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Molecular diversity and amino acids evolution in simulated carbonaceous chondrites parent bodies.

A. Garcia', Y. Yan*®, C. Meinert®, P. Schmitt-Kopplin*®, V. Vinogradoff*, J-C Viennet>®, L. Remusat®, S.
Bernard®, M. Righezza', L. Le Sergeant d’Hendecourt®, G. Danger"”"

! Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France

2 Helmholtz Zentrum Miinchen, Analytical BioGeoChemistry, Neuherberg, Germany.

® Technische Universitat Miinchen, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany.
* Université Cote d’Azur, Institut de Chimie de Nice, UMR 7272 CNRS, F-06108 Nice, France

® Muséum National d’Histoire Naturelle, Sorbonne Université, UMR CNRS 7590, Institut de minéralogie, de
physique des matériaux et de cosmochimie, Paris, France

® Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, F-
59000 Lille, France

" Institut Universitaire de France (IUF), France
*gregoire.danger@univ-amu.fr
ABSTRACT:

Organic matter in interplanetary bodies, particularly in parent bodies of carbonaceous chondrites, displays
diverse molecules generated in different environments of the Solar nebula. In this study, we simulate the solid
phase environment in the laboratory to trace the step-by-step evolution of organic matter from dense molecular
cloud ices to processes in meteorite parent bodies. This evolution have shown to lead to an important molecular
diversity. Among molecules formed, we focus on amino acids considered as possible chemical tracers of
secondary alteration on asteroids. Using gas chromatography and high-resolution mass spectrometry, we
detected amino acids in trace amounts in a pre-accretional organic analog formed from dense molecular ice
analogs. This analog was then subjected to aqueous alteration at different temperatures and durations. Water
induced a complex reactivity leading to increased formation of a- and B-amino acids over time. The initial
formation involved reactions between sugars and amine compounds, followed by amino acid destruction, due to
the Maillard reaction consuming both sugars and amino acids, hypothesis supported by high resolution mass
spectrometry data. Surprisingly, a second phase of amino acid formation, specifically a-amino acids, was
observed, indicating the possible occurrence of the Strecker reaction. These findings demonstrate the complex
chemical network occurring in presence of a molecular diversity as possibly taking place during parent body
alteration. This implies that amino acids detected in various meteorites could have formed through different
pathways depending on the initial content of amino acid precursors and on the level and duration of the aqueous
alteration.

Keywords: amino acids, GC-FT-Orbitrap-MS, gas chromatography, high-resolution mass spectrometry, ice
analogs, meteorite.

1. INTRODUCTION

Studying comets and asteroids can provide insight into the origins of our solar system *. These objects are

believed to have undergone minimal alterations since their formation #, making them valuable probes of the early
history of the solar system. Space probes such as Rosetta have analyzed the organic content of comets like
67P/Tchourioumov-Guerassimenko and found a high molecular diversity, including both organic and inorganic
compounds %, The Hayabusa2 mission also discovered a significant molecular diversity on the surface of the
Ryugu asteroid *, with amino acids ® and nucleobases ® being identified through targeted analyses. Additionally,
carbonaceous chondrites provide information on the organic content of asteroids’, with up to 5% of their weight
being organic matter divided into insoluble and soluble fractions. Both fractions present an important molecular
diversity °. The insoluble fraction may consist of hydrophobic macromolecules interacting with smaller
hydrophobic molecules °, while the soluble fraction presents the highest molecular diversity, containing
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47 polyaromatic hydrocarbons, sugars, nucleobases as well as amino acids ***%, Some of these amino acids have
48 been detected with slight enantiomeric excesses, which could provide a possible scenario for the emergence of
49 homochirality on Earth. These meteoritic amino acids may also serve as markers of chemical evolution of parent
50  bodies ' as different chemical reactions can lead to their formation depending on their configuration,
51 precursors, and/or environment.
52 However, meteorites only reveal the final stage of evolution of their parent body history. Laboratory experiments
53 have been developed to obtain a comprehensive understanding of the origin and evolution of organic matter in
54  asteroids and comets. These experiments simulate the evolution of dense molecular cloud ices that occurred
55 during the formation and evolution of the solar nebula. Small molecules like H,O, NH;, CH;0H, CO,, and CO
56  are deposited onto a cold substrate to form an analog of interstellar ices observed in dense molecular clouds.
57  When these ice analogs are exposed to energetic particles, such as UV photons at Lyman a., ion or electrons
58 bombardment, and subsequently warmed to 300 K to simulate the natural evolution of minor bodies in the solar
59  system, a significant molecular diversity is generated *°. Targeted analyses of these experiments have detected
60  nucleobases *"*8 sugars * and amino acids *°; suggesting that the protoplanetary disk were already rich in
61 organic molecules before accretion. Comparisons between the amino acid content of such pre-accretional
62 laboratory analog and CM meteorites recovered after the same treatment with acid hydrolysis at 100 °C, a
63 procedure generally used to recover amino acids in meteorites, reveal similarities between that pre-accretional
64 laboratory analogs and the least altered CM chondrites %*. However, pre-accretional analogs still differ from the
65 organic content of meteorites ** likely due to the secondary evolution happening in the meteorite parent bodies
66 that influences the molecular inventory.
67  To simulate this evolution, pre-accretional ice analogs were subjected to aqueous alteration in laboratory
68 experiments. This resulted in the complete transformation of its molecular content % while retaining molecular
69 diversity. In this contribution, new experiments are presented on the simulation of the formation and evolution of
70 organic matter from molecular ices in dense clouds to its incorporation inside asteroids, where it may have
71 undergone an aqueous reaction. In this study, the evolution of amino acids was monitored depending on
72 temperature and duration of experiments to obtain information on chemical pathways leading to amino acids in
73 the presence of a high molecular diversity. Analyses were performed using a gas chromatography coupled to
74 high-resolution mass spectrometer (GC-FT-Orbitrap-MS). The amino acids were initially searched for in the pre-
75 accretional analog, and after its incubation at different temperatures (5 °C and 150 °C) for up to 100 days.
76 Different evolution patterns were observed based on the amino acid configurations (o vs. ), suggesting distinct
77 chemical pathways occurring at various times. FT-ICR data from our previous work * were also used to
78  strengthen hypotheses of proposed reaction.
79  2.RESULTS
80 A pre-accretional analog was formed from a photo-processed ice mixture of H,O:CH3;OH:NH; with a ratio of
81 3:1:1 at Lyman o and 77 K. The experimental procedure leads to the formation of an important molecular
82 diversity as demonstrated by previous work . GC-FT-orbitrap-MS was used to identify amino acids following
83 their derivatization **. To avoid any analytical bias due to potential contamination of biological L-amino acids,
84 only the D form of chiral amino acids was reported here, utilizing enantioselective separation.
85
86 Table 1 — Amino acids identified in the pre-accretional analog before (stored at -30 °C) and after different
87 chemical treatments, ( with 6N HCI at 110 °C, in pure H,O at 5°C or 150°C for 1 or 150 days). id:
88 identified/non-quantified, nd: non-detected.
Pre-accretional analog
configuration o H,O H,O
Amino » 6N HCl110°C 5°C 150 °C
acids ‘:[to_rgoo Cr’)‘/ 1 day c 100 days c 1 day c 100 days c
#C | aorp concentration | (%) | concentration | (%) | concentration | (%) | concentration | (%)
(M) (M) (M) (M)
glycine 2 o id 536x10- % [ 37| 7.70x1007 | 26 323x10"° | 1.2 | 1.85x10"°> | 0.5%
D- 3 o nd 9.27x10-°> | 23| 3.80x10- " | 2.0 1.34x10-° | 46 | 254x10"° | 6.5%
alanine
B- 3 B id 1.08x10"° | 46 id 211x10°° [ 7.2 nd




alanine
sarcosine | 3 a id 2.09x10-° | 23| 1.01x100 " | 37 1.58x10- ° 45 | 1.69x10-° 2.8
D-2-ABA | 4 a nd 2.41x10° ° 1.7 nd id 2.01x10" ' 5.0
D-3-ABA | 4 B nd id nd id nd
D- 4
aspartic o id id id id nd
acid
D-valine 5 o nd id nd nd id
D-leucine 6 o nd id id nd id
89  * The pre-accretional analog was stored at -30 °C under dry condition to limit is potential evolution.
90 Initially, the presence of only four amino acids (glycine, B-alanine, sarcosine and D-aspartic acid) was detected in
91 the untreated pre-accretional analog (stored in dry conditions at -30 °C). A fraction of this analog sample was
92 incubated in water at 5 °C, resulting in an increase of detected amino acids after 100 days. D-alanine and D-
93 leucine were additionally detected to the initial four amino acids, while the concentration of glycine and B-
94  alanine also increased significantly (estimated at six times for glycine) (Figure 1). This observation indicates that
95 the pre-accretional analog is highly reactive even at low temperature and contains amino acid precursors. After
96  just one day of reaction simulating aqueous alteration at 150 °C, seven amino acids were detected, including
97 glycine, D-alanine, B-alanine, sarcosine, D-2-ABA, D-3-ABA, and D-aspartic acid, but larger a-amino acids, D-
98  valine and D-leucine, were not observed. The concentrations of D-alanine and B-alanine were multiplied by ten,
99 and that of glycine by 100 compared to 100 days at 5 °C (Figure 1). After 100 days at 150 °C, D-valine and D-
100 leucine were observed, but 3-amino acids and D-aspartic acid were no longer detected (Table 1). A fraction of
101  theinitial pre-accretional analog was also treated with 6N HCI at 110 °C for 24h, which is commonly performed
102  to investigate amino acids in water extracts of meteorites. This treatment led to a significant increase in the
103 number and concentration of detected amino acids compared to the untreated sample (Figure S1). All previously
104  identified amino acids were present, including glycine, D-alanine, B-alanine, sarcosine, D-2-ABA, D-3-ABA, D-
105 aspartic acid, D-valine and D-leucine. Moreover, their concentration increased significantly compared to the non-
106  treated sample (Figure S1). This proves that the pre-accretional analog, as well as water extracts of meteorite,
107 contain amino acid precursors that can easily undergo hydrolysis.
3 B 100 days dry -30°C
24 | 1100 days H20 5°C
Il 1 day H20 150°C
Z 100 days H20 150°C £
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109 Figure 1 — Concentration of D-alanine, B-alanine and glycine for the initial pre-accretional analog (stored
110 at -30 °C under dry condition), and after 100 days in water at 5 °C or 150 °C. B-Alanine and glycine in the




111
112

113
114
115
116
117
118
119
120
121
122
123
124

125

126

127
128
129
130
131
132
133

134

135
136
137
138

139
140
141

pre-accretional analog (dry at -30 °C) are dashed because their detected peak areas are below the
guantification limit.

The evolution of the time profile of the amino acids presented in Table 1 was monitored at a temperature of
150 °C. The only amino acids that could be quantified were glycine, D-alanine, sarcosine and B-alanine. For the
remaining amino acids, only a qualitative profile based on absolute intensities is discussed. Figure 2 and S2
depict the overall evolution of amino acids (in concentration or absolute intensities), revealing three distinct
evolution profiles. A rapid increase in amino acid abundances occurs during the first 3 days of incubation, with
the exception of D-valine and D-leucine, which were not identified. After one day for glycine and 3 days for
other amino acids, there was a significant decrease in their abundance. Notably, after 10 days of incubation, the
evolution of amino acids varied depending on their configuration. The B-amino acids, such as B-alanine and D-3-
ABA, tend to disappear completely, while a-amino acids present a new increase in their abundances, including
the notable emergence of D-valine and D-leucine. Only a-aspartic acid showed a similar profile to $-amino acids.
After 30 days of incubation, D-valine and D-leucine tend to decrease, while other a-amino acids continue to
increase. These distinct evolution patterns suggest the occurrence of various chemical pathways.
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Figure 2 -Monitoring of several amino acids in a pre-accretional analog incubated in water at 150 °C. The
different phases of amino acid evolution are also indicated as @O, @ and ®. More details on these different
phases are discussed in the main text. For glycine, alanine, sarcosine and B-alanine, quantifications are
performed by following the procedure published in Garcia et al. 2023. For valine and leucine with
abundances lower than their LOQ, only the qualitative evolution Ay/As) of their relative integrated area
(Aw) to the one of internal standard (As)) are displayed. The dotted lines are reported solely as a visual
guide.

3. DISCUSSION

The organic material of the pre-accretional analog is highly reactive and efficiently evolves in the presence of
water, as demonstrated by the experiment in H,O conducted at 5 °C and 150°C. There is a significant chemical
evolution at the molecular level. The high molecular diversity of the analog *° results in various chemical
reactions, affecting amino acid formation.

The initial analog (stored under dry condition at -30 °C) exhibits a low diversity and abundance of amino acids.
Glycine, B-alanine, sarcosine and aspartic acid are only detected as trace amounts below their limit of
quantification. These amino acids are directly related to the photo-processing of the initial ice and its subsequent
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warming to room temperature. The formation of glycine in ice analog can occur following different pathways. It
may occur through ice processing via the transformation of methyl carbamate into glycinate salt under UV
irradiation (Figure 3A) ?*%' as supported by the detection of methylamine in pre-accretional analogs 2. No
investigation has been conducted on the formation of the other three amino acids, making it difficult to propose
hypotheses about their formation mechanism in such ices. The Strecker synthesis has been shown to occur
partially during photo-processing and heating of ices, since its last step, which consists in the hydrolysis of the
amino nitrile, is not possible in these conditions due to a high energy barrier 2=, which prevents the formation
of glycine. Nonetheless, radical and thermal chemistries is likely to play an important role in their formation
(Figure 3B) 3%,

Ice chemistry

A
S
®0 H 0" ®
RNH; OTN\ L HZN/\“/ NH;R
o) O
methylcarbamate salt glycinate salt
B .
. € o
H,N—CH, + 0=C=0 ——» HZN/ﬁr
0
glycine

Figure 3 — Potential chemical reactions occurring during the initial processing of interstellar ice analogs
and leading to the formation of glycine formation. The reaction occurs at low temperature (77 K) and
pressure (10 mbar) under UV irradiation at 121 nm.

After incubating the analog in water at 150 °C, a rapid increase in amino acid abundances was observed, except
for D-valine and D-leucine, which appear only after 30 days. If the Strecker synthesis would be involved in
amino acid formation, the absence of valine and leucine within the first 30 days suggests that this process alone
cannot explain the formation of a-amino acids. In addition to glycine, D-alanine, sarcosine, D-aspartic acid and
B-alanine are also formed, which may be the result of the reaction of carbohydrates present in the analog *3*%
with ammonia or methylamine (Figure 4). This scenario is strengthened by kinetic profiles that show the
involvement of carbohydrates in amino acid formation from a formaldehyde mixture at high temperatures *. A
rapid increase of amino acid formation is also observed followed by a rapid decrease of amino acid abundance in
the same time range as observed in our experiment. In this scenario, glycine and sarcosine can be formed from
glycolaldehyde (Figure 4A) *°, whereas p-alanine could arise from the reaction between glyceraldehyde and
ammonia. D-alanine can be produced by isomerization of dihydroxyacetone, which reacts with ammonia (Figure
4B). Aspartic acid can be formed by the reaction of ammonia with erythrulose (Figure 4C). D-2-ABA and D-3-
ABA can be generated also from sugars or sugar acids *.
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Figure 4 — Potential chemical reactions leading to a- and B-amino acids during the early stages of
incubating a pre-accretional analog in water at 150 °C.

Following a 3-day incubation period (phase 2, Figure 2), there is a strong reduction in the abundance of amino
acids, suggesting that the previous reservoir (phase 1, Figure 2) of amino acid precursors has been either
consumed or destroyed. A such strong decrease cannot be explained only by amino acid degradation leading to
CO,and NHj release **“°. Reactions between amino acids and other compounds like urea ** can occur, leading to
the formation of carbamoyl amino acids that give back amino acids “>**. However, to explain this profile, a
simultaneous consumption of amino acid precursors and amino acids may be required. A potential explanation
would be the Maillard reaction (Figure 5), where amino acids react with sugars leading to the consumption of
both amino acids and sugars *.

To verify this hypothesis, stoichiometric formula of products resulting from the Maillard reaction (Amadori
product (ARP), Figure 5) where searched in high-resolution mass spectrometry data of the same samples (data
published in Danger et al. ). Table S1 shows the possible ARPs and their sum formulas based on the expected
reaction between the experimentally found amino acids (alanine/sarcosine, glycine, aspartic acid, valine, leucine,
2-ABA, 3-ABA) and reducing sugars with basic CH,O unit from 2 to 6. All potential formulas were found in the
experimental data during all the hydrothermal process. ARPs are already present in non-negligible amounts in
the original pre-accretional analog that was conserved at -30°C (Figure S5). Keeping the original sample in water
at cold temperature (5°C) changed slightly the concentration of the ARPs, some being degraded, others being
produced. The kinetic from 1 day to 100 days at 150°C showed a combined effect of (i) disappearance of the
ARPs, further engaged in reactions and (ii) further reactivity of the amino acids with reducing sugars in heated
solution, following Maillard reactions and leading to the same ARP. At the beginning of the reaction, the
hydrothermal process generated more ARPs, due to the reaction of the amino acids with the present reducing
sugars (Figure S6). Interestingly, the profiles of the ARPs follow the profiles of the amino acid concentration in
the first 30 days of the process in similar phases 1, 2, 3 and confirm the differential kinetics in the formation of
novel amino acids via the Strecker reaction and their relative consumption and successive formation of ARPs via
the Maillard hydrothermal reaction. After 30 days of processing, the formation of ARPs decreased due to the
limited availability of precursor-reducing sugar. As the degradation of ARPs continued, their intensity kept
decreasing. It has to be noted, that while with GC-FT-OrbitrapMS analyses, valine is not detected, FT-ICR-MS
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analyses suggest the formation of its ARP product at low duration, which is not the case for leucine. It seems that
valine is also present in the initial pre-accretional analog.
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Figure 5 — Maillard reaction may lead to amino compound degradation during Phase 2 with incubation of
a pre-accretional analog in water at 150 °C. Reducing sugar can react with the amine group of amino
compounds to form a Schiff base, followed by the Amadori rearrangement to an Amadori product (ARP).
Decomposition of ARP by fragmentation of the carbohydrate backbone can generate various a-
dicarbonyls. Only a-amino acids can undergo a-dicarbonyls-assisted oxidative decarboxylation and form
aldehydes, which could form some a-amino acids at Phase 3 by Strecker reaction. a-dicarbonyls can also
react with amino compounds to produce stable advanced glycation end products (AGES).

After ten days of incubation, a new evolution of amino acid formation occurs. This phase 3 is characterized by
the formation of only a-amino acids, including glycine, D-alanine, D-2-ABA, sarcosine, D-valine and D-leucine,
while D-aspartic acid disappears completely, along with 3-amino acids (B-alanine and D-3-ABA). This implies a
chemical reaction specific to the formation of aliphatic a-amino acids, such as the Strecker synthesis (Figure 6),
which is known to produce a-amino acids during aqueous alteration in meteorite’s parent bodies *>°. During the
first days of incubation, the aqueous alteration causes a transformation of the initial molecules of the pre-
accretional analog %, leading to the formation of aldehydes, NH; and HCN into the aqueous environment. As
previously noted, some aldehydes may be formed from Strecker degradation or Amadori rearrangement products
4647 of the Maillard reaction occurring in Phase 2 (Figure 5). Aspartic acid is not formed after ten days, which
indicates that its aldehyde precursor is not available or that aspartic acid is present at a concentration below our
detection limit. Different intensity profiles are observed for a-amino acids, with D-valine and D-leucine showing
a decrease in abundances after 30 days of reaction, while other ai-amino acids continue to rise. This could be due
to the limited availability of aldehyde precursors for valine and leucine compared to formaldehyde and
acetaldehyde for glycine and alanine, respectively. Generally, the formation of aldehydes and their precursors
from the initial ice photo-processing involves free-radical chemistry, which leads to a decrease in compound
abundance with an increase in carbon number and ramification “. Therefore, the initial abundance of more
complex aldehydes and their corresponding amino acids is expected to be lower than that of simpler a-amino
acids.
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Figure 6 — Strecker reaction likely occurring during phase 3, resulting in the formation of only a-amino
acids.

A fraction of the precursors of organic matter found in carbonaceous chondrites is believed to originate from
dense molecular cloud ices “***. This scenario is strengthened by analyses of samples returned from the Ryugu
asteroid *. However, the present experiments demonstrate that these ices can only generate a limited diversity
and quantity of amino acids due to insufficient available energy. Investigations into the Strecker synthesis of a-
amino acids from these ices has demonstrated this limitation 3°2°*, Therefore, by considering only ices, the total
amount of amino acids incorporated inside parent bodies of carbonaceous chondrites is expected to be low.
Nonetheless, one must emphasize that the high molecular diversity generated during the ice processing present
numerous amino acid precursors 3% next to others sources of amino acids possibly present in the disk.

This pre-accretional organic matter is highly reactive and is susceptible to undergo a secondary evolution inside
meteorite parent bodies, as shown by laboratory experiments *°. Meteorite analyses have indeed demonstrated
that aqueous alteration has occurred within their parent bodies *®°, a fact confirmed by the analyses of samples
returned from the Ryugu asteroid “®*. As shown in this work, when a pre-accretional organic analog is placed in
water according to this alteration scenario, its molecular diversity evolve # and leads to the formation of
numerous amino acids, with increasing formation rates as the temperature increases. Furthermore, depending on
the time of aqueous alteration, different chemical pathways occur leading to variation in abundances and types of
amino acids. Other targeted analyses on amino acids on similar analogs altered at 125 °C showed also weak
evolution of several amino acids %. The concentration of a-amino acids (glycine, alanine and serine) tends to
increase with time, while the concentration of B-alanine decreases. Trends observed in Qasim et al. are less
pronounced than in our experiment, probably because of the differences of experimental conditions compared to
our conditions, since they use lower temperatures (125 °C vs. 150 °C) and lower duration experiments (30 days
vs. 100 days). In this evolution, sugars play an important role in amino acid formation at short durations or low
temperatures, as shown here, whereas the Strecker synthesis plays this role at longer durations. Since amino acid
precursors differ between these two reactions, the amino acids finally formed differ in content and amount. At
short reaction times, small a.-amino acids (glycine, alanine, sarcosine, 2-ABA) are formed, along with -amino
acids (B-alanine, 3-ABA). At longer durations, 3-amino acids disappear entirely, and more complex o-amino
acids are formed. Further experiments are needed to monitor the evolution of sugars in order to compare it with
the evolution of amino acids to definitively validate this scheme. The present experiment indicates that the
complexity of amino acids observed in carbonaceous meteorites and asteroids probably originated from
secondary processing, and not directly from the ice chemistry, and depends on the molecular diversity generated
from the initial ice. The formation of amino acids in such object is thus related to a complex chemical network
has observed in our present experimental work.

However, the laboratory study of the evolution of the pre-accretional analog in an aqueous environment suggests
that a higher presence of B-amino acids should indicate a lower aqueous alteration, while a higher presence of a-
amino acids on longer alteration period. For instance, higher -alanine/glycine are observed at lower degree of
alteration of pre-accretional analogs (Table 1). This finding is corroborated by similar aqueous alteration
experiments performed by Qasim et al. 2 on a similar pre-accretional material. At the contrary, in meteorites, it
is proposed that lower degree of aqueous alteration favors the presence of a-amino acids via the Strecker
synthesis, while higher degree of alteration enhances the presence of 3-amino acids compared to a-amino acids
216263 Therefore, higher B-alanine/glycine ratios are observed for more aqueous altered meteorite. These
discrepancies could be due to factors as the influence of minerals (absent in our experiments), different alteration
timeframes, or additional origins of amino acids or their precursors. Further experiments have to explore these
hypotheses.

4, MATERIAL AND METHODS
4.1 Chemicals and solutions

For amino acid analyses, each amino acid standard was prepared individually and then mixed together in 0.1 M
hydrochloric acid (HCI) to obtain a stock solution of 10~ * M. Serial dilutions were prepared for calibration
curves. The 0.1 M HCI solution was prepared by diluting 6N HCI (specific ampoule for amino acid analysis,
Merck) in ultra-pure water produced by a Direct-Q® 3 UV water purification system. All amino acids and
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4.2 Derivatization procedure

Amino acid solutions were derivatized into their N (O, S)-ethoxy-carbonylheptafluorobutylester (ECHFBE)
derivatives according to the protocol developed by Meinert et al. ®. In a conical reaction flask (Reactivial,
Thermo Scientific™), a 10 pL volume of aqueous amino acid solution in 0.1 M HCI reacted with 3.8 pL of
2,2,3,3,4,4,4-heptafluoro-1-butanol and 1.2 uL of pyridine. After 15 s of stirring, 1 puL of ethyl chloroformate
were added and the resulting solution stirred vigorously for 15 seconds. The ECHFBE derivatives were extracted
with 10 pL of a 10~ ®M methyl laurate (internal standard) chloroform solution. The organic phase containing the
ECHFBE derivatives was then transferred into 1 mL GC vials equipped with 100 L inserts for GC-FT-
Orbitrap-MS analysis. Note that this derivatization method does not provide identical yields among different
amino acid groups, especially discriminating o, a-dialkyl amino acids as well as y-amino acids %%, Each sample
was injected in triplicate to obtain information on the instrument repeatability.

4.3 Post-analysis data processing

All data were acquired in TIC and processed with Qual Browser Xcalibur. For each amino acid, the search and
identification was performed by mass extraction, based on the retention time and a specific mass/charge ratio
(m/z) for each amino acid (amino acid databases %). The monitoring of amino acid profiles was performed by
integrating the characteristic ion of each amino acid A(x) divided by the integrated area of the internal standard
A(IS), A(X)/A(IS). To correct for possible contamination, the values obtained were subtracted from a
derivatization blank, which consists in 0.1 M HCI solvent used for the dilution of the amino acids, to which the
derivatization step was applied. Corrected data result in A(X)/A(1S)-A(X)s/A(IS),. Only concentrations of amino
acids that are equal or above the quantification limit are indicated 2°, while amino acids whose values are
between detection and quantification limits are only indicated as identified.

4.4 Synthesis of pre-accretional organic analogs to post-accretional organic material

A pre-accretional organic analog was formed from an ice including H,O, **CH;OH and NH; in proportion of
3:1:1. The corresponding gas mixture was deposited in a stainless steel chamber on a copper cold finger at low
pressure (10~ ” to 10~ ® mbar) and low temperature (77 K) forming an ice, analog to the ones observed in dense
molecular clouds on silicate grains®. The ice formation was concomitant to its irradiation with a dihydrogen UV
microwave discharge lamp (mainly emitting at 121 nm) to simulate stellar radiation. After 72 h of deposition and
simultaneous irradiation, the photo-processed ice was slowly heated to 300 K to obtain an analog of pre-
accretional organic matter. Aqueous alteration experiments were conducted with 100 uL of the pre-accretional
analog dissolved in milli-Q water at a concentration of 1 g L™ (more details in Danger et al. 2021 %). Sealed
gold capsules were hold at 5 °C (100 days) or 150 °C for varying length of time (1, 3, 10, 30 and 100 days). The
pressure inside the reactors was not monitored and should correspond to the vapor pressure of water, i.e. up to 5
bars at 150 °C. At the end of the experiments, 10 pL of the 100 L solution was used for amino acid analyses
following the procedure described in section 2.2. Furthermore, one fraction of the initial pre-accretional analogue
solution was dried and stored at -30 °C and directly converted into ECHFBE derivatives forming the non-altered
sample. Another fraction was recovered in 6N HCI to be hydrolyzed during 24 h at 110 °C followed by the
ECHFBE derivatization.

4.5 GC-FT-Orbitrap-MS configuration

Analyses were performed on a Trace 1310 gas chromatograph (GC) coupled to a Q-Exactive Orbitrap™ mass
spectrometer (MS) from Thermo Fisher Scientific operated at PIIM. Injections were performed with an auto-
sampler (Al 1310 from Thermo Fisher) in splitless mode (splitless time: 1 min) with an injector temperature of
230 °C. Helium was used as carrier gas with a flow rate of 1 mL min~ * and a purge rate of 5.0 mL min~ .
Amino acids were separated on two Chirasil-L-Val columns (each 25 m x 0.25 mm x 0.12 um film thickness,
Agilent) connected with a Valco connector. The duration of the oven temperature program was 90 min with a
solvent delay of 14 min. The optimized temperature program was as follows: 40 °C for 1 min, then increased to
80 °C with a slope of 10 °C min~ * during 10 min then 2 °C min~ * to reach 190 °C with an isotherm during 20
min. The transfer line was set at 250 °C. The m/z range was 50—400 with a FWHM resolution fixed at 60 000, a
target AGC value at 10° and a max IT at 200 ms. Electron impact ionization was used at 70 eV.
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17



RT: 36.17 - 40.46 SM: 15G

E

B-alanine (270.03579 m/z)
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pL-leucine (158.11718 m/z)
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sarcosine (116.07061 m/z)
RT 2094-2634 SM 15G
2307
H,
0
0 2133
100 B3 a7
50
0 2324
100 .
/ 2336
50 |
360
- 2379 2399 2419 2447 2466 24.88 25,62
g 100 312
k]
5
< 50
°
% 0 2351 2367 2385 2413 2435 2451 2478 2506 2522 2550 2577 26.19
T
@ 100 2“\1 2339
"4 A N\
23,52
50 / Tl me,,
0 / s, 2408 2430 2472
100 221 B¥ 235
[z
50 / 2353
=27 230
0 / 2386 2412 2441
100 2323
[N 2333
50 ,f 2341
/ 2354 2365
/ ~— ' 2386 2414 2430 2463 2479 2504 2537
e . S R L ——
210 215 220 225 230 235 240 245 250 255 260
516 Time (min)

Derivatized
blank

Aire:

d:nd
|:3.06E+04
0 day

Aire:

d:nd

|: 7.00E+03

1 days
Aire:
d:nd
I:2.01E+07
3 days
Aire:

d: nd
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pL-valine (144.10149 m/z)
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518 Figure S4 - Chromatograms of the different amino acids monitored during the aqueous alteration of pre-
519 accretional organic analog at 150 °C under 6 bars for different duration (0 day corresponds to the initial
520 pre-accretional analog, 1, 3, 10, 30 and 100 days). All data are mass extraction of the characteristic mass
521  of a given amino acids on full scan. Are also reported the derivatized blank with the extracted mass
522  corresponding to the one of the amino acid monitored. n.d: not detected, n.q: detected but under the limit
523 of quantification. (A) DL-2-ABA, (B) DL-3-ABA, (C) DL-alanine, (D) bL-aspartic acid, (E) B-alanine, (F)

524
525

glycine, (G) bL-leucine, (H) sarcosine, and (I) bL-valine.
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1 day|3 day|10 day)|

Theoretical Neutral 100 days{100 day|H20 H20 H20 30 day H20|100 day H20
m/z Exp. m/z [formula Amadori rearrangement product (ARP) [dry -30°C [H20 5°C |150°C 150°C 150°C 150°C 150°C

alanine/b-alanine/sarcosine-
130.05096 [130.05097|C5H9NO3 |glycolaldehyde-ARP 2504102 |0 4210929 [5894227 |0 0 0
144.06661 |144.06662|C6H11INO3 | 2-ABA/d-3-ABA-glycolaldehyde-ARP (3396545 (2646139 [3261884 (4609152 (3116913 (3452400 2945875
174.0407 |174.04079|C6HINO5 | aspartic acid-glycolaldehyde-ARP 32279092 26941404 (11379647 |19023838 14660976 4160652 4279944
158.08226 (158.08225|C7H13NO3 [ valine-glycolaldehyde-ARP 2797453 |1447346 1697093 [3666564 (4045417 4751750 5021589
172.09791 |172.09793|C8H15NO3 | leucine-glycolaldehyde-ARP 2464198 [8994665 [2327955 [3279901 [3999619 [5680488 6898776
146.04588 [146.04588|C5HINO4 | glycine-triose-ARP 25319092 144844088 (14673530 |16048065 (2969381 7242917 2404041
160.06153 (160.06153|C6H11NO4 [ alanine/b-alanine/sarcosine-triose-ARP 25382206 37197804 (16770200 |25017896 (4485142 6724031 7736155
174.07718 |174.07685/C7TH13NO4 | 2-ABA/d-3-ABA-triose-ARP 4145765 6250220 (3895090 (6620017 |2780961 [8048164 7625521
204.05136 [204.05135(C7H11NO6 [aspartic acid-triose-ARP 84323056 (73907280 (35776120 |62137104 |12129185 (22705778 15843103
188.09283 (188.09283|C8H15N0O4 | valine-triose-ARP 11484519 (21144504 113934038 (25349746 |17008968 |26520988 15194823
202.10848 [202.10848{C9H17NO4 | leucine-triose-ARP 4211419 16438216 (14764764 |11566977 |16264553 [30503730 10765309
176.05644 |176.05645/C6H11INOS5 | glycine-tetrose-ARP 84315360 [86590232 (17822524 |21160816 |3067418 [3402872 1856640
190.07209 (190.07210|C7H13NO5 [ alanine/b-alanine/sarcosine-tetrose-ARP  |121093376(87451672 |29142686 {40090436 [10930415 |11505112 9230080
204.08774 [204.08775(C8H15NO5 | 2-ABA/d-3-ABA-tetrose-ARP 84142872 155192704 [31110832 |72696648 (24399826 (22824616 20070228
234.06192 (234.06192[C8H13NO7 |aspartic acid-tetrose-ARP 73953000 [79589704 (20054210 |23658860 |6643664 (9128619 6440824
218.10339 [218.10339IC9H17NO5 | valine-tetrose-ARP 29660786 198238048/20410032 |33061466 (19158206 (16651592 11732101
232.11904 [232.11903|C10H19NOS5| leucine-tetrose-ARP 12757804 (22031454 113796020 (12930018 (11783099 [8200392 6276579
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526
527
528

206.06701 [206.06701{C7H13NOG6 [ glycine-pentose-ARP 164205824(202090336|25909804 (33922740 19358810 [5615057 3679322
220.08266 [220.08265[C8H15NO6 [ alanine/b-alanine/sarcosine-pentose-ARP  [278809824[210757344|57972504 (78336640 (25412460 148362912 25371796
234.09831 ([234.09831{CO9H17NO6 |2-ABA/d-3-ABA-pentose-ARP 124923640(83759456 33237214 (45490564 117321954 119191494 16100242
264.07249 [264.07251{C9H15NOS8 | aspartic acid-pentose-ARP 59848004 (65914880 |10756142 15339759 [2558129 |3997815 2379849
248.11396 (248.11394|C10H19NOG| valine-pentose-ARP 48825248 129257260 (17254268 |20095680 (9543400 [12939840 10325266
262.12961 [262.12957[C11H21NOG6| leucine-pentose-ARP 26321682 (9651431 [14873353 10743133 |6626378 |10743073 9498359
236.07757 [236.07757|C8H15NO7 [ glycine-hexose-ARP 196473472(185832976|17743568 (21104354 |7854022 |14654591 8492283
250.09322 [250.09321{C9H17NO7 [alanine/b-alanine/sarcosine-hexose-ARP  |219514352(167719312|44102784 (37062336 |12943750 [57663092 27158798
264.10887 [264.10887[C10H19NO7| 2-ABA/d-3-ABA-hexose-ARP 155620688(88672272 123005254 (31547648 |10418876 |19150982 15342169
294.08305 [294.08299|C10H17NO9| aspartic acid-hexose-ARP 34784644 (34406720 |0 0 2069278 |0 0

278.12452 [278.12453|C11H21NO7| valine-hexose-ARP 44238992 126914982 (11805090 |12690546 (5969606 [12416931 9540219
292.14017 [292.14016(C12H23NO7| leucine-hexose-ARP 24265132 (13956379 [14375043 (8201023 [3550577 |17184396 6656929

Table S1 - All possible Amadori rearrangement products (ARP) as obtained in reaction of the measured amino acids with glycolaldehyde and possible reducing
sugars, including triose, tetrose, pentose, and hexose. Corresponding ARP with its neutral formula, theoretical and experimental mass of the deprotonated ions, as
well as the intensity of these ions in the original material and the hydrothermal kinetic at 150°C during the 100 days.
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530 Figure S5 - (A) Time evolution of the various ARPs during hydrothermal process; (B) position in the van
531 Krevelen diagram of the considered ARPs.
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533

534 Figure S6 — (A)-(D) Time evolution of the individual ARPs (to be compared to the evolution of the
535 individual amino acids in Figure 2) during the hydrothermal process
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