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Abstract

Over the last decade, biology has begun utilizing ‘big data’ approaches, resulting in large,
comprehensive atlases in modalities ranging from transcriptomics to neural connectomics.
However, these approaches must be complemented and integrated with ‘small data’ approaches

to efficiently utilize data from individual labs. Integration of smaller datasets with major reference
atlases is critical to provide context to individual experiments, and approaches toward integration
of large and small data have been a major focus in many fields in recent years. Here we discuss
progress in integration of small data with consortium-sized atlases across multiple modalities, and
its potential applications. We then examine promising future directions for utilizing the power

of small data to maximize the information garnered from small-scale experiments. We envision
that, in the near future, international consortia comprising many laboratories will work together to
collaboratively build reference atlases and foundation models using small data methods.
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Why ‘small data’ methods?

Large single-cell ‘omics atlases are now almost routinely generated by consortia such as the
BRAIN Initiative Cell Census Network (BICCN) and the Human Cell Atlas, and serve as
references for smaller-scale studies performed by individual labs

Small data methods have the potential to substantially increase the insights that can be
drawn from studies of any size, greatly improving cost efficiency in terms of time and
money spentl0. Methods such as ‘transfer learning’, which use machine learning models,
often deep neural networks that are trained to generalize learned ‘rules’ across datasets,
allow scientists to learn from reference atlases!1:12. Smaller datasets can then be used to
further train the model, and to ultimately update the reference data in an iterative process.
This approach opens up possibilities for collaboration among hundreds or thousands of labs
to build large, accurate reference atlases, which can be used for comparing analyses across
brain regions, brain disorders, drug conditions and even species!3:14,

Problems integrating ‘small data’ with ‘big data’

While consortia-produced, single-cell atlases are large, they are increasingly dwarfed in
comparison with the combined transcriptomic assay output of individual labs®. This
disparity will only grow as transcriptomic and epigenetic assays become increasingly
standardized aspects of cellular interrogation across biology.

Individual transcriptomic assays typically interrogate individual brain regions with limited
sample sizes. In this sense, single-cell atlases can be viewed as analogous to ‘reference
genomes’, and individual assays as ‘reads’. Within this analogy, integration of assays

with atlases is effectively ‘variant calling’. In practice, this ‘variant calling’ amounts to
discriminatory analyses identifying biological differences between lab-produced assays and
single-cell atlases, and this can range from cell-type proportion alterations to perturbation
analysis in gene regulatory networks (GRNSs). However, there are several issues impeding
integrative analysis.

Batch effects

First, single-cell transcriptomic assays are typically produced from relatively few mice, with
similar genetic backgrounds, and are prepared consistently across samplest®. Since query
data and reference data are often generated in different labs and by different scientists using
different protocols, batch effects can dominate the quality of the joint embedding, leading to
spurious results!’. If a large-scale reference dataset has been generated in a single lab, it may
not have had sufficient exposure to this type of variation to allow a robust mapping of novel
data, in contrast to a cross-lab integrated atlas. Sophisticated data integration methods are
often used to overcome these batch effects, and typically treat perturbations that affect most
cells as batch effects. However, this can mask real biological differences between datasets18,

Computational challenges

Second, integrative analysis co-embedding individual assays with atlases is still
computationally difficult for many labs but is important when attempting to dissect
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individual cell types and states!®. This is particularly true when analyzing rare cell types, as
identification of higher-resolution distinct cell states contextualized within cell-type atlases
frequently requires co-embedding approaches, requiring access to processed atlas data,

and potentially the embedding model?°. While computational algorithms for minimizing
time and resource requirements exist, these algorithms are relatively new, their use is not
widespread, and their use must be considered before creation of the atlas itself20:21,

Data standardization

Third, while there are standardized requirements for deposition of raw (fasta and metadata
level) single-cell RNA (scRNA) experimental data, no such requirement currently exists
for processed data. While many authors do deposit processed data, and there have

been substantial efforts toward developing databases for cross-conditional comparison

of processed scRNA datasets, performing anything but the most basic comparisons (for
example, cell-type querying, differential expression) is still time consuming and inefficient.
Integrative pseudotime and GRN analysis is uncommonly used with more than two or three
external datasets.

Coordination

Fourth, while consortia have made major efforts to enable accessibility to their cell atlases,
this information flow travels only from consortia outward. That is, single-cell atlases are
fundamentally non-collaborative beyond the consortia itself. Many single-cell datasets have
been produced outside consortia, and single-cell atlases at present do not incorporate this
wealth of information. Of course, consortia have valid reasons for not incorporating this
information, ranging from resource allocation to data quality, and it is neither incentivized
nor incumbent on them to include data from outside sources. The fact remains that at
present, there is no concerted fieldwide collaborative effort to create integrative cell atlases
in health and disease.

A variety of recent approaches have been attempted to ameliorate some of these issues. New
integration methods explicitly model both technical and biological variation2223, and recent
benchmarks indicate that top-of-the-line integration algorithms can accurately account for
technical variation while retaining biological variation8.

Numerous attempts have been made to construct single-cell datasets for public usage and
comparison, across multiple fields of biology. Notable examples include PanglaoDB24,
EMBL’s Single Cell Expression Atlas2>, the Broad Institute’s Single Cell Portal?6 and

CZI sciences CZ CELLXGENE Discover?’. Smaller databases have been developed to
investigate specific diseases such as cancer?® and Alzheimer’s diseaseZ®. One recent model-
based example of note is sScGPT, a pretrained transformed model trained utilizing 33 million
cells®0. Critically, the authors demonstrate that this model can be optimized to facilitate
downstream applications such as cell-type annotation, integration, perturbation response
prediction and GRN inference, notably outperforming competitors such as ScBERT31,
Harmony32 and GEARS33 at these critical tasks.

However, each of these approaches has only partially fulfilled the promise of enabling
integrative analysis of complex transcriptomic features (for example, lineage tracing
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analysis, GRN inference) across the entire field of biology. We posit that the primary

reason for this is the lack of incentive and technical ability for individual researchers

to integrate and share their own data on these platforms, requiring database authors to
reanalyze, process and integrate individual datasets before incorporating them into databases
that still typically only allow for simple cell-type and differential expression analysis via
online portals. Enabling and incentivizing the individual researchers to integrate and share
their own data in updateable, collaborative transcriptomic atlases is critical to development
of the field of single-cell omics.

Constructing a robust and accessible updateable integrated atlas

Creation of an updateable integrable transcriptomic atlas requires a clear delineation of
the technical difficulties attendant thereto (Fig. 1a). Such a project requires dedicated
organization to standardize updates and model training. The primary issues are (1)
standardization of RNA preprocessing, (2) choice of updateable atlas approach, (3)
mechanisms for integration and validation and (4) computational resource allocation.

While log-normalized processing of RNA data is still common and generally effective3?,
count matrix normalization has been an active area of research for almost two decades,

and a variety of additional normalization techniques such as SCTransform3° and scran’s
deconvolution method3® have become increasingly popular. Unfortunately, many specialized
methods are written and maintained in only one coding language (usually R or Python).
Consideration must be given for accessibility for users of both language ecosystems, and
integration across normalization techniques is nontrivial. Additionally, some methods (for
example, the scVI framework?L) do not require explicit normalization a priori. Additional
preprocessing steps such as mitochondrial percentage thresholding3” and doublet removal38
are also critical to consider before integration. While it is possible that optimal preprocessing
algorithms exist, the primary requirements for collaboration are consistency and ease of use.

Given a standard choice for computational normalization, a low-dimensional embedding
algorithm must be chosen for integration purposes. Currently, neural network-based methods
such as scANVI and scVI (a semisupervised expansion of scV1)39 are perhaps the best
choice, as they enable easy updates and cell-type querying, are shown to preserve biological
variation while removing technical variation, can utilize partial cell-type labeling from
current reference atlases, and have already been shown to work with updateable transfer
learning-based models such as scArches?0. SCANORAMA? and fastMNN4 also offer
potential options for integration and have shown improved integration results over SCANVI
in benchmark tests. However, these methods utilize nearest-neighbor approaches, and it is
not clear that they are scalable in terms of speed to collaborative atlases.

It is technically feasible to create an integrated atlas using the technologies discussed above,
and indeed these techniques have been used many times to construct consortia-sized atlases.
The critical point is that additional considerations regarding collaborative updating and
accessibility are required to consider practical atlas updating and integration in a distributed
framework.
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Mechanisms for integration must maintain quality control and must ensure integration
accuracy. A ‘git-style’#2 version control approach, in which atlas updates are submitted

for review before final validation and publication, is a possible mechanism. This would
require submission of standardized quality-control metrics, among other possible factors.
The updated atlas needs to be compared with the previous atlas to ensure previous cell-

type resolution is retained. Additional potential forms of validation include A-fold cross-
validation approaches3, independent corroboration of new cell types within similar datasets,
and identification of high-quality marker genes for new cell types. Critically, the whole

atlas does not always need to be validated during updating, as most individual datasets are
restricted to specific tissues and, in the case of cell sorting, cell types (Fig. 1a).

Also adapted from a git approach, atlas branches (Fig. 1b) provide a mechanism for in-depth
analysis of cell subtypes, particularly important in the brain where over 5,000 replicable
distinguishable cell types have been identified6. Additionally, this feature would enable
comparison across genotype, disease condition and drug administration for individual cell
types without compromising the primary cell atlas. In practice, hierarchical cross-condition
atlases can be independently created at the organ and cell-type level, continuously updated
as data from additional organisms and animal models are included, creating a continuously
increasing computational resource for all scientists.

Finally, it is worth considering allocation of computational burden for atlas updating
and integration (Fig. 1c). For ease of use and accessibility, one strategy would enable
computation on remote servers maintained for this purpose. This would reduce the
required number of data transfers (from user to atlas only), ensure equitable access
across researchers, and substantially speed up analysis time frames, while expanding
contextualization of the dataset. Additionally, more complex analyses (for example,
pseudotime, GRN, computational perturbation) could be computed on these servers,
enabling combined analysis across multiple datasets, drastically increasing the analysis
power of individual datasets.

An alternative to centralized computation is a federated or distributed learning approach®*.
In this framework, individual models are trained locally by individual labs on their own data.
A centralized model is then created via iterative updating based on the weights and losses
computed on individual nodes. This is an extremely useful framework when data privacy

is an issue, for example, when working with datasets in the PsychEncode database®®. This
framework can easily be adapted for iteratively updating centralized foundational models.

We also note the possibility of integrative frameworks with other omics modalities. In many
ways, transcriptomics is the easiest modality to integrate across assays, due to the common
feature set (genes). Integrative atlases of other omics modalities generally do not have

this benefit. The assay for transposase-accessible chromatin with sequencing (ATAC-seq)
for example, utilizes accessibility in genomic loci as its feature space, which is typically
computed separately for each dataset#8. Integration requires refinement of peak accessibility,
and it is not yet clear which methods for creating integrated feature sets work best.

However, it is known that uniform binning of the genome typically underperforms other
feature selection methods, which implies difficulty in selecting a priori features that achieve
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optimal performance*’. Additionally, these epigenetic assays are increasingly combined
with transcriptomics (or other omics modalities), allowing RNA to serve as the ‘bridge’
for integrating these modalities, which at present may be a better approach than direct
collaborative atlas creation with single-cell epigenomic assays.

Use cases for contextualization of ‘small data’ within ‘big data’ atlases

Integration (Fig. 2a) of individual transcriptomics assays with large datasets enables
consistent interrogation of the same cell types across multiple studies. Computationally,
enormous effort has been put into single-cell integration (Fig. 2b), enabling creation of
consistent taxonomies across studies8:32:39-41.48 Herein we discuss three specific use cases
for small data integration either with large-scale atlases, or with multiple smaller datasets:
(1) computational perturbation analysis (Fig. 2¢), (2) comparative GRN analysis (Fig. 2d)
and (3) multispecies integration for translational medicine.

A case study in integration of mostly ‘small data’ to create large datasets, is the scPerturb
database®?. This database incorporates 44 individual datasets containing SCRNA and
epigenetic screens after (typically CRISPR) induced gene perturbations, primarily from
cancer cell lines. scPerturb provides uniform cell-type annotation, RNA counts and DNA
accessibility matrices to facilitate integrative computational analysis of RNA and epigenetic
perturbation impact. This database, and others of its kind, provides a foundation for the
computational analysis and prediction of gene perturbation impact via machine learning
models such as the compositional perturbation autoencoder®® or GEARS33,

A second use case involves analysis of differential GRN alteration in the context

of disease®1-53, While integrated atlases cannot (currently) take the place of paired

control animals for GRN studies, they still provide useful comparisons in two ways.

First, comparison of inferred GRNs from control and atlas data provides a measure of
expected statistical variation between samples, thereby enabling an additional significance
measure for condition- and perturbation-dependent GRNs®45%, Second, identified GRNs can
themselves be integrated within databases and frameworks, which will allow researchers

to compare gene regulatory alterations in their disease, to those within similar or disparate
conditions, thereby enabling contextualization of this information within the wider scheme
of pathology.

Neuroscience in particular is primed for application of such methods, due to the large
number of disease-associated mouse models®857, and the enormous influx of omics data
from both specific brain regions, and whole brains'6:58:59_ A possible specific application
of this approach would analyze transcriptomic alterations in various mouse models of
Alzheimer’s disease. Currently, there are dozens of Alzheimer’s mouse models, exhibiting
varying features (amyloid plaque and tau tangle deposition distribution and time frame,
among others)89-61 created using different genetic strategies. However, comparison of cell
transcriptome alterations between models is frequently limited to comparison tables of
differential gene or gene ensemble expression2. An integrated Alzheimer’s atlas would
enable precise comparison of disease progression and its impact on neural transcriptomics,
including perturbation and gene regulatory analysis.
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Finally, collaborative atlas creation would further enable cross-species comparisons across
disease states and drug treatments®3. This could improve the translation ability of medical
approaches from basic to clinical science, by providing a common framework for
determining whether treatment mechanisms of action are similar across species. As failure
rates for translation of treatment approaches from animal models to humans remain over
90%°%4, an integrative cross-species disease atlas could play a critical role in developing
medical treatments. Overall, there is enormous potential for integrated transcriptomic atlases
across molecular science and beyond.

Concluding remarks and future perspectives

Ultimately, a combination of small data methods will likely be used by scientists to
collaboratively train models and build references atlases. Model training and sharing along
with reference atlas updating allows users to both create their own custom models and
references atlases, and to contribute to public models and atlases. This can pave the way
for automated and standardized analyses of single-cell studies of brain tissue. By using
transfer learning methods, users will share the most complete and recent models and
references atlases, which can be trained and updated either locally or centrally. Thus, the
entire field of biology will collaborate to generate a joint embedding, without the need

to share full datasets, by mapping their own small-scale datasets into the public reference
atlas. Generalization to multimodal datasets will allow for reference atlas representations
of nucleomics, epigenomics and proteomics, in addition to transcriptomics2-67. This effort
will be enormously beneficial to individual labs as identification of subtle state-specific
biological changes present in their one-off small-scale data will be discoverable when
contextualized within the reference dataset.

A centralized effort to store, maintain, integrate and improve access to already existing
databases is critical for enabling researchers to maximize the value of their individual
assays, and would enable rapid comparison and analysis of animal and human disease
and treatment models. This approach has the potential to improve our ability to identify
molecular mechanisms of action across animal models, which may translate into an
improved ability to translate discoveries in basic science into therapeutic approaches to
human disease.
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Fig. 1|. Constructing an updateable integrated cell atlas.
a, Key points for construction of cell atlas. b, Graph model of hierarchical structure levels

within classes (for example, taxonomical class or collection of model organism) indicated
with black arrows. Blue lines indicate cross-organism integrative comparisons possible
at each hierarchical level. c, Visualization of centralized versus distributed computational

mechanisms.
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Fig. 2|. Applications of single-cell integrative foundational models.
a—d, Single-cell integration (a), machine learning models for creating updateable single-cell

atlases (b), post-integration GRN comparison and integration (c) and a machine learning
model for computation of gene perturbation effects from integrated scRNA datasets (d),
inspired by the computational perturbation autoencoder.
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