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Abstract

Over the last decade, biology has begun utilizing ‘big data’ approaches, resulting in large, 

comprehensive atlases in modalities ranging from transcriptomics to neural connectomics. 

However, these approaches must be complemented and integrated with ‘small data’ approaches 

to efficiently utilize data from individual labs. Integration of smaller datasets with major reference 

atlases is critical to provide context to individual experiments, and approaches toward integration 

of large and small data have been a major focus in many fields in recent years. Here we discuss 

progress in integration of small data with consortium-sized atlases across multiple modalities, and 

its potential applications. We then examine promising future directions for utilizing the power 

of small data to maximize the information garnered from small-scale experiments. We envision 

that, in the near future, international consortia comprising many laboratories will work together to 

collaboratively build reference atlases and foundation models using small data methods.
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Why ‘small data’ methods?

Large single-cell ‘omics atlases are now almost routinely generated by consortia such as the 

BRAIN Initiative Cell Census Network (BICCN) and the Human Cell Atlas, and serve as 

references for smaller-scale studies performed by individual labs

Small data methods have the potential to substantially increase the insights that can be 

drawn from studies of any size, greatly improving cost efficiency in terms of time and 

money spent10. Methods such as ‘transfer learning’, which use machine learning models, 

often deep neural networks that are trained to generalize learned ‘rules’ across datasets, 

allow scientists to learn from reference atlases11,12. Smaller datasets can then be used to 

further train the model, and to ultimately update the reference data in an iterative process. 

This approach opens up possibilities for collaboration among hundreds or thousands of labs 

to build large, accurate reference atlases, which can be used for comparing analyses across 

brain regions, brain disorders, drug conditions and even species13,14.

Problems integrating ‘small data’ with ‘big data’

While consortia-produced, single-cell atlases are large, they are increasingly dwarfed in 

comparison with the combined transcriptomic assay output of individual labs15. This 

disparity will only grow as transcriptomic and epigenetic assays become increasingly 

standardized aspects of cellular interrogation across biology.

Individual transcriptomic assays typically interrogate individual brain regions with limited 

sample sizes. In this sense, single-cell atlases can be viewed as analogous to ‘reference 

genomes’, and individual assays as ‘reads’. Within this analogy, integration of assays 

with atlases is effectively ‘variant calling’. In practice, this ‘variant calling’ amounts to 

discriminatory analyses identifying biological differences between lab-produced assays and 

single-cell atlases, and this can range from cell-type proportion alterations to perturbation 

analysis in gene regulatory networks (GRNs). However, there are several issues impeding 

integrative analysis.

Batch effects

First, single-cell transcriptomic assays are typically produced from relatively few mice, with 

similar genetic backgrounds, and are prepared consistently across samples16. Since query 

data and reference data are often generated in different labs and by different scientists using 

different protocols, batch effects can dominate the quality of the joint embedding, leading to 

spurious results17. If a large-scale reference dataset has been generated in a single lab, it may 

not have had sufficient exposure to this type of variation to allow a robust mapping of novel 

data, in contrast to a cross-lab integrated atlas. Sophisticated data integration methods are 

often used to overcome these batch effects, and typically treat perturbations that affect most 

cells as batch effects. However, this can mask real biological differences between datasets18.

Computational challenges

Second, integrative analysis co-embedding individual assays with atlases is still 

computationally difficult for many labs but is important when attempting to dissect 
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individual cell types and states19. This is particularly true when analyzing rare cell types, as 

identification of higher-resolution distinct cell states contextualized within cell-type atlases 

frequently requires co-embedding approaches, requiring access to processed atlas data, 

and potentially the embedding model20. While computational algorithms for minimizing 

time and resource requirements exist, these algorithms are relatively new, their use is not 

widespread, and their use must be considered before creation of the atlas itself20,21.

Data standardization

Third, while there are standardized requirements for deposition of raw (fasta and metadata 

level) single-cell RNA (scRNA) experimental data, no such requirement currently exists 

for processed data. While many authors do deposit processed data, and there have 

been substantial efforts toward developing databases for cross-conditional comparison 

of processed scRNA datasets, performing anything but the most basic comparisons (for 

example, cell-type querying, differential expression) is still time consuming and inefficient. 

Integrative pseudotime and GRN analysis is uncommonly used with more than two or three 

external datasets.

Coordination

Fourth, while consortia have made major efforts to enable accessibility to their cell atlases, 

this information flow travels only from consortia outward. That is, single-cell atlases are 

fundamentally non-collaborative beyond the consortia itself. Many single-cell datasets have 

been produced outside consortia, and single-cell atlases at present do not incorporate this 

wealth of information. Of course, consortia have valid reasons for not incorporating this 

information, ranging from resource allocation to data quality, and it is neither incentivized 

nor incumbent on them to include data from outside sources. The fact remains that at 

present, there is no concerted fieldwide collaborative effort to create integrative cell atlases 

in health and disease.

A variety of recent approaches have been attempted to ameliorate some of these issues. New 

integration methods explicitly model both technical and biological variation22,23, and recent 

benchmarks indicate that top-of-the-line integration algorithms can accurately account for 

technical variation while retaining biological variation18.

Numerous attempts have been made to construct single-cell datasets for public usage and 

comparison, across multiple fields of biology. Notable examples include PanglaoDB24, 

EMBL’s Single Cell Expression Atlas25, the Broad Institute’s Single Cell Portal26 and 

CZI sciences CZ CELL×GENE Discover27. Smaller databases have been developed to 

investigate specific diseases such as cancer28 and Alzheimer’s disease29. One recent model-

based example of note is scGPT, a pretrained transformed model trained utilizing 33 million 

cells30. Critically, the authors demonstrate that this model can be optimized to facilitate 

downstream applications such as cell-type annotation, integration, perturbation response 

prediction and GRN inference, notably outperforming competitors such as scBERT31, 

Harmony32 and GEARS33 at these critical tasks.

However, each of these approaches has only partially fulfilled the promise of enabling 

integrative analysis of complex transcriptomic features (for example, lineage tracing 
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analysis, GRN inference) across the entire field of biology. We posit that the primary 

reason for this is the lack of incentive and technical ability for individual researchers 

to integrate and share their own data on these platforms, requiring database authors to 

reanalyze, process and integrate individual datasets before incorporating them into databases 

that still typically only allow for simple cell-type and differential expression analysis via 

online portals. Enabling and incentivizing the individual researchers to integrate and share 

their own data in updateable, collaborative transcriptomic atlases is critical to development 

of the field of single-cell omics.

Constructing a robust and accessible updateable integrated atlas

Creation of an updateable integrable transcriptomic atlas requires a clear delineation of 

the technical difficulties attendant thereto (Fig. 1a). Such a project requires dedicated 

organization to standardize updates and model training. The primary issues are (1) 

standardization of RNA preprocessing, (2) choice of updateable atlas approach, (3) 

mechanisms for integration and validation and (4) computational resource allocation.

While log-normalized processing of RNA data is still common and generally effective34, 

count matrix normalization has been an active area of research for almost two decades, 

and a variety of additional normalization techniques such as SCTransform35 and scran’s 

deconvolution method36 have become increasingly popular. Unfortunately, many specialized 

methods are written and maintained in only one coding language (usually R or Python). 

Consideration must be given for accessibility for users of both language ecosystems, and 

integration across normalization techniques is nontrivial. Additionally, some methods (for 

example, the scVI framework21) do not require explicit normalization a priori. Additional 

preprocessing steps such as mitochondrial percentage thresholding37 and doublet removal38 

are also critical to consider before integration. While it is possible that optimal preprocessing 

algorithms exist, the primary requirements for collaboration are consistency and ease of use.

Given a standard choice for computational normalization, a low-dimensional embedding 

algorithm must be chosen for integration purposes. Currently, neural network-based methods 

such as scANVI and scVI (a semisupervised expansion of scVI)39 are perhaps the best 

choice, as they enable easy updates and cell-type querying, are shown to preserve biological 

variation while removing technical variation, can utilize partial cell-type labeling from 

current reference atlases, and have already been shown to work with updateable transfer 

learning-based models such as scArches20. SCANORAMA40 and fastMNN41 also offer 

potential options for integration and have shown improved integration results over scANVI 

in benchmark tests. However, these methods utilize nearest-neighbor approaches, and it is 

not clear that they are scalable in terms of speed to collaborative atlases.

It is technically feasible to create an integrated atlas using the technologies discussed above, 

and indeed these techniques have been used many times to construct consortia-sized atlases. 

The critical point is that additional considerations regarding collaborative updating and 

accessibility are required to consider practical atlas updating and integration in a distributed 

framework.
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Mechanisms for integration must maintain quality control and must ensure integration 

accuracy. A ‘git-style’42 version control approach, in which atlas updates are submitted 

for review before final validation and publication, is a possible mechanism. This would 

require submission of standardized quality-control metrics, among other possible factors. 

The updated atlas needs to be compared with the previous atlas to ensure previous cell-

type resolution is retained. Additional potential forms of validation include k-fold cross-

validation approaches43, independent corroboration of new cell types within similar datasets, 

and identification of high-quality marker genes for new cell types. Critically, the whole 

atlas does not always need to be validated during updating, as most individual datasets are 

restricted to specific tissues and, in the case of cell sorting, cell types (Fig. 1a).

Also adapted from a git approach, atlas branches (Fig. 1b) provide a mechanism for in-depth 

analysis of cell subtypes, particularly important in the brain where over 5,000 replicable 

distinguishable cell types have been identified16. Additionally, this feature would enable 

comparison across genotype, disease condition and drug administration for individual cell 

types without compromising the primary cell atlas. In practice, hierarchical cross-condition 

atlases can be independently created at the organ and cell-type level, continuously updated 

as data from additional organisms and animal models are included, creating a continuously 

increasing computational resource for all scientists.

Finally, it is worth considering allocation of computational burden for atlas updating 

and integration (Fig. 1c). For ease of use and accessibility, one strategy would enable 

computation on remote servers maintained for this purpose. This would reduce the 

required number of data transfers (from user to atlas only), ensure equitable access 

across researchers, and substantially speed up analysis time frames, while expanding 

contextualization of the dataset. Additionally, more complex analyses (for example, 

pseudotime, GRN, computational perturbation) could be computed on these servers, 

enabling combined analysis across multiple datasets, drastically increasing the analysis 

power of individual datasets.

An alternative to centralized computation is a federated or distributed learning approach44. 

In this framework, individual models are trained locally by individual labs on their own data. 

A centralized model is then created via iterative updating based on the weights and losses 

computed on individual nodes. This is an extremely useful framework when data privacy 

is an issue, for example, when working with datasets in the PsychEncode database45. This 

framework can easily be adapted for iteratively updating centralized foundational models.

We also note the possibility of integrative frameworks with other omics modalities. In many 

ways, transcriptomics is the easiest modality to integrate across assays, due to the common 

feature set (genes). Integrative atlases of other omics modalities generally do not have 

this benefit. The assay for transposase-accessible chromatin with sequencing (ATAC-seq) 

for example, utilizes accessibility in genomic loci as its feature space, which is typically 

computed separately for each dataset46. Integration requires refinement of peak accessibility, 

and it is not yet clear which methods for creating integrated feature sets work best. 

However, it is known that uniform binning of the genome typically underperforms other 

feature selection methods, which implies difficulty in selecting a priori features that achieve 
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optimal performance47. Additionally, these epigenetic assays are increasingly combined 

with transcriptomics (or other omics modalities), allowing RNA to serve as the ‘bridge’ 

for integrating these modalities, which at present may be a better approach than direct 

collaborative atlas creation with single-cell epigenomic assays.

Use cases for contextualization of ‘small data’ within ‘big data’ atlases

Integration (Fig. 2a) of individual transcriptomics assays with large datasets enables 

consistent interrogation of the same cell types across multiple studies. Computationally, 

enormous effort has been put into single-cell integration (Fig. 2b), enabling creation of 

consistent taxonomies across studies18,32,39–41,48. Herein we discuss three specific use cases 

for small data integration either with large-scale atlases, or with multiple smaller datasets: 

(1) computational perturbation analysis (Fig. 2c), (2) comparative GRN analysis (Fig. 2d) 

and (3) multispecies integration for translational medicine.

A case study in integration of mostly ‘small data’ to create large datasets, is the scPerturb 

database49. This database incorporates 44 individual datasets containing scRNA and 

epigenetic screens after (typically CRISPR) induced gene perturbations, primarily from 

cancer cell lines. scPerturb provides uniform cell-type annotation, RNA counts and DNA 

accessibility matrices to facilitate integrative computational analysis of RNA and epigenetic 

perturbation impact. This database, and others of its kind, provides a foundation for the 

computational analysis and prediction of gene perturbation impact via machine learning 

models such as the compositional perturbation autoencoder50 or GEARS33.

A second use case involves analysis of differential GRN alteration in the context 

of disease51–53. While integrated atlases cannot (currently) take the place of paired 

control animals for GRN studies, they still provide useful comparisons in two ways. 

First, comparison of inferred GRNs from control and atlas data provides a measure of 

expected statistical variation between samples, thereby enabling an additional significance 

measure for condition- and perturbation-dependent GRNs54,55. Second, identified GRNs can 

themselves be integrated within databases and frameworks, which will allow researchers 

to compare gene regulatory alterations in their disease, to those within similar or disparate 

conditions, thereby enabling contextualization of this information within the wider scheme 

of pathology.

Neuroscience in particular is primed for application of such methods, due to the large 

number of disease-associated mouse models56,57, and the enormous influx of omics data 

from both specific brain regions, and whole brains16,58,59. A possible specific application 

of this approach would analyze transcriptomic alterations in various mouse models of 

Alzheimer’s disease. Currently, there are dozens of Alzheimer’s mouse models, exhibiting 

varying features (amyloid plaque and tau tangle deposition distribution and time frame, 

among others)60,61, created using different genetic strategies. However, comparison of cell 

transcriptome alterations between models is frequently limited to comparison tables of 

differential gene or gene ensemble expression62. An integrated Alzheimer’s atlas would 

enable precise comparison of disease progression and its impact on neural transcriptomics, 

including perturbation and gene regulatory analysis.
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Finally, collaborative atlas creation would further enable cross-species comparisons across 

disease states and drug treatments63. This could improve the translation ability of medical 

approaches from basic to clinical science, by providing a common framework for 

determining whether treatment mechanisms of action are similar across species. As failure 

rates for translation of treatment approaches from animal models to humans remain over 

90%64, an integrative cross-species disease atlas could play a critical role in developing 

medical treatments. Overall, there is enormous potential for integrated transcriptomic atlases 

across molecular science and beyond.

Concluding remarks and future perspectives

Ultimately, a combination of small data methods will likely be used by scientists to 

collaboratively train models and build references atlases. Model training and sharing along 

with reference atlas updating allows users to both create their own custom models and 

references atlases, and to contribute to public models and atlases. This can pave the way 

for automated and standardized analyses of single-cell studies of brain tissue. By using 

transfer learning methods, users will share the most complete and recent models and 

references atlases, which can be trained and updated either locally or centrally. Thus, the 

entire field of biology will collaborate to generate a joint embedding, without the need 

to share full datasets, by mapping their own small-scale datasets into the public reference 

atlas. Generalization to multimodal datasets will allow for reference atlas representations 

of nucleomics, epigenomics and proteomics, in addition to transcriptomics65–67. This effort 

will be enormously beneficial to individual labs as identification of subtle state-specific 

biological changes present in their one-off small-scale data will be discoverable when 

contextualized within the reference dataset.

A centralized effort to store, maintain, integrate and improve access to already existing 

databases is critical for enabling researchers to maximize the value of their individual 

assays, and would enable rapid comparison and analysis of animal and human disease 

and treatment models. This approach has the potential to improve our ability to identify 

molecular mechanisms of action across animal models, which may translate into an 

improved ability to translate discoveries in basic science into therapeutic approaches to 

human disease.
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Fig. 1 |. Constructing an updateable integrated cell atlas.
a, Key points for construction of cell atlas. b, Graph model of hierarchical structure levels 

within classes (for example, taxonomical class or collection of model organism) indicated 

with black arrows. Blue lines indicate cross-organism integrative comparisons possible 

at each hierarchical level. c, Visualization of centralized versus distributed computational 

mechanisms.
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Fig. 2 |. Applications of single-cell integrative foundational models.
a–d, Single-cell integration (a), machine learning models for creating updateable single-cell 

atlases (b), post-integration GRN comparison and integration (c) and a machine learning 

model for computation of gene perturbation effects from integrated scRNA datasets (d), 

inspired by the computational perturbation autoencoder.
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