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Abstract

Botryllus schlosseri, is a model marine invertebrate for studying immunity, regenera-
tion, and stress-induced evolution. Conditions for validating its predicted proteome
were optimized using nanoElute® 2 deep-coverage LCMS, revealing up to 4930 pro-
tein groups and 20,984 unique peptides per sample. Spectral libraries were generated
and filtered to remove interferences, low-quality transitions, and only retain pro-
teins with >3 unique peptides. The resulting DIA assay library enabled label-free
quantitation of 3426 protein groups represented by 22,593 unique peptides. Quanti-
tative comparisons of single systems from a laboratory-raised with two field-collected
populations revealed (1) a more unique proteome in the laboratory-raised popula-
tion, and (2) proteins with high/low individual variabilities in each population. DNA
repair/replication, ion transport, and intracellular signaling processes were distinct in
laboratory-cultured colonies. Spliceosome and Wnt signaling proteins were the least
variable (highly functionally constrained) in all populations. In conclusion, we present
the first colonial tunicate’s deep quantitative proteome analysis, identifying functional
protein clusters associated with laboratory conditions, different habitats, and strong
versus relaxed abundance constraints. These results empower research on B. schlosseri
with proteomics resources and enable quantitative molecular phenotyping of changes
associated with transfer from in situ to ex situ and from in vivo to in vitro culture

conditions.
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1 | INTRODUCTION

B. schlosseri is a widely distributed and highly invasive, encrusting
colonial seasquirt[1-4]. It represents an emerging model marine inver-
tebrate species [1, 5-7]. Originally, native to the Mediterranean Sea
and Atlantic coast of Europe, it has spread globally into shallow water
temperate zones of all continents except Antarctica [4]. It is widely
distributed along the east and the west coasts of the United States
[4, 8-10]. The first records of its introduction to the Pacific coast of
North America are from the 1940s [8]. Each colony is enclosed by
a semitranslucent organic matrix (the tunic) that contains several to
thousands of genetically identical units (zooids), each of which are 1-
3 mm long. Zooids are arranged in structures called systems, which
have a flower-like phenotype with individual zooids resembling flower
petals that are connected by a ramified vascular network containing
hemolymph (Figure 1) and various cell types [11, 12]. This species can
produce sexually and asexually [2, 6, 13]. In sexually mature colonies,
testes and ovaries are both present within the same bud, and released
sperm fertilize eggs that develop into short-lived pelagic larvae [14].
Self-fertilization is minimized by the asynchronous release of sperm
and eggs [15]. These larvae settle on a substrate and develop into
encrusting B. schlosseri colonies, which can reproduce asexually by
forming buds that develop into new zooids, in a weekly cycles of death
and budding, known as blastogenesis. This cycle takes approximately 1
week at a temperature range of 18°C—20°C [2]. Laboratory cultures
of this species are generally established by collecting gravid colonies
from the field that release pelagic larvae within a few days of collec-
tion. These larvae settle on glass slides, metamorphose, and grow to
adults. While the methodologies of animal maintenance differ once
established [16-18], laboratory cultures are successfully propagated
asexually [19-21].

Recent advancements in the fields of cancer research and cell
immortalization have shed light on the fact that environmental stress
accelerates the evolutionary processes of cell adaptation, favoring cel-
lular phenotypes that outperform neighboring cells in terms of their
proliferation rates [22-26]. This phenomenon serves as the foundation
for spontaneous cell immortalization. However, in the realm of aquatic
invertebrates, the occurrence of spontaneous cell immortalization is
significantly less frequent compared to terrestrial animals or fish. In
parallel, there is a rapidly growing demand for aquatic invertebrate cell
lines, driven by both, basic and applied research objectives (such as
for cell-based seafood production and materials for the pharmaceutical
industry [27]). Therefore, revealing the changes in molecular (e.g., pro-
teomic) networks when aquatic invertebrates are shifted from in situ to
ex situ conditions or when cells from these organisms are transferred
fromin vivo to in vitro settings, are of considerable interest.

Here we have analyzed the proteome of laboratory-bred colonies
of the star tunicate (Botryllus schlosseri). This species is well suited
for experimental evolution studies [5, 6], at both the whole animal
and cellular levels, because it can be cultured in the laboratory for
many generations and multiple years, revealing unique developmental
biology processes (e.g., whole body regeneration, rejuvenation torpor
states, totipotent stem cells statuses) and allorecognition phenomena

Significance Statement

The star tunicate (Botryllus schlosseri) is an emerging model
for studies on the molecular ecology of invasive species,
the evolution of immunity, body regeneration, and stress-
induced evolution. Despite its significance, only a handful of
research facilities across the globe have managed to main-
tain viable laboratory-bred colonies. This species’ genome
was fully sequenced a decade ago, but its proteome had
not been analyzed. By utilizing the new nanoElute® 2 for
peptide separation, we established, for the first time, the
optimal operational parameters that maximize protein iden-
tification and coverage for a colonial tunicate proteome. In
addition, we characterized the first expressed proteome of
any colonial tunicate in both laboratory and field contexts.
Our work yielded a STRING annotated reference proteome
database and a rigorously quality-filtered DIA assay library
for B. schlosseri, which represent important new resources
for comparative molecular ecology and evolutionary biology.
The results include the identification of functional protein
networks undergoing the most significant changes in lab-
oratory cultures, and proteins exhibiting the highest and
lowest variability across all three analyzed B. schlosseri pop-
ulations. Since phenotypes are based on the proteome and
proteins are the targets of almost all pharmaceutical drugs,
proteomics provides new insights for managing this inva-
sive species and devising strategies for the establishment of

research-amenable laboratory cultures.

(fusion/rejection, natural chimerism), shedding light on the evolution
of these phenomena [20, 28, 29]. This group of organisms is closely
related to the vertebrates by sharing the same phylum (Chordata) [30]
yet grows as flat colonial layers attached to a surface, and is one of
the few marine invertebrates from which reliable primary cell cultures
have been derived [12, 31].

The goal of this study was to experimentally validate predicted B.
schlosseri proteins and to understand how the proteome is altered dur-
ing the establishment of stocks of laboratory-bred colonies, which are
genetically tractable and free from contamination, serving as source
material for deriving primary cultures aimed at achieving immortal-
ization [32]. This analysis involved a comparison with field-collected
samples, to reveal protein networks that undergo alterations in multi-
generation long-term and controlled ex situ culture conditions. The
comparison included two geographically distant populations situated
about 1800 km apart. Another major goal of this study was experi-
mental validation of the first predicted B. schlosseri proteome and the
establishment of a data-independent acquisition (DIA) assay library
and STRING annotated reference database for quantitative functional

proteomics studies of this species.
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FIGURE 1 Botryllus schlosseri system at stage C [60, 87], enclosed by a single tunic, with dorsal (A) and ventral (B) views. At each blastogenic
stage, the system comprises three generations: zooids, primary buds, and secondary buds. Zooids feature individual oral siphons, while the atrial
siphon is shared across the entire system. The colony’s expansion is facilitated by numerous vascular system ampullae located around the

periphery.

2 | Materials and methods
2.1 | Sample preparation and experimental design

Botryllus schlosseri samples (single systems, usually consisting of up
to 12 zooids, Figure 1) were collected in late summer 2022 from
two marinas, one in southern California (Santa Barbara, CA, GPS
coordinates: 34.414478, —119.828650) and the second in north-
ern Washington (Des Moines, WA, GPS coordinates: 47.398657,
—122.330650; 1800 km apart). Concurrently, we sampled laboratory
raised B. schlosseri colonies that originated from gravid colonies col-
lected from the Santa Barbara marina and were then raised for 1 year
in a laboratory facility at the University of California Santa Barbara as
previously described [20]. The samples were assigned to the follow-
ing three groups: Santa Barbara field population (W, n = 12 colonies),
Santa Barbara laboratory raised population (C, n = 12 colonies), and
Des Moines field population (T, n = 20 colonies). All samples were
snap-frozen in liquid nitrogen immediately upon harvest and stored
at —80°C until processing. Samples were thawed, resuspended in
lysis buffer (8 M urea buffer, 50 mM ammonium bicarbonate), and
homogenized using a beadbug homogenizer and 3 mm zirconium
beads (Benchmark Scientific). Extracted proteins were then reduced
by 10 min incubation with 5 mM dithiothreitol at 60°C, followed by
30 min incubation with 15 mM iodoacetamide in the dark. Samples
were quenched by increasing dithiothreitol to 10 mM before diges-
tion (4 h) with trypsin/Lys-C (Thermo A41007) at a ratio of 50 parts of
sample protein to 1 part of enzyme. Formic acid (5% final volume) was
then added to reduce pH below 4 to stop digestion. Peptides were puri-
fied with C18 cartridges (Thermo Pierce™ 89873) and eluted with 50%

acetonitrile in LCMS water per manufacturer instructions. Samples

were then dried by speedvac (Thermo Savant), resuspended in 0.1%
formic acid in LCMS water, and peptide concentration determined with
a quantitative peptide assay per manufacturer instructions (Thermo
Pierce™ 23290).

2.2 | LCMS acquisition

All samples were analyzed with a nanoElute® 2 LC which was seam-
lessly connected online via a column toaster and captive spray (CS)
source to an Impact Il MS (all Bruker Daltonics). The Impact Il oper-
ates like a TimsTOF but without the ion mobility dimension [33]. An
equal amount of 200 ng of total peptide mix was injected for all sam-
ples, except for the BSA standards (12.5 fmol injection). Peptides were
separated without trapping on a Pepsep 25 cm x 150 um ID x 1.5 pm
particle size column. The optimal gradient was 3%-33% acetonitrile for
a duration of 70 min. Other conditions tested included different sepa-
ration times using the same gradient, different gradients, and different
Pepsep columns. Identical acquisition parameters were used in OTOF
control 6.2 (Bruker Daltonics) for DDA and DIA except that DDA was
operated in MSMS mode (2 s cycle time for selecting MS precursors
for MSMS fragmentation, 25 Hz) and DIA was operated in MRM mode
(MSMS spectra only, 50 Hz). During MSMS mode, the isolation width
for fragmentation was set at 2-3 m/z units, whereas in MRM mode
it was 10 + 0.5 m/z units. For DIA, 75 m/z windows were scanned in
each cycle (380-1130 m/z range). Consequently, every scanning cycle
required 1.5 s at a frequency of 50 Hz, resulting in the generation of
a minimum of 8 data points within a 12 s timeframe. This alignment
closely matched the widths of the transition peaks produced under the

above-mentioned LC gradient conditions.
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2.3 | DDA analysis of reference samples

Data-dependent acquisition (DDA) information was extracted from
three samples of each group (C, W, T). This data was employed to
capture illustrative MS and MSMS spectra which were subsequently
annotated with pertinent details such as peptide sequence, protein
accession number, and retention time information, using Fragpipe 19.0
[34]. The reference proteome database for B. schlosseri, consisting of
46,519 protein entries was downloaded on May 09, 2023 from https://
aniseed.fr/aniseed/download/download_data. The overall proteome
database generated for B. schlosseri analysis with Fragpipe contained
these 46,519 entries plus 118 common contaminants and 46,637 shuf-
fled decoy entries for a total of 93,274 entries. The human RefSeq
proteome was retrieved from the NCBI database on April 24,2023 and
was used for conducting a comparative analysis of the HeLa cell extract
(Pierce™ # 88328, 200 ng per injection) benchmarking standard. This
Refseq proteome contained 175,050 entries plus 118 common con-
taminants and 175,168 shuffled decoy entries for a total of 350,336
entries. In addition, bovine serum albumin standard (Pierce™ # 88341,
12.5 fmol per injection) was analyzed by DDA. The bovine Refseq
proteome contained 64,715 entries plus 118 common contaminants
and 64,933 shuffled decoy entries for a total of 129,866 entries and
was used to compare bovine BSA peptide intensities, peak widths and
retention times before and after acquisition of all B. schlosseri samples.
To validate consistent instrument performance throughout the anal-
yses we used DataAnalysis 6.2 (Bruker Daltonics). Before subjecting
them to Fragpipe analyses, all the raw files were converted to mzML
format using MSconvert 3.0. The subsequent Fragpipe analyses were
conducted in a closed search mode, using default parameters and the
databases outlined above.

2.4 | Generation of a high-quality DIA assay
reference library

The DDA data were used to construct a reference DIA assay library,
which ensures consistent quantitation of the same set of proteins, pep-
tides, and transitions across all B. schlosseri samples. First, annotated
spectra information for nine representative samples (three for each
group) was generated and stored in pep.xml files using MSFragger 3.7.
These files were then imported into Skyline Daily 22.2.1.488 to create
a raw spectral library. This raw spectral library was used to generate
a DIA assay list for the B. schlosseri proteome using the DIA Peptide
Search option in Skyline with the following transition settings: pre-
cursor charges 1-5, fragment ion charges 1-2, ion types v, b, product
ions from ion 3 to last ion, min. m/z 50, max. m/z 2000, ion match
tolerance 0.05 m/z, and picking 15 product ions (min. 5). The diges-
tion conditions were set to trypsin, max. 2 missed cleavages, using the
B. schlosseri proteome as a reference. The Skyline analysis removed
533 redundant proteins from this reference proteome, resulting in
45,986 target entries. Oxidation on Met and carbamidomethylation on
Cys were variable structural modifications (max. 3 per peptide). The
quantification mode was configured to achieve median equalization

at MS level 2 [35, 36]. The DIA assay list was compiled through the
process of creating protein groups, arranging all peptides within their
corresponding protein groups, assigning shared peptides exclusively
to the protein group with the highest peptide counts, identifying the
smallest possible protein list that accounts for all peptides, imposing a
peptide length constraint (6-25 amino acids), and introducing an equiv-
alent number of decoys as peptides (45,606, with sequence shuffling).
The DIA data from the nine reference samples were initially imported
into Skyline before incorporating any additional samples, by using the
subsequent full scan settings: Product mass analyzer = centroided,;
Isolation scheme = results (0.5 margins); Mass accuracy = 15 ppm,
Scan collection = only scans within 2 min of the MS/MS identifica-
tion retention time. The DIA assay library was subsequently enhanced
through the process of refining peak outlines with mProphet (evaluat-
ing all peak quality criteria and employing decoys for q value scoring).
Subsequently, peptides lacking results were eliminated, while the max-
imum transitions per precursor was capped at 8 (with a preference
for larger ions). Additionally, criteria were set requiring a minimum
of 5 transitions and a minimal peak quality of 0.5. To prevent bias,
no manual adjustments were made to peak boundaries. Nevertheless,
peak quality was evaluated using mProphet and a g value cutoff of
0.05 was enforced across all quantitative analyses. In terms of opti-
mizing separation conditions with the nanoElute 2, spectral libraries
were constructed using DDA data obtained from three samples of the
T population and were then subjected to filtering with encyclopeDIA
[37].

2.5 | Relative quantitation of protein abundances

DIA data for all remaining 35 samples were imported into Skyline,
utilizing the identical transition settings as above. To enhance iRT
alignment, a retention time regression was established using 12 inter-
nal standards with the Skyline retention time calculator (referred
to as “Bosch”). This calibration was subsequently extended to all
peaks across all samples. Next, mProphet peak optimization was per-
formed, using Skyline-generated decoys (matching the count of target
peptides). All samples were annotated with two distinct categories
(bioreplicate and condition) facilitating the establishment of pairwise
statistical comparisons across the three B. schlosseri population groups.
Comparisons were normalized by equalizing medians at 95% confi-
dence (MS level 2), with proteins serving as the scope and the sum
of transitions as the summarization method. A peak detection g value
cutoff of 0.05 was enforced for all comparisons. The design sample
size module of MSstats 4.2 was used to calculate the fold-change (FC)
threshold for significantly different proteins based on the actual data
collected for all 44 samples and was set as a statistical power of 0.8
and false discovery rate (FDR) < 0.05 [38]. The data processing mod-
ule of MSstats was used to generate a QC plot that visualizes protein
abundance intensity distributions across all samples. All MSstats group
comparisons enforced a g value cutoff of 0.05 to eliminate low-quality
peaks from interfering with the quantitation. Pairwise comparisons of

proteins were considered statistically significant if they have a FC > 2
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and a multiple testing corrected p < 0.05. Multiple testing correction
was performed with the Benjamini-Hochberg procedure [39].

2.6 | Generation of String reference database and
network analysis

FASTA files that were generated with Fragpipe for the nine reference
samples (three for each population) were validated and subsequently
merged into a unified and definitive FASTA file with PEAKS X Pro
(ver. 10.6, BSI Inc., Waterloo, Canada). To comply with the maximum
36 character limit of the public STRING database [40] protein identi-
fiers were abridged and identifier redundancy was remove by deleting
the “Boschl.CG.Botznik2013” prefix from all entries. The resultant pro-
teome of B. schlosseri encompassing 6612 experimentally validated
and unambiguous proteins was then uploaded as a new reference
proteome within the STRING database. This proteome was used as
the reference for conducting functional enrichment analyses on sets
of proteins that display over- and under-representation, as well as
those that exhibit the highest and lowest variability within specific B.
schlosseri populations.

In this experimentally validated reference proteome database,
each protein identifier was associated with a corresponding pro-
tein name through a Blast2Go batch homology search (Omicsbox
3.0.29, BioBam). STRING network analyses were executed on all pro-
tein sets that displayed significant differences between populations,
employing the multiple protein search option. The goal was to iden-
tify STRING clusters that exhibited notable enrichment or depletion
(with FDR < 0.01). These STRING clusters were subsequently consoli-
dated into broader functional categories, streamlining the information
and minimizing redundancy to facilitate comprehension. To maintain
clarity and eliminate redundancy, other forms of functional enrich-
ments that were obtained from the STRING analysis (GO terms, KEGG
pathways, Reactome pathways, Uniprot keywords) were not consid-
ered. Nevertheless, it is worth noting that these additional enrichments
can be accessed through a subsequent STRING reanalysis of the
data included in Table S1. This allows for verification that they mir-
ror the same functional enrichments represented by the STRING
clusters.

STRING analyses were conducted on the sets of proteins displaying
the highest and lowest variability within each population. These anal-
yses utilized the protein value/rank search option. The values used for
these searches corresponded to the degree of abundance fluctuation
observed among samples for each protein within a specific population.
This variability was calculated by computing the ratio of the stan-
dard deviation to the arithmetic mean (Coefficient of variation, CV).
Groups of proteins at the upper (>0.8) and lower (<0.2) ends of the
CV range were chosen for each population and used for value/rank-
based STRING analyses, using the standard gene set STRING analysis
workflow. The resultant STRING network clusters were then visual-
ized using default settings, with the exception that network edges were
displayed as a single line. The intensity of this line illustrates the confi-

dence (strength) of the connection between nodes. Markov clustering

Proteomics and Systems Biology

(MCL) was performed, with the inflation parameter set at 1.5. The
resulting network clusters were connected by solid lines while dashed
lines indicated nodes belonging to different functional STRING clus-
ters. The network nodes were filled with colors corresponding to the
clusters and the intensity of the halos surrounding nodes indicated the
protein variation within a given population (color scales ranged from
grey to red with a CV of 0.2 to a minimum value, and from gray to blue,
with a CV of 0.8 to maximum value).

3 | RESULTS AND DISCUSSION

3.1 | Deep proteome coverage by peptide
separation with the nanoElute® 2

We have optimized one of the first commercially available nanoElute®
2 instruments to achieve optimal protein detection in complex mix-
tures through DDA. The nanoElute 2 is a new nano-LC device designed
for ultra-high resolution (UHR) QTOF and TimsTOF mass spectrome-
ters. The capabilities of this new instrument were also harnessed for
quantitative label-free DIA proteomics. Optimal peptide separation
conditions include the use of a Pepsep 25 cm x 150 pm x 1.5 pm col-
umn, 70 min gradient of 3-33%, 500 nL/min flow rate, 20 um zero dead
volume CS emitter, and the injection of 200 ng total peptide mixture
(Figure S1). Optimal sample preparation was achieved when applying
two cycles of 30 s each for 3.0 mm bead homogenization at 3500 rpm,
followed by a 4 h trypsin/Lys-C digestion period.

Negligible sample carryover between runs was observed when
employing the default column flushing and reconditioning conditions
as determined by the Hystar 6 nanoElute® 2 control software. Prelim-
inary trials indicated that best results were obtained by operating the
nanoElute® 2 without incorporating a trap column. Instead, C18 car-
tridges were employed to purify samples prior to injection. This purifi-
cation process included washes with 5% acetonitrile. However, the
starting concentration for the acetonitrile gradient was not increased
beyond 3% to minimize the loss of highly hydrophilic peptides and
account for distinct peptide binding properties of the C18 matrix
in the preinjection cleanup cartridges compared to the separation
column.

The workflow detailed above enabled the operation of the nanoE-
lute® 2 in a trap-free mode, effectively minimizing peak width. By
implementing these optimized conditions, we identified up to 4930
protein groups, encompassing 28,404 unique peptides in a single
sample derived from a single B. schlosseri system, even without dis-
cerning ion mobility. The average number of protein groups detected
in the three populations was 4421 + 270 (C), 4292 + 156 (W), and
3853 + 40 (T), and the corresponding average number of unique pep-
tides was 18,833 + 1170 (C), 17,585 + 834 (W), and 15,572 + 358 (T)
(mean + SEM, Figure S2, Table S1). These results are in line with the
4041 protein groups and slightly below the count of 26,167 unique
peptides identified in a Hela cell digest [41], a common standard for
proteomics experiments (Figure S2). When employing a TimsTOF Pro

Il mass spectrometer, HelLa cell digest typically yields approximately
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10,000 protein group IDs [42], suggesting that an added ion mobility
dimension could potentially lead to the identification of nearly 10,000
B. schlosseri proteins.

3.2 | A DIA assay library for deep quantitative
proteomics of B. schlosseri

By consolidating multiple DDA runs to alleviate the impacts of stochas-
tic peak selection and undersampling [43], it becomes possible to
increase the detection of peptides with low abundance. This strat-
egy enables the quantification of >7000 B. schlosseri protein groups
(Figure S3A), collectively represented by almost 40,000 unique pep-
tides (Figure S3B). These data were used to construct a comprehensive
B. schlosseri DIA assay library consisting of experimentally validated
protein sequences. To enhance quantitation robustness, transitions of
low quality or with interferences and proteins with fewer than three
peptides each (approximately half of the total) were excluded from the
final DIA assay library. The remaining 3,426 unambiguous proteins are
represented by 22,593 unique peptides and the majority of these pep-
tides (71%) are endowed with 8 quantitative transitions (Figure S3C).
Each protein within this DIA assay library is consistently represented
by identical peptides and transitions across all samples, ensuring a
precise basis for quantitative comparisons [36]. The most abundant
transitions in this library are contributed by y4-y8 MSMS ions (Figure
S3D).

Of the 3426 proteins included in the B. schlosseri DIA assay library,
91 lack close homologs according to the BLAST2GO analysis and are,
therefore, unique to B. schlosseri. They hold potential for intriguing
future functional characterizations (Table S2). Furthermore, among the
identified proteins, 368 exhibited corresponding BLAST2GO orthologs
designated as “uncharacterized proteins,” reflecting the limited under-
standing of their functions. Large multiprotein complexes are also
well-represented in the DIA assay library, including the ubiquitina-
tion machinery (31 subunits), 26S proteasome (24 subunits), cytosolic
ribosome (44 subunits), mitochondrial respiratory chain complex (30
subunits), nuclear pore complex (12 subunits), nucleolus complex
(10 subunits), cilia- and flagella-associated protein complex (23 sub-
units), mRNA spliceosome (37 subunits), sorting nexin complex (10
subunits), T-complex (13 subunits), and THO-complex (4 subunits).
These large protein complexes reside in different cell compartments
including the cytosol, nucleus, mitochondria, and various plasma mem-
brane and endosomal compartments [44-49], confirming that each
of these cellular compartments is well represented in the DIA assay
library.

Across all samples, the MSMS transitions had a mass accuracy
of <15 ppm (<10 ppm for the vast majority, Figure S3E). The quality
of recorded peaks from all samples was high, signified by mProphet g
values < 0.05 (Figure S3F). While some peaks slightly deviated from
the predicted retention time, their frequency was minimal, and thus
no manual adjustments to peak boundaries were made to ensure
consistency and eliminate potential bias (Figure S3G). To establish

a pertinent fold change (FC) threshold for statistical significance, a

power analysis encompassing the entire dataset was performed with
MSstats [38]. This analysis indicated a threshold FC value of 2-fold,
relevant for a sample size of at least 12 replicates per group (Figure
S3H). Furthermore, the MSstats power analysis also indicated that the
distribution of relative intensity for peptides representing each pro-
tein remained comparable among all samples (Figure S3l). Collectively,
these data illustrate the high quality of the B. schlosseri DIA assay
library.

3.3 | Proteome differences between B. schlosseri
laboratory and field populations

Quantitative assessment of relative protein abundances in the Santa
Barbara samples (lab C vs. field W) unveiled 100 proteins that were
significantly upregulated (55 with STRING AC) and 237 that were sig-
nificantly downregulated (121 with STRING AC) in laboratory-raised
versus field populations (Figure 2A). A substantial portion of these
differentially regulated proteins clustered within the extreme 5% of
the highest and lowest percentiles STRING input value rank distribu-
tion (Figure 2B). Many of the up- and down-regulated proteins that
lack STRING ACs, have predicted functions that align with the func-
tional categories represented by the proteins having a STRING AC.
Particularly noteworthy are cytoskeleton, ribosomal translation, and
extracellular matrix (ECM)/immunity functional domains (see below,
Table S2). These functions contribute to dynamic remodeling of vascu-
lar tissue [50], whole body regeneration [51], and allogeneic immunity
[52] in B. schlosseri, suggesting that laboratory conditions significantly
impact these processes. However, among the significantly upregu-
lated and downregulated proteins, 15 and 51, (including the two most
strongly) respectively, did not exhibit sequences similar to any known
protein. The experimental characterization of these proteins holds sub-
stantial potential for revealing novel domains and functions that confer
adaptive advantages in the face of intense selection pressure (e.g.,
laboratory environments).

Both sets of significant proteins having annotated STRING ACs
(up- and down-regulated) display a pronounced overlap in functional
categories. This observation implies a comprehensive disparity in the
corresponding functions, achieved through the preferential involve-
ment of distinct proteins governing these functions in laboratory-bred
versus field populations. These functions encompass glycolipid and
lipid metabolism (4/17), cytoskeleton (axonemal cilia, actin, micro-
tubules, 5/19), xenobiotic metabolism (12/15), chromatin and DNA
repair/replication (2/9), ion transport (2/5), intracellular signaling
(4/7), RNA metabolism and processing (6/9), glycoprotein and sugar
metabolism (3/9), ECM and immunity (6/31), energy metabolism
(5/12), amino acid metabolism (9/12), ribosomal translation (4/4),
endoplasmic reticulum (ER) processing and vesicle transport (9/10),
and proteolysis (6/31) (corresponding up/down-regulated protein
numbers are in parentheses, Figure 2C,D).

To determine whether these functional differences persist for other
field versus laboratory B. schlosseri comparisons, we compared the pro-

teome of the Santa Barbara laboratory-raised population (C) with the
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FIGURE 2 Relative protein abundances in populations C versus W. (A) Volcano plot visualizing statistically significant (FC > 2 and corrected

p < 0.05) proteins that are more (orange) and less (blue) abundant in C than W. Colored circles represent proteins with a STRING annotation while
colored triangles are proteins not included in the STRING database (i.e., proteins without a sufficiently similar ortholog). (B) STRING input value
rank distribution based on Log2(FC) when comparing C versus W. STRING cluster categories for proteins that are significantly more (C) and less
(D) abundant in C versus W. Data represent mean + SEM for Log2(FC) of proteins in each category and numbers inside bars indicate the
corresponding numbers of proteins. Some significant proteins were mapped to multiple functions.

remote Des Moines, WA field population (T), which is located in a dif-
ferent habitat. Relative protein abundance quantitation revealed 78
proteins (40 with STRING ACs) that are significantly upregulated and
647 proteins (479 with STRING AC) that are significantly downreg-
ulated in the “C” versus the “T” B. schlosseri populations (Figure 3A).
Similar to previous comparisons, the majority of these significantly dif-
ferent proteins clustered within the extreme 5% of highest and lowest
percentiles of the STRING input value rank distribution (Figure 3B).
The functions of most proteins that were up- and down-regulated in
the lab population “C” but lacked STRING ACs aligned with the func-
tional categories represented by proteins with STRING ACs (see below,
Table S2). Among these proteins, the 15 significantly upregulated and
55 significantly downregulated proteins lacking STRING ACs, encom-
passed those that were most prominently regulated in either direction.
These proteins represent promising candidates for uncovering novel
domains and functions associated with the effects of artificial selection

under laboratory conditions [53].

Despite the considerable disparities in habitat and latitude between
the field populations (Santa Barbara, CA and Des Moines, WA), similar
functional variations were observed in both field versus laboratory-
raised population comparisons (Des Moines vs. laboratory and Santa
Barbaravs. laboratory). In addition, in both comparisons, more proteins
were significantly down- than up-regulated in the laboratory-raised
population for all functional categories. The proteins that displayed
significant regulation in the laboratory versus field populations were
implicated in a range of functional categories, including glycolipid and
lipid metabolism (2/42), cytoskeleton (axonemal cilia, actin, micro-
tubules, 8/75), xenobiotic metabolism (8/15), chromatin and DNA
repair/replication (5/40), ion transport (2/17), intracellular signaling
(0/72), RNA metabolism and processing (8/74), glycoprotein and sugar
metabolism (0/51), extracellular matrix and immunity (8/52), energy
metabolism (2/55), amino acid metabolism (7/46), ribosomal trans-
lation (0/47), ER processing and vesicle transport (11/91), and pro-

teolysis (6/61) (up-/down-regulated protein numbers in parentheses,
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FIGURE 3 Relative protein abundances in populations C versus T. (A) Volcano plot visualizing statistically significant (FC > 2 and corrected

p < 0.05) proteins that are more (orange) and less (blue) abundant in C than T. Colored circles represent proteins with a STRING annotation while
colored triangles are proteins not included in the STRING database (i.e., proteins without a sufficiently similar ortholog). (B) STRING input value
rank distribution based on Log2(FC) when comparing C versus T. STRING cluster categories for proteins that are significantly more (C) and less (D)
abundant in C versus T. (E) Venn diagram of common proteins that are significantly up-regulated (orange shading) and down-regulated (blue
shading) in the laboratory population (C) compared to both field populations (W and T). (F) STRING MCL network showing 9 proteins that are
consistently down-regulated in the laboratory population and belong to a functional cluster of RNA processing proteins. Data represent

mean + SEM for Log2(FC) of proteins in each category and numbers inside bars indicate the corresponding numbers of proteins. Some significant
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Figure 3C,D). As expected, the proteome differences between the
laboratory-raised and Des Moines field populations were more pro-
nounced compared to those between the laboratory-raised and Santa
Barbara populations since the laboratory-raised population originated
from the Santa Barbara field population.

Almost half (117 out of 235) of the proteins that were significantly
lower and 14% (14 out of 100) that were significantly higher in abun-
dance in the lab population (C) compared to the Santa Barbara field
population (W) were also significantly different in the same direction
when comparing the lab population to the Des Moines field population
(T) (Figure 2E). The 14 proteins that are consistently upregulated in
the lab population relative to both field populations include multiple
proteins involved in translation and cytoskeleton organization, how-
ever, they do also include 3 proteins without STRING AC and do not
represent an enriched STRING cluster (Table S4). The 117 proteins
that are consistently down-regulated in the lab population relative to
both field populations include 12 proteins without STRING AC and
are not significantly enriched for any functional STRING cluster (Table
S4). Nevertheless, MCL clustering of these 117 proteins reveals that
9 of them belong to a functional cluster of RNA processing proteins
(Figure 3F). This observation suggests that specific aspects of RNA pro-
cessing are down-regulated when transferring animals from the field
into a laboratory culture setting.

The observed changes in fatty acid metabolism between the lab and
field populations (Figures 2 and 3) may also be part of the changes
in the appearance or changes in the metabolism of Thraustochytrids,
widely distributed marine heterotrophic microorganisms known for
their potential to accumulate docosahexaenoic acid (DHA)-enriched
lipids [54]. Lipid metabolism in these associated saprophytic organ-
isms is directly affected by the environmental conditions (including
pH, temperature, oxygen concentration, salinity, carbon and nitrogen
sources) [55]. As Thraustochytrids are very common in B. schlosseri
colonies collected either from various field locations or from labo-
ratory bred colonies [56, 57], the up-/down-regulated glycolipid and
lipid metabolism results, may also be the outcomes of changes in the
Thraustochytrids’ metabolism [58].

The overall difference between the proteomes of the two field
populations is notably smaller compared to the differences observed
between the laboratory-raised and either one of the field popula-
tions (Figure 4A,B). Out of the 46 proteins that exhibited significantly
higher abundance in the Des Moines population than in the Santa
Barbara field population, only 18 could be mapped onto STRING
orthologs. Likewise, only 11 of the 30 proteins that had significantly
lower abundance in the Des Moines population had a STRING AC. The
remaining proteins lacked sufficient homology to warrant assignment
of afunctional STRING ortholog. These proteins, which potentially hold
novel functions, encompass three putative isoforms of 4-coumarate-
CoA ligase 1, standing out as the most prominently elevated proteins
in Des Moines over Santa Barbara field populations. Additionally,
two unknown proteins were among the most substantially reduced
proteins in the Des Moines versus Santa Barbara field population
comparison (Figure 4A). The presence of 4-coumarate-CoA ligases is

a characteristic feature of microbes and plants, playing roles in sec-

Proteomics and Systems Biology

ondary metabolite and lignin metabolism as well as cell signaling within
those taxonomic groups [59, 60]. Consequently, the identification of
these enzymes within the B. schlosseri proteome raises the possibility
of common commensals or parasites, being included in the original ref-
erence genome. The significantly lower abundance of these proteins in
the Des Moines population may indicate that such symbionts or par-
asites are less abundant than in the Santa Barbara field population.
A recent study on another botryllid ascidian has revealed that under
stress conditions that lead to a torpor state, a novel lineage of the com-
mensal bacterium Endozoicomonas, was dominant in torpor animals,
and potentially occupied hemocyte types that were only detected in
torpid animals [61]. This bacterial symbiont is found in close association
with diverse marine invertebrate hosts, including reef-building corals,
sponges, bryozoans, sea slugs, and other tunicates [62-66]. It is also
plausible that these proteins are indeed genuine B. schlosseri proteins,
potentially serving functions beyond the scope of 4-coumarate-CoA
ligase activity, which remain undiscovered.

Several protein functional categories were significantly differ-
ent between the Santa Barbara laboratory-raised population rel-
ative to either one of the two field populations (chromatin and
DNA repair/replication, ion transport, intracellular signaling) but not
between the two disparate field populations. Furthermore, even those
functional categories that were significantly different between both
field populations included notably fewer proteins than for the labora-
tory population. Significantly up-/down-regulated proteins in the Santa
Barbara compared to Des Moines field populations contribute to gly-
colipid and lipid metabolism (0/2), cytoskeleton (axonemal cilia, actin,
microtubules, 2/4), xenobiotic metabolism (4/1), energy metabolism
(2/0), amino acid metabolism (8/0), RNA metabolism and processing
(1/0), glycoprotein and sugar metabolism (0/2), extracellular matrix
and immunity (1/5), ribosomal translation (1/0), ER processing and
vesicle transport (2/3), and proteolysis (2/3) (up-/down-regulated pro-
tein numbers are shown in parentheses, Figure 4C,D). Collectively,
these results suggest that extended laboratory rearing across multiple
generations exerts a more pronounced impact on the proteome of B.
schlosseri compared to the variations stemming from the diversity in
natural habitats. It is important to note that this conclusion is based
on the comparison of the laboratory-raised population against only two
field sites; however, these sites differ significantly in terms of latitude
(1800 km apart) and environmental parameters such as temperature
and photoperiod. Similar substantial differences in proteomes between
laboratory and field populations have been previously documented
in bacteria [67-69], suggesting that substantial proteome changes
are a common phenomenon across taxa when adapting organisms to

laboratory rearing conditions.

3.4 | B.schlosseri proteins exhibiting the lowest and
highest coefficient of variation between individuals

To identify B. schlosseri proteins demonstrating the lowest and high-
est CV within each population, we assessed individual-to-individual

variance for each protein within the three populations. All three
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Relative protein abundances in populations T versus W. (A) Volcano plot visualizing statistically significant (FC > 2 and corrected

p < 0.05) proteins that are more (orange) and less (blue) abundant in T than W. Colored circles represent proteins with a STRING annotation while
colored triangles are proteins not included in the STRING database (i.e., proteins without a sufficiently similar ortholog). (B) STRING input value
rank distribution based on Log2(FC) when comparing T versus W. STRING cluster categories for proteins that are significantly more (C) and less
(D) abundant in T versus W. Data represent mean + SEM for Log2(FC) of proteins in each category and numbers inside bars indicate the
corresponding numbers of proteins. Some significant proteins were mapped to multiple functions.

populations exhibited similar STRING variance rank distributions
(Figure 5A-C). The majority of proteins are tightly regulated across
all populations with 93% (C and W)—96% (T) having a CV < 0.8 and
75% (C and W)—86% (T) having a CV < 0.5. However, some proteins
exhibited unusually low (CV < 0.2) or high (CV > 0.8) variances, quan-
tified in terms of the standard deviation (STD) of abundance divided
by the mean abundance. Elevated interindividual variance in protein
abundance denotes fewer functional constraints while low interindi-
vidual variance suggests robust functional constraints [70, 71]. Sets
of proteins displaying tight co-variations in abundance typically signal
their involvement in the same biological process or function [72]. Like-
wise, proteins with similarly extreme CV (either very low or very high)
may be indicative of modestly or highly constraint functions. Conse-
quently, we examined whether comparable functions are manifested
within the high- and low-variance protein sets across all three popula-

tions. This analysis revealed that a majority of the most and the least

variable proteins were population-specific (Figure 5D,E). This result
may potentially mirror significant disparity (in the most variable) and
concordance (in the least variable) of allele frequencies at correspond-
ing genetic loci. This has been suggested for other organisms such as
mice [73] and fruit flies [74]. It should be pointed out that adapta-
tion often occurs as a result of sequence variation in cis-regulatory
elements rather than coding sequences [75]. The highly variable pro-
teins exclusive to the laboratory-raised population of B. schlosseri might
potentially stem from genomic loci characterized by heightened allelic
(including corresponding cis-regulatory regions) diversity and distinct
adaptive significance during artificial selection for laboratory rearing
conditions.

A total of 33 proteins consistently exhibited remarkably low
interindividual CV in all three populations (Figure 5D). Many of
these co-varying and overrepresented proteins cluster within a sin-

gle STRING functional network, consisting of spliccosomal mRNA
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FIGURE 5 Mostand least variable proteins within a single B. schlosseri population for all three populations. STRING rank distribution of
protein variance (standard deviation divided by mean, STD/mean) is depicted for groups C (A), W (B), and T (C). Venn diagrams illustrating protein
overlap between all three groups are shown for the least (D, STD/mean < 0.2) and most (E, STD/mean > 0.8) variable proteins. (F) STRING network
containing all 33 proteins with consistently low individual variability (STD/mean < 0.2) across all three populations. MCL clusters are connected by
edges (line thickness = strength of functional relatedness) and indicate that spliceosome (STRING:CL263, red filling) and Wnt signaling (KEGG
map04310, green filling) are overrepresented in the least variable (most tightly regulated) proteins. The redness of the halo surrounding nodes
indicates individual variability across all three populations (STD/mean abundance ranging from 0.14, red, to 0.19, gray).

processing proteins and Wnt signaling proteins. Wnt signaling holds
pivotal significance in developmental regulation and stemness [76],
making it intriguing that proteins within this pathway manifest the low-
est interindividual CV across all populations studied. Although spliceo-
somal mRNA processing represents one of the functions differing
significantly between the three populations, the interindividual vari-
ability of spliceosmal proteins within any given population is minimal
across all populations. This result implies that, although spliceosomal
functions are tightly controlled, they are regulated at different overall
levels in different populations [77].

The set of 17 proteins exhibiting high interindividual abundance

variance across all populations did not align with any STRING network

(Figure 5E). However, a significant portion of these proteins are
characterized by their representation of ECM proteases and other
matrix proteins along with their receptors. The high CV observed in
the abundance of these proteins implies that individual B. schlosseri
colonies originating from the same population demonstrate the most
divergence in terms of their extracellular matrix composition (Table
S3). For the field populations this outcome might be anticipated, given
the wide variability in substrate to which B. schlosseri colonies attach
in field settings [78, 79]. The substrate utilized for laboratory cultures
is highly uniform (usually glass slides) but very different from natural
substrates [17]. Therefore, different attachment substrates may

contribute to the considerable interindividual variance in ECM protein
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abundance of B. schlosseri. Moreover, ECM architectures, molecular
compositions, and dynamic expression profiles of ECM proteins in
tunicates depend on developmental stage, including blastogenesis [80,
81], and are altered during inflammatory reactions and noncompatible
allorecognition [82, 83].

3.5 | Concluding remarks

This study represents the first deep proteome analysis of any colo-
nial tunicate. It reveals quantitative alterations in the B. schlosseri
proteome that become evident through comparisons of distinct pop-
ulations (laboratory reared and field collected) originating from the
same founder population. Significant proteome variation was observed
when organisms are shifted from their natural habitat (in situ) to con-
trolled husbandry settings (ex situ). The extent of proteome variation
between two genetically closely related populations (field vs. labo-
ratory raised Santa Barbara colonies) likely signifies shifts occurring
as B. schlosseri cells transition from their natural in vivo environment
to artificial in vitro culture conditions. This observation is critical for
future studies focusing on the development of cell cultures derived
from laboratory-bred B. schlosseri colonies [84, 85]. This study tack-
les the first steps toward addressing a knowledge gap that is of broad
interest to cell biologists, that is uncovering the mechanisms that gov-
ern cell proliferation and cellular senescence, as well as the processes
through which cells achieve immortality in vitro. This lack of knowl-
edge is particularly significant in aquatic invertebrates (including B.
schlosseri), as there is currently only a single report of successful in vitro
cell immortaliztion for any of them [86]. Our results indicate that many
unknown proteins lacking a STRING functional annotation hold sig-
nificance for processes associated with the regulation of proliferation
during in situ to ex situ transition of B. schlosseri. Consequently, they
present captivating prospects for future endeavors to unravel their

functions.
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