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Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal
essential physiological pathways. We investigated germline mutations in GNA/2, which encodes
Gui2, @ key component in heterotrimeric G-protein signal transduction usually thought to

regulate adenylyl cyclase-mediated cAMP production. Patients with activating G4 j» mutations had
clinical presentations that included impaired immunity. Mutant G, impaired cell migration and
augmented responses to T cell receptor (TCR) stimulation. We found that mutant G, influenced
TCR signaling by sequestering the GTPase-activating protein RASA2, thereby promoting RAS
activation and increasing downstream ERK/MAPK and PI3K-AKT S6 signaling to drive cellular
growth and proliferation.

One-Sentence Summary:

Activating G, j» mutations in a syndromic disorder reveal a cAMP-independent, G, j>-RASA2-
RAS pathway regulating T cell responsiveness.

Introduction

G-protein coupled receptors (GPCRs) are fundamental to mammalian physiology (1,

2). They direct cells to respond to diverse environmental cues including hormones,
neurotransmitters, and chemokines. This is accomplished through a complex and highly
regulated biochemical cycle mediated by associated heterotrimeric G-proteins (Gqg,). After
GPCR ligation, the G subunit binds GTP, becomes active, and dissociates from both the
Gg complex and the GPCR. Dissociation causes both Go-GTP and free Gg,, to initiate
downstream signals including generation of second messengers and ion fluxes. Ultimately,
the GTPase activity of G, hydrolyzes GTP into GDP to terminate signaling and allow
reassembly of the heterotrimeric G-protein that can reassociate with a GPCR, completing the
cycle and resetting cells to allow them to respond again to GPCR engagement (3).

The 16 human G, subunits are grouped into four families (Gqs, Gaifo, Gagr11, aNd Gq12/13)
having distinct expression patterns and effector partners (4). The G/ family includes
inhibitory isoforms of G, that are thought to regulate biological responses by suppressing
adenylyl cyclase (AC) production of the intracellular second messenger, cyclic AMP
(cAMP) (5). AC exist as nine transmembrane isoforms expressed broadly, with different
tissues expressing different levels of multiple isoforms (6, 7). Only group 111 (AC5, AC6)
and to a lesser degree group | (AC1) ACs are sensitive to the inhibitory effects of G (6, 7).

Humans with monogenic inborn errors responsible for extreme disease phenotypes

can reveal essential physiological pathways. Germline mutations in G, family

members (GNA/L, GNAI3, GNAOI, GNAT1, GNAT2) cause severe neurodevelopmental,
craniofacial, or visual system defects (8-10). By contrast, the effect of germline GNA/2
mutations in humans is not known. While G, (encoded by GNA/2Z) is ubiquitously
expressed, it has been implicated in normal functioning of the cardiovascular, nervous,
endocrine, and immune systems (11, 12). Somatic GNA/2 mutations that activate G, have
been identified in human ovarian and adrenal tumors (13). GNA/2 variants of unknown
significance were also identified in two individuals with neurodevelopmental defects (14,
15).
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Since the roles of G in human physiology and development are not clear, we sought to
identify individuals that harbor mutations in GN/A/2to examine their clinical presentations
and their underlying disease mechanisms.

GNAI2 mutations found in humans inhibited the intrinsic GTPase activity

We used whole exome/genome sequencing to discover 20 patients from 18 unrelated
families of different ancestries worldwide, who had previously unreported or extremely

rare heterozygous missense variants in GNA/Z, which were also computationally predicted
to be deleterious (CADD score > 25) (Fig. 1A, and table S1). The variants were absent in the
Greater Middle Eastern Variome (16) and in the Genome Aggregation Database (gnomAD
v3.1.2) (17), except for 3-50256263-G-A (GRCh38, p.Arg179His), which was found in

1 individual (minor allele frequency (MAF) 0.00002494 in the African/African American
population) of unknown affectation status. In our families, the variants segregated with a
hitherto unrecognized autosomal dominant syndromic disorder, in which de novo (N = 12)
mutations predominated. These mutations were detected in several tissues (fig. S1, A and B),
suggesting they arose in germ cells or early during embryonic development. The patients’
cells expressed equivalent levels of both mutant and wild-type (WT) transcripts, as well as
normal levels of total G, protein (fig. S1, C and D).

The mutations caused amino acid substitutions at residues that were evolutionarily
constrained and highly conserved in all heterotrimeric G-protein superfamily members (Fig.
1B and fig. S1E). The altered residues were clustered in the Ras-like GTPase domain

of G, especially within the highly conserved P-loop motif and switch regions that are
critical for guanine-nucleotide binding and GTPase activity (Fig. 1B and fig. S1E). These
mutations could interfere with binding of the GTP phosphate group and cofactors (Mg2* ion,
nucleophilic H,0O) that are necessary to hydrolyze bound GTP (Fig. 1 C) or could indirectly
influence GTP binding/hydrolysis (fig. S2, A to C), which would likely result in impaired
signal termination (see Supplementary Text 1).

We tested the function of purified recombinant G, variant proteins and compared their
ability to bind and hydrolyze GTP with non-mutated WT G, and a GTPase-mutant
(GIn205Leu) known to be deficient in GTP hydrolysis (18). In general, the G, j> mutants,
except Arg179His, bound non-hydrolyzable GTP., S more readily than WT (Fig. 1, D and E;
fig. S2, D to F; and table S2) and all exhibited decreased GTP hydrolysis (Fig. 1, F and G;
fig. S2, G to J; and table S2).

To substantiate the conclusion that the mutations in G jo impaired GTPase activity, we
investigated their regulation by regulators of G-protein signaling (RGS). The intrinsic
GTPase activity of G is normally accelerated by RGS which act as GTPase activating
proteins (GAPs) and are strictly dependent on binding to a G, transition state conformation
(18). GTPase-deficient G, mutants, such as G4j1-GIn204Leu, are generally resistant to RGS
GAP activity (19). Accordingly, the GTPase activities of the patients’ G j, mutants, except
Arg179His, were not increased by adding RGS16 (Fig. 1G and fig. S2J). Furthermore,
neither of two patient mutants we tested (Thr182Ala/lle, nor GIn205Leu) bound RGS16
(fig. S2, K and L), similar to an RGS-insensitive Gly184Ser control (20). Taken together,
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the faster GTP binding, decreased GTPase activity, and RGS insensitivity indicated that
the patients’ G, j> mutant proteins could promote a GTP-bound form of G j», in this way
delaying signal termination and prolonging G activity (table S2).

This constitutive activation of Gj, would be expected to overstimulate downstream
functions such as inhibition of cAMP production (5). Therefore, we measured forskolin
(FSK)-induced AC synthesis of CAMP in the presence of overexpressed G jp. Compared

to WT, mutant G, found in patients suppressed accumulated cAMP production (Fig. 1H,
and fig. S3, A to D) or transient CAMP activity (Fig. 1I; fig. S3, E to H; and table S3).

ACS is a well-documented target of active G, inhibition (5), and we observed similar
effects of mutant G, j, on AC5-induced cAMP production (fig. S3D). Finally, primary
dermal fibroblasts isolated from several patients (bearing Thr182Ala, Lys46Thr, Arg209Trp
mutations) showed decreased cCAMP production (Fig. 1J). However, two mutants tested,
including Arg209Trp, did not decrease cCAMP production in the overexpression system (Fig
1H and table S2). Mutations at Arg209, which is part of a highly conserved “Gly-Arg-Glu”
triad found in all G, family members, can disable G, activation of effectors due its inability
to dissociate from Gg,, even in the GTP-bound conformation (Supplementary Text 2) (21).

Overall, our data suggested that the mutations in GA/A/2that we identified in patients
impaired the GTPase activity of G, j» and enhanced the suppression of CAMP production,
which would be consistent with them being pathogenic “activating” variants.

Patients with GNAI2 mutations exhibited multiple clinical presentations

We next investigated the overall pathophysiological impact of the activating G, j> mutations
by in-depth clinical phenotyping (Data File S1 and Supplementary Text 3 and 4). The
patients exhibited abnormal development characterized by intrauterine growth retardation,
dysmorphism (Fig. 2A), bone dysostosis (Fig. 2B), neuroanatomical abnormalities (Fig. 2C),
and birth defects in other organs (Fig. 2D). Midline structural defects, located along the
body’s central vertical axis and suggestive of abnormal development during blastogenesis,
were observed (fig. S4A). These were most commonly congenital nasal septum deviation
(Fig. 2B), dysgenesis of the corpus callosum (Fig. 2C), pituitary hypoplasia with growth
hormone deficiency (Fig. 2C), Chiari | malformation (Fig. 2C), micropenis, sagittal cleft
(“butterfly”) vertebrae (Fig. 2B), and scoliosis (Fig. 2B). The occurrence of certain rare
birth defects, such as subcortical band heterotopia (Fig. 2C), agenesis of olfactory bulbs
(Fig. 2C), and coloboma, suggested defective neuronal migration during late embryogenesis/
early fetal development, including that of olfactory and gonadotropin-releasing hormone
neurons as well as retinal progenitor cells. Most patients exhibited postnatal abnormalities
too, including short stature with neurodevelopmental delay, neurobehavioral deficits, and
gastrointestinal dysfunction (Data File S1, and Supplementary Text 3 and 4).

Weighted analysis of clinical features affected in each patient revealed heterogeneity in
the systems affected across the cohort (Fig. 2E). Nearly all patients (90%) had disease
involvement in the immune system, characterized by recurrent, unusual, and/or severe
infections (Data File S1 and Supplementary Text 3). However, the extent of disease
involvement in the immune system was greater in patients mutated at residue Thr182 due
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to their additional inflammatory or autoimmune complications (Fig. 2E). An attempt to
knock-in (K1) the highly constitutively activating Thr182Ile mutation into mice failed to
generate heterozygous embryos beyond the eight-cell stage, indicating /n utero lethality
(table S4).

Among the immune system presentations (Data File S1 and Supplementary Text 3),
bacterial, superficial fungal, or unusually severe viral infections of the skin were

striking, and included recurrent shingles, extensive warts, and rubella vaccine-associated
skin granulomas (Fig. 2D and fig. S4, B and C). Respiratory, middle ear, and sinus
infections were common with some developing bronchiectasis, and some had invasive
bacterial infections (Fig. 2B and D; and fig. S4, B and C). Inflammatory or autoimmune
complications included lymphocytic infiltration of organs, psoriasis, discoid lupus,
autoimmune cytopenias with splenomegaly, Hashimoto thyroiditis, type | diabetes mellitus,
colitis, or macrophage activation syndrome (Fig. 2D and fig. S4). Several had asthma

or atopic dermatitis (fig. S4). Longitudinal laboratory testing revealed monocytosis and
neutrophilia precipitated by acute infection, which persisted in some patients (fig. S5A,
and Supplementary Text 5). T cell counts were initially low, with decreased recent thymic
emigrants and paucity of naive versus effector/memory T cells, but counts increased with
age (fig. S5, B to D). Effector phenotype T cells showed cytokine perturbations including
increased 1L-17 expression (fig. SSE). Lymphocyte proliferation and activation appeared
normal or even increased (fig. S6, and table S5). Dysgammaglobulinemia, characterized by
low serum IgM and poorer vaccine titers, was accompanied by decreased B cell counts and
atretic lymphoid follicles in secondary lymphoid organs (fig. S5, F and G; fig. S7; table S6;
and Supplementary Text 6).

Overall, the patients’ phenotypes indicated that mutant G, caused multi-organ
dysfunction, including life-threatening immunodysregulation and numerous birth defects.
Their presentations underscore the importance of G, in regulating diverse physiologic
processes in humans.

Gqi2 mutant proteins impaired immune cell migration

The patients’ clinical features suggested impaired migratory behavior of immune cells

for host defense, which are guided to sites of infection by chemokine receptors. Since
heterotrimeric G-proteins transduce signals for all chemokine receptors (22), we tested
whether hyperactive G, j» altered cell migration. Both CD4* and CD8* T cells from several
patients showed decreased chemotaxis toward multiple chemokines (Fig. 3A, and fig. S8,
A to D) and reduced chemokine-induced Ca?* fluxes mediated by free Gg,y subunits in

one tested patient (Fig. 3B, and fig. S8E), indicating defective proximal GPCR signaling.
These defects were recapitulated by expressing all hyperactive G, i, mutant proteins except
Ile55Met in T cells from normal healthy donors, with intermediate and more variable
effects of Leu38Arg and Arg179Cys (Fig. 3, Cto E, fig. S8, F to H, and S9, A to E).
Neutrophils from several patients also showed reduced directional migration in response

to chemoattractants (fig. S10, A and B), and their defective migration was recapitulated

by expressing several hyperactive G, j, mutant proteins in the neutrophil-like HL60 cell
line (fig. S10, C to F, and Movie S1-3). These data would be consistent with immune
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cells having altered trafficking in patients with GNMA/2 mutations. Indeed, in one patient
with periodontitis, leukocytes had impaired accumulation in the oral mucosa, or impaired
migration into blisters after induction of sterile inflammation in the skin (fig. S10, G and H).

Furthermore, in two patients, splenic biopsies showed increased leukocyte numbers in

red pulp with decreased white pulp (fig. S7 and Supplementary Text 6), suggesting that
leukocyte migration into secondary lymphoid organs was also impaired. Hence, we tracked
T cell migration in mice after adoptive transfer and found that cells expressing mutant G,
proteins migrated less well into lymph nodes and splenic white pulp (Fig. 3F, and fig. S9F).
This might alter cell-cell interactions that normally take place within secondary lymphoid
organs for developing immune cell functions.

Lastly, while suppressed cAMP could contribute to the impaired migration phenotype,

the literature is contradictory (23). At least in T cells and neutrophils, pharmacologic
manipulations that increase intracellular cAMP have been shown to inhibit chemotaxis

(24, 25). Thus, we examined whether cAMP levels affected by Gai2 mutants impact T

cell chemotaxis. We used CRISPR-Cas9-mediated gene editing to knockout (KO) ADCY5
encoding major ACs expressed in human T cells (fig. S11, A and B). Ablation of AC3

or AC7 in healthy donor T cells had opposite effects on endogenous cAMP levels but did
not affect chemotaxis, which instead segregated with the absence or presence of the mutant
Gui2 (Fig. 3, G to I, and fig. S11, C to G). These results suggested that the impaired
leukocyte chemotaxis in the patients did not result from G jo-mediated alterations in cAMP
production.

Collectively, these findings showed that the patients’ G, i, mutants caused defective cell
migration. We hypothesized that the patients’ mutants, being in a “quasi-permanent” GTP-
bound state of biochemical activation, might be mostly dissociated from GPCRs and
therefore unable to transduce GPCR signals.

Using bioluminescence resonance energy transfer (BRET) to measure the interaction of
G2 proteins with GPCRs overexpressed in living cells, we found that the Thr182Ala G
mutant found in patients and GIn205Leu activating mutant control protein showed minimal
steady state interaction with chemokine receptors (Fig. 3, J and K, and fig. S12, A to C).
Even with ligand engagement across a broad range of concentrations, the already low BRET
intensity remained unchanged, in contrast to the high BRET signal that rapidly declined to
similarly low levels in cells overexpressing WT G2 (Fig. 3K, and fig. S12A). Increased
dissociation from GPCRs also compromised chemokine-augmented suppression of transient
cAMP production for several other patients’ mutants (fig. S12, D and E). Hence, more
potent “active” mutant G, constitutively adopted a conformation that promoted decoupling
from GPCRs, decreasing the pool of GRCR-WT G j> complexes able to recycle to active
receptor complexes that can transduce GPCR signals for further biological responses.

Taken together, activating mutant G, proteins had the seemingly paradoxical effect of
impairing responsiveness to chemokines/chemoattractants because the mutant G, proteins
associate poorly to the receptors. This resulting impaired migration of immune cells can
explain the patients’ increased infection susceptibility.
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T cells from patients with mutant G, proteins were hyperresponsive to

TCR stimulation

While impaired leukocyte migration could explain the patients” infection susceptibility,
some patients also had life-threatening autoimmunity. Patients did not show decreased
peripheral blood Tyeq Or increased CD21'° cD38!° B cell numbers that could account

for their autoimmunity (fig. S5, D and F). However, we noticed that overall lymphocyte
proliferative responses to mitogens and antigens were not decreased but appeared normal or
even higher than expected (fig. S6 and Supplementary Text 5).

We hypothesized that T cell hyperresponsiveness might explain the autoimmunity in
patients. Therefore, we examined T cell behavior in vitro under various T cell receptor
(TCR)-stimulating conditions. Similar to our observations for gated T cells stimulated

in peripheral blood mononuclear (PBMC) preparations (fig. S6), T cells purified from
multiple patients (whether CD4* or CD8* T cells, or naive or effector/memory T cells)
exhibited enhanced induction of the activation markers CD69 and CD25 (interleukin-2
(IL-2) receptor a subunit) and increased proliferation upon stimulation with anti-CD3 plus
anti-CD28 antibodies compared to control samples (Fig. 4, Ato F, and fig. S13, A to

L). These differential responses were also seen when cells were stimulated suboptimally
(anti-CD3 antibodies only) but were not apparent when cells were treated with more
potent stimulation (Beads, consisting of immobilized anti-CD2, anti-CD3, and anti-CD28
antibodies). The presence of exogenously provided IL-2 throughout the experiments and
normal IL-2 production by ex vivo CD4* T cells (fig. S5E) suggested that the increased
responses of the patient T cells did not result from increased IL-2 production.

To determine whether the increased T cell responsiveness was a direct effect of the mutant
G2 protein, we designed a guide RNA sequence (named gMP) that specifically knocks out
the mutant but not WT GNA/2allele of P1 using a CRISPR-Cas9 ribonucleoprotein system
(fig. S14, A to C). Treatment with gMP restored activation and proliferation of patient T
cells to normal levels indicating a positive role for the mutant protein in the increased T

cell responsiveness (Fig. 4, G to | and fig. S14, D and E). Transduction of CD4" T cells
from healthy normal donors with the Thr182Ala or GIn205Leu activating G, j> mutants also
increased TCR-induced responsiveness similar to patient T cells (Fig. 4, J and K, and fig.
S13, M to Q), whereas partial KO of Ggjp in T cells from healthy donors failed to do so (fig.
S14, F to H). Thus, activating- but not WT- G2 protein increased the stimulatory response
to TCR engagement.

Proteins involved in TCR signaling showed increased distal

phosphorylation in cells with mutant Gg;,

T cell activation through the TCR initiates multiple signals that lead to rapid clonal
expansion including activation of the RAS proteins (HRAS, KRAS, NRAS) facilitated

by RAS guanyl-releasing proteins (RASGRPS) (26, 27). Activation of these small G-
proteins in turn leads to activation of the extracellular signal-regulated kinase (ERK)/
mitogen-activated protein kinase (MAPK) pathway, in parallel with the phosphatidylinositol
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3-kinase (PI3K)-AKT-mechanistic target of rapamycin (mTOR) pathway (26, 27). Together,
these signaling pathways promote a metabolic shift to aerobic glycolysis and an increase

in protein synthesis for optimal cellular growth, proliferation, and differentiation. By
contrast, overstimulation of these pathways can contribute to uncontrolled growth as seen

in cancers, which have a high prevalence of somatic mutations in RAS, as well as certain
leukoproliferative disorders associated with autoimmunity (28). G, proteins are canonically
thought to function by modulating production of the second messenger cAMP (2). They
mediate GPCR signaling mainly at the inner leaflet of the plasma membrane (PM) and

may themselves be regulated during TCR activation (29, 30). Therefore, we examined how
the mutant activating G o protein influences early events mediated by the TCR signaling
complex at the PM. Previous work has shown that local cAMP at the PM of T cells
stimulates the PKA-CSK pathway, which can counteract TCR signaling by deactivating the
LCK non-receptor tyrosine kinase (29-31).

We found that both freshly isolated and previously activated patient T cells showed normal,
not increased, TCR proximal signaling (Fig. 5, A to D; fig. S15, Ato D, and | to L; and fig.
S16, A to D). However, the same cells showed enhanced distal phosphorylation of ribosomal
S6 protein, a hallmark of growth and proliferation (Fig. 5, E to G; fig. S15, E, F, M, and

N; and fig. S16, E and H to J). S6 phosphorylation is mainly regulated by ERK/IMAPK

and PI3K-AKT signaling pathways (Fig. 5G, right) (32). Indeed, we observed enhanced and
prolonged phosphorylation of ERK1/2 and p90RSK as well as AKT and p70S6K, in patient
T cells and in healthy donor CD4* T cells transduced to express activating mutant G j»
proteins (Fig. 5, G to L; fig. S15, G, H, O, and P; and fig. S16, F to J). Treating patient T
cells with the PI3BK/AKT/mTOR pathway inhibitor LY294002 and the mitogen-activated or
extracellular signal-regulated protein kinase kinase (MEK) inhibitor U0126 normalized S6
phosphorylation by preventing hyperactivation of AKT and p90RSK, respectively (fig. S17).
Thus, active Ggj» protein augments TCR-induced ERK/MAPK and PI3K/AKT/mTORC1
signaling pathways at a step unexpectedly downstream of proximal TCR signaling events.

Mutant Gg;, modulated TCR-dependent signaling independently of cCAMP

We determined that mutant G, proteins from the patients inhibited AC-mediated cCAMP
production and that patient fibroblasts produced less cAMP (Fig. 1, H to J, and fig. S3).
However, intracellular cAMP, when raised, generally plays suppressive roles in immune
cells (30). Therefore, suppression of cCAMP production by mutant G, proteins might cause
increased T cell responsiveness. We found that patient T cells produced cAMP at levels
within the range of healthy donor T cells (Fig. 6A). This would be consistent with the major
ACs expressed in primary human T cells being AC3, AC7, and AC9 (fig. S11, A and B), and
which are not expected to show substantial regulation by G (6, 7).

To investigate the role of CAMP in T cell hyperresponsiveness further, we investigated
whether manipulating cAMP levels could mimic or rescue the patient T cell phenotypes. KO
of AC3 or AC7 in healthy donor T cells had elevated or decreased endogenous cAMP levels
respectively, but neither affected TCR-induced S6-regulatory signaling, cellular activation,
or proliferation (Fig. 6, B to F; fig. S11, C and D; and fig. S18). Furthermore, an
exogenously added cAMP analog failed to normalize the increased responsiveness of patient
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T cells (fig. S19). Although these approaches did not specifically measure or manipulate
local cAMP levels near the PM microdomain, the normal TCR proximal signaling in patient
T cells suggests G j2 may not affect local cAMP pools (Fig. 5, A to D; fig. S15, A to D and
I toL; and fig. S16, A to D).

Thus, our findings would be consistent with G, proteins regulating TCR signaling via
cAMP-independent mechanisms.

The interaction between Gy, and RASA2 regulated TCR-dependent
responses

To determine how hyperactive G, protein may regulate S6-regulatory signaling pathways
through cAMP-independent mechanisms, we investigated G, jo-interacting proteins by
performing affinity pulldown followed by quantitative mass-spectrometry. For these
experiments, we used G j2-Thrl82Ala bound to GTP, S as the bait protein, reasoning

that relevant interactors might preferentially bind the active form of Gjo. We identified
well-known and previously reported interactors of Gz (e.g., Gg subunits, RGS, G-protein
signaling modulator proteins, RASA3), and previously unappreciated interacting proteins
(including RASA2, PP2A-Aa., PP2A-Ca) (Fig. 6G and Data File S2). We did not detect any
AC in our Ggjp-interacting proteins, which would support that the T cell hyperresponsive
phenotype may be regulated by cAMP-independent mechanisms.

RASAZ2, a member of the RasGAP (Ras GTPase-activating protein) family, was an
intriguing candidate because its target, the RAS proteins, are major upstream regulators for
the ERK/MAPK and PI3K pathways (33, 34) that were augmented in the patients’ T cells
(Fig. 5). We confirmed the G j>-RASA2 interaction by coimmunoprecipitations from lysates
of cells overexpressing RASA2 and G, proteins (Fig. 6H), or of endogenously expressed
proteins in patient T cells (Fig. 61). Interactions of RASA2 with multiple different activating
mutant G, proteins were stronger than with WT G, suggesting that RASA2 might be an
effector target of Gjo (Fig. 6, H and I, and fig. S20A). Purified WT G, protein directly
bound RASA2 when loaded with GDP, but the interaction was markedly strengthened when
loaded with GTP,S to “lock”™ Gz in its active state (Fig. 6J).

We found that depletion of RASA2 in T cells from healthy donors enhanced TCR-induced
S6-regulatory signaling pathways, cellular activation, and proliferation (Fig. 6, K and L, and
fig. S20, B to D). These observations phenocopied the effects of activating G, proteins and
indicated that RASA2 normally negatively regulates these responses. Gene editing of PL T
cells revealed that KO of RASA2 augmented the T cell hyperactivation, consistent with the
mutant G o having delayed (but not completely blocked) cycling upstream of RASA2 (Fig.
6M and fig. S21).

The levels of T cell hyperactivation in RASA2 KO T cells were comparable whether or not
activated G jp was also present (Fig. 6M and fig. S21). As the expression of the G j, mutant
did not further activate T cells in the absence of RASA2, it indicated that activated G
regulated these T cell responses completely or largely via RASA2.
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These observations suggested a model in which activating G, proteins, by binding
RASAZ2, might relieve RASA2’s negative regulation of S6-regulatory signaling and T cell
activation. Additionally, we identified and confirmed an interaction between active G;2
with PP2A Ser/Thr phosphatase complex members, PP2A-Aa and PP2A-Ca (Fig. 6G, fig.
S20, E to I, and Data File S2). As PP2A negatively regulates both ERK/MAPK and p70S6K
pathways, this interaction might reinforce the negative regulatory effects of RASA2 (35).

Thus, our data suggest that active G j» enhances T cell activation in a cAMP-independent
manner, by preventing negative regulation by RASA2 and/or the PP2A complex.

Mutant G, proteins sequestered RASA2 resulting in augmented RAS

activity in T cells

Like Ggj» and other G-proteins, RAS functions according to its GDP- or GTP-bound states,
and RASA2 suppresses RAS activation by accelerating RAS GTPase activity (33, 34).
Patients’ T cells consistently showed enhanced activation of RAS and downstream ERK1/2
upon TCR stimulation, suggesting that active G limits RASA2 activity in T cells (Fig. 7A
and fig. S22, A and B). To test whether RASA2’s GAP activity towards RAS was inhibited
by Ggi2, we mixed purified recombinant RASA2 without or with active G jo (loaded with
GTP,S), HRAS, and GTP, then measured RAS GTPase enzymatic activity via consumption
of GTP. As GTP levels were unchanged by including active G p, these data suggest that
G2 did not directly inhibit RASA2’s GAP activity toward RAS (Fig. 7B, and fig. S22C).

We then considered the possibility that active G, could indirectly inhibit RASA2’s GAP
activity by altering its cellular location. Quantitative confocal imaging in patients’ cells or in
cells overexpressing activating G j» mutants revealed that active G, redistributed RASA2
toward the PM (Fig. 7, C to F, and fig. S22, D and E). By performing Férster resonance
energy transfer (FRET)-based fluorescence lifetime imaging, we examined whether this
membrane recruitment of RASAZ is mediated by its interaction with G, (Fig. 7G).
Fluorescence lifetime of a WT G, j,-mTFP1 FRET donor was quenched only in the presence
of a YFP-RASAZ2 acceptor, indicating that the two proteins are closely apposed (within 10
nm) (Fig. 7, G to I). Quenching was mainly observed at the cell periphery near the PM,

with FRET efficiency reciprocally also increased there (fig. S22F). The mTFP1 lifetime was
dramatically shorter when the activating G j» mutant GIn205Leu was co-expressed with
RASAZ2 (red vs. blue color in Fig. 7H), with FRET efficiency also increased under the same
conditions (fig. S22F), supporting an increased association between these two proteins.

In T cells, exogenously expressed HRAS or NRAS localizes to both the PM and

Golgi, but RAS activation predominates at the Golgi during TCR activation (26, 36).
Therefore, we assessed whether RAS activation at the Golgi correlates with G jo-mediated
RASAZ2 redistribution to the PM after TCR stimulation. Using Jurkat cells co-expressing
fluorescently-tagged RAS, active-RAS sensor (RBD), and a Golgi marker (GalT), along
with Ggjo proteins, we performed confocal microscopy colocalization analysis. We observed
greatly enhanced RAS activation at the Golgi when cells expressed an activating mutant
Ggi2 Vs. normal Ggjo (intensity ratio 2-2.8, vs. 1.7) (Fig. 7, Jto L, and fig. S22, G to I).
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PI3K-AKT activation is PM-restricted, so the enhanced PI3K-AKT signaling in the patient
T cells implied that PM RAS activity was also increased (Fig. 5, | and K; fig. S15, H and P;
fig. S16, G to I; and fig. S17) (37). Because both RAS and G, at the PM undergo dynamic
spatiotemporal regulation, G, jo>-mediated RASA2 sequestration might also enhance local
RAS activity within the PM microdomains (29, 34). Overall, our findings suggest that active
G2 enhances TCR-induced RAS activity by physically directing RASA2 away from RAS
within cells.

Discussion

Previously, activating mutations in other G, subunits have been reported in various types
of human cancers and diseases, and investigations have focused on their augmented
downstream signaling pathways (38, 39). By studying humans with activating GNA/2
mutations, we find enhanced suppression of effector CAMP generation and establish a
pathogenic role of chronic decoupling of active G, from GPCRs. Chronic decoupling
can result from multiple factors such as faster GTP binding, slower intrinsic hydrolysis,
and RGS insensitivity. When compounded, they could disproportionately prolong the time
G-proteins take to cycle from their active free form, back to their inactive GPCR-bound form
capable of responding again to GPCR agonists. Rapid G-protein cycles may be required

to respond to quickly changing environmental cues, such as for optimal spatiotemporal
sensing of chemokine gradients through G during cell migration. A similar requirement
apparently underlies rapid photoreceptor deactivation to detect sudden changes in moving
objects through G during spatiotemporal visual signaling (40). Nevertheless, we do not
exclude a possible additional contribution of active G, through sequestering or otherwise
interfering with free Gg., signaling (21, 41-44).

While we have established that the impaired migratory behavior of immune cells leads to the
patients’ infection susceptibility and immune dysregulation, their additional clinical features
suggest that the migratory behavior of non-immune cells is similarly impaired during
development. The patients’ prominent midline anatomic defects may reflect abnormal
neural crest cell migration, which proceeds along the anterior-posterior axis during
embryogenesis to help form many tissues (45). Such migration requires CXCL12 signaling
through the CXCR4 chemokine receptor, whose deficiency causes cerebellar and other
anatomical abnormalities and is embryonically lethal in mice (46). Furthermore, partial
knockdown of Gnai2in developing mouse embryos perturbed neuronal migration during
corticogenesis, consistent with G j» regulating differentiated non-immune cell migration
during development and paralleling defective leukocyte migration in Gnai2 KO mice (15,
47). Unfortunately, we could not track migration of non-immune cells during development,
as attempts to generate a patient-mimicking KI mouse model were unsuccessful.

Besides establishing an important physiologic requirement in vivo for the normal cycling
of G2 during cell migration, our patients with constitutively activating mutant G o
reveal a G jp-mediated but cCAMP-independent RAS-regulatory pathway that controls the
amplification of T cell responses through RASA2. We now place G, j2 immediately
upstream of RASA2 at the nexus of GPCR and TCR signaling pathways. In healthy
individuals, this pathway could operate physiologically when G;o is transiently activated
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by chemokine receptors, to coordinate T cell migration with and optimize TCR-induced
activation and proliferation. Such a model may be consistent with the previously reported
co-stimulatory contribution of chemokine receptor signaling during T cell activation (48).
In patients with activating GNA/2 mutations, we propose that the resulting stronger TCR
input breaks peripheral tolerance, predisposing to the autoimmunity and age-associated
lymphocytosis seen in some individuals. Exploiting this G j>-RASA2-RAS signaling axis
could facilitate development of T cell-based anti-tumor therapies. For example, improving
expansion and activity of T cells expressing chimeric antigen receptor (CAR) could be
achieved by fusing CAR to mutant G ;> domains that preferentially scavenge RASA2 (49).
Indeed, our observations support recent studies using CRISPR screens in primary T cells
and mouse models of cancer immunotherapy that provide evidence of RASA2 as a negative
regulator (50, 51). As KO of RASA2 in transgenic CD8" T cells or CAR T cells increases
antigen-specific tumor cell Killing in vitro (50, 51), those results suggest that a similar
approach targeting G jo upstream of RASA2 might also be promising.

There are several limitations to our study. First, we focused on the impact of the patients’
GNA/Z mutations on their G, proteins and not on Gg,, proteins. Their activating Gz
mutants are expected to not only decouple from GPCR but also increase dissociated

Gg,. Free Gg, signaling regulates chemokine-mediated cell migration by modulating
phosphoinositide-3-kinase y (PI3Ky) and possibly AC activities (52). However, one of our
patients had an Arg209Trp activating mutation in the “Gly-Arg-Glu” triad, which is required
for Gg,, dissociation from G, for other G-proteins (21). This variant is predicted to have the
opposite effect of decreasing free Gg,,, yet it was still associated with impaired leukocyte
migration. Therefore, while the activating G j» mutants could also exert secondary effects
through increased free Gg,, this explanation does not account for our observations. Studies
addressing the impact of the activating G, mutants on Gg,, biology, including downstream
spatiotemporal effects on cell polarity, adhesion, and migration, will be needed to clarify
these points.

A second limitation of our study is that while we have shown that activated G, acts
primarily through RASA2 to drive RAS-mediated T cell hyperresponsiveness, the effect
conferred by RASA2 KO was greater than by activating G, alone. Several factors may
account for this difference. Constitutively activating G j» mutants are expected to have
prolonged cycling but still pass through an inactive form, which binds less well to RASAZ2.
In our experiments, we tested Thr182Ala, but other variants having different cycling times
may show different relative effect sizes. Furthermore, the relative amounts of active G
vs. RASA2 in the cells and the stoichiometry required for efficient sequestration away from
the Golgi are unknown. Alternatively, G jo-independent factors could also regulate RASA2.
Additional studies are needed to address these possibilities.

Finally, based upon their activated RAS-MAPK signaling, patients with germline activating
GNA/2 mutations can now be included within the RASopathy spectrum (53, 54). Indeed,
our patients show clinical overlap, including autoimmunity, with patients having typical
RASopathies such as Noonan syndrome (53, 55). The widespread tissue expression of G j»
and RASA2, along with the diverse biological functions mediated by RAS proteins in cancer
pathogenesis, raises the interesting possibility that the G j>-RASA2-RAS signaling axis
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might broadly regulate growth, proliferation, and differentiation in the body. Consistent with
this possibility, inhibitory roles of RASAZ2 in cellular growth and proliferation have been
reported in fibroblast and melanoma cells (56). Additionally, somatic activating GNA/2
mutations have been identified in cancers including melanoma, adrenal cortical tumors, and
ovarian sex cord stromal tumors (39, 57), paralleling loss-of-function RASAZ mutations

in melanomas and dysregulated RAS activity in various human cancers (33, 34, 56, 58).
Thus, our discoveries also provide fresh insight into the molecular etiology and potential
therapeutic targets to disrupt G, jo for tumors with oncogenic GNA/2 or RAS pathway
mutations.

Materials and Methods

Study Participants and Human Sample Collection

Mice

The patients originated from diverse ethnicities/geographic regions (Latino/Admixed
American, Non-Finnish European, European-Finnish, West Sub-Saharan African, Middle
Eastern Arab). Age and sex of patients are contained in Supplementary Text 4. All enrolled
subjects (patients, family members, healthy donors) provided written informed consent to
participate in local Ethics or IRB-approved research protocols from various institutions (see
Supplementary Materials for details). Patient or parent/legal guardian provided additional
written authorization for publication of potentially identifiable facial photographs. Whole
blood samples, fingernail clippings, skin punch biopsies, blister fluid, mouth washings, and
skin swabs were obtained for experimental analyses in accordance with research protocols.

Animal housing, care, and experimental procedures of mice (Mus musculus) were
performed under animal study protocols approved by the NIAID Animal Care Use
Committee or the Garvan Institute of Medical Research/St Vincent’s Hospital Animal Ethics
Committee. Mouse euthanasia was performed by carbon dioxide inhalation followed by
cervical dislocation. Wildtype (WT) B6 (C57BL/6J, strain# 000664), CD45.1 congenic

B6 (B6.SJL-Ptprca Pepcb/Boyl, strain# 002014), and Thy1.1 congenic B6 (B6.PL-Thyla/
CyJ, strain# 000406) were purchased from the Jackson Laboratory (Bar Harbor). Adoptive
transfer experiments used female mice at 6 to 8 weeks of age. Generation of Gna/Z Kl
embryos was as described in the Supplementary Methods.

Whole Exome Sequencing (WES), Whole Genome Sequencing (WGS), and Analyses

We conducted WES on the index patient (P1) and her healthy parents and sister. Patients

2 to 18 and 20 with mutations in the GNA/2 gene were identified from WES or WGS

data (14), either through GeneMatcher (phenotype-agnostic) or through other inquiries that
were broadly immune phenotype driven (59). Exome or genome libraries from gDNA

were generated, and variant calling and analysis performed using various platforms (see
Supplementary Materials for details). The familial GAMA/2 mutation in P19 was identified
by Sanger sequencing. In the patients, no other candidates besides GNA/2were shared
under de novo, autosomal recessive (AR), or variable-penetrance autosomal dominant (AD)
models of inheritance (table S1). All genomic variants in this manuscript are described
according to Human Genome Variation Society recommendations (60), using GenBank
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Reference Sequences NC _000003.11(gDNA), NM_002070.2 (mRNA), and NP_002061.1
(protein) based upon genome assembly Build GRCh37 unless otherwise indicated.

Characterization of Ggj» GTPase and RASA2 GAP Activities

For GTP binding and hydrolysis assays, recombinant G, protein was mixed with BODIPY-
FL-GTP or BODIPY-FL-GTP,,S (Thermo Fisher), and the kinetics of in vitro G,

protein activation measured (61). To examine RGS sensitivity, G jo was incubated with
RGS16 before adding BODIPY-FL-GTP. Nucleotide-binding data were fit with one phase
exponential equation F = a — b e, where F is a specific increase of fluorescence, to

obtain k. GTP binding and hydrolysis curves were fit with the equation F = (Cokq / (ko

= k1)) (e7K;t = e7%,1 for the intermediate product in two sequential reactions (62). For

RGS binding assays, recombinant Hisg-Gj» and GST-RGS16 were incubated together at

4 °C in the presence of a slurry of glutathione sepharose beads and either GDP or GDP

plus aluminum magnesium fluoride (AMF) to mimic the transition state for GTP hydrolysis
(18). Bound proteins were eluted from beads, resolved by SDS-PAGE, and immunoblotted.
GAP activity of RASA2 toward RAS protein was measured according to manufacturer’s
instructions (Promega), with modifications. Unless stated otherwise, 1 uM His-tagged hRas
(Cytoskeleton, Inc.), 0.25 uM maltose binding protein (MBP) / MBP-RASAZ2, and 2.5 uyM
GST / GST-Ggj, proteins, pre-loaded with either GDP or GTP., S, were incubated with 5 pM
GTP and 1 mM DTT in the provided GTPase/GAP Buffer. Levels of GTP remaining were
measured.

Cells, Media, and Cell Culture

Human embryonic kidney 293T cells (293T), HEK293 cell line stably lacking AC3 and
AC6 (HEK-ACA3/6) (63), Platinum-E cells, NIH/3T3, Jurkat T cells, and HL60 cells
were cultured in DMEM or RPMI 1640 medium with supplements. Human peripheral
blood mononuclear cells (PBMC) were isolated from whole blood by Ficoll-Paque PLUS
density gradient centrifugation (Cytiva). Pan-T cells or CD4* T cells were isolated from
PBMCs by negative selection (Miltenyi Biotec), or by fluorescence-activated cell sorting
(FACS) using a BD FACSAria Il cell sorter. For functional studies, purified T cells were
used either immediately or activated using the T Cell Activation/Expansion Kit (Miltenyi
Biotec). The latter were expanded in the presence of 100 U/mL recombinant human IL-2
for 2 to 3 weeks before use. Neutrophils were isolated by density gradient separation and
used immediately for experiments. Fibroblasts were isolated from skin punch biopsies and
cultured as described (64). Murine leukocytes isolated from spleens, inguinal and axial
lymph nodes were activated with plate bound anti-mouse CD3 (5 pg/mL) and soluble anti-
mouse CD28 (1 pg/mL) and cultured in RPMI medium containing 100 U/mL recombinant
human IL-2.

cAMP Measurements

293T cells (previously transfected with individual G4 plasmid using polyethylenimine) or
human dermal fibroblasts were stimulated at 37 °C for 20 minutes with 5 uM forskolin
(FSK) in the presence of 0.5 mM of the nonspecific inhibitor of phosphodiesterase 3-
isobutyl-1-methylxanthine (IBMX). In some experiments, T cells (10 to 20 days after initial
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activation) were stimulated with 50 uM FSK/ 0.5 mM IBMX at 37 °C for 20 to 60 minutes.
Cells were lysed and accumulated intracellular cCAMP levels measured using the colorimetric
cAMP ELISA Kit per manufacturer’s instructions (Cell Biolabs). cAMP was alternatively
measured using a YFP-Epac-rLuc cAMP biosensor (pcDNA3L-His-CAMYEL) in 293T
cells previously transfected also with plasmids expressing G4 j» and CXCR4 (65). Cells were
stimulated in BRET Buffer (0.5 mM MgCl, and 0.1% BSA fraction V in PBS) with FSK (0,
1078-10* M) in the presence of 5 uM Coelenterazine h for 10 minutes at room temperature.
Luminescence and fluorescence readings were collected by sequential integration of the
signals detected in the 480 £ 20 nm and 530 + 20 nm windows for luciferase (Rluc) and
YFP light emissions, respectively. Relative cAMP levels were indicated as 1/BRET (Rluc/
YFP). In some experiments, 293T cells were transfected 24 hours previously with G j»
plasmid and cAMP GloSensor reporter plasmid. Luminescence was measured at baseline
and for 60 minutes after cells were treated with 2.5 uM FSK.

Clinical Phenotyping and Analysis

Using criteria standardized across the patient cohort, clinical histories were coded into
Human Phenotype Ontology (HPO) terms (66) and dysmorphology terms (defined at https://
elementsofmorphology.nih.gov/index.cgi). For an individual patient, a value of “yes,” “no,”
“ND” (not determined), or “NA” (not applicable, because of age or sex) was assigned

to each HPO term (see table S4). Values were used to compute frequencies across the

cohort for each HPO term. Selected midline (fig. S4A) or immune (fig. S4B) phenotypes
were displayed as heatmaps, and phenotypes were also summarized at different level HPO

categories.

T cell Migration Assays

Migration of T cells from patients and healthy donors 12 to 24 days post-activation, or

of Ggi2 WT- or variant- transduced healthy donor T cells, was assessed in vitro using

a standard Transwell system with 5 um membrane pore inserts. Recombinant human
CXCL12 or CCL21 was added to the lower compartment with an equivalent number of
CountBright Absolute Counting Beads (Thermo Fisher) to each well. After incubating at
37°C for 2 hours, the contents of the lower chamber were collected and stained with
antibodies for flow cytometric analysis. The number of recovered cells was normalized

to the number of CountBright Absolute Counting Beads collected. Migrated cells were
expressed as % of the total number of cells collected from a well without a Transwell
insert. Chemotaxis was calculated by subtracting random migration (determined by the
wells without added chemokines). For in vivo assessment of T cell migration, wild-type
(WT) C57BL/6 mice were purchased from the Jackson Laboratory (Bar Harbor). Mouse
CD45.1*Thy1.2* and CD45.2*Thy1.2* lymphocytes were activated and transduced with
retroviral particles containing MSCV-GFP-T2A-GNA/2 (WT) or MSCV-GFP-T2A-GNA/I2
(WT or variants), respectively. Transduced cells (mixed 1:1) were intravenously injected
into CD45.2*Thy1.1* recipient mice, followed by anti-CD5 PE/Cy7 one hour later to

label leukocytes in the splenic red pulp and the blood (67), and euthanized 3 minutes

later. T cells recovered from tissues and blood were identified as donor (Thy1.2*GFP*),
WT G transduced cells were distinguished as CD45.1*Thy1.2*GFP*, and variant G,
transduced cells were CD45.2*Thy1.2*GFP*. The normalized ratios of variant to WT G
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transduced cells were calculated by normalizing for differences in transduction efficiencies
of each donor cell prep, migration differences between the non-transduced CD45.1*Thy1.2*
and CD45.2*Thy1.2* populations, and the WT Ggj» (CD45.1*Thy1.2*) vs. WT Ggj»
(CD45.2*Thy1.2%) control group mice (average of these mice was set to a ratio of 1).

Neutrophil Migration Assays

Where neutrophils could be isolated freshly from patients and tested within 24 hours, their
migration to buffer or N-formylmethionine leucyl-phenylalanine (fMLP) was measured

ex vivo at 37 °C using EZ-TAXIScan instrumentation (Effector Cell Institute, Tokyo,
Japan) as described (68). Alternatively, G.j» WT- or variant- transduced HL60 cells were
differentiated with 1.3% DMSO for 5 days, and their migration to fMLP, CXCL12, or
leukotriene B4 (LTB4) was similarly assessed. Digital images of migrating cells were
captured every 15 to 30 seconds for 30 minutes to 1 hour for quantitative analysis. In some
experiments, migration to fMLP of DMSO-differentiated, G j-transduced HL60 cells was
also evaluated using the Transwell system. In vivo migration into cutaneous blister fluid of
P1 and healthy donors was evaluated 16 hours after applying a suction blister device to skin
as described (69), or in the oral cavity of subjects using a timed (10 seconds) oral rinsing
procedure with 10 mL of sterile saline (0.9% Sodium Chloride) (70). The cell pellets from
either blister exudate or oral cavity rinses were stained with a combination of anti-human
antibodies for quantitative flow cytometric analysis.

Measurement of Chemokine Receptor - Gqj» Interactions

293T cells, previously transfected with CXCR4-YFP or CCR7-YFP acceptor plasmids
and G jo>-Rluc donor plasmid, were stimulated in BRET buffer for 5 minutes at 37°C
with increasing amounts of CXCL12 or CCL21 before adding 5 pM Coelenterazine

h. Luminescence and fluorescence readings were collected, and net BRET values were
calculated by subtracting the background BRET signal from cells expressing only BRET
donor (Ggj2-Rluc).

TCR Stimulation

Purified human T cells were stimulated in complete RPMI medium and 100 U/mL
recombinant human IL-2, using 1 ug/mL soluble anti-human CD3 (a-CD3), 1 pg/mL
soluble anti-CD3 and anti-CD28 antibodies (a-CD3/28), or beads with immobilized anti-
CD2, anti-CD3, and anti-CD28 antibodies (Beads; at 1:1 bead to cell ratio; Miltenyi Biotec).
In some cases, cells were previously stained with carboxyfluorescein succinimidy! ester
(CFSE) or CellTrace Violet. Flow cytometry was used to analyze CD69 expression at 20
hours, or CD25 expression and CFSE dilution at 96 hours after stimulation. For transduced
CD4™ T cells or Cas9/RNP transfected T cells, cells were stimulated with a-CD3/28 (0 to
1000 ng/mL), and CD69 and CD25 were examined at 18 to 20 hours later. For biochemical
experiments, T cells were rested in serum-free RPMI at 37°C for one hour, incubated with 5
ug/mL a-CD3 in serum-free RPMI containing 0.5% bovine serum albumin (BSA) on ice for
10 minutes, followed by addition of 20 pg/mL of goat anti-mouse 1gG antibodies at 37°C for
0 to 30 minutes. To stop stimulation, cells were washed with ice-cold PBS, and either lysed
for immunoblot or active RAS pull-down, or fixed for flow cytometric intracellular staining.
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In some experiments, inhibitors (3 uM LY294002, 10 pM U0126, or DMSQ) were added
one hour prior to, or the cAMP analog 8-CPT-cAMP 15 minutes prior to, T cell stimulation.

Gene knockout (KO) by CRISPR Cas9/RNP system

Cas9/RNP complexes were prepared according to manufacturer’s instructions (IDT) (71)
and transfected using a 4D nucleofector system into primary human T cells (P2 solution,
program EH-100) or Jurkat T cells (SE solution, program CL-120). The total amount of
transfected gRNA per nucleofection was kept constant by adding gNeg RNA as needed.
CRISPR/Cas9-medited KO efficiency was evaluated by immunoblotting or estimated via
TIDE assay (72). For evaluation of the patient’s mutant allele-specific KO, cDNA was
isolated and subjected to Sanger dideoxy sequencing. Experiments were performed 6-7 days
after transfection.

GST Pull-down Assays and Mass Spectrometry Analysis

Microscopy

Glutathione S-transferase (GST)-fused G, proteins bound to glutathione (GSH)-agarose
resin were loaded with 500 mM GDP or GTP,,S and washed before use. For pull-down
assays, MBP fusion proteins were prepared in pull-down buffer (lysis buffer with 500

UM GDP / GTP,,S and 20 mM MgCly), incubated with prepared GST fusion protein-
bound resin, and interacting proteins were eluted for immunoblotting. Active Ras pull-
down assays were performed according to manufacturer’s instructions (Cytoskeleton,

Inc.). For mass spectrometry analysis, clarified Jurkat T cell lysates prepared in pull-

down buffer were incubated with GST- or GST-Gj»(Thr182Ala)- bound resin in the
presence of GTP,S. Bound protein complexes were eluted and resuspended in acid
extractable detergent. Samples were trypsin-digested and labeled with different isotopes
using “reductive dimethylation” essentially as described for protocol C (73). Samples

were mixed and a single long liquid chromatography with tandem mass spectrometry
(LC-MS-MS) experiment was performed using the EASY-nLC 1000 Liquid Chromatograph
interfaced with a Orbitrap Fusion™ Lumos" Tribrid™ Mass Spectrometer (Thermo Fisher).
Data were analyzed using MaxQuant (74) specifying 0 missed sites to decrease digestion
difference based variation at an FDR of 1%. Mass spectrometry proteomics dataset was
submitted to the ProteomeXchange Consortium via the PRIDE (75) partner repository
(identifier PXD048980 and 10.6019/PXD048980).

Human CD4* T cells or G,j» KO Jurkat T cells transfected with plasmids expressing YFP-
RASA2 and G, were stained with CellBrite® Fix 555 plasma membrane dye (Biotium),
fixed and permeabilized for endogenous RASA2 detection using polyclonal rabbit anti-
RASAZ2 antibody (Novus Biologicals) /Alexa Fluor 488-conjugated goat anti-rabbit IgG,
and DAPI-stained. RAS activation at the Golgi upon TCR stimulation was examined
similarly as in (36). G.i2 KO Jurkat T cells were transfected with plasmids expressing
mCherry-RBD, Cerulean-GalT, EGFP-HRAS / NRAS, and G j,. Transfected cells were
plated on non-treated or anti-CD3-coated chambered coverglasses. After 5 minutes, single
cells expressing all fluorescent proteins in the field of view were imaged. Confocal images
were acquired on either Airyscan-equipped LSMB800 confocal (Zeiss) or SP8 confocal
(Leica) microscopes. Images were taken with fixed acquisition settings, then analyzed and
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automated using customized macro programs within ImageJ software. For fluorescence
lifetime imaging microscopy (FLIM), 293T cells transfected with plasmids expressing
mTFP1 and YFP were fixed and imaged on a Leica DMI 6000 SP5 confocal microscope.
mTFP1 was excited at 805 nm with a femtosecond mode-locked (80 MHz repetition rate)
Mai-Tai HP pulsed, multi-photon laser (Spectra Physics). Fluorescence was passed through
a band-pass GFP filter at ET 525/50 (Chroma Technology Corp) and collected using a
HPM100 Hybrid Detector R3809U-50 (Becker & Hickl; Hamamatsu Photonics). With
SPC830 acquisition board, fluorescence decays were resolved by time-correlated single-
photon counting. Acquired fluorescent transients were analyzed using SPClmage software
according to single-life time decay and in ImageJ to determine FRET efficiencies in region
of interest (ROI).
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Figure 1. Humans with biochemically activating GNAI2 mutations.
(A) Patient pedigrees showing mutations and affected status. P8 was previously reported in a

large cohort of individuals with developmental disorders (14). (B) Location of mutations in
the G protein, numbered according to the longest isoform that predominates across tissues
including blood. (C) Structural model of G j>-GDP-Mg2*-AlF4~ showing interactions in the
GTPase catalytic site. AlF4™ is a y-phosphate mimic which acts as a transition state analog.
Dashed lines, noncovalent bonds. Yellow, those mediated by Ggj,. Insets show patient
variants disrupting the interactions. The noncovalent bond between amino acid 182 and the
nucleophilic H,0 is with the backbone amide oxygen on the residue. PDB: 1GFI. (D) GTP
binding of non-hydrolyzable GTP., S by purified recombinant G, proteins. (E) Binding

rate constants (kpnG7pys) from (D). Red, patients’ variants. Blue, Q205L, GTPase-deficient
positive control (18) and G184S, RGS-insensitive control (normal GDP/GTP exchange and
intrinsic GTPase activity, but impaired RGS-mediated GTPase activity) (20). (F) GTPase
assay. (G) Hydrolysis rate constants (ka;c7p), with (black) or without (white) RGS16,

from (F). (H) Forskolin (FSK)-stimulated cAMP in 293T cells after transfection with G,
variants, measured by ELISA. The increased cAMP in WT-transfected as compared to
untransfected cells may reflect heterologous sensitization of AC (78). Purple, A227V, variant
of unknown significance (15). (1) FSK-stimulated cCAMP reporter activity in HEK293 cells
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transfected with G, variants and YFP-EPAC-RLuc reporter (and CXCR4). Relative CAMP
was expressed as 1/BRET. (J) CAMP accumulation in primary fibroblasts from patients or
healthy donors after FSK stimulation (see fig. S31 for basal levels). Data show representative
(D, F, 1) or mean £ SD (E, G, H, J) for 3-5 independent experiments (D-1), or for 3

patients (J). Individual points within graphs represent results from independent experiments
(E, G, H, J). Statistical analyses were performed using one-way ANOVA with Tukey’s
multiple comparisons for comparing individual variants to WT for (E) and (G, without
RGS); multiple t-tests using the Holm-Sidak method for comparison between with or
without RGS16 for each variant (G, white vs. black); one-sample t-test with Two-stage
step-up method of Benjamini, Krieger and Yekutieli with hypothetical value of 1 for (H);
and unpaired t-test for (J). */<0.05; ****£<0.0001.
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Figure 2. Selected clinical features of patients with activating GNAI2 mutations.
(A) Dysmorphism: frontal prominence (a), flat face (b), high anterior hairline (c), sandal

gap deformity (d). (B) Skeletal abnormalities: sagittal cleft vertebra (a), scoliosis (b),
irregular vertebral endplates (c), brachydactyly type E (d), swan-neck deformity (e), deviated
nasal septum (red arrow) with chronic sinusitis (yellow arrow) (f). (C) Neurological

and associated midline defects: misshapen sella turcica (a), hypoplastic pituitary gland

(b), Chiari I malformation (c), diffuse leukodystrophy (d) progressing to end-stage
neurodegeneration (e), absence of olfactory bulbs (arrow shown for one side) (f), agenesis of
the corpus callosum (white arrow) and hippocampus malrotation (red arrow) (g), cerebellar
dysplasia (h), and polymicrogyria as well as subependymal (white arrow) and band (red
arrow) heterotopia (i). (D) Infectious and inflammatory complications: persistent warts (a,
b), rubella-vaccine induced skin granulomas (c), psoriasiform rash (d), bronchiectasis (e),

T cell infiltrates in lung (brown) (f) or brain (red) (g) in absence of infection. Intestinal
malrotation (h). (E) Human phenotype ontology (HPO) summarized at top-level categories
for each patient. Size of circle, number of phenotypes assessed for a patient within each
category. No circle, fewer than 2 phenotypes assessed. Color scale, fraction of those
phenotypes confirmed in a patient. Top-level categories were sorted from top to bottom
based on the average fraction across patients. The proportion of immune phenotypes present
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was tested in patients having T182 mutations ([N = 6, sample median m = 0.315, SD =
0.145] compared to those without [N = 12, m = 0.194, SD = 0.131]; t(16) = 1.788, p-value =
0.046) by a one-tailed two-sample t-test. Patients 14 and 19 were removed from this analysis
since patients 13 and 14 were related and patients 18 and 19 were related.
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Figure 3. Ggj2 mutantsimpair chemokine receptor signaling by decoupling from chemokine
receptors.

(A) Transwell migration to chemokines of T cells from patients or healthy donors. (B)
CXCL12-stimulated Ca?* fluxes from a patient or healthy donor T cells (left), quantified

as area under the curve (AUC) and normalized to healthy donors (right). (C) Same as

(A) using healthy donor T cells stably expressing G variants or luciferase. (D) Same

as (C) but quantified by normalizing AUC of transduced (GFP*) cells to untransduced
(GFP7) cells. (E) Same as (B) using healthy donor T cells stably expressing G, variants or
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luciferase, but quantified by normalizing AUC of transduced (GFP*) cells to untransduced
(GFP7) cells. (F) Migration after adoptive transfer of mouse T cells stably expressing G-
Normalized ratio of variant to WT G o transduced donor cells recovered from splenic white
pulp or inguinal lymph node. (G) Transwell migration of AC3 or AC7 KO human T cells
also stably expressing G j» variants or not. (H) AUC quantification of (G), normalized

to gNeg-treated cells. (I) FSK-induced cAMP in cells from (G). (J) Schematized BRET
reaction between Ggj»-RLuc91 and GPCR-YFP. Ligand binding (right) results in a reduction
of pre-ligand (left) BRET signal (green). (K) Net BRET signal between Ggj>-RLuc91 and
CCR7-YFP at basal conditions (left) or upon treatment with indicated chemokines (right).
Gating strategies can be found in fig. S26A (for B), fig. S26B (for E), and fig. S26C (for

F), and representative flow plots are presented in fig. S27A (for F). Data show representative
(B, E left), means £ SEM (C, K) or means = SD (A, B, E) for 3-6 (A-C, E) or 3 (K)
experiments, or means + SD of 2 independent experiments (F, total 3-5 mice/group), or
means £ SD of 3 experiments from one of two different donor cell transductions (D,

G-I1). Combined results from multiple experiments are shown, with each individual point
representing a different blood draw obtained longitudinally from a given patient (for A and
B), or an individual recipient mouse (for F), or an independent experiment (C-E, H, I, K
[left]). Statistical analyses were performed using Kruskal-Wallis test with Dunn’s multiple
comparisons for (C) and (E), or one-way ANOVA with Dunnett’s multiple comparisons for
(D), (F) and (K), or one-sample t-test with Two-stage step-up method of Benjamini, Krieger
and Yekutieli for (H) and (1). */<0.05; **P<0.01; ***P<0.001; ****/<0.0001.
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Figure4. Activating Gg 2 protein enhances T cell responses.
(A-F) TCR-induced surface expression of CD69 (A, D) and CD25 (B, E), and CFSE

dilution (C, F) of naive T cells purified from patient (P) or control (C) healthy donors.
(A-C) Representative histograms of gated CD4* (left) and CD8™ (right) T cells from P1
(red) and C (black) stimulated with soluble anti-CD3 and -CD28 antibodies (1 pg/mL).
Unstimulated C (blue). (D-F) Quantification of CD69" or CD25* cells as % of gated CD4*
T cells from 2 patients and 12 controls. Each dot represents a different experiment using a
different blood draw collected longitudinally over a span of 6 years. Unstim: unstimulated.
a-CD3 or a-CD3/28: soluble anti-CD3 or anti-CD3 and -CD28 antibodies (1 pg/mL),
Beads: bead-immobilized anti-CD2, -CD3, and -CD28 antibodies. (G-1) Same as (A-F)
using P1 or control T cells treated with indicated Cas9/RNP and stimulated with anti-CD3
and anti-CD28 antibodies (0—1000 ng/mL; 100 ng/mL for representative histogram), except
that Mean Fluorescence Intensity (MFI) was measured. MFI were plotted against doses of
anti-CD3/28 (fig. S14D) to calculate AUC for each condition (G and H, right). gNeg is a
non-specific guide RNA, and gMP targets the mutant GNA/2allele of P1. (J and K) Same
as (A, B, D, E) using CD4* T cells stably expressing G, variants. EV: empty vector.
Gating strategies can be found in fig. S26D (for A-1) and fig. S26E (for J and K). Data
show representative flow plots alongside combined results with means + SD for 4 (A-F, J
and K), or 3 (G-I) experiments. Two-way ANOVA was performed with Sidak’s multiple
comparisons using cell type (Control or P1) and gRNA target (gNeg or gMP) as factors

for (G) and (H), or one-way ANOVA with Tukey’s multiple comparisons for (J) and (K).
*£<0.05; **P<0.01; ***F<0.001; ****P<0.0001; ns = not significant. See also fig. S13 and
S14 for related data.
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Figure 5. Active G4 enhances TCR-induced S6-regulatory pathways.
(A-I) Purified control (C) or P1 T cells were activated with anti-CD3 antibodies for the

indicated times and samples subjected to flow-cytometry or immunoblot (G, left). (A-F, H,
and |) Among the gated CD4* T cells, MFI was measured. (G, right) Simplified diagram
of TCR-induced signaling pathways. (J-L) Similar to (A-1) using CD4"* T cells from a
healthy donor stably expressing G, o variants and calculating AUC. EV: empty vector.
Gating strategies can be found in fig. S26F (for A-F, H, I) and fig. S26G (for J-L). Individual
data points and representative flow plots are presented in fig. S27B (for A-F, H, I) and in

fig. S27C (for J-L). Data show representative (G), means + SEM (J-L, right), or means *

SD (rest), based upon 3 (A-H, K), 2 (1), or 4 (rest) experiments. One-way ANOVA was
performed with Dunnett’s multiple comparisons for (J), (K), and (L). */<0.05; **~£<0.01.
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Figure 6. RASA2, a G o effector target, constrains T cell responses.
(A) cAMP accumulation in control or P1 T cells at baseline (top), or upon stimulation

with FSK (bottom). (B-F) T cells were transfected with indicated Cas9/RNP. (B) cAMP
accumulation upon FSK treatment. (C-F) AUC quantification of TCR-induced S6 (S235/36)
phosphorylation (C), surface expression of CD69 (D) or CD25 (E), and CFSE dilution

(F), on gated CD4* or CD8™ T cells, relative to gNeg control, after flow cytometric
measurements of MFI. Cells were stimulated with anti-CD3 and anti-CD28 antibodies

in (D and E; 0-1000 ng/mL) and in (F; 100 ng/mL). (G) Graphical representation of
Ggijo-interacting proteins. Black: known interactors. Red and blue: candidate interactors.
(H) 293T cells were transfected as indicated. FLAG was immunoprecipitated (IP) and
immunoblotted (right-adjacent labels designate the specificity of antibodies used). (1)
Immunoblot of RASA2 IP with T cell lysates from P1 or control (C). (J) Interaction
between purified glutathione-S-transferase (GST)-Gg2 (loaded with either GDP or GTP,,S)
and maltose binding protein (MBP) or MBP-RASAZ2 fusion proteins via GST pulldown
(PD). Coomassie stain: GST-fusion proteins used in PD. (K) Healthy donor T cells
transfected with control (C) or RASA2-targeting (R2) siRNAs were stimulated with anti-
CD3 antibodies for varying times, and lysates immunoblotted for indicated proteins. (L)
TCR-induced surface expression of CD69 or CD25, and CFSE dilution of CD4* or CD8*
T cells treated with gNeg (black) or gRASA2 (red) Cas9/RNP. Cells were stimulated with
anti-CD3 and anti-CD28 antibodies (100 ng/mL). (M) AUC quantification of CD69 (left)
or CD25 (right) expression on gated CD4* T cells, relative to gNeg control, after flow
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cytometric measurements of MFI. Purified T cells from P1 were stimulated with increasing
amounts of anti-CD3 and -CD28 antibodies (0-1000 ng/mL) after transfecting with the
indicated Cas9/RNP9s (gNeg, gMP targeting mutant GNA/2allele of P1, gRASA?2). Each
colored dot indicates an experiment from a different blood draw. Gating strategies can be
found in fig. S26F (for C), fig. S26D (for D-F), fig. S26H (for L and M). Representative
flow plots are presented in fig. S27D (for C), fig. S27E (for D), fig. S27F (for E), and fig.
S27P (for M). Combined results from multiple experiments are shown with each individual
point representing an independent experiment (A-E, M). Data show representative (F, H-L)
or means + SD (rest), based upon 3 (A [top], H-K, M), 5 (L), 5 (A [bottom]), or 6 (B-F)
experiments. (G) shows the analysis combined from two independent PD experiments. One-
way ANOVA was performed with Dunnett’s multiple comparisons for (B); one-sample t-test
with Two-stage step-up method of Benjamini, Krieger and Yekutieli correction for multiple
comparisons was performed with hypothetical value of 1 for (C-E); one-way ANOVA with
Sidak’s multiple comparisons was performed to compare gNeg vs. gMP, gNeg vs. gRASA2,
gNeg vs. gRASA2+gMP, or gRASA2 vs. gRASA2+gMP in (M). */<0.05; ****pP<0.0001;
ns (not significant).
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Figure 7. Active Gqj» promotes RAS activity by redirecting RASA2 to plasma membrane.
(A) Control or P1 T cells were stimulated with anti-CD3 antibodies for varying times.

Lysates were prepared for RBD pull down (PD) to detect active-RAS or for immunoblot for
indicated proteins. Coomassie staining shows GST-RBD used in PD. (B) Purified HRAS,
RASA2, and G, proteins (preloaded with GTP., S [non-hydrolyzable GTP analog that
locks G o in active state] or GDP) were incubated as indicated with an excess of GTP.
GTP consumption was determined by measuring remaining GTP level (represented by
relative light units [RLU]). (C) RASA2 distribution in CD4" T cells from P1 or healthy
donor control. PM: plasma membrane. (D) MFI of RASA2 ratio, at the PM relative

to cytoplasm region (Cyto) in (C) and fig. S22D from 4 patients and 5 controls. (E)
Distribution of YFP-RASA2 in Gj» KO Jurkats co-expressing indicated G variants.

(F) Quantification of (E) as done in (D). (G-1) Fluorescence lifetime imaging (FLIM) of
MTFP1 or Ggjo-mTFP1 (WT, Q205L) with or without YFP-RASA2 expression in 293T
cells. (G) Fluorescence intensity (top), and lifetime (bottom) of mTFP1. (H) mTFP1
Fluorescence lifetime distribution. (1) Quantification of mTFP1 mean fluorescence lifetime.
(J-L) Confocal microscopy colocalization analysis of unstimulated or TCR-induced active
RAS distribution in Ggj» KO Jurkats transfected with EGFP-HRAS (J and K) or NRAS
(L), mCherry-RBD, and Cerulean-GalT along with G variants as indicated. Unstim:
unstimulated. (J) Number on RBD image represents MFI ratio of RBD at Golgi (defined
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by GalT stain) relative to non-Golgi region. (K and L) Quantification of RBD MFI ratio
as in (J). Scale bar =3 um (C), 5 um (E, J) or 10 pm (G). Data show representative

or means = SD for 3 (A, C-I, L) or 4 (B, J, K) experiments. Combined results from
multiple experiments are shown (for B, D, and F), with each individual point representing
an independent experiment (or a different patient for D). Each individual circle (for I, K,
and L) corresponds to the value from a different cell, but with superimposed means +

SD from across multiple independent experiments. One-way ANOVA was performed with
Tukey’s multiple comparisons for (B) and (F); unpaired t-test for (D); two-way ANOVA
was performed using mutant type and experiment as factors for (1); three-way ANOVA was
performed using transfectant, stimulation, and experimental repeat as factors for (K) and (L)
and Tukey multiple comparison conditional on the stimulation status. */£<0.05; **/<0.01;
***p<0.001; ****A<0.0001; ns = not significant.
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