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Abstract

Over the last decade, single-cell genomics technologies have allowed scalable profiling of cell 

type-specific features, which substantially increased our ability to study cellular diversity and 

transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of 

gene regulation or the rules that govern interactions between cell types is still limited. Advent 

of new computational pipelines and new technologies, such as single-cell epigenomics and 

spatially resolved transcriptomics, has created opportunities to explore two new axes of biological 

variation: cell intrinsic regulation of cell states and expression programs and interactions between 

cells. Here, we summarize the most promising and robust technologies in these areas, discuss 

their strengths and limitations, and discuss key computational approaches for analysis of these 

complex datasets. We highlight how data sharing and integration, documentation, visualization, 

and benchmarking of results contribute to transparency, reproducibility, collaboration, and 

democratization in neuroscience, and discuss needs and opportunities for future technology 

development and analysis.

Introduction

Cells in our bodies contain roughly the same genomic information encoded within the 

DNA, but develop remarkably different properties as a consequence of intrinsic gene 

expression regulation and inter-cellular communication. Nowhere is this clearer than the 

mammalian brain, where hundreds of molecularly distinct cell subpopulations have recently 

been mapped using a combination of single-cell technologies and shown to be organized into 

neighborhoods and circuits that can be visualized using spatially resolved technologies1–9. 

Intrinsic gene expression regulation and cell-cell interactions represent two orthogonal, and 

yet interrelated axes of biological variation in complex tissues, that frequently become 

altered in disease states. Emerging technologies for mapping these modalities create exciting 
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opportunities for uncovering disease changes with fewer a priori assumptions than has been 

possible before. In turn, unbiased profiling of disease tissues has the potential to uncover 

new disease relevant changes that could be targeted therapeutically.

Here, we strive to provide an overview of the main technologies and approaches currently 

present in single-cell epigenomics and spatially resolved transcriptomics fields, as well 

as discuss various strategies for data analysis and considerations in experimental design. 

In particular, we highlight the proliferation of single-cell epigenomic data collection that 

has provided exciting opportunities to reveal gene regulatory networks, while highlighting 

the paucity of methods for functional validation of these predictions. By contrast, 

spatially resolved transcriptomics approaches vary widely depending on the specific 

tissue preservation method, size and resolution needed. When coupled with single-cell 

transcriptomics and rigorous data analysis, such as deconvolution, trajectory analysis and 

cell-cell interactions prediction, such experiments can provide invaluable insights into tissue 

biology (Fig. 1).

We recommend technology choices as well as computational schemes should be motivated 

by the biological questions, while balancing discovery, analysis, and validation wherever 

possible to maximize biological insights. Best practices in computational analysis should 

guide the experimental design and be considered prior to data generation, taking into 

consideration the required number of samples, coverage of cells per sample, and design of 

experimental batches, to facilitate accurate analysis. In turn, the design of the computational 

scheme for the data analysis should be tailored to the specific features of the dataset as 

well as to the biological questions, guiding the choices such as de-novo vs. reference-based 

annotations or discrete vs. continuous analysis of cell states.

Technical considerations in study design

High-throughput genomic technologies have created unprecedented opportunities for data-

driven discovery of biological processes underlying normal tissue structure, function, and 

disease changes. Considering the cost of many such studies, responsible experimental design 

is often required to maximize biological insights, and should start with considerations 

of best practices in data analysis (Fig. 2). We recommend considering the following 

components for single cell and spatial genomic studies.

Sample size—Evaluation of the necessary sample size for robust analysis is essential, 

especially when testing changes in cell abundance, differential genes, or trait associations 

with experimental or clinical conditions. Computational methods should be tailored to 

the sample size and to the corresponding statistical power of the dataset. There are 

tools and resources that can be used to estimate the necessary number of biological 

replicates and technical replicates ideally required for single-cell/nucleus RNA sequencing 

(sc/snRNAseq) studies10–14. As fewer spatial transcriptomics studies have been conducted 

so far, recommendations of sample size estimation are driven largely by theoretical and 

statistical considerations15,16. Adhering to the power estimations discussed can greatly 

increase the confidence in biological findings derived from single-cell RNA sequencing 

studies, and we predict that the rapid increase in the number of spatial transcriptomic and 
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epigenomic datasets will lead to better understanding of technical variation in the data 

and inform new methods for quantifying effect sizes that may be specific to the assay 

or data generation platform. Beyond the number of samples, the number and design of 

batches should be carefully considered as well. Specifically, ensuring balanced batches 

across different experimental groups can greatly facilitate batch correction to mitigate 

technical artifacts. It is important to note that the required sample size is contingent on 

the intrinsic variation between samples, which may vary depending on the genetic diversity 

of study population, and could furthermore be influenced by the technical idiosyncrasies of 

individual platforms or dataset quality.

Underpowered studies may still provide biologically meaningful insights, but require 

specific considerations. We advise incorporating strategies for orthogonal validation using 

methods discussed in Companion Piece 3. Alternatively, leveraging large cohorts of bulk 

datasets can augment the sample size, enabling the correlation of gene and pathway 

signatures to conditions and traits. For example, different strategies have been suggested 

to utilize sc/snRNAseq data to deconvolve signatures of cell type abundance hidden 

within bulk tissue measurements using algorithmic approaches based on deconvolution17,18 

and increasingly deep-learning19–21. This strategy significantly reduces the time and cost 

of experiments, and may be essential in instances where obtaining sufficient biological 

replicates of tissue specimens is challenging. In essence, acknowledging and accounting for 

sample size and diversity among samples is crucial for ensuring the reliability and validity of 

research conclusions.

Cellular coverage—Each profiling experiment involves a decision step to profile a subset 

of cells present in the tissue, and due to financial and tissue availability constraints, every 

study will balance the numbers of biological or technical replicates involved with the 

number of cells that will be profiled. Understandably, heterogeneous tissues such as the 

brain pose an additional challenge where cell types are not present in equal proportions, and 

thus effective cell number involved in a study will vary from cell type to cell type.

Thus, consideration for cellular coverage and sequencing depth should guide the 

computational strategy applied for cell annotations as well as for association analysis 

depending on the biological question22,23. Data downsampling can offer a data driven 

approach to determining whether a given observation or conclusion is robust, and has 

been effectively employed to analyze the saturation of cell cluster discovery in mouse 

brain scRNAseq data7. Unfortunately, similar considerations have not been developed yet 

for spatial transcriptomics or epigenomic studies. Analysis of spatial transcriptomics data 

in particular will require deep assessment as datasets become more common, and we 

predict that lessons from stereology24 may be helpful in interpreting the results of spatial 

transcriptomics based experiments.

Ideally, when experimental design limitations prohibit from obtaining adequate cellular 

coverage to comprehensively profile cells in a given tissue, strategies that enrich for a 

desired cell population can be employed (see companion paper I for methods mining rare 

cells). Importantly, the computational study design should be guided by the coverage of the 

dataset, as different clustering algorithms have different sensitivities for detecting rare cell 
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types25. Moreover, rare cells can be mis-assigned to transcriptomically similar population if 

not enough cells are sampled. Mapping cells against a well powered reference atlas dataset 

can help to overcome this limitation26, and such atlases are increasing in availability for the 

brain across various species1–9, ages, and conditions, offering an important resource that can 

be leveraged to annotate cell types in smaller studies (see companion paper 1).

Data Quality and Sequencing depth—The sequencing coverage (3’-end, 5’-end, 

whole coding region), data quality and sequencing depth (number of unique reads/unique 

molecular identifiers (UMIs), and number of genes detected per cell) represent important 

metrics of underlying data quality and should ideally be compared to published studies from 

the same tissue or cell type, and reported across technical and biological replicates in a 

study. See box 1 for an overview of quality control data analysis. For sc/snRNA-seq assays, 

high-quality data are important to ensure that differences in expression programs within 

specific cell types can be robustly detected. Insufficient coverage may overlook biological 

insights, a factor that must be considered during the differential expression analysis of genes 

and pathways. While the exact specific number of sequencing reads per cell will depend 

on both the technology and the nature of the sample, for the most common experimental 

platform from 10X Genomics, gene expression libraries sequenced at or above 25,000 reads 

per cell/nucleus would generally be considered as reasonable to identify individual sub 

types, but may remain too shallow for some cell-type specific responses to disease and 

infection (e.g. microglia and astrocytes) where 50,000 reads per cell/nucleus is more often 

required to detect subtle gene expression changes. Published reference atlases can provide 

approximate numbers of genes detected across brain cell types, while data derived from 

whole dissociated cells typically yield higher numbers of genes detected per cell compared 

to nuclei.

Epigenetic assays cover a larger sample space (whole genome vs. transcriptome) and 

thus consequently the sequencing depth per cell should be appropriately higher, with 

recommended of minimal sequencing depth of 50,000 reads/cell for snATAC-seq libraries. 

For reliable discovery of gene regulatory elements from snATAC-seq data, the number of 

cells depends on data quality and the analytical context, yet we advise to have at least 200 

cells/nuclei per cell population with biological replicates to ensure reproducibility. These 

metrics are based on experience and lack systematic and quantitative metanalysis, and 

therefore should be taken as general guidelines as opposed to prescriptive guidelines. Large 

scale consortia efforts will likely define these parameters in increasingly greater detail.

These estimates are intended to provide general guidance, and we recommend consulting 

several published studies prior to embarking on experimental data generation.

While sc/snRNAseq data analysis has reached a point of relative consensus, and broadly 

applicable recommendations can be proposed, guidelines for analysis and assessing data 

quality of more recent technologies such as epigenomics and spatial transcriptomics will 

likely emerge as the number of datasets increase.
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Biological considerations in study design

Cellular architecture guiding study design—Apart from technical aspects, the 

computational study design should also be informed by the distinct characteristics of each 

cell type and the specific research questions of the study. These elements should guide the 

choice between a discrete clustering-based analysis of cellular diversity with a case-control 

differential expression analysis to uncover changes due to conditions and traits, or rather a 

continuous analysis of gene programs to describe cellular diversity and alignment of cells 

along continuous trajectories (Fig.3). The particular research questions will further shape 

subsequent downstream analysis steps, which could encompass regulatory networks, cellular 

interactions, intersection with genetics and other modalities, and more.

Beyond the diversity of cell types, studies have revealed the vast diversity of cell 

subpopulations and cell states within the brain. Conventional approaches identify cellular 

diversity by clustering, commonly applying nearest neighbor graphs and community 

detection algorithms, to subset cells of a specific cell type to sub-clusters capturing 

transcriptionally distinct cell subsets. Yet, cellular diversity might not be always adequately 

captured by a discrete model, such as microglia and astrocyte cells that rapidly respond 

to the changing environment to maintain brain homeostasis, or oligodendrocyte lineage 

cells that change along the maturation process. Alternative methods that model the 

continuous variation in gene expression have been developed. For example, inference 

of gene expression programs enable to model the complexity of cellular functions and 

response to diverse stimuli, by modeling cells as a combination of expression programs 

(e.g. topic modeling27, non-negative matrix factorization28, weighted gene co-expression 

matrix analysis29). Algorithms aligning cells along continuous trajectories of change (e.g. 

Palantir30, Monocle31), as typically applied in developmental datasets (as described in 

companion piece 1), can also be applied to study the transitions between cell states in 

the adult brain, specifically along aging or disease processes. Importantly, as physiological 

processes involve cooperation of multiple cell types within the brain, new frameworks 

expand the analysis from the traditional focus on the diversity of individual cell types to 

multi-cellular environments4.

Addressing complex cellular microenvironments in study design—The complex 

spatial arrangement of cells in the central nervous system (CNS) is what enables it to 

execute its numerous, highly specialized functions, as physiological processes involve 

multiple cell types working in cooperation. Investigation of changes in cellular communities 

or microenvironments instead of independent investigation of individual cell types could be 

a more effective and accurate approach despite the added complexity. Furthermore, future 

development of effective drugs and therapies will likely require targeting a community of 

tightly co-regulated cells that together provide the necessary environment for the required 

healthy function of the brain. In experimental study design, considering the different 

properties of brain cell types should guide the choice of methods for cell dissociation, 

nuclei isolation as well as tissue to capture the diversity of cells. In computational 

study design, beyond the analysis of individual cell types and cellular abundance, 

communities of cells with coordinated abundance and/or activity can be predicted using 

single-cell omics. For example, exploring changes in cell state and cell abundance across 
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cell types in aging human brains uncovered Alzheimer’s disease associated cellular 

community that captured coordinated changes in glial, endothelial and neuronal cell types4,8. 

Algorithms for the identification of coordinated cell programs across cell types, co-occurring 

cellular communities, co-regulated cells, or communities with shared-dynamics have been 

developed8,32–34. To further advance our understanding of the brain’s dynamic tissue 

architecture, we will need to expand these computational methods. In particular, we will 

need to integrate predictions of the co-regulation and crosstalk between subsets of cells 

using multiple data modalities.

Spatial transcriptomics (ST) refers to recently developed technologies that enable probing 

cellular microenvironments in situ. ST methods can simultaneously spatially position cells 

and quantify their transcriptomic profiles, with most methods applicable in histological 

tissue sections consisting of 1–2 cell layers. There are two broad classes of ST methods 

that use sequencing or imaging-based readouts. Many ST technologies were first applied 

to the mouse brain and have been used to spatially map cell types across entire brain 

regions35–37, with recent efforts extending this approach to whole mammalian brain9,38–40. 

ST can enrich cell type and state annotations from sc/snRNAseq with spatial information 

and ascribe meaning to gene expression gradients, and even entire clusters, by identifying 

their spatial correlates, exemplified in continuous expression gradients in neurons across the 

medial-lateral and superior-inferior axes of the striatum41,42. Broadly, ST methods fall into 

two categories: in-situ RNA-sequencing based technologies aimed at unbiased profiling of 

whole transcriptomes within tissues, and imaging-based technologies aimed at probing a 

multiplexed defined set of hundreds of genes. Sequencing or imaging-based ST methods 

each offer distinct advantages and suffer from different challenges balancing between 

resolution, sensitivity, and scalability. Thus, their advantages and respective limitations need 

to be considered carefully when choosing the right method to use. See Box 2 for detailed 

description of technical consideration and limitations of imaging- and sequencing- based ST 

methods.

The computational integration of spatial and single-cell transcriptomics provides a practical 

approach to construct multi-modal brain atlases. The integration methodologies have 

matured dramatically in the past few years, now enabling even relatively fine cell 

type distinctions to be accurately mapped and resolved on high-quality ST datasets43–

46. For imaging-based ST, integration of spatial and single-cell measurements enables 

transcriptome-wide imputation unmeasured genes in space38,47. There are also emerging 

computational integration benchmarks for single cell and spatial data, though we lack 

methods to quantitatively assess the accuracy and robustness of integration between sc/

snRNAseq and ST datasets48,49.

Cohort design and analytical considerations in disease studies—Increasing 

amounts of brain sc/snRNAseq data from different species, individuals, developmental 

stages, and pathological states has revealed the diversity of neuronal and non-neuronal cells 

(see Companion Piece 1). Such studies use a variety of cohort designs and computational 

schemes to identify transcriptional changes that occur in disease (Fig. 3). A carefully 

balanced case-control cohort is a conventional and powerful approach for identifying gene 

expression differences. For such a discrete cohort design, applying a statistical test (with 
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an appropriate noise model50) with correction for multiple-testing can be used to link 

cellular changes to the studied trait, correcting for the technical (e.g. batch, library quality) 

and biological (e.g. interindividual variability, age, sex) confounders. Alternatively, pseudo-

bulk differential gene expression methods (e.g. DESeq51, edgeR52) account for variability 

between biological replicates and thus avoids false discovery and overcomes gene drop-outs 

noise in sc/sn/RNA-seq53.

Newer approaches to cohort design and analytical methods consider continuous variation, as 

well as mixed sources of variation, ranging from sampling along the continuum of disease 

stages to random sampling of the population in abundant pathologies. For such a continuous 

cohort design, different analytical methods have been developed. For instance, linear mixed 

models can simultaneously take into account orthogonal sources of transcriptional variation 

and rank genes according to variance explained by specific variables54,55. Additionally, 

manifold learning and trajectory inference enable us to align individuals along a pseudotime 

of disease progression and infer the intricate cellular dynamics underlying the disease 

process8,30,56. These approaches provide a more nuanced perspective, offering insights into 

the temporal and spatial aspects of disease progression that might be missed in traditional 

case-control studies. To provide further confidence in the rigor and robustness of case 

control datasets, transcriptomic changes predicted to occur in disease states should be 

validated using orthogonal methodologies. For extensive discussion of validation approaches 

see Companion Piece 3.

Many neurological diseases are defined by specific histological lesions. ST methods 

provide a unique opportunity to bridge our historical understanding of these diseases with 

modern, hypothesis-generating genomics experiments of the same tissue and cells, which 

will pave the way to linking newly discovered disease-associated states and pathways, to 

histopathological disease phenotypes, such as aggregates or multiple sclerosis lesions. Such 

discoveries may be facilitated by imaging-based ST technologies like in situ sequencing, 

MERFISH or STARmap PLUS57, but the limited genes detected by these technologies may 

limit the discovery of novel cell states uniquely associated with histopathology, without the 

accompanying transcriptome-wide profiling by sc/snRNA-seq. Efforts to further expand the 

multiplexing (i.e. to increase the number of genes and isoforms that can be measured in 

imaging ST) is an important area of future technology development. Sequencing-based ST 

approaches, including the original Spatial Transcriptomics or DBiT-Seq58,59 largely lack the 

resolution needed to precisely pair these histological lesions with gene expression in single 

cells, yet neighborhood-based analyses are feasible. New sequencing-based approaches to 

capture individual cells with high spatial resolution and sufficient gene coverage, such as 

Stereo-Seq, Slide-Seq, Slide-Tags, or the recently Visium HD could help overcome this 

challenge60,61.

Emerging multi-omics spatial technologies as a bridge between modalities

The benefits of recent ST technological advancements provide an opportunity to combine 

ST and sc/snRNAseq to create a standardized cell atlas of the nervous system across 

diverse organisms by bridging anatomical, functional and molecular analysis of neural cell 

types. A key opportunity associated with ST is its ability to serve as a bridge between the 
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fields of cellular-molecular genomics and systems neuroscience. Specifically, technological 

approaches are increasingly enabling genomic measurements of cells to be directly paired 

with measurements of connectivity and neural activity. For example, BARseq combines 

sequencing based-barcoding of neuronal projections with ISS-based spatial mapping of gene 

expression and neuronal cell typing62. Other studies have combined two-photon calcium 

imaging and cFOS-staining with ST to probe molecular identities of neurons activated in 

different behaviours36,63. Furthermore, electrophysiological recordings have been coupled 

to STARmap in vitro in other systems64. These developments provide exciting avenues to 

marry spatial transcriptomics with functional studies of neural circuits.

Epigenomic technologies such as CUT&Tag, discussed below, have recently been 

successfully applied at spatial level using the DBiT-Seq technology, allowing the genome-

wide mapping of histone modifications in the mouse and human brain at different stages of 

development, at a resolution approaching single-cell (20–50μm) (spatial CUT&Tag)65 or at 

hundreds of loci at subcellular resolution66. In addition, the recent developments of spatial 

ATAC-seq67,68 and spatially resolved single-cell translatomics (RIBOmap)69 potentiate 

spatial multi-omics mapping of epigenome, transcriptome, and translatome from the same 

brain samples to understand gene regulation mechanisms at both transcriptional and post-

transcriptional level. Moreover, multiomic approaches combining RNA and CUT&Tag (and 

ATAC) have also been developed at a spatial level70, while combined ST-lipidomics71 

and ST-metabolomics72 are emerging, indicating that the simultaneous probing of several 

modalities might become standard in the spatial omics area, as it has in the single-cell/

nucleus arena.

The Allen Brain Atlas Common Coordinate Framework73 is a three dimensional average 

map of the adult mouse brain, provides an anatomical reference to standardize spatial 

measurements of neural activity and connectivity. The integration of ST-based cell maps 

with such Common Coordinate Frameworks provides an opportunity for charting brain 

atlases. This is an active area of computational development74, where a major challenge is 

the accurate mapping of two-dimensional ST datasets to three-dimensional coordinates at 

cellular resolution. Furthermore, it is likely ST data will itself challenge some traditionally 

defined neuroanatomical boundaries 38,75. New computational approaches will be needed 

to learn cytoarchitectural features from the spatial data itself and use it to improve our 

understanding of regional boundaries. Ultimately, functional perturbations of cells may also 

be required to refine these regional definitions.

The ability to map ST data to common coordinate frameworks, as discussed above, will 

likely open opportunities to correspond molecular histopathology measurements to in vivo 
phenotypes. For example, functional MRI can measure correlates of neural activity of a 

given brain region in the context of a particular behavioral task, and alterations of such 

activity have been observed in a wide range of neurological and psychiatric disorders76,77. 

For example, 7T MRI can resolve disease structures such as iron-positive lesion rims 

in multiple sclerosis78, while PET imaging can resolve metabolic tissue states, with ST 

measurements.
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With the rapid proliferation of ST, systematic benchmarking of different methods is needed. 

These efforts should formally evaluate the consequences of spatial resolution, sensitivity 

and multiplexing levels for cell typing and cell-cell interactions analysis of brain tissue. 

An emerging computational challenge is the integration of ST datasets across experimental 

batches, studies, and technologies79,80. While sc/snRNAseq methods are applicable to a 

certain extent, new methods to integrate imaging- and sequencing-based ST as well as 

formal benchmarks to evaluate such methods will be necessary.

Finally, the current cost and throughput of both sequencing- and imaging-based ST are 

prohibitive to map the whole human brain at the coverage of the mouse brain atlases. 

Technological or platform investments to increase the feasibility of large-scale ST and apply 

to 3D brain volumes, prioritizing human brain regions relevant to diseases and disorders 

such as Autism or Schizophrenia, and developing computational approaches to approximate 

full brain maps from incomplete 3D volumes or to predict ST profiles from MR and 

metabolic PET imaging provide future avenues for exploration. For example, myeloid cell 

subtypes - visualized by cell type specific molecular RNA and protein tagging - can be 

mapped to inflamed tissue areas based on iron-sensitive MR imaging81 or metabolic tracers 

as used in PET imaging82.

Considering cell regulation in the study design

Inference of cell-cell interactions—Cell-cell interactions (CCIs) play key roles in the 

specification and function of the nervous system. Myriads of neuronal cell types interact 

to form synaptic connections and neural circuits across multiple scales, whereas glial 

and vascular cell derived signals are important regulators of neuronal synapses and brain 

development and homeostasis. Furthermore, neuro-immune interactions are prominent in 

many neurological disorders. Cell-cell interactions can be predicted using sc/snRNAseq 

by coupled expression of known ligand-receptor pairs. As RNA abundance only plays a 

stoichiometric role in mediating signaling activity, there is significant risk of false positive 

results, and multiple algorithms have been developed with diverse computational strategies 

and statistical frameworks to limit the sources of noise, such as CellPhoneDB83, CellChat84, 

and NicheNet85.

ST can identify neuroglial tissue microenvironments that consist of spatially co-localized 

cell types that are specialized to support specific neural circuit and underlie neural 

pathologies. As ST jointly resolves spatial positions and transcriptomes of cell types 

in tissues, it is uniquely suited for inferring CCIs by identifying cells that are in 

close proximity as well as mapping complementary expression of receptor-ligand pairs 

in neighboring cells. This can resolve short range interactions (autocrine, juxtracrine, 

paracrine) such as neuronal-glial interactions at a cellular and molecular level86,87. As 

with cell type mapping, integration with sc/snRNAseq can enhance CCI analysis in ST by 

leveraging whole transcriptome information from the former data88. Current limitations of 

ST based mapping of CCIs should be considered, as detailed in Box 3. Finally, CCIs can 

be linked to predicted downstream cellular phenotypes by inferring biological pathway 

activities or gene regulatory networks from single cell or spatial data85. However, no 
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existing approaches can yet trace CCIs from spatial information to gene expression to 

epigenomic profiles and other modalities.

Considering cell intrinsic regulation in the experimental study design—
Uncovering the major regulators driving distinct transcriptional programs is a critical 

step towards understanding of brain function and dysfunction and can inform therapeutic 

strategies and drug discovery efforts. New analytical approaches and emerging technologies 

that allow researchers to profile epigenetic states of single cells, provide pivotal new 

information related to the intrinsic mechanism driving expression programs, and should 

be considered in the study design.

The most mature technology for identifying regulatory DNA measures chromatin 

accessibility- a state in which genomic DNA is actively accessed by macromolecules. 

Chromatin accessibility thus reflects whether proteins, typically transcription factors (TFs) 

and high-density of nucleosomes, are bound at a particular genomic locus89. Chromatin 

accessibility often correlates with gene expression, but it is not a direct proxy for 

it. As the chromatin accessibility landscape is highly cell type-specific, it provides a 

robust epigenomic measurement to identify cell types and states. It can be measured by 

commercially available assays such as snATACseq. Analysis of chromatin accessibility has 

been mainly used for identifying putative gene regulatory elements (enhancers, promoters, 

silencers, insulators, etc.), though it cannot necessarily distinguish among classes of gene 

regulatory elements. It also retains signals related to nucleosome occupancy, though less 

tailored to infer nucleosome positioning as compared with techniques such as MNase-seq.

Moreover, available multiomic assays enable joint profiling of RNA abundance (snRNAseq) 

and chromatin accessibility (snATACseq) within a single nucleus, linking changes in gene 

regulatory element accessibility to changes in gene expression. One of the largest impacts 

of locating cell type- and context-specific gene regulatory elements is the identification 

of disease-associated noncoding variants predicted to impact gene regulation, allowing 

for fine-mapping of thousands of genetic risk loci. Further, chromatin accessibility-based 

mapping of quantitative trait loci (QTLs) provides more direct observation of the effect of 

a variant compared to the more indirect effects observed in expression QTL mapping due 

to linkage disequilibrium90,91. The variants predicted to be functional based on residence 

in a gene regulatory element or existence of a chromatin accessibility QTL can be further 

prioritized in validation experiments and linked to nearby genes via co-accessibility or 3D 

chromatin contacts. Of note, regulatory elements predicted by chromatin accessibility are 

putative and necessitate downstream functional validation. For information on approaches 

that can validate the functional role of a specific element please refer to Companion Piece 3.

Each cell has only two copies of each genomic locus (alleles) leading to unique challenges 

for single nucleus epigenomics in: (i) sparsity, (ii) scale, and (iii) cell-type specificity92–94. 

To partially address the challenges of data sparsity and specificity, snATAC-seq data is 

typically converted post-clustering to pseudo-bulk to increase reliability by summing the 

information over hundreds-to-thousands of cells, each with a few thousands of fragments 

captured. Unlike sc/snRNAseq which often fails to capture the lowest expressed genes, the 

dropout in snATACseq is likely stochastic across the genome95. Moreover, snATACseq has 
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a larger feature space compared to sc/snRNAseq, as a typical multi-cell type dataset could 

have >1 million regulatory elements, in comparison to sc/snRNAseq which has <30,000 

unique transcripts. Because of this, snATAC-seq often requires a higher sequencing depth 

per cell and the larger size of the cell x feature space presents unique challenges the analysis.

The epigenetic landscape of a cell is altered along differentiation, maturation, ages 

and disease states, thus it is interesting to compare chromatin accessibility and other 

epigenetic features between cases and controls or along biological processes (Fig. 3). 

Such comparisons from snATACseq data should be performed at the pseudobulk level53 

to reduce noise, while maintaining biological and cellular diversity by aggregating all cells 

from a single cell type from a given individual into a single pseudobulk profile. The 

use of pseudobulk profiles circumvents issues with sparsity by combining signal across 

many individual cells, and thus we recommend a minimum of 100 cells per profile based 

on current studies. Once pseudobulk objects are created, differential testing should be 

performed using one of many tools that have been carefully benchmarked previously96, 

for example DESeq251 or edgeR97. As tools vary in the degrees of false positives and false 

negatives, the analyses should be tailored to the specific application and the tolerance for 

false positives versus false negatives, as discussed previously96,98.

Additional technologies in the field of epigenomics are available, enabling the measurement 

of histone modifications, DNA methylation and chromatin contacts (as described in more 

details below). Integration of these methods will provide a more complete view of the 

intrinsic mechanisms underlying gene expression regulation within and across cells types.

Analytical approaches to infer gene regulatory networks—Gene Regulatory 

Networks (GRN), the interconnected set of molecular regulators and their targets, together 

orchestrate the biological programs responsible for specific gene functions and ultimately 

govern all cellular and biological activities, by controlling the activation and deactivation of 

individual genes. GRN analysis has become an increasingly important tool in neuroscience 

research. The complexity of the nervous system, characterized by its diverse cell types and 

intricate interconnections, makes it especially suitable for the GRN analysis. GRN analysis 

has uncovered the pivotal role of GRNs in multiple brain processes, such as differentiation 

of neuron and glial cells.

Regulators of gene expression are not restricted to regulatory proteins, and include 

various non-coding RNAs such as long, short, and antisense ncRNAs. Regulators can act 

as activators or repressors via different regulatory elements (enhancer, promoter). Each 

stage of gene expression is regulated, including post-transcriptional regulation (splicing, 

translation, transport, degradation) and post-translational regulation (modifications, 

transport, localization, degradation). As the targets of each regulator include additional 

regulators, a network of interconnected regulators is formed, represented as a graph, where 

nodes capture regulators and their relationships are represented as directed and weighted 

edges.

As many of these regulatory modalities are not measured with single-cell resolution 

due to the lack of scalable technologies, GRN inference is mainly focused on TF 
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regulation, inferred from available single-cell omics measurements99,100. The inference of 

TF regulation is highly challenging due to several reasons: (1) TFs can regulate expression 

of target genes at large genomic distances by binding to remote enhancer regions, often 

by folding to form close contacts proximal to their targets, limiting our ability to link 

a DNA element to its target gene; (2) We lack reliable species-specific mapping of TFs 

to the DNA sequence motifs they can bind; (3) Physical binding of a TF to a DNA 

element can lead to activation, repression, or no modulation, under different cellular 

contexts; (4) TF binding often depends on the chromatin state. Thus, beyond relying on 

sc/snRNAseq data to infer GRNs101, the use of single-cell multiomic data, which includes 

both epigenomic (DNA contact, accessibility and methylation, or histone modification) and 

transcriptomic information, can enhance the accuracy and precision of identifying these 

regulatory relationships. This is achieved through integrative analysis that examines the 

correlations and colocalizations of open regions, methylation sites, or regulatory motifs with 

gene expression.

Multiple computational methods have been developed to infer and to analyze GRNs 

at single-cell resolution from sc/snRNAseq data, including Correlation-, Regression-, 

Information-theory-, Bayesian- Boolean- and Deep-learning- based methods. An overview 

of such methods is provided in Table 1. Of course, different methods may produce divergent 

results, posing challenges in determining the most accurate representation of the network.

Identifying differentially accessible regions (DARs) between biological conditions is 

fundamental for pinpointing differentially active regulatory elements and regulators. Many 

methods for differential expression have been repurposed for finding DARs (e.g., DESeq251, 

edgeR97, and limma voom102). Pairing DARs with differential expression analysis can 

enable the inference of context-associated GRNs using packages such as cisTopic103, 

Signac104, DORCs105, FigR106, SCENIC+107, ArchR108, MIRA109, scBPGRN110, and 

Symphony111.

Additionally, CRISPR/Cas9-based screens, assessed at the single-cell level via Perturb-seq 

or Genome and Transcriptome sequencing (G&T-seq)112, can also inform the inference of 

GRNs or experimentally validate them.

Computational models of GRNs are valuable for modeling complex data, generating 

hypotheses, and directing future research efforts. However, the field is still evolving, and 

several challenges lie ahead. First, efficient analysis of GRNs requires large scale high-

quality data, often constrained by technical limitations and high cost, and the computational 

complexity. Next, biological variation and technical noise might hinder the distinction 

between true regulatory interactions and fluctuations in gene expression. Thus, there 

is a need for further development of specialized statistical methods with heightened 

sensitivity for accurate DAR identification in future research efforts. Furthermore, gene 

expression regulation encompasses multiple layers of molecular interactions, making it 

difficult to accurately model and analyze GRNs. Finally, gene expression is a dynamic 

process, but experimental measurements only provide a static snapshot, greatly complicating 

the temporal dynamic analysis of GRNs. As a consequence of these shortcomings, our 

understanding of GRNs in the brain and the available tools to analyze them are lacking, yet 
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future research in this field, empowered by new technologies, improved methodologies, and 

the accumulation of large-scale datasets, are expected to yield important insights into brain 

function and dysfunction.

Emerging technologies for single-cell epigenomics

Various types of genetic and environmental perturbations can lead to changes in cell state 

driven by modulation of epigenetic states. To uncover underlying regulatory mechanisms of 

such perturbations, requires large scale single-cell epigenetic data. Emerging technologies 

now allow researchers to profile epigenetic states of single-cells, and in this section, we 

highlight emerging data modalities beyond DNA accessibility, discuss main technologies, 

and summarize their strengths and weaknesses (Fig. 4).

Histone modifications—Histones undergo multiple post-translational modifications 

involved in transcription regulation by affecting transcription factor binding and RNA 

polymerase activity. Different histone modifications patterns define specific genomic 

features, such as enhancers, promoters, or coding regions, and some can be associated with 

transcriptional states (e.g. activation, repression, elongation, poised113). Therefore, profiling 

histone modifications at single-cell resolution represents an emerging area of technological 

innovation that could facilitate the profiling of cis-regulatory elements (CREs) that are likely 

to be functional, as opposed to all accessible DNA loci.

Profiling histone modifications was traditionally done by immunoprecipitation followed by 

sequencing (ChIP-Seq) that required large amounts of input material, hampering single 

cell applications. Novel CUT&Run114 and CUT&Tag115 methods, related to the ChiC116 

method and based on a fusion of MNase/Tn5 transposase with protein A, have been recently 

developed and successfully applied to single-cells, allowing the probing of individual115,117–

121 or combination of histone modifications122–125. Methods to investigate chromatin 

dynamics during cell state transitions have been recently developed, taking advantage of 

multiomic single-cell chromatin accessibility and transcriptomic data105,126, or single-cell 

histone modification data, such as chromatin velocity122,124.

Chromatin Contact—Genome organization and DNA methylation represent additional 

layers of gene expression regulation127,128. Genome topology can modulate enhancer-

promoter communication129 and there is considerable evidence linking disease relevant 

structural variants or epigenetic changes to changes in 3D genome organization130.

Genome organization has been traditionally studied using chromatin conformation capture 

assays such as Hi-C or micro-C in bulk or in FAC-sorted populations, yet recent advances 

in technologies have enabled profiling in single cells/nuclei131–133. Moreover, recent 

technologies allow co-profiling of chromatin architecture and transcriptome at a single cell 

level134. However, current methods require significant sequencing depth compared with 

ATAC-seq, and lack robust experimental and computational benchmarking and validations.

Methylation—The most common DNA base modification in mammalian species 

is cytosine 5-methylation (5mC) and its oxidated derivatives including 5’-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fc) and 5-carboxylcytosine (5caC)135. 

Bonev et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mammalian CNS is associated with highly unique patterns of cytosine modifications 

including unusually high levels of non-CpG methylation (5mCH) and 5hmC135–137. For 

the majority of somatic tissues in mammalian species, 5mC is almost exclusively found in 

the CpG dinucleotide context (5mCG). However, in mature human cortical neurons, 5mCH 

could account for more than half of cytosine methylation with between 2%−8% of CH sites 

methylated depending on neuronal types138.

The single-nucleus profiling of cytosine modifications reveals the epigenetic states at 

different genomic scales137. While the depletion of 5mCG and/or enrichment of 5hmCG 

at regulatory elements indicates a local epigenomically permissive state, the cell-type and 

developmental specificity of 5mCH can inform the epigenomic states of mega-scale regions 

such as topological associated domains, or intermediate -scale regions such as gene bodies. 

Existing single-cell methylome techniques provide sparse measurements at individual cell 

level typically covering 5% to 10% of the genome138. The aggregation of single-cell 

methylome profiles for identified cell types (pseudobulk) has been applied to reconstruct 

cell-type-specific profiles that are reminiscent of traditional bulk methylome profiles. The 

pseudobulk approach provides a reasonable approximation for steady-state cell populations 

in the adult brain but inevitably leads to the under-appreciation of ongoing cellular dynamics 

in developing brains. We anticipate that data imputation tools and trajectory inference 

algorithms that can effectively use sparse single-cell methylome profiles will expand the 

knowledge of methylation dynamics during brain development139.

The development of single-cell profiling techniques for 5mC and 5hmC has revealed the 

cell-type specific patterns of cytosine modifications in mammalian brains. The snmC-seq 

family assays were developed based upon earlier methods such as scBS-seq and provided 

significantly enhanced throughput allowing the generation of hundreds of thousands of 

single-cell methylome profiles138,140,141. SnmC-seq has also been extended to multiomic 

approaches including the joint profiling of chromatin conformation and DNA methylation by 

snm3C-seq and the simultaneous profiling of transcriptome, DNA methylation, chromatin 

accessibility by snmCAT-seq142,143. A method for single-cell profiling of 5hmC snhmC-seq 

was recently developed by integrating chemical protection of 5hmC by bisulfite conversion 

and selective deamination by APOBEC3A144. The absence of easy-to-use and commercially 

available assays has severely impeded the adoption of single-cell methylome methods. A 

recently developed combinatorial-indexing based approach sciMETv2 provides a feasible 

route towards commercialization145. Lastly, methods that can generate high-coverage 

methylome from a single cell, but likely from a smaller number of cells, could be useful 

for analyzing highly specific cell populations such as ones associated with a neural circuit in 

adult brains or daughter cells derived from asymmetric divisions during neural development.

Single molecule epigenomic assays—Finally, single-molecule epigenomic assays use 

high-throughput long-read sequencing technologies (e.g. Pacific Biosciences, or Oxford 

Nanopore) to make high-throughput single-molecule genomic measurements of chromatin 

accessibility146–150, as well as single-molecule sequencing of intact RNA isoforms151, at the 

resolution of single-cells152. Single-molecule chromatin accessibility profiling approaches 

allow one to ‘deconvolute’ the population averages provided by approaches like DNase-seq 
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and ATAC-seq – that is, one can explicitly map the presence of nucleosomes, transcription 

factors, and their respective co-occupancy patterns on individual DNA molecules.

For instance, it is now possible to identify heterogeneity of nucleosome positioning 

and transcription factor binding146,147, and has been informative in dissecting complex 

epigenome / regulatory pathways153,154. A key unmet challenge is currently the throughput 

of long-read sequencing and its cost, which are expected to be reduced in the coming years.

Data sharing, dissemination and visualization

Data sharing, dissemination, and effective visualization are crucial aspects of modern 

research, especially in the realm of single-cell data analysis, given the speed of the data 

generation, the need for large scale datasets for capturing the full complexity and diversity of 

cells in the brain, to ensure transparency and reproducibility.

One significant step towards enhancing transparency is the open sharing of code. Utilizing 

platforms like Jupyter notebooks allows researchers to share not only their results but also 

the entire analysis pipeline. This practice is particularly valuable for highly customized data 

analysis that extends beyond standard packages. It enables others to reproduce and validate 

complex analyses, fostering trust and collaboration within the scientific community. It is 

essential to follow best practices in documenting data analysis methods and parameters 

when using complex analysis packages. Ideally, there is a convergence to shared data 

formats and structures such as AnnData in single cell analysis, and first efforts for 

extensions via the Open Microscopy Environment (OME) Standard are recommendable155. 

Benchmarking algorithms is another vital aspect of advancing single-cell data analysis. By 

rigorously evaluating the performance of analysis methods, researchers can identify the most 

reliable and efficient tools for their specific research questions. This process contributes to 

the continuous improvement of analytical techniques and ensures the validity of scientific 

findings.

To further enhance the accessibility and usability of data, adhering to the principles of FAIR 

data (Findable, Accessible, Interoperable, and Reusable) is essential. Proper curation of 

patient and experimental metadata within datasets ensures that critical context accompanies 

the data, making it more valuable for researchers and promoting data reuse.

Data visualization plays a pivotal role in translating complex datasets into understandable 

insights. While shiny apps have initially been used extensively to allow exploration 

of single-cell data, various single-cell data portals, such as UCSC Cell Browser, Cell 

Annotation Platform and CELLxGENE, have made significant strides in democratizing data 

access and navigation. However, for these efforts to thrive and expand, there is a pressing 

need for broader community engagement and sustained financial support. Visualizing 

spatial genomic data, particularly datasets integrated with single-cell omics data, presents 

unique challenges. These datasets offer critical insights into the spatial organization of 

cells within tissues. To make this information more accessible to the research community, 

concerted efforts are required to develop online resources that facilitate data exploration and 

visualization.
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Overall, we see effective data sharing, documentation, visualization, and benchmarking as 

integral to the progress of single-cell data analysis. These practices promote transparency, 

reproducibility, and collaborations, and ultimately will lead to better understanding of 

complex biological systems.

Limitations of this perspective

Emerging genomic technologies have the potential to transform our understanding of 

nervous system development, structure, and function. This Review aims to discuss the 

challenges of designing studies that are rigorous, well-powered, and informative, and 

outlined several key applications including building atlases, uncovering disease processes, 

and predicting gene regulatory relationships. Clearly, applications of these technologies 

extend beyond those specific use cases, and space limitations required us to omit 

some details, particularly related to development and cross-species comparisons. These 

applications involve their own sets of opportunities and challenges that we regretfully could 

not cover in this article.
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Box1 Guidelines for data processing and quality controls in single-cell / nucleus 
RNA seq studies.

QC is an essential step in the analysis of sc/snRNASeq. Nevertheless, while too 

permissive thresholds might lead to technical artefacts such as false positives in 

differential gene expression (DGE) analysis and misclassification of cell types, too 

stringent parameters can lead to false negatives and failure to detect relevant biology. 

Thus, it is crucial to implement robust QC workflows before further downstream 

analysis. For cell QC, begin by excluding cell barcodes likely representing dead 

cell debris or free-floating RNAs (ambient RNA), as they don’t correspond to intact 

individual cells. A straightforward approach for assessing cell quality is calculating 

metrics such as the number of transcripts (unique molecular identifiers, UMIs), or 

detected genes. In practice, the number of UMIs and genes detected notably varies 

between brain cell types like microglia and neurons, and between datasets based on 

quality and sequencing depth. Hence, assigning a cell type- and dataset- specific 

threshold for filtering low-quality cells is important. This can be done by initial 

classification of cells to broad cell classes based on trained classifiers on existing 

datasets, and assessing the appropriate thresholds based on the distribution of number 

of detected genes within each cell class.

Another frequently used cell quality measure is the proportion of mitochondrial RNA, 

with high proportions possibly indicating damaged cells. Nonetheless, such high 

mitochondrial content cells should not be automatically excluded as they might signify 

metabolic changes such as increased mitochondrial activities or be informative in the 

context of neurodegenerative diseases. We recommend that mitochondrial content should 

be taken into account, but not used as the only exclusion criteria for low quality cells.

Conversely, cells with unexpectedly high counts may indicate doublets (or multiplets), 

where cell barcodes correspond to multiple cells. It is essential to remove doublets as 

they can constitute a significant portion of cell barcodes in high-throughput sc/snRNAseq 

methods. Yet we caution against frequently used filtration methods solely based on the 

number of detected transcripts, especially in complex tissues like the brain, as they are 

not accurate enough, while specialized algorithms that model doublet cells are much 

more robust (e.g. Scrublet175, DoubletFinder176, and scds177). Also, transitory cell states, 

which might present cell signatures of different cell populations and that are frequent in 

development and disease (companion paper I), might also be mistaken as doublets.

Ambient RNA transcripts, which are free-floating and barcoded with the cell/nuclei, can 

impact the cellular expression profile and potentially bias cell annotations and functional 

interpretations. Given the varying extent of ambient RNA, dependent on tissue quality 

and cell or nuclei isolation protocols, it is essential to evaluate each dataset individually. 

The ambient RNA can be corrected as necessary using methods like CellBender178, 

SoupX179 and DecounX180. We also recommend extracting signatures of ambient RNA 

directly from the data by compiling abundant transcripts in empty droplets, to assess the 

contamination within each dataset and to ensure that the corrected expression profiles 

remain undistorted.
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Furthermore, QC can be applied at the gene level although recommended only if the 

computational resources are constrained or the noise in the dataset is high. One can filter 

out genes with limited expression (i.e. detected in a small number of cells), by choosing 

an appropriate filtration threshold considering the number of cells expected from the 

smallest cell population. In addition, methods to identify informative genes and focus the 

analysis on this gene subset can be applied (such as variance stabilizing transformation).

Finally, data normalizing and corrections for technical features such as batch and sample 

quality are critical to exclude technical artifacts from the downstream analysis, yet 

over-correction and normalization could result in the loss of the biological signal. 

Thus, carefully examination of the data after correction is necessary, and comparison 

to reference atlases can be used as a benchmark.

It is important to note the evolving guidelines, especially for newer data types like 

single-cell epigenomics and spatial transcriptomics methods that have their unique pre-

processing and QC challenges that vary between platforms. As technologies mature, 

these challenges are expected to diminish. For example, in multiplexed in-situ methods, 

(e.g. Stomics, MERFISH, Xenium) the main challenge is image analysis, specifically 

cell segmentations and data to noise ratio. While, for in-situ sequencing-based methods, 

the main challenge lies in data resolution and coverage, which require more advanced 

computational techniques to deconvolute the expression signal to cell types and states, or 

find expression patterns based on communities of cells or based on the spatial gradient to 

the center of pathology.

Technical considerations and current limitations of Special Transcriptomics 
methods

Sequencing-based spatial transcriptomics (ST) technologies utilize RNA-sequencing 

to enable unbiased profiling of whole transcriptomes in tissues. Various methods 

differ across their cell/transcript capture approach, spatial resolution, throughput (i.e. 

sample size, number) and sensitivity. For example, whereas some methods directly 

capture transcripts from tissues (e.g. Visium181, Slide-Seq35, others spatially barcode 

cells or nuclei (e.g. Slide-Tags60) or tissue areas (e.g. DBiT-seq58, Nanostring CosMX/

GeoMX182) prior to sequencing. The major benefit of sequencing-based ST is the 

discovery-based analysis of cellular transcriptomes in situ. This can be applied to healthy 

or diseased neural tissue samples with little prior information about tissue architecture 

and without target gene selection or differential gene analysis from prior sc/snRNAseq. 

Many methods are readily scalable as they require minimal specialized equipment (e.g. 
Visium) and rely on standard histological methods and commercially available kits and 

sequencing reagents. The major limitations of these methods are summarized below:

Spatial resolution:

Most techniques do not offer true single cellular resolution as they profile multiple cells 

(e.g. Visium with 55 micron resolution) or transcripts from neighboring cells (e.g. Slide-

Seq with 10 micron resolution) in tissues. Hence, to perform cell-specific analysis akin to 

single-cell transcriptomics, they require computational deconvolution of cell type-specific 

information. This is often based on cell-type specific gene expression signatures extracted 
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from reference sc/snRNAseq studies43,44,46. Hence, it is important to choose a reference 

that matches the biological characteristics of the ST dataset such as brain region, cell 

type composition and disease states. For disease studies, paired single-cell/nucleus and 

spatial datasets might be necessary for accurate deconvolution. Recent developments 

such as VisiumHD and StereoSeq provide higher spatial resolution and could address this 

limitation, though computational pipelines that can segment these data to single cells are 

not well established. Some low level ST methods can have computationally enhanced 

resolution using Baysian statistical tools like BayesSpace183.

Tissue quality and assay performance:

Many sequencing-based ST methods are best applicable to fresh frozen tissue samples 

with high RNA integrity, which has been limiting for disease studies based on archival 

patient-derived samples. Yet, recent developments (e.g. Visium) extend sequencing-

based ST to formalin-fixed and paraffin-embedded (FFPE) samples through targeted 

sequencing of probes. There is no strong consensus yet on key tissue quality control 

metrics: RNA integrity, histological stains and correlation of ST data with bulk or 

single-cell/nucleus RNA-seq are generally used in the field. Given the variations in 

human brain biopsy quality and autopsy protocols, standardization and benchmarks are 

needed to assess tissue quality and compare different technologies. While many of the 

sequencing-based ST methods aim to reach whole transcriptome and gene coverage, in 

many cases the number of features per pixel/area is limited to few thousand unique 

reads and/or genes, which might thus give limited insights on the cellular and molecular 

composition of the areas investigated.

Imaging-based ST technologies utilize imaging to enable targeted analysis of transcripts 

in tissues. To image transcripts at high resolution, most methods utilize probe-based 

detection approaches derived from single-molecule fluorescent in situ hybridization 

(smFISH) or custom sequencing chemistries. As with sequencing-based ST, there 

are many imaging-based methods and they provide different levels of target gene 

multiplexing, detection sensitivity and specificity. For example, RNAscope in situ 
hybridization (ISH)184 can detect the expression of a few genes at high sensitivity, while 

high-multiplexed methods like MERFISH36, in situ sequencing (ISS)185, STARmap186, 

and Xenium187 use iterative cycles of labelling and combinatorial barcoding to 

simultaneously distinguish transcripts from hundreds to thousands of genes.

A major benefit of imaging-based ST is the high spatial resolution that can resolve 

single cells in tissues and even subcellular localization of targeted transcripts. Imaging-

based methods are truly orthogonal to sequencing based sc/snRNAseq technologies for 

validation of transcripts of interest, such as novel cell type markers or differentially 

expressed genes in disease. Another benefit of imaging-based ST is direct 3D 

intact-tissue imaging of thick samples when combined with hydrogel-tissue clearing 

techniques186. The major limitations of these methods are summarized below:

Ease of use:

High-multiplexed methods such as MERFISH and In Situ Sequencing (ISS) require 

specialized automated microscopy equipment and extensive image analysis (e.g. barcode 

decoding and cell segmentation) expertise36,186. Hence, their community uptake has 
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been limited compared to more convenient methods like RNAscope ISH or sequencing-

based Visium. Yet, several imaging-based ST methods were recently commercialized as 

end-to-end workflows automating data collection and low-level image analysis, such as 

the MERSCOPE system based on MERFISH5,9,86, Xenium system based on ISS188,189, 

and Plexa system based on STARmap186. These commercial solutions will likely play 

important roles in democratizing access to these technologies.

Method of choice:  Different methods present different trade-offs. MERFISH provides 

high detection sensitivity that requires high resolution imaging, and in turn, long image 

acquisition times for large tissue samples36. In contrast, ISS detects fewer transcripts 

per cell, likely due to the enzymatic steps used for signal amplification, yet can be 

performed at low resolution in a more scalable manner186. STARmap has higher signal-

to-noise ratio than smFISH and higher detection efficiency than ISS, but requires high-

end confocal microscope for 3D imaging. Finally, imaging-based technologies provide 

different error correction and detection capabilities36,186 which greatly influence the 

specificity of transcript assignment and false discovery rate.

Probe selection:  The curation of the probe panel is a critical step. Ideally, probe 

selection is guided by a sc/snRNAseq dataset of that tissue or condition to avoid optical 

crowding by highly expressing genes (i.e. the labelling of numerous transcripts in a given 

cell that obstructs optical identification of individual RNA spots) and include markers 

of diverse cell types or pathological cell states36. In the absence of prior sc/snRNaseq 

data, probe selection could involve trial and error. Furthermore, this process also needs 

to be tailored to the sensitivity of the given ST technology. While there are several 

computational tools to automate probe selection from sc/snRNA-seq references189,190, 

there is no strong consensus on panel curation approaches and it is often done in a hybrid 

fashion involving both manual and automated curation.

Protocol optimization:  While it is cumbersome, it is important to optimize ISH 

protocols (e.g. proteinase treatment, autofluorescence removal) on new tissue types and 

sample sources. Human brain tissue, given wide variability in tissue quality and high 

autofluorescence, could be challenging191.

Shortcomings of spatial transcriptomics approaches to inferring cell-cell 
interactions (CCIs).

Resolution of sequencing-based ST:

For CCI analysis, it is important to consider that most sequencing based ST methods do 

not provide cellular resolution and profile multiple cells at each spot. Hence, these data 

are not equivalent to sc/snRNAseq data for interaction analysis and should be treated 

as such. Cell type deconvolution preceding CCI detection (i.e. where interactions are 

inferred from spatially co-located from sc/snRNAseq profiles) or focused analysis of 

receptor-ligand transcript spatial co-localization are more appropriate analysis avenues 

for these datasets43,85.

Multiplexing levels of imaging-based ST:

While these methods provide single cell resolution in situ, targeted probe panel selection 

often imposes limits on CCI analysis as often only selected receptors and ligands 
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are profiled in these experiments. In addition, targeting of a limited number of genes 

means that the data should not be treated as equivalent to sc/snRNAseq so subsequent 

interaction analysis will also need to be treated as such. For example, CCI analyses that 

rely on the assumption that most genes are not interacting are best applicable to single 

cell full transcriptome datasets, where null distributions can be directly generated from 

the data. However, for imaging-based ST experiments, users may specifically select for 

receptors, ligands, hormones, and other proteins that are expected to be interacting.

Computational models:

Most CCI analysis tools were originally developed for suspension sc/snRNAseq data and 

do not incorporate true spatial information. Whereas ST can be used to prioritize CCI 

analysis results from sc/snRNAseq by identifying spatially co-located cell type pairs88, 

an active area of computational development is focused on inferring spatial effects of 

CCIs in ST such as the identification of neighbor dependent gene expression patterns192. 

Lastly, almost all models focus on discovering correlations of gene-expression. However, 

models which build in causality (i.e. GRNs) may allow for more accurate hypothesis.

Long-range cellular interactions:

Short-range interactions can be robustly captured by ST but medium to long-range 

interactions, especially at axonal/dendritic processes of neurons or oligodendrocyte 

processes, complicates cell communication analysis in the nervous system. This 

challenge could be addressed by integration of ST with viral tracing methods.
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Figure 1. 
Biological considerations: cellular architecture and research questions. Emerging single 

cell atlas studies have created reference resources for defining cell types in normal and 

pathological brain tissue. Cell types and states defined by these studies exist in complex 

and dynamic communities in vivo and more disease associated states and types may 

emerge in the future. Advent of spatial transcriptomics technologies helps to define cellular 

neighborhoods and identify candidate networks of molecular interactions, while advanced 

single cell genomic technologies can provide insights into dynamic intracellular pathways 

underlying cellular transitions.
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Figure 2. 
Outline of key considerations involved in designing high-throughput single-cell and spatial 

transcriptomics studies.
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Figure 3. 
Outline of computational design of high-throughput single-cell/nucleus and spatial omics 

studies. TF - Transcription factor; CHIP - chromatin immunoprecipitation.
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Figure 4. 
Epigenomic technologies. a) Overview of the major modalities regulating gene expression 

currently studied using high-throughput single cell technologies. b) Summary of key single-

cell epigenomics technologies. Tn5 – hyperactive Tn5 transposase, Me – methyl group, Ac- 

acetyl group.

Bonev et al. Page 35

Nat Neurosci. Author manuscript; available in PMC 2025 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1 Fig. 
Quality control (QC) in sc/snRNAseq involves evaluating both cells and genes.
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Table 1.

Common Gene Regulatory Network (GRN) Tools

Method Description Advantages Pitfalls Available tools

Correlation-
based

These methods, are based 
on calculating the correlation 
coefficient (e.g. Pearson correlation 
or Spearman rank correlation) 
between pairs of genes across 
multiple samples

Simple and 
computationally efficient

Cannot capture complex 
regulatory relationships 
and cannot differentiate 
between direct and indirect 
interactions

SCENIC33/
SCENIC+107, 
GENIE3156, 
PPCOR157, LEAP158

Regression-
based

These methods model the expression 
level of a gene as a function 
of the expression levels of other 
genes. Techniques include linear 
regression, LASSO, and ridge 
regression.

Can capture direct 
interactions

They may not handle non-
linear relationships

GRNBoost2159, 
SINGE160

Information 
theory-based

Use measures such as mutual 
information to infer relationships 
between genes

Can handle non-linear 
relationships and can 
differentiate direct from 
indirect interactions

May have difficulty with 
high-dimensional data

ARACNE161, 
PIDC162, SCRIBE163, 
and CLR164

Bayesian 
network

Probabilistic graphical models that 
represent the dependencies among a 
set of variables

Can model complex 
relationships and 
differentiate direct from 
indirect interactions

May have difficulty with 
large networks as they are 
computationally intensive

GRNVBEM165, 
BANJO166 and 
BNFinder167,168

Boolean 
network

Model gene expression as on/off 
states and gene interactions as 
logical functions

Computationally efficient 
and can handle large 
networks

Oversimplify gene 
expression and cannot 
capture graded changes in 
expression levels

SCNS169

Traditional 
Deep learning

Interpret gene regulatory networks 
from sc/snRNAseq data and deduce 
causal relationships between genes

Can handle complex, non-
linear relationships and 
high-dimensional data

Require large amounts 
of data and can be 
computationally intensive

CNNC (Convolutional 
Neural Networks 
for coexpression)170, 
Foundation models171

Emerging 
Deep learning

Based on foundation models, i.e. 
deep learning models trained on 
vast amounts of data in an self-
supervised fashion 172. Emerging in 
single cell transcriptomics as well 
171, based on transfer learning from 
reference atlas and expand beyond.

The attention mechanisms 
in the employed 
transformer architecture 
reflect the underlying 
GRN structure.

Only in early stages. 
Require large amounts 
of data and can be 
computationally intensive

A single 
cell transcriptomics 
transfer learning based 
GRN model171

Differential 
equations

Model gene interactions as a system 
of differential equations

Can model time-
dependent changes in 
gene expression

Require time-series data 
and can be computationally 
intensive

SCODE173, GRISLI174
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