tightly co-regulated cells that together provide the necessary environment for the required
healthy function of the brain. In experimental study design, considering the different
properties of brain cell types should guide the choice of methods for cell dissociation,
nuclei isolation as well as tissue to capture the diversity of cells. In computational

study design, beyond the analysis of individual cell types and cellular abundance,
communities of cells with coordinated abundance and/or activity can be predicted using
single-cell omics. For example, exploring changes in cell state and cell abundance across
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cell types in aging human brains uncovered Alzheimer’s disease associated cellular
community that captured coordinated changes in glial, endothelial and neuronal cell types*8.
Algorithms for the identification of coordinated cell programs across cell types, co-occurring
cellular communities, co-regulated cells, or communities with shared-dynamics have been
developed®32-34, To further advance our understanding of the brain’s dynamic tissue
architecture, we will need to expand these computational methods. In particular, we will
need to integrate predictions of the co-regulation and crosstalk between subsets of cells
using multiple data modalities.

Spatial transcriptomics (ST) refers to recently developed technologies that enable probing
cellular microenvironments /n situ. ST methods can simultaneously spatially position cells
and quantify their transcriptomic profiles, with most methods applicable in histological
tissue sections consisting of 1-2 cell layers. There are two broad classes of ST methods

that use sequencing or imaging-based readouts. Many ST technologies were first applied

to the mouse brain and have been used to spatially map cell types across entire brain
regions3>-37, with recent efforts extending this approach to whole mammalian brain®38-40,
ST can enrich cell type and state annotations from sc/snRNAseq with spatial information
and ascribe meaning to gene expression gradients, and even entire clusters, by identifying
their spatial correlates, exemplified in continuous expression gradients in neurons across the
medial-lateral and superior-inferior axes of the striatum?#1:42, Broadly, ST methods fall into
two categories: /n-situ RNA-sequencing based technologies aimed at unbiased profiling of
whole transcriptomes within tissues, and imaging-based technologies aimed at probing a
multiplexed defined set of hundreds of genes. Sequencing or imaging-based ST methods
each offer distinct advantages and suffer from different challenges balancing between
resolution, sensitivity, and scalability. Thus, their advantages and respective limitations need
to be considered carefully when choosing the right method to use. See Box 2 for detailed
description of technical consideration and limitations of imaging- and sequencing- based ST
methods.

The computational integration of spatial and single-cell transcriptomics provides a practical
approach to construct multi-modal brain atlases. The integration methodologies have
matured dramatically in the past few years, now enabling even relatively fine cell

type distinctions to be accurately mapped and resolved on high-quality ST datasets*3~

46, For imaging-based ST, integration of spatial and single-cell measurements enables
transcriptome-wide imputation unmeasured genes in space3847. There are also emerging
computational integration benchmarks for single cell and spatial data, though we lack
methods to quantitatively assess the accuracy and robustness of integration between sc/
snRNAseq and ST datasets#8:49,

Cohort design and analytical considerations in disease studies—Increasing
amounts of brain sc/snRNAseq data from different species, individuals, developmental
stages, and pathological states has revealed the diversity of neuronal and non-neuronal cells
(see Companion Piece 1). Such studies use a variety of cohort designs and computational
schemes to identify transcriptional changes that occur in disease (Fig. 3). A carefully
balanced case-control cohort is a conventional and powerful approach for identifying gene
expression differences. For such a discrete cohort design, applying a statistical test (with

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

Page 9

an appropriate noise model®?) with correction for multiple-testing can be used to link
cellular changes to the studied trait, correcting for the technical (e.g. batch, library quality)
and biological (e.g. interindividual variability, age, sex) confounders. Alternatively, pseudo-
bulk differential gene expression methods (e.g. DESeq®!, edgeR>2) account for variability
between biological replicates and thus avoids false discovery and overcomes gene drop-outs
noise in sc/sn/RNA-seq®3.

Newer approaches to cohort design and analytical methods consider continuous variation, as
well as mixed sources of variation, ranging from sampling along the continuum of disease
stages to random sampling of the population in abundant pathologies. For such a continuous
cohort design, different analytical methods have been developed. For instance, linear mixed
models can simultaneously take into account orthogonal sources of transcriptional variation
and rank genes according to variance explained by specific variables®*°°. Additionally,
manifold learning and trajectory inference enable us to align individuals along a pseudotime
of disease progression and infer the intricate cellular dynamics underlying the disease
process®30:56. These approaches provide a more nuanced perspective, offering insights into
the temporal and spatial aspects of disease progression that might be missed in traditional
case-control studies. To provide further confidence in the rigor and robustness of case
control datasets, transcriptomic changes predicted to occur in disease states should be
validated using orthogonal methodologies. For extensive discussion of validation approaches
see Companion Piece 3.

Many neurological diseases are defined by specific histological lesions. ST methods
provide a unique opportunity to bridge our historical understanding of these diseases with
modern, hypothesis-generating genomics experiments of the same tissue and cells, which
will pave the way to linking newly discovered disease-associated states and pathways, to
histopathological disease phenotypes, such as aggregates or multiple sclerosis lesions. Such
discoveries may be facilitated by imaging-based ST technologies like in situ sequencing,
MERFISH or STARmap PLUS®, but the limited genes detected by these technologies may
limit the discovery of novel cell states uniquely associated with histopathology, without the
accompanying transcriptome-wide profiling by sc/snRNA-seq. Efforts to further expand the
multiplexing (/.e. to increase the number of genes and isoforms that can be measured in
imaging ST) is an important area of future technology development. Sequencing-based ST
approaches, including the original Spatial Transcriptomics or DBiT-Seq®8:59 largely lack the
resolution needed to precisely pair these histological lesions with gene expression in single
cells, yet neighborhood-based analyses are feasible. New sequencing-based approaches to
capture individual cells with high spatial resolution and sufficient gene coverage, such as
Stereo-Seq, Slide-Seq, Slide-Tags, or the recently Visium HD could help overcome this
challenge80.61,

Emerging multi-omics spatial technologies as a bridge between modalities

The benefits of recent ST technological advancements provide an opportunity to combine
ST and sc/snRNAseq to create a standardized cell atlas of the nervous system across
diverse organisms by bridging anatomical, functional and molecular analysis of neural cell
types. A key opportunity associated with ST is its ability to serve as a bridge between the
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fields of cellular-molecular genomics and systems neuroscience. Specifically, technological
approaches are increasingly enabling genomic measurements of cells to be directly paired
with measurements of connectivity and neural activity. For example, BARseq combines
sequencing based-barcoding of neuronal projections with 1SS-based spatial mapping of gene
expression and neuronal cell typing®2. Other studies have combined two-photon calcium
imaging and cFOS-staining with ST to probe molecular identities of neurons activated in
different behaviours36:63, Furthermore, electrophysiological recordings have been coupled
to STARmap /in vitro in other systems84. These developments provide exciting avenues to
marry spatial transcriptomics with functional studies of neural circuits.

Epigenomic technologies such as CUT&Tag, discussed below, have recently been
successfully applied at spatial level using the DBiT-Seq technology, allowing the genome-
wide mapping of histone modifications in the mouse and human brain at different stages of
development, at a resolution approaching single-cell (20-50pm) (spatial CUT&Tag)® or at
hundreds of loci at subcellular resolution8®. In addition, the recent developments of spatial
ATAC-seq®7:68 and spatially resolved single-cell translatomics (RIBOmap)®® potentiate
spatial multi-omics mapping of epigenome, transcriptome, and translatome from the same
brain samples to understand gene regulation mechanisms at both transcriptional and post-
transcriptional level. Moreover, multiomic approaches combining RNA and CUT&Tag (and
ATAC) have also been developed at a spatial level’, while combined ST-lipidomics’t

and ST-metabolomics’2 are emerging, indicating that the simultaneous probing of several
modalities might become standard in the spatial omics area, as it has in the single-cell/
nucleus arena.

The Allen Brain Atlas Common Coordinate Framework’2 is a three dimensional average
map of the adult mouse brain, provides an anatomical reference to standardize spatial
measurements of neural activity and connectivity. The integration of ST-based cell maps
with such Common Coordinate Frameworks provides an opportunity for charting brain
atlases. This is an active area of computational development’*, where a major challenge is
the accurate mapping of two-dimensional ST datasets to three-dimensional coordinates at
cellular resolution. Furthermore, it is likely ST data will itself challenge some traditionally
defined neuroanatomical boundaries 38.7>, New computational approaches will be needed
to learn cytoarchitectural features from the spatial data itself and use it to improve our
understanding of regional boundaries. Ultimately, functional perturbations of cells may also
be required to refine these regional definitions.

The ability to map ST data to common coordinate frameworks, as discussed above, will
likely open opportunities to correspond molecular histopathology measurements to /n vivo
phenotypes. For example, functional MRI can measure correlates of neural activity of a
given brain region in the context of a particular behavioral task, and alterations of such
activity have been observed in a wide range of neurological and psychiatric disorders’6.77.
For example, 7T MRI can resolve disease structures such as iron-positive lesion rims

in multiple sclerosis’8, while PET imaging can resolve metabolic tissue states, with ST
measurements.
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With the rapid proliferation of ST, systematic benchmarking of different methods is needed.
These efforts should formally evaluate the consequences of spatial resolution, sensitivity
and multiplexing levels for cell typing and cell-cell interactions analysis of brain tissue.

An emerging computational challenge is the integration of ST datasets across experimental
batches, studies, and technologies’®:80. While sc/snRNAseq methods are applicable to a
certain extent, new methods to integrate imaging- and sequencing-based ST as well as
formal benchmarks to evaluate such methods will be necessary.

Finally, the current cost and throughput of both sequencing- and imaging-based ST are
prohibitive to map the whole human brain at the coverage of the mouse brain atlases.
Technological or platform investments to increase the feasibility of large-scale ST and apply
to 3D brain volumes, prioritizing human brain regions relevant to diseases and disorders
such as Autism or Schizophrenia, and developing computational approaches to approximate
full brain maps from incomplete 3D volumes or to predict ST profiles from MR and
metabolic PET imaging provide future avenues for exploration. For example, myeloid cell
subtypes - visualized by cell type specific molecular RNA and protein tagging - can be
mapped to inflamed tissue areas based on iron-sensitive MR imaging8! or metabolic tracers
as used in PET imaging®2.

Considering cell regulation in the study design

Inference of cell-cell interactions—Cell-cell interactions (CCIs) play key roles in the
specification and function of the nervous system. Myriads of neuronal cell types interact
to form synaptic connections and neural circuits across multiple scales, whereas glial

and vascular cell derived signals are important regulators of neuronal synapses and brain
development and homeostasis. Furthermore, neuro-immune interactions are prominent in
many neurological disorders. Cell-cell interactions can be predicted using sc/snRNAseq
by coupled expression of known ligand-receptor pairs. As RNA abundance only plays a
stoichiometric role in mediating signaling activity, there is significant risk of false positive
results, and multiple algorithms have been developed with diverse computational strategies
and statistical frameworks to limit the sources of noise, such as CellPhoneDB83, CellChat8?,
and NicheNet8®,

ST can identify neuroglial tissue microenvironments that consist of spatially co-localized
cell types that are specialized to support specific neural circuit and underlie neural
pathologies. As ST jointly resolves spatial positions and transcriptomes of cell types

in tissues, it is uniquely suited for inferring CCls by identifying cells that are in

close proximity as well as mapping complementary expression of receptor-ligand pairs

in neighboring cells. This can resolve short range interactions (autocrine, juxtracrine,
paracrine) such as neuronal-glial interactions at a cellular and molecular level86:87, As
with cell type mapping, integration with sc/snRNAseq can enhance CCI analysis in ST by
leveraging whole transcriptome information from the former data8. Current limitations of
ST based mapping of CCls should be considered, as detailed in Box 3. Finally, CCls can
be linked to predicted downstream cellular phenotypes by inferring biological pathway
activities or gene regulatory networks from single cell or spatial data8®. However, no
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existing approaches can yet trace CCls from spatial information to gene expression to
epigenomic profiles and other modalities.

Considering cell intrinsic regulation in the experimental study design—
Uncovering the major regulators driving distinct transcriptional programs is a critical

step towards understanding of brain function and dysfunction and can inform therapeutic
strategies and drug discovery efforts. New analytical approaches and emerging technologies
that allow researchers to profile epigenetic states of single cells, provide pivotal new
information related to the intrinsic mechanism driving expression programs, and should

be considered in the study design.

The most mature technology for identifying regulatory DNA measures chromatin
accessibility- a state in which genomic DNA is actively accessed by macromolecules.
Chromatin accessibility thus reflects whether proteins, typically transcription factors (TFs)
and high-density of nucleosomes, are bound at a particular genomic locus8®. Chromatin
accessibility often correlates with gene expression, but it is not a direct proxy for

it. As the chromatin accessibility landscape is highly cell type-specific, it provides a
robust epigenomic measurement to identify cell types and states. It can be measured by
commercially available assays such as SnATACseq. Analysis of chromatin accessibility has
been mainly used for identifying putative gene regulatory elements (enhancers, promoters,
silencers, insulators, etc.), though it cannot necessarily distinguish among classes of gene
regulatory elements. It also retains signals related to nucleosome occupancy, though less
tailored to infer nucleosome positioning as compared with techniques such as MNase-seq.

Moreover, available multiomic assays enable joint profiling of RNA abundance (snRNAseq)
and chromatin accessibility (SnATACseq) within a single nucleus, linking changes in gene
regulatory element accessibility to changes in gene expression. One of the largest impacts
of locating cell type- and context-specific gene regulatory elements is the identification

of disease-associated noncoding variants predicted to impact gene regulation, allowing

for fine-mapping of thousands of genetic risk loci. Further, chromatin accessibility-based
mapping of quantitative trait loci (QTLS) provides more direct observation of the effect of

a variant compared to the more indirect effects observed in expression QTL mapping due

to linkage disequilibrium99:91, The variants predicted to be functional based on residence

in a gene regulatory element or existence of a chromatin accessibility QTL can be further
prioritized in validation experiments and linked to nearby genes via co-accessibility or 3D
chromatin contacts. Of note, regulatory elements predicted by chromatin accessibility are
putative and necessitate downstream functional validation. For information on approaches
that can validate the functional role of a specific element please refer to Companion Piece 3.

Each cell has only two copies of each genomic locus (alleles) leading to unique challenges
for single nucleus epigenomics in: (i) sparsity, (ii) scale, and (iii) cell-type specificity92-94,
To partially address the challenges of data sparsity and specificity, SNATAC-seq data is
typically converted post-clustering to pseudo-bulk to increase reliability by summing the
information over hundreds-to-thousands of cells, each with a few thousands of fragments
captured. Unlike sc/snRNAseq which often fails to capture the lowest expressed genes, the
dropout in SNnATACseq is likely stochastic across the genome?>. Moreover, snATACseq has
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a larger feature space compared to sc/snRNAseq, as a typical multi-cell type dataset could
have >1 million regulatory elements, in comparison to sc/snRNAseq which has <30,000
unique transcripts. Because of this, SnATAC-seq often requires a higher sequencing depth
per cell and the larger size of the cell x feature space presents unique challenges the analysis.

The epigenetic landscape of a cell is altered along differentiation, maturation, ages

and disease states, thus it is interesting to compare chromatin accessibility and other
epigenetic features between cases and controls or along biological processes (Fig. 3).

Such comparisons from snATACseq data should be performed at the pseudobulk level®3

to reduce noise, while maintaining biological and cellular diversity by aggregating all cells
from a single cell type from a given individual into a single pseudobulk profile. The

use of pseudobulk profiles circumvents issues with sparsity by combining signal across
many individual cells, and thus we recommend a minimum of 100 cells per profile based
on current studies. Once pseudobulk objects are created, differential testing should be
performed using one of many tools that have been carefully benchmarked previously%,
for example DESeq2°! or edgeRY7. As tools vary in the degrees of false positives and false
negatives, the analyses should be tailored to the specific application and the tolerance for
false positives versus false negatives, as discussed previously96:98,

Additional technologies in the field of epigenomics are available, enabling the measurement
of histone modifications, DNA methylation and chromatin contacts (as described in more
details below). Integration of these methods will provide a more complete view of the
intrinsic mechanisms underlying gene expression regulation within and across cells types.

Analytical approaches to infer gene regulatory networks—Gene Regulatory
Networks (GRN), the interconnected set of molecular regulators and their targets, together
orchestrate the biological programs responsible for specific gene functions and ultimately
govern all cellular and biological activities, by controlling the activation and deactivation of
individual genes. GRN analysis has become an increasingly important tool in neuroscience
research. The complexity of the nervous system, characterized by its diverse cell types and
intricate interconnections, makes it especially suitable for the GRN analysis. GRN analysis
has uncovered the pivotal role of GRNs in multiple brain processes, such as differentiation
of neuron and glial cells.

Regulators of gene expression are not restricted to regulatory proteins, and include

various non-coding RNAs such as long, short, and antisense ncRNAs. Regulators can act
as activators or repressors via different regulatory elements (enhancer, promoter). Each
stage of gene expression is regulated, including post-transcriptional regulation (splicing,
translation, transport, degradation) and post-translational regulation (modifications,
transport, localization, degradation). As the targets of each regulator include additional
regulators, a network of interconnected regulators is formed, represented as a graph, where
nodes capture regulators and their relationships are represented as directed and weighted
edges.

As many of these regulatory modalities are not measured with single-cell resolution
due to the lack of scalable technologies, GRN inference is mainly focused on TF
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regulation, inferred from available single-cell omics measurements®?100, The inference of
TF regulation is highly challenging due to several reasons: (1) TFs can regulate expression
of target genes at large genomic distances by binding to remote enhancer regions, often

by folding to form close contacts proximal to their targets, limiting our ability to link

a DNA element to its target gene; (2) We lack reliable species-specific mapping of TFs

to the DNA sequence motifs they can bind; (3) Physical binding of a TF to a DNA

element can lead to activation, repression, or no modulation, under different cellular
contexts; (4) TF binding often depends on the chromatin state. Thus, beyond relying on
sc/snRNAseq data to infer GRNs01, the use of single-cell multiomic data, which includes
both epigenomic (DNA contact, accessibility and methylation, or histone modification) and
transcriptomic information, can enhance the accuracy and precision of identifying these
regulatory relationships. This is achieved through integrative analysis that examines the
correlations and colocalizations of open regions, methylation sites, or regulatory motifs with
gene expression.

Multiple computational methods have been developed to infer and to analyze GRNs

at single-cell resolution from sc/snRNAseq data, including Correlation-, Regression-,
Information-theory-, Bayesian- Boolean- and Deep-learning- based methods. An overview
of such methods is provided in Table 1. Of course, different methods may produce divergent
results, posing challenges in determining the most accurate representation of the network.

Identifying differentially accessible regions (DARSs) between biological conditions is
fundamental for pinpointing differentially active regulatory elements and regulators. Many
methods for differential expression have been repurposed for finding DARs (e.g., DESeq2°1,
edgeRY’, and limma voom192), Pairing DARs with differential expression analysis can
enable the inference of context-associated GRNs using packages such as cisTopicl93,
Signacl%4, DORCs195, FigR196 SCENIC+197, ArchR108 MIRA09 scBPGRN!10, and
Symphony111,

Additionally, CRISPR/Cas9-based screens, assessed at the single-cell level via Perturb-seq
or Genome and Transcriptome sequencing (G&T-seq)!12, can also inform the inference of
GRNSs or experimentally validate them.

Computational models of GRNs are valuable for modeling complex data, generating
hypotheses, and directing future research efforts. However, the field is still evolving, and
several challenges lie ahead. First, efficient analysis of GRNSs requires large scale high-
quality data, often constrained by technical limitations and high cost, and the computational
complexity. Next, biological variation and technical noise might hinder the distinction
between true regulatory interactions and fluctuations in gene expression. Thus, there

is a need for further development of specialized statistical methods with heightened
sensitivity for accurate DAR identification in future research efforts. Furthermore, gene
expression regulation encompasses multiple layers of molecular interactions, making it
difficult to accurately model and analyze GRNs. Finally, gene expression is a dynamic
process, but experimental measurements only provide a static snapshot, greatly complicating
the temporal dynamic analysis of GRNs. As a consequence of these shortcomings, our
understanding of GRNs in the brain and the available tools to analyze them are lacking, yet
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future research in this field, empowered by new technologies, improved methodologies, and
the accumulation of large-scale datasets, are expected to yield important insights into brain
function and dysfunction.

Emerging technologies for single-cell epigenomics

Various types of genetic and environmental perturbations can lead to changes in cell state
driven by modulation of epigenetic states. To uncover underlying regulatory mechanisms of
such perturbations, requires large scale single-cell epigenetic data. Emerging technologies
now allow researchers to profile epigenetic states of single-cells, and in this section, we
highlight emerging data modalities beyond DNA accessibility, discuss main technologies,
and summarize their strengths and weaknesses (Fig. 4).

Histone modifications—Histones undergo multiple post-translational modifications
involved in transcription regulation by affecting transcription factor binding and RNA
polymerase activity. Different histone modifications patterns define specific genomic
features, such as enhancers, promoters, or coding regions, and some can be associated with
transcriptional states (e.g. activation, repression, elongation, poised113). Therefore, profiling
histone modifications at single-cell resolution represents an emerging area of technological
innovation that could facilitate the profiling of cis-regulatory elements (CRES) that are likely
to be functional, as opposed to all accessible DNA loci.

Profiling histone modifications was traditionally done by immunoprecipitation followed by
sequencing (ChlP-Seq) that required large amounts of input material, hampering single

cell applications. Novel CUT&Run14 and CUT&Tag!!® methods, related to the ChiC116
method and based on a fusion of MNase/Tn5 transposase with protein A, have been recently
developed and successfully applied to single-cells, allowing the probing of individuall15117-
121 or combination of histone modifications22-125. Methods to investigate chromatin
dynamics during cell state transitions have been recently developed, taking advantage of
multiomic single-cell chromatin accessibility and transcriptomic datal95126, or single-cell
histone modification data, such as chromatin velocity122.124,

Chromatin Contact—Genome organization and DNA methylation represent additional
layers of gene expression regulation127:128 Genome topology can modulate enhancer-
promoter communication!29 and there is considerable evidence linking disease relevant
structural variants or epigenetic changes to changes in 3D genome organization10,

Genome organization has been traditionally studied using chromatin conformation capture
assays such as Hi-C or micro-C in bulk or in FAC-sorted populations, yet recent advances
in technologies have enabled profiling in single cells/nucleil31-133 Moreover, recent
technologies allow co-profiling of chromatin architecture and transcriptome at a single cell
level134, However, current methods require significant sequencing depth compared with
ATAC-seq, and lack robust experimental and computational benchmarking and validations.

Methylation—The most common DNA base modification in mammalian species

is cytosine 5-methylation (5mC) and its oxidated derivatives including 5’-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fc) and 5-carboxylcytosine (5caC)13.
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The mammalian CNS is associated with highly unique patterns of cytosine modifications
including unusually high levels of non-CpG methylation (5mCH) and 5hmC135-137 For
the majority of somatic tissues in mammalian species, 5mC is almost exclusively found in
the CpG dinucleotide context (5mCG). However, in mature human cortical neurons, 5mCH
could account for more than half of cytosine methylation with between 2%-8% of CH sites
methylated depending on neuronal types!38.

The single-nucleus profiling of cytosine modifications reveals the epigenetic states at
different genomic scales'37. While the depletion of 5mCG and/or enrichment of 5hmCG

at regulatory elements indicates a local epigenomically permissive state, the cell-type and
developmental specificity of 5mCH can inform the epigenomic states of mega-scale regions
such as topological associated domains, or intermediate -scale regions such as gene bodies.
Existing single-cell methylome techniques provide sparse measurements at individual cell
level typically covering 5% to 10% of the genomel38. The aggregation of single-cell
methylome profiles for identified cell types (pseudobulk) has been applied to reconstruct
cell-type-specific profiles that are reminiscent of traditional bulk methylome profiles. The
pseudobulk approach provides a reasonable approximation for steady-state cell populations
in the adult brain but inevitably leads to the under-appreciation of ongoing cellular dynamics
in developing brains. We anticipate that data imputation tools and trajectory inference
algorithms that can effectively use sparse single-cell methylome profiles will expand the
knowledge of methylation dynamics during brain development139,

The development of single-cell profiling techniques for 5mC and 5hmC has revealed the
cell-type specific patterns of cytosine modifications in mammalian brains. The snmC-seq
family assays were developed based upon earlier methods such as scBS-seq and provided
significantly enhanced throughput allowing the generation of hundreds of thousands of
single-cell methylome profiles!38.140.141 snmC-seq has also been extended to multiomic
approaches including the joint profiling of chromatin conformation and DNA methylation by
snm3C-seq and the simultaneous profiling of transcriptome, DNA methylation, chromatin
accessibility by snmCAT-seq42:143. A method for single-cell profiling of 5hmC snhmC-seq
was recently developed by integrating chemical protection of 5hmC by bisulfite conversion
and selective deamination by APOBEC3A144, The absence of easy-to-use and commercially
available assays has severely impeded the adoption of single-cell methylome methods. A
recently developed combinatorial-indexing based approach sciMETv2 provides a feasible
route towards commercialization4®. Lastly, methods that can generate high-coverage
methylome from a single cell, but likely from a smaller number of cells, could be useful

for analyzing highly specific cell populations such as ones associated with a neural circuit in
adult brains or daughter cells derived from asymmetric divisions during neural development.

Single molecule epigenomic assays—Finally, single-molecule epigenomic assays use
high-throughput long-read sequencing technologies (e.g. Pacific Biosciences, or Oxford
Nanopore) to make high-throughput single-molecule genomic measurements of chromatin
accessibility146-150 as well as single-molecule sequencing of intact RNA isoforms1®1, at the
resolution of single-cells1®2, Single-molecule chromatin accessibility profiling approaches
allow one to ‘deconvolute’ the population averages provided by approaches like DNase-seq
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and ATAC-seq — that is, one can explicitly map the presence of nucleosomes, transcription
factors, and their respective co-occupancy patterns on individual DNA molecules.

For instance, it is now possible to identify heterogeneity of nucleosome positioning

and transcription factor binding46:147 and has been informative in dissecting complex
epigenome / regulatory pathways®3.154, A key unmet challenge is currently the throughput
of long-read sequencing and its cost, which are expected to be reduced in the coming years.

Data sharing, dissemination and visualization

Data sharing, dissemination, and effective visualization are crucial aspects of modern
research, especially in the realm of single-cell data analysis, given the speed of the data
generation, the need for large scale datasets for capturing the full complexity and diversity of
cells in the brain, to ensure transparency and reproducibility.

One significant step towards enhancing transparency is the open sharing of code. Utilizing
platforms like Jupyter notebooks allows researchers to share not only their results but also
the entire analysis pipeline. This practice is particularly valuable for highly customized data
analysis that extends beyond standard packages. It enables others to reproduce and validate
complex analyses, fostering trust and collaboration within the scientific community. It is
essential to follow best practices in documenting data analysis methods and parameters
when using complex analysis packages. Ideally, there is a convergence to shared data
formats and structures such as AnnData in single cell analysis, and first efforts for
extensions via the Open Microscopy Environment (OME) Standard are recommendable1®.
Benchmarking algorithms is another vital aspect of advancing single-cell data analysis. By
rigorously evaluating the performance of analysis methods, researchers can identify the most
reliable and efficient tools for their specific research questions. This process contributes to
the continuous improvement of analytical techniques and ensures the validity of scientific
findings.

To further enhance the accessibility and usability of data, adhering to the principles of FAIR
data (Findable, Accessible, Interoperable, and Reusable) is essential. Proper curation of
patient and experimental metadata within datasets ensures that critical context accompanies
the data, making it more valuable for researchers and promoting data reuse.

Data visualization plays a pivotal role in translating complex datasets into understandable
insights. While shiny apps have initially been used extensively to allow exploration

of single-cell data, various single-cell data portals, such as UCSC Cell Browser, Cell
Annotation Platform and CELLXGENE, have made significant strides in democratizing data
access and navigation. However, for these efforts to thrive and expand, there is a pressing
need for broader community engagement and sustained financial support. Visualizing
spatial genomic data, particularly datasets integrated with single-cell omics data, presents
unique challenges. These datasets offer critical insights into the spatial organization of

cells within tissues. To make this information more accessible to the research community,
concerted efforts are required to develop online resources that facilitate data exploration and
visualization.
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Overall, we see effective data sharing, documentation, visualization, and benchmarking as
integral to the progress of single-cell data analysis. These practices promote transparency,
reproducibility, and collaborations, and ultimately will lead to better understanding of
complex biological systems.

Limitations of this perspective

Emerging genomic technologies have the potential to transform our understanding of
nervous system development, structure, and function. This Review aims to discuss the
challenges of designing studies that are rigorous, well-powered, and informative, and
outlined several key applications including building atlases, uncovering disease processes,
and predicting gene regulatory relationships. Clearly, applications of these technologies
extend beyond those specific use cases, and space limitations required us to omit

some details, particularly related to development and cross-species comparisons. These
applications involve their own sets of opportunities and challenges that we regretfully could
not cover in this article.

Acknowledgments:

The authors thank Igor Adameyko, Rajeshwar Awatramani, Trygve Bakken, Helen S Bateup, Aparna Bhaduri,
Cathryn R Cadwell, Emre Caglayan, Jerry L Chen, Chintan Chhatbar, Mariella G Filbin, David Gate, Jesse

Gillis, Hannah Hochgerner, Martin Kampmann, Chang Nam Kim, Fenna Krienen, Jordan Krull, Gioele La Manno,
Samuel Marsh, Michelle Monje, Qingyun Li, Sten Linnarsson, Qin Ma, Christian Mayer, Vilas Menon, Patricia
Nano, Michael R O’Dea, Rickie Patani, Alex Pollen, Marco Prinz, Steve Quake, Francisco J Quintana, Marissa
Scavuzzo, Matthew Schmitz, Steven Sloan, Paul Tesar, Jessica Tollkuhn, Maria Antonietta Tosches, Madeleine

E Urbanek, Christopher Walsh, Jonathan Werner, Jin Yang for the insightful feedback on this work. G.C.-B.

was supported by the Swedish Research Council (grant 2019-01360), Knut and Alice Wallenberg Foundation
(grants 2019-0107 and 2019-0089), The Swedish Brain Foundation (FO2023-0032), The Swedish Society for
Medical Research (SSMF, grant JUB2019) and the Géran Gustafsson Foundation for Research in Natural Sciences
and Medicine. NIH grants, U01AG072573, P01AG073082,, and UM1HG012076 to M.R.C, U01DA052713,
RF1AG079557, RFINS128908, and RO1AG079291 (to Y.S.). NIH awards RO1IMH125516, RO1INS123263,
R0O1MH128364, U01MH130962, Esther A & Joseph Klingenstein Fund (to T.J.N.), Shurl and Kay Curci
Foundation (T.J.N.) and the Sontag Foundation (to T.J.N.), gift from the William K. Bowes Jr Foundation. T.J.N.

is a New York Stem Cell Foundation Robertson Neuroscience Investigator. James S. McDonnell Foundation 21st
Century Science Initiative in Understanding Human Cognition Scholar Award (220020467), the Simons Foundation
(947591), NHGRI (HG011641), NINDS (NS115821, NS126143) and NIMH (MH126481, MH103517) to G.K.
JPB Foundation Picower Institute Innovation Fund award (to M.H.). Work in the group of B.B. was supported by
the Helmholtz Center Munich, DFG priority program SPP2202 (BO 5516/1-1), ERA-NET Neuron (MOSAIC) and
European Research Council Consolidator grant to B.B. (EpiCortex, 101044469). M.N. acknowledges support from
the Israel Science Foundation (Grant no. 1079/21), and the European Union (ERC, DecodeSC, 101040660). O.A.B.
acknowledges Wellcome Sanger core and Wellcome LEAP funding. J.F. acknowledges support from the National
Institute Of General Medical Sciences of the National Institutes of Health under Award Number R35-GM142889.
NINDS Intramural funds through 1ZIA NS003153 (to A.J.L.). K.R.M. acknowledges support from the Lieber
Institute for Brain Development and National Institutes of Health (RO1DA055823). L.S. acknowledges support
from the European Research Council (ERC StG “DecOmPress”, 950584), the National Multiple Sclerosis Society
(PA-2022-36405 and RFA-2203-39300) and the German Research Foundation through collaborative research
projects (SPP 2395, FOR 2690 and GRK 2727), individual research grants (SCHI 1330/4-1 and SCHI 1330/10-1)
and a Heisenberg Fellowship (SCHI 1330/6-1). N.H. acknowledges support from the Israel Science Foundation
(ISF) research grant no. 1709/19 and the European Research Council grant 853409. S.A.L. acknowledges support
from the NIH (RO1EY033353), the Cure Alzheimer’s Fund, the Belfer Neurodegeneration Consortium, HHMI
Emerging Pathogens Initiative, and the Carol and Gene Ludwig Family Foundation.

References

1. Siletti K et al. Transcriptomic diversity of cell types across the adult human brain. Science 382,
eadd7046 (2023).

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Page 19

. Kim SS et al. Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and

adult brain cell types. Nat. Commun. 15, 563 (2024). [PubMed: 38233398]

. Sun N et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s

disease. Nat. Neurosci. 26, 970-982 (2023). [PubMed: 37264161]

. Cain A et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s

disease. Nat. Neurosci. 26, 1267-1280 (2023). [PubMed: 37336975]

. Kim CN, Shin D, Wang A & Nowakowski TJ Spatiotemporal molecular dynamics of the developing

human thalamus. Science 382, (2023).

. Pineda SS et al. Single-cell dissection of the human motor and prefrontal cortices in ALS and

FTLD. Cell 187, 1971-1989.e16 (2024). [PubMed: 38521060]

. Zeisel A et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by

single-cell RNA-seq. Science 347, 1138-1142 (2015). [PubMed: 25700174]

. Green GS et al. Cellular communities reveal trajectories of brain ageing and Alzheimer’s disease.

Nature (2024) doi:10.1038/s41586-024-07871-6.

. Yao Z et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse

brain. Nature 624, 317-332 (2023). [PubMed: 38092916]

Davis A, Gao R & Navin NE SCOPIT: sample size calculations for single-cell sequencing
experiments. BMC Bioinformatics 20, 566 (2019). [PubMed: 31718533]

Schmid KT et al. scPower accelerates and optimizes the design of multi-sample single cell
transcriptomic studies. Nat. Commun. 12, 6625 (2021). [PubMed: 34785648]

Su K, Wu Z & Wu H Simulation, power evaluation and sample size recommendation for single-cell
RNA-seq. Bioinformatics 36, 4860-4868 (2020). [PubMed: 32614380]

Phipson B et al. Propeller: Testing for differences in cell type proportions in single cell data.
Bioinformatics 38, 4720-4726 (2022). [PubMed: 36005887]

Lin Y et al. scClassify: sample size estimation and multiscale classification of cells using single
and multiple reference. Mol. Syst. Biol. 16, €9389 (2020).

Jeon H et al. Statistical power analysis for designing bulk, single-cell, and spatial transcriptomics
experiments: Review, tutorial, and perspectives. Biomolecules 13, 221 (2023). [PubMed:
36830591]

Ryaboshapkina M & Azzu V Sample size calculation for a NanoString GeoMx spatial
transcriptomics experiment to study predictors of fibrosis progression in non-alcoholic fatty liver
disease. Sci. Rep. 13, 8943 (2023). [PubMed: 37268815]

Zhang Y et al. Deconvolution algorithms for inference of the cell-type composition of the spatial
transcriptome. Comput. Struct. Biotechnol. J. 21, 176-184 (2023). [PubMed: 36544473]

ImY & Kim Y A comprehensive overview of RNA deconvolution methods and their application.
Mol. Cells 46, 99-105 (2023). [PubMed: 36859474]

Charytonowicz D, Brody R & Sebra R Interpretable and context-free deconvolution of multi-scale
whole transcriptomic data with UniCell deconvolve. Nat. Commun. 14, 1350 (2023). [PubMed:
36906603]

Chen Y et al. Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-
specific gene analysis. Nat. Commun. 13, 6735 (2022). [PubMed: 36347853]

Liao J et al. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution.
Nat. Commun. 13, 6498 (2022). [PubMed: 36310179]

Heimberg G, Bhatnagar R, EI-Samad H & Thomson M Low dimensionality in gene expression
data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell
Syst. 2, 239-250 (2016). [PubMed: 27135536]

Haque A, Engel J, Teichmann SA & Lonnberg T A practical guide to single-cell RNA-sequencing
for biomedical research and clinical applications. Genome Med. 9, 75 (2017). [PubMed:
28821273]

Boyce RW, Dorph-Petersen K-A, Lyck L & Gundersen HIG Design-based stereology: introduction
to basic concepts and practical approaches for estimation of cell number. Toxicol. Pathol. 38,
1011-1025 (2010). [PubMed: 21030683]

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Page 20

YulL, Cao, Yang JYH & Yang P Benchmarking clustering algorithms on estimating the number
of cell types from single-cell RNA-sequencing data. Genome Biol. 23, 49 (2022). [PubMed:
35135612]

Hao Y et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.€29 (2021).
[PubMed: 34062119]

Swapna LS, Huang M & Li Y GTM-decon: guided-topic modeling of single-cell transcriptomes
enables sub-cell-type and disease-subtype deconvolution of bulk transcriptomes. Genome Biol. 24,
190 (2023). [PubMed: 37596691]

Zhang S, Yang L, Yang J, Lin Z & Ng MK Dimensionality reduction for single cell RNA
sequencing data using constrained robust non-negative matrix factorization. NAR Genom.
Bioinform. 2, 1gaa064 (2020).

Morabito S, Reese F, Rahimzadeh N, Miyoshi E & Swarup V hdWGCNA identifies co-expression
networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023).

Setty M et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat.
Biotechnol. 37, 451-460 (2019). [PubMed: 30899105]

Trapnell C et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014). [PubMed: 24658644]

Biancalani T et al. Deep learning and alignment of spatially resolved single-cell transcriptomes
with Tangram. Nat. Methods 18, 1352-1362 (2021). [PubMed: 34711971]

Aibar S et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14,
1083-1086 (2017). [PubMed: 28991892]

Cortal A, Martignetti L, Six E & Rausell A Gene signature extraction and cell identity recognition
at the single-cell level with Cell-1D. Nat. Biotechnol. 39, 1095-1102 (2021). [PubMed: 33927417]
Rodriques SG et al. Slide-seq: A scalable technology for measuring genome-wide expression at
high spatial resolution. Science 363, 1463-1467 (2019). [PubMed: 30923225]

Moffitt JR et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic
preoptic region. Science 362, eaau5324 (2018).

Bayraktar OA et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in
situ transcriptomic map. Nat. Neurosci. 23, 500-509 (2020). [PubMed: 32203496]

Shi H et al. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 622,
552-561 (2023). [PubMed: 37758947]

Zhang M et al. Molecularly defined and spatially resolved cell atlas of the whole mouse brain.
Nature 624, 343-354 (2023). [PubMed: 38092912]

Langlieb J et al. The molecular cytoarchitecture of the adult mouse brain. Nature 624, 333-342
(2023). [PubMed: 38092915]

Stanley G, Gokce O, Malenka RC, Sudhof TC & Quake SR Continuous and discrete neuron types
of the adult Murine striatum. Neuron 105, 688-699.e8 (2020). [PubMed: 31813651]
Mufioz-Manchado AB et al. Diversity of interneurons in the dorsal striatum revealed by single-cell
RNA sequencing and PatchSeq. Cell Rep. 24, 2179-2190.e7 (2018). [PubMed: 30134177]
Kleshchevnikov V et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat.
Biotechnol. 40, 661-671 (2022). [PubMed: 35027729]

Cable DM et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat.
Biotechnol. 40, 517-526 (2022). [PubMed: 33603203]

Ghazanfar S, Guibentif C & Marioni JC Stabilized mosaic single-cell data integration using
unshared features. Nat. Biotechnol. (2023) doi:10.1038/s41587-023-01766-z.

Mages S et al. TACCO unifies annotation transfer and decomposition of cell identities for single-
cell and spatial omics. Nat. Biotechnol. 41, 1465-1473 (2023). [PubMed: 36797494]

Lohoff T et al. Integration of spatial and single-cell transcriptomic data elucidates mouse
organogenesis. Nat. Biotechnol. 40, 74-85 (2022). [PubMed: 34489600]

Li B et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript
distribution prediction and cell type deconvolution. Nat. Methods 19, 662-670 (2022). [PubMed:
35577954]

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Page 21

Luecken MD et al. Benchmarking atlas-level data integration in single-cell genomics. Nat.
Methods 19, 41-50 (2022). [PubMed: 34949812]

Finak G et al. MAST: a flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
[PubMed: 26653891]

Love MI, Huber W & Anders S Moderated estimation of fold change and dispersion for RNA-seq
data with DESeq2. Genome Biol. 15, 550 (2014). [PubMed: 25516281]

Baldoni PL et al. Dividing out quantification uncertainty allows efficient assessment of differential
transcript expression with edgeR. Nucleic Acids Res. 52, e13 (2024). [PubMed: 38059347]
Squair JW et al. Confronting false discoveries in single-cell differential expression. Nat. Commun.
12, 5692 (2021). [PubMed: 34584091]

Hoffman GE et al. Efficient differential expression analysis of large-scale single cell
transcriptomics data using dreamlet. bioRxivorg (2023) doi:10.1101/2023.03.17.533005.
Hoffman GE & Schadt EE variancePartition: interpreting drivers of variation in complex gene
expression studies. BMC Bioinformatics 17, 483 (2016). [PubMed: 27884101]

Gabitto Ml et al. Integrated multimodal cell atlas of Alzheimer’s disease. Res. Sq. (2023)
d0i:10.21203/rs.3.rs-2921860/v1.

Zeng H et al. Integrative in situ mapping of single-cell transcriptional states and tissue
histopathology in a mouse model of Alzheimer’s disease. Nat. Neurosci. 26, 430-446 (2023).
[PubMed: 36732642]

Liu Y et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue.
Cell 185, 1665-1681.e18 (2020).

Ke R et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10,
857-860 (2013). [PubMed: 23852452]

Russell AJC et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics.
Nature 625, 101-109 (2024). [PubMed: 38093010]

Chen A et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-
patterned arrays. Cell 185, 1777-1792.e21 (2022). [PubMed: 35512705]

Chen X et al. High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ
Sequencing. Cell 179, 772-786.e19 (2019). [PubMed: 31626774]

Condylis C et al. Dense functional and molecular readout of a circuit hub in sensory cortex.
Science 375, eabl5981 (2022).

Li Q et al. Multimodal charting of molecular and functional cell states via in situ electro-
sequencing. Cell 186, 2002-2017.e21 (2023). [PubMed: 37080201]

Deng Y et al. Spatial-CUT&Tag: Spatially resolved chromatin modification profiling at the cellular
level. Science 375, 681-686 (2022). [PubMed: 35143307]

Lu T, Ang CE & Zhuang X Spatially resolved epigenomic profiling of single cells in complex
tissues. Cell 185, 4448-4464.e17 (2022). [PubMed: 36272405]

Deng Y et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609,
375-383 (2022). [PubMed: 35978191]

Llorens-Bobadilla E et al. Solid-phase capture and profiling of open chromatin by spatial ATAC.
Nat. Biotechnol. 41, 1085-1088 (2023). [PubMed: 36604544]

Zeng H et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380,
eadd3067 (2023).

Zhang D et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616,
113-122 (2023). [PubMed: 36922587]

Sans M et al. Integrated spatial transcriptomics and lipidomics of precursor lesions of pancreatic
cancer identifies enrichment of long chain sulfatide biosynthesis as an early metabolic alteration.
bioRxivorg (2023) doi:10.1101/2023.08.14.553002.

Vicari M et al. Spatial multimodal analysis of transcriptomes and metabolomes in tissues. Nat.
Biotechnol. (2023) doi:10.1038/s41587-023-01937-y.

Wang Q et al. The Allen Mouse Brain Common Coordinate Framework: A 3D reference atlas. Cell
181, 936-953.e20 (2020). [PubMed: 32386544]

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

74.

75.
76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.
95.

96.

97.

98.

Page 22

Clifton K et al. STalign: Alignment of spatial transcriptomics data using diffeomorphic metric
mapping. Nat. Commun. 14, 8123 (2023). [PubMed: 38065970]

Ortiz C et al. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446 (2020).

Kumar K et al. Subcortical brain alterations in carriers of genomic copy number variants. Am. J.
Psychiatry 180, 685-698 (2023). [PubMed: 37434504]

Moreau CA et al. Brain functional connectivity mirrors genetic pleiotropy in psychiatric
conditions. Brain 146, 1686-1696 (2023). [PubMed: 36059063]

Bruschi N, Boffa G & Inglese M Ultra-high-field 7-T MRI in multiple sclerosis and other
demyelinating diseases: from pathology to clinical practice. Eur. Radiol. Exp. 4, 59 (2020).
[PubMed: 33089380]

Tang Z et al. Search and match across spatial omics samples at single-cell resolution. bioRxiv
(2023) doi:10.1101/2023.08.13.552987.

Xia C-R, Cao Z-J, Tu X-M & Gao G Spatial-linked alignment tool (SLAT) for aligning
heterogenous slices. Nat. Commun. 14, 7236 (2023). [PubMed: 37945600]

Hofmann A et al. Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple
sclerosis. Acta Neuropathol. 146, 707-724 (2023). [PubMed: 37715818]

Sucksdorff M et al. Brain TSPO-PET predicts later disease progression independent of relapses in
multiple sclerosis. Brain 143, 3318-3330 (2020). [PubMed: 33006604]

Efremova M, Vento-Tormo M, Teichmann SA & Vento-Tormo R CellPhoneDB: inferring cell-
cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat.
Protoc. 15, 1484-1506 (2020). [PubMed: 32103204]

Jin S et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12,
1088 (2021). [PubMed: 33597522]

Browaeys R, Saelens W & Saeys Y NicheNet: modeling intercellular communication by linking
ligands to target genes. Nat. Methods 17, 159-162 (2020). [PubMed: 31819264]

Fang R et al. Conservation and divergence of cortical cell organization in human and mouse
revealed by MERFISH. Science 377, 56-62 (2022). [PubMed: 35771910]

Wu SJ et al. Cortical somatostatin interneuron subtypes form cell-type-specific circuits. Neuron
111, 2675-2692.e9 (2023). [PubMed: 37390821]

Garcia-Alonso L et al. Mapping the temporal and spatial dynamics of the human endometrium in
vivo and in vitro. Nat. Genet. 53, 1698-1711 (2021). [PubMed: 34857954]

Buenrostro JD, Giresi PG, Zaba LC, Chang HY & Greenleaf WJ Transposition of native
chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins
and nucleosome position. Nat. Methods 10, 1213-1218 (2013). [PubMed: 24097267]

Tehranchi A et al. Fine-mapping cis-regulatory variants in diverse human populations. Elife 8,
(2019).

Kosoy R et al. Genetics of the human microglia regulome refines Alzheimer’s disease risk loci.
Nat. Genet. 54, 1145-1154 (2022). [PubMed: 35931864]

Klemm SL, Shipony Z & Greenleaf WJ Chromatin accessibility and the regulatory epigenome.
Nat. Rev. Genet. 20, 207-220 (2019). [PubMed: 30675018]

Cusanovich DA et al. Multiplex single cell profiling of chromatin accessibility by combinatorial
cellular indexing. Science 348, 910-914 (2015). [PubMed: 25953818]

Wj KSSZ Chromatin accessibility and the regulatory epigenome. nat rev ge 20, 207-220 (2019).
Buenrostro JD et al. Single-cell chromatin accessibility reveals principles of regulatory variation.
Nature 523, 486490 (2015). [PubMed: 26083756]

Gontarz P et al. Comparison of differential accessibility analysis strategies for ATAC-seq data. Sci.
Rep. 10, 10150 (2020). [PubMed: 32576878]

Robinson MD, McCarthy DJ & Smyth GK edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010). [PubMed:
19910308]

Grandi FC, Modi H, Kampman L & Corces MR Chromatin accessibility profiling by ATAC-seq.
Nat. Protoc. 17, 1518-1552 (2022). [PubMed: 35478247]

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

Page 23

99. Zaret KS & Carroll JS Pioneer transcription factors: establishing competence for gene expression.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

Genes Dev. 25, 2227-2241 (2011). [PubMed: 22056668]

Macneil LT & Walhout AJM Gene regulatory networks and the role of robustness and
stochasticity in the control of gene expression. Genome Res. 21, 645-657 (2011). [PubMed:
21324878]

Pratapa A, Jalihal AP, Law JN, Bharadwaj A & Murali TM Benchmarking algorithms for gene
regulatory network inference from single-cell transcriptomic data. Nat. Methods 17, 147-154
(2020). [PubMed: 31907445]

Ritchie ME et al. limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43, e47 (2015). [PubMed: 25605792]

Bravo Gonzalez-Blas C et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq
data. Nat. Methods 16, 397-400 (2019). [PubMed: 30962623]

Stuart T, Srivastava A, Madad S, Lareau CA & Satija R Single-cell chromatin state analysis with
Signac. Nat. Methods 18, 1333-1341 (2021). [PubMed: 34725479]

Ma S et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and
Chromatin. Cell 183, 1103-1116.e20 (2020). [PubMed: 33098772]

Kartha VK et al. Functional inference of gene regulation using single-cell multi-omics. Cell
Genom. 2, 100166 (2022). [PubMed: 36204155]

Bravo Gonzalez-Blas C et al. SCENIC+: single-cell multiomic inference of enhancers and gene
regulatory networks. Nat. Methods 20, 1355-1367 (2023). [PubMed: 37443338]

Granja JM et al. ArchR is a scalable software package for integrative single-cell chromatin
accessibility analysis. Nat. Genet. 53, 403-411 (2021). [PubMed: 33633365]

Lynch AW et al. MIRA: joint regulatory modeling of multimodal expression and chromatin
accessibility in single cells. Nat. Methods 19, 1097-1108 (2022). [PubMed: 36068320]

Xuan C et al. sScBPGRN: Integrating single-cell multi-omics data to construct gene regulatory
networks based on BP neural network. Comput. Biol. Med. 151, 106249 (2022).

Kang JB et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat.
Commun. 12, 5890 (2021). [PubMed: 34620862]

Macaulay IC et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat.
Methods 12, 519-522 (2015). [PubMed: 25915121]

Kouzarides T Chromatin modifications and their function. Cell 128, 693-705 (2007). [PubMed:
17320507]

Skene PJ & Henikoff S An efficient targeted nuclease strategy for high-resolution mapping of
DNA binding sites. Elife 6, (2017).

Kaya-Okur HS et al. CUT&Tag for efficient epigenomic profiling of small samples and single
cells. Nat. Commun. 10, 1930 (2019). [PubMed: 31036827]

Schmid M, Durussel T & Laemmli UK ChIC and ChEC; genomic mapping of chromatin proteins.
Mol. Cell 16, 147-157 (2004). [PubMed: 15469830]

Grosselin K et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin
states in breast cancer. Nat. Genet. 51, 1060-1066 (2019). [PubMed: 31152164]

Wu SJ et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and
tumor progression. Nat. Biotechnol. 39, 819-824 (2021). [PubMed: 33846646]

Wang Q et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76,
206-216.e7 (2019). [PubMed: 31471188]

Handa T et al. Chromatin integration labeling for mapping DNA-binding proteins and
modifications with low input. Nat. Protoc. 15, 3334-3360 (2020). [PubMed: 32807906]
Bartosovic M, Kabbe M & Castelo-Branco G Single-cell CUT&Tag profiles histone
modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825-835 (2021).
[PubMed: 33846645]

Bartosovic M & Castelo-Branco G Multimodal chromatin profiling using nanobody-based single-
cell CUT&Tag. Nat. Biotechnol. 41, 794-805 (2023). [PubMed: 36536148]

Gopalan S, Wang Y, Harper NW, Garber M & Fazzio TG Simultaneous profiling of multiple
chromatin proteins in the same cells. Mol. Cell 81, 4736-4746.e5 (2021). [PubMed: 34637755]

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

124.

125.

126.

127.

128.

129.

130.

131

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

Page 24

Tedesco M et al. Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of
heterochromatin and euchromatin. Nat. Biotechnol. 40, 235-244 (2022). [PubMed: 34635836]

Meers MP, Llagas G, Janssens DH, Codomo CA & Henikoff S Multifactorial profiling of
epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat. Biotechnol. 41, 708-716
(2023). [PubMed: 36316484]

Li C, Virgilio MC, Collins KL & Welch JD Multi-omic single-cell velocity models epigenome-
transcriptome interactions and improves cell fate prediction. Nat. Biotechnol. 41, 387-398
(2023). [PubMed: 36229609]

Schoenfelder S & Fraser P Long-range enhancer-promoter contacts in gene expression control.
Nat. Rev. Genet. 20, 437-455 (2019). [PubMed: 31086298]

Noack F et al. Multimodal profiling of the transcriptional regulatory landscape of the developing
mouse cortex identifies Neurog?2 as a key epigenome remodeler. Nat. Neurosci. 25, 154-167
(2022). [PubMed: 35132236]

Zuin J et al. Nonlinear control of transcription through enhancer-promoter interactions. Nature
604, 571-577 (2022). [PubMed: 35418676]

Spielmann M, Lupiafiez DG & Mundlos S Structural variation in the 3D genome. Nat. Rev.
Genet. 19, 453-467 (2018). [PubMed: 29692413]

Nagano T et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution.
Nature 547, 61-67 (2017). [PubMed: 28682332]

Tan L, Xing D, Chang C-H, Li H & Xie XS Three-dimensional genome structures of single
diploid human cells. Science 361, 924-928 (2018). [PubMed: 30166492]

Tan L et al. Changes in genome architecture and transcriptional dynamics progress independently
of sensory experience during post-natal brain development. Cell 184, 741-758.e17 (2021).
[PubMed: 33484631]

Zhou T et al. GAGE-seq concurrently profiles multiscale 3D genome organization and gene
expression in single cells. Nat. Genet. (2024) doi:10.1038/s41588-024-01745-3.

Wu H & Zhang Y Charting oxidized methylcytosines at base resolution. Nat. Struct. Mol. Biol.
22, 656-661 (2015). [PubMed: 26333715]

Lister R et al. Global epigenomic reconfiguration during mammalian brain development. Science
341, 1237905 (2013).

Luo C, Hajkova P & Ecker JR Dynamic DNA methylation: In the right place at the right time.
Science 361, 1336-1340 (2018). [PubMed: 30262495]

Luo C et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in
mammalian cortex. Science 357, 600-604 (2017). [PubMed: 28798132]

Igbal W & Zhou W Computational methods for single-cell DNA methylome analysis. Genomics
Proteomics Bioinformatics 21, 48-66 (2023). [PubMed: 35718270]

Smallwood SA et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic
heterogeneity. Nat. Methods 11, 817-820 (2014). [PubMed: 25042786]

Luo C et al. Robust single-cell DNA methylome profiling with snmC-seq2. Nat. Commun. 9,
3824 (2018). [PubMed: 30237449]

Lee D-S et al. Simultaneous profiling of 3D genome structure and DNA methylation in single
human cells. Nat. Methods 16, 999-1006 (2019). [PubMed: 31501549]

Luo C et al. Single nucleus multi-omics identifies human cortical cell regulatory genome
diversity. Cell Genom 2, (2022).

Fabyanic EB et al. Quantitative single cell 5hmC sequencing reveals non-canonical gene
regulation by non-CG hydroxymethylation. bioRxiv (2021) doi:10.1101/2021.03.23.434325.
Nichols RV et al. High-throughput robust single-cell DNA methylation profiling with sciMETv2.
Nat. Commun. 13, 7627 (2022). [PubMed: 36494343]

Abdulhay NJ et al. Massively multiplex single-molecule oligonucleosome footprinting. Elife 9,
(2020).

Stergachis AB, Debo BM, Haugen E, Churchman LS & Stamatoyannopoulos JA Single-molecule
regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449-1454 (2020).
[PubMed: 32587015]

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168

169

170

171

Page 25

Shipony Z et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes.

Nat. Methods 17, 319-327 (2020). [PubMed: 32042188]

Lee I et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines

with nanopore sequencing. Nat. Methods 17, 1191-1199 (2020). [PubMed: 33230324]

Wang Y et al. Single-molecule long-read sequencing reveals the chromatin basis of gene

expression. Genome Res. 29, 1329-1342 (2019). [PubMed: 31201211]

Sharon D, Tilgner H, Grubert F & Snyder M A single-molecule long-read survey of the human

transcriptome. Nat. Biotechnol. 31, 1009-1014 (2013). [PubMed: 24108091]

Gupta | et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of

cerebellar cells. Nat. Biotechnol. 36, 1197-1202 (2018).

Isaac RS et al. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial

DNA. Nat. Struct. Mol. Biol. 31, 568-577 (2024). [PubMed: 38347148]

Abdulhay NJ et al. Nucleosome density shapes kilobase-scale regulation by a mammalian

chromatin remodeler. Nat. Struct. Mol. Biol. 30, 1571-1581 (2023). [PubMed: 37696956]

Marconato L et al. SpatialData: an open and universal data framework for spatial omics. Nat.

Methods (2024) doi:10.1038/s41592-024-02212-x.

Huynh-Thu VA, Irrthum A, Wehenkel L & Geurts P Inferring regulatory networks from

expression data using tree-based methods. PLoS One 5, (2010).

Kim S Ppcor: An R package for a fast calculation to semi-partial correlation coefficients.

Commun. Stat. Appl. Methods 22, 665-674 (2015). [PubMed: 26688802]

Specht AT & Li J LEAP: constructing gene co-expression networks for single-cell RNA-

sequencing data using pseudotime ordering. Bioinformatics 33, 764-766 (2017). [PubMed:

27993778]

Moerman T et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory

networks. Bioinformatics 35, 2159-2161 (2019). [PubMed: 30445495]

Deshpande A, Chu L-F, Stewart R & Gitter A Network inference with Granger causality

ensembles on single-cell transcriptomics. Cell Rep. 38, 110333 (2022).

Margolin AA et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in

a mammalian cellular context. BMC Bioinformatics 7 Suppl 1, S7 (2006).

Chan TE, Stumpf MPH & Babtie AC Gene regulatory network inference from single-cell data

using multivariate information measures. Cell Syst. 5, 251-267.e3 (2017). [PubMed: 28957658]

Qiu X et al. Inferring causal gene regulatory networks from coupled single-cell expression

dynamics using Scribe. Cell Syst. 10, 265-274.e11 (2020). [PubMed: 32135093]

Faith JJ et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation

from a compendium of expression profiles. PLoS Biol. 5, e8 (2007). [PubMed: 17214507]

Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC & Huang Y A Bayesian

framework for the inference of gene regulatory networks from time and pseudo-time series data.

Bioinformatics 34, 964-970 (2018). [PubMed: 29028984]

Yu J, Smith VA, Wang PP, Hartemink AJ & Jarvis ED Advances to Bayesian network inference
for generating causal networks from observational biological data. Bioinformatics 20, 3594-3603
(2004). [PubMed: 15284094]

Dojer N, Bednarz P, Podsiadlo A & Wilczynski B BNFinder2: Faster Bayesian network learning
and Bayesian classification. Bioinformatics 29, 2068—-2070 (2013). [PubMed: 23818512]

. Wilczynski B & Dojer N BNFinder: exact and efficient method for learning Bayesian networks.
Bioinformatics 25, 286-287 (2009). [PubMed: 18826957]

. Woodhouse S, Piterman N, Wintersteiger CM, Géttgens B & Fisher J SCNS: a graphical tool for
reconstructing executable regulatory networks from single-cell genomic data. BMC Syst. Biol.
12, 59 (2018). [PubMed: 29801503]

. Yuan Y & Bar-Joseph Z Deep learning of gene relationships from single cell time-course
expression data. Brief. Bioinform. 22, (2021).

. Theodoris CV et al. Transfer learning enables predictions in network biology. Nature 618, 616—

624 (2023). [PubMed: 37258680]

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

Page 26

Polychronidou M et al. Single-cell biology: what does the future hold? Mol. Syst. Biol. 19,
(2023).

Matsumoto H et al. SCODE: an efficient regulatory network inference algorithm from single-cell
RNA-Seq during differentiation. Bioinformatics 33, 2314-2321 (2017). [PubMed: 28379368]

Aubin-Frankowski P-C & Vert J-P Gene regulation inference from single-cell RNA-seq data
with linear differential equations and velocity inference. Bioinformatics 36, 4774-4780 (2020).
[PubMed: 33026066]

Wolock SL, Lopez R & Klein AM Scrublet: Computational identification of cell Doublets in
Single-cell transcriptomic data. Cell Syst. 8, 281-291.e9 (2019). [PubMed: 30954476]
McGinnis CS, Murrow LM & Gartner ZJ DoubletFinder: Doublet detection in single-cell RNA
sequencing data using artificial nearest neighbors. Cell Syst. 8, 329-337.e4 (2019). [PubMed:
30954475]

Bais AS & Kostka D scds: computational annotation of doublets in single-cell RNA sequencing
data. Bioinformatics 36, 1150-1158 (2020). [PubMed: 31501871]

Fleming SJ et al. Unsupervised removal of systematic background noise from droplet-based
single-cell experiments using CellBender. Nat. Methods 20, 1323-1335 (2023). [PubMed:
37550580]

Young MD & Behjati S SoupX removes ambient RNA contamination from droplet-based single-
cell RNA sequencing data. Gigascience 9, (2020).

Mohammad NS, Nazli R, Zafar H & Fatima S Effects of lipid based Multiple Micronutrients
Supplement on the birth outcome of underweight pre-eclamptic women: A randomized clinical
trial. Pak. J. Med. Sci. Q. 38, 219-226 (2022).

Stahl PL et al. Visualization and analysis of gene expression in tissue sections by spatial
transcriptomics. Science 353, 78-82 (2016). [PubMed: 27365449]

Merritt CR et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat.
Biotechnol. 38, 586-599 (2020). [PubMed: 32393914]

Zhao E et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39,
1375-1384 (2021). [PubMed: 34083791]

Wang F et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-
embedded tissues. J. Mol. Diagn. 14, 22-29 (2012). [PubMed: 22166544]

Qian X et al. Probabilistic cell typing enables fine mapping of closely related cell types in situ.
Nat. Methods 17, 101-106 (2020). [PubMed: 31740815]

Wang X et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states.
Science 361, (2018).

Janesick A et al. High resolution mapping of the breast cancer tumor microenvironment

using integrated single cell, spatial and in situ analysis of FFPE tissue. bioRxiv (2022)
doi:10.1101/2022.10.06.510405.

Langseth CM et al. Single cell-resolution/n situsequencing elucidates spatial dynamics of multiple
sclerosis lesion and disease evolution. bioRxiv (2023) doi:10.1101/2023.06.29.547074.
Missarova A et al. geneBasis: an iterative approach for unsupervised selection of targeted gene
panels from scRNA-seq. Genome Biol. 22, 333 (2021). [PubMed: 34872616]

Nelson ME, Riva SG & Cvejic A SMaSH: a scalable, general marker gene identification
framework for single-cell RNA-sequencing. BMC Bioinformatics 23, 328 (2022). [PubMed:
35941549]

Borm LE et al. Scalable in situ single-cell profiling by electrophoretic capture of mMRNA using
EEL FISH. Nat. Biotechnol. 41, 222-231 (2023). [PubMed: 36138169]

Fischer DS, Schaar AC & Theis FJ Modeling intercellular communication in tissues using spatial
graphs of cells. Nat. Biotechnol. 41, 332-336 (2023). [PubMed: 36302986]

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Bonev et al.

Page 27

Box1 Guidelines for data processing and quality controls in single-cell / nucleus
RNA seq studies.

QC is an essential step in the analysis of sc/shnRNASeq. Nevertheless, while too
permissive thresholds might lead to technical artefacts such as false positives in
differential gene expression (DGE) analysis and misclassification of cell types, too
stringent parameters can lead to false negatives and failure to detect relevant biology.
Thus, it is crucial to implement robust QC workflows before further downstream
analysis. For cell QC, begin by excluding cell barcodes likely representing dead

cell debris or free-floating RNAs (ambient RNA), as they don’t correspond to intact
individual cells. A straightforward approach for assessing cell quality is calculating
metrics such as the number of transcripts (unique molecular identifiers, UMIs), or
detected genes. In practice, the number of UMIs and genes detected notably varies
between brain cell types like microglia and neurons, and between datasets based on
quality and sequencing depth. Hence, assigning a cell type- and dataset- specific
threshold for filtering low-quality cells is important. This can be done by initial
classification of cells to broad cell classes based on trained classifiers on existing
datasets, and assessing the appropriate thresholds based on the distribution of number
of detected genes within each cell class.

Another frequently used cell quality measure is the proportion of mitochondrial RNA,
with high proportions possibly indicating damaged cells. Nonetheless, such high
mitochondrial content cells should not be automatically excluded as they might signify
metabolic changes such as increased mitochondrial activities or be informative in the
context of neurodegenerative diseases. We recommend that mitochondrial content should
be taken into account, but not used as the only exclusion criteria for low quality cells.

Conversely, cells with unexpectedly high counts may indicate doublets (or multiplets),
where cell barcodes correspond to multiple cells. It is essential to remove doublets as
they can constitute a significant portion of cell barcodes in high-throughput sc/snRNAseq
methods. Yet we caution against frequently used filtration methods solely based on the
number of detected transcripts, especially in complex tissues like the brain, as they are
not accurate enough, while specialized algorithms that model doublet cells are much
more robust (e.g. Scrublet!”>, DoubletFinderl’®, and scds?”). Also, transitory cell states,
which might present cell signatures of different cell populations and that are frequent in
development and disease (companion paper I), might also be mistaken as doublets.

Ambient RNA transcripts, which are free-floating and barcoded with the cell/nuclei, can
impact the cellular expression profile and potentially bias cell annotations and functional
interpretations. Given the varying extent of ambient RNA, dependent on tissue quality
and cell or nuclei isolation protocols, it is essential to evaluate each dataset individually.
The ambient RNA can be corrected as necessary using methods like CellBenderl’8,
SoupX17? and DecounX180, We also recommend extracting signatures of ambient RNA
directly from the data by compiling abundant transcripts in empty droplets, to assess the
contamination within each dataset and to ensure that the corrected expression profiles
remain undistorted.
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Furthermore, QC can be applied at the gene level although recommended only if the
computational resources are constrained or the noise in the dataset is high. One can filter
out genes with limited expression (/.e. detected in a small number of cells), by choosing
an appropriate filtration threshold considering the number of cells expected from the
smallest cell population. In addition, methods to identify informative genes and focus the
analysis on this gene subset can be applied (such as variance stabilizing transformation).

Finally, data normalizing and corrections for technical features such as batch and sample
quality are critical to exclude technical artifacts from the downstream analysis, yet
over-correction and normalization could result in the loss of the biological signal.

Thus, carefully examination of the data after correction is necessary, and comparison

to reference atlases can be used as a benchmark.

It is important to note the evolving guidelines, especially for newer data types like
single-cell epigenomics and spatial transcriptomics methods that have their unique pre-
processing and QC challenges that vary between platforms. As technologies mature,
these challenges are expected to diminish. For example, in multiplexed in-situ methods,
(e.g. Stomics, MERFISH, Xenium) the main challenge is image analysis, specifically
cell segmentations and data to noise ratio. While, for in-situ sequencing-based methods,
the main challenge lies in data resolution and coverage, which require more advanced
computational techniques to deconvolute the expression signal to cell types and states, or
find expression patterns based on communities of cells or based on the spatial gradient to
the center of pathology.

Technical considerations and current limitations of Special Transcriptomics
methods

Sequencing-based spatial transcriptomics (ST) technologies utilize RNA-sequencing
to enable unbiased profiling of whole transcriptomes in tissues. Various methods

differ across their cell/transcript capture approach, spatial resolution, throughput (/.e.
sample size, number) and sensitivity. For example, whereas some methods directly
capture transcripts from tissues (e.g. Visium181, Slide-Seq3®, others spatially barcode
cells or nuclei (e.g. Slide-Tags80) or tissue areas (e.g. DBiT-seq®8, Nanostring CosMX/
GeoMX182) prior to sequencing. The major benefit of sequencing-based ST is the
discovery-based analysis of cellular transcriptomes /n situ. This can be applied to healthy
or diseased neural tissue samples with little prior information about tissue architecture
and without target gene selection or differential gene analysis from prior sc/snRNAseq.
Many methods are readily scalable as they require minimal specialized equipment (e.g.
Visium) and rely on standard histological methods and commercially available kits and
sequencing reagents. The major limitations of these methods are summarized below:

Spatial resolution:

Most techniques do not offer true single cellular resolution as they profile multiple cells
(e.g. Visium with 55 micron resolution) or transcripts from neighboring cells (e.g. Slide-
Seq with 10 micron resolution) in tissues. Hence, to perform cell-specific analysis akin to
single-cell transcriptomics, they require computational deconvolution of cell type-specific
information. This is often based on cell-type specific gene expression signatures extracted
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from reference sc/snRNAseq studies*34446, Hence, it is important to choose a reference
that matches the biological characteristics of the ST dataset such as brain region, cell
type composition and disease states. For disease studies, paired single-cell/nucleus and
spatial datasets might be necessary for accurate deconvolution. Recent developments
such as VisiumHD and StereoSeq provide higher spatial resolution and could address this
limitation, though computational pipelines that can segment these data to single cells are
not well established. Some low level ST methods can have computationally enhanced
resolution using Baysian statistical tools like BayesSpacel83.

Tissue quality and assay performance:

Many sequencing-based ST methods are best applicable to fresh frozen tissue samples
with high RNA integrity, which has been limiting for disease studies based on archival
patient-derived samples. Yet, recent developments (e.g. Visium) extend sequencing-
based ST to formalin-fixed and paraffin-embedded (FFPE) samples through targeted
sequencing of probes. There is no strong consensus yet on key tissue quality control
metrics: RNA integrity, histological stains and correlation of ST data with bulk or
single-cell/nucleus RNA-seq are generally used in the field. Given the variations in
human brain biopsy quality and autopsy protocols, standardization and benchmarks are
needed to assess tissue quality and compare different technologies. While many of the
sequencing-based ST methods aim to reach whole transcriptome and gene coverage, in
many cases the number of features per pixel/area is limited to few thousand unique
reads and/or genes, which might thus give limited insights on the cellular and molecular
composition of the areas investigated.

Imaging-based ST technologies utilize imaging to enable targeted analysis of transcripts
in tissues. To image transcripts at high resolution, most methods utilize probe-based
detection approaches derived from single-molecule fluorescent in situ hybridization
(smFISH) or custom sequencing chemistries. As with sequencing-based ST, there

are many imaging-based methods and they provide different levels of target gene
multiplexing, detection sensitivity and specificity. For example, RNAscope /7 situ
hybridization (ISH)84 can detect the expression of a few genes at high sensitivity, while
high-multiplexed methods like MERFISH38, in situ sequencing (1SS)18%, STARmap86,
and Xenium187 use iterative cycles of labelling and combinatorial barcoding to
simultaneously distinguish transcripts from hundreds to thousands of genes.

A major benefit of imaging-based ST is the high spatial resolution that can resolve
single cells in tissues and even subcellular localization of targeted transcripts. Imaging-
based methods are truly orthogonal to sequencing based sc/snRNAseq technologies for
validation of transcripts of interest, such as novel cell type markers or differentially
expressed genes in disease. Another benefit of imaging-based ST is direct 3D
intact-tissue imaging of thick samples when combined with hydrogel-tissue clearing
techniques86. The major limitations of these methods are summarized below:

Ease of use:

High-multiplexed methods such as MERFISH and In Situ Sequencing (ISS) require
specialized automated microscopy equipment and extensive image analysis (é.g. barcode
decoding and cell segmentation) expertise36-186. Hence, their community uptake has
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been limited compared to more convenient methods like RNAscope ISH or sequencing-
based Visium. Yet, several imaging-based ST methods were recently commercialized as
end-to-end workflows automating data collection and low-level image analysis, such as
the MERSCOPE system based on MERFISH®9:86, Xenium system based on 155188189,
and Plexa system based on STARmap186. These commercial solutions will likely play
important roles in democratizing access to these technologies.

Method of choice: Different methods present different trade-offs. MERFISH provides
high detection sensitivity that requires high resolution imaging, and in turn, long image
acquisition times for large tissue samples36. In contrast, ISS detects fewer transcripts
per cell, likely due to the enzymatic steps used for signal amplification, yet can be
performed at low resolution in a more scalable manner'86. STARmap has higher signal-
to-noise ratio than smFISH and higher detection efficiency than ISS, but requires high-
end confocal microscope for 3D imaging. Finally, imaging-based technologies provide
different error correction and detection capabilities3®:186 which greatly influence the
specificity of transcript assignment and false discovery rate.

Probe selection: The curation of the probe panel is a critical step. Ideally, probe
selection is guided by a sc/snRNAseq dataset of that tissue or condition to avoid optical
crowding by highly expressing genes (/.e. the labelling of numerous transcripts in a given
cell that obstructs optical identification of individual RNA spots) and include markers

of diverse cell types or pathological cell states36. In the absence of prior sc/snRNaseq
data, probe selection could involve trial and error. Furthermore, this process also needs
to be tailored to the sensitivity of the given ST technology. While there are several
computational tools to automate probe selection from sc/snRNA-seq references!89:190,
there is no strong consensus on panel curation approaches and it is often done in a hybrid
fashion involving both manual and automated curation.

Protocol optimization: While it is cumbersome, it is important to optimize ISH
protocols (e.g. proteinase treatment, autofluorescence removal) on new tissue types and
sample sources. Human brain tissue, given wide variability in tissue quality and high
autofluorescence, could be challenging9l.

Shortcomings of spatial transcriptomics approaches to inferring cell-cell
interactions (CCIs).

Resolution of sequencing-based ST:

For CCl analysis, it is important to consider that most sequencing based ST methods do
not provide cellular resolution and profile multiple cells at each spot. Hence, these data
are not equivalent to sc/snRNAseq data for interaction analysis and should be treated

as such. Cell type deconvolution preceding CCI detection (/.e. where interactions are
inferred from spatially co-located from sc/snRNAseq profiles) or focused analysis of
receptor-ligand transcript spatial co-localization are more appropriate analysis avenues
for these datasets?3:8°,

Multiplexing levels of imaging-based ST:

While these methods provide single cell resolution in situ, targeted probe panel selection
often imposes limits on CClI analysis as often only selected receptors and ligands
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are profiled in these experiments. In addition, targeting of a limited number of genes
means that the data should not be treated as equivalent to sc/snRNAseq so subsequent
interaction analysis will also need to be treated as such. For example, CCI analyses that
rely on the assumption that most genes are not interacting are best applicable to single
cell full transcriptome datasets, where null distributions can be directly generated from
the data. However, for imaging-based ST experiments, users may specifically select for
receptors, ligands, hormones, and other proteins that are expected to be interacting.

Computational models:

Most CCI analysis tools were originally developed for suspension sc/snRNAseq data and
do not incorporate true spatial information. Whereas ST can be used to prioritize CCI
analysis results from sc/snRNAseq by identifying spatially co-located cell type pairs®®,
an active area of computational development is focused on inferring spatial effects of
CCls in ST such as the identification of neighbor dependent gene expression patterns92,
Lastly, almost all models focus on discovering correlations of gene-expression. However,
models which build in causality (7.e. GRNs) may allow for more accurate hypothesis.

Long-range cellular interactions:

Short-range interactions can be robustly captured by ST but medium to long-range
interactions, especially at axonal/dendritic processes of neurons or oligodendrocyte
processes, complicates cell communication analysis in the nervous system. This
challenge could be addressed by integration of ST with viral tracing methods.
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Figure 1.
Biological considerations: cellular architecture and research questions. Emerging single

cell atlas studies have created reference resources for defining cell types in normal and
pathological brain tissue. Cell types and states defined by these studies exist in complex
and dynamic communities /n7 vivo and more disease associated states and types may
emerge in the future. Advent of spatial transcriptomics technologies helps to define cellular
neighborhoods and identify candidate networks of molecular interactions, while advanced
single cell genomic technologies can provide insights into dynamic intracellular pathways
underlying cellular transitions.
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Single cell assays

Computational Design

Biological
considerations

Figure 2.
Outline of key considerations involved in designing high-throughput single-cell and spatial

transcriptomics studies.
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Figure 3.

Outline of computational design of high-throughput single-cell/nucleus and spatial omics

studies. TF - Transcription factor; CHIP - chromatin immunoprecipitation.
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b Emerging single cell epigenomic
technologies
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Epigenomic technologies. a) Overview of the major modalities regulating gene expression
currently studied using high-throughput single cell technologies. b) Summary of key single-
cell epigenomics technologies. Tn5 — hyperactive Tn5 transposase, Me — methyl group, Ac-

acetyl group.
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Box 1 Fig.

Quality control (QC) in sc/snRNAseq involves evaluating both cells and genes.
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Table 1.
Common Gene Regulatory Network (GRN) Tools
Method Description Advantages Pitfalls Available tools
Correlation- These methods, are based Simple and Cannot capture complex SCENIC3¥/
based on calculating the correlation computationally efficient regulatory relationships SCENIC+07,
coefficient (e.g. Pearson correlation and cannot differentiate GENIE3156
or Spearman rank correlation) between direct and indirect PPCOR57 ’LEAP153
between pairs of genes across interactions '
multiple samples
Regression- These methods model the expression | Can capture direct They may not handle non- GRNBOoost21%9,
based level of a gene as a function interactions linear relationships SINGEL60
of the expression levels of other
genes. Techniques include linear
regression, LASSO, and ridge
regression.
Information Use measures such as mutual Can handle non-linear May have difficulty with ARACNE6L,
theory-based information to infer relationships relationships and can high-dimensional data PIDC162, SCRIBE163,
between genes differentiate direct from and CLR164
indirect interactions
Bayesian Probabilistic graphical models that Can model complex May have difficulty with GRNVBEM?65,
network represent the dependencies among a | relationships and large networks as they are BANJOL66 and
set of variables differentiate direct from computationally intensive BNFinderl67.168
indirect interactions
Boolean Model gene expression as on/off Computationally efficient Oversimplify gene SCNS169
network states and gene interactions as and can handle large expression and cannot
logical functions networks capture graded changes in
expression levels
Traditional Interpret gene regulatory networks Can handle complex, non- | Require large amounts CNNC (Convolutional

Deep learning

from sc/snRNAseq data and deduce
causal relationships between genes

linear relationships and
high-dimensional data

of data and can be
computationally intensive

Neural Networks
for coexpression)7°,
Foundation models!7

Emerging
Deep learning

Based on foundation models, /.e.
deep learning models trained on
vast amounts of data in an self-
supervised fashion 172, Emerging in
single cell transcriptomics as well
171 based on transfer learning from
reference atlas and expand beyond.

The attention mechanisms
in the employed
transformer architecture
reflect the underlying
GRN structure.

Only in early stages.
Require large amounts

of data and can be
computationally intensive

Assingle

cell transcriptomics
transfer learning based
GRN model™

Differential
equations

Model gene interactions as a system
of differential equations

Can model time-
dependent changes in
gene expression

Require time-series data
and can be computationally
intensive

SCODE!3 GRISLI'74
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