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Defining and benchmarking open problems
insingle-cell analysis

M Check for updates

ingle-cell genomics hasenabled the

study of biological processes at an

unprecedented scale and resolution.

These studies were enabled by inno-

vative data generation technologies
coupled with emerging computational tools
specialized for single-cell data. As single-cell
technologies have become more prevalent,
so hasthe development of new analysis tools,
which has resulted in over 1,700 published
algorithms' (as of February 2024). Thus, there
is an increasing need to continually evaluate
which algorithm performs best in which con-
texttoinformbest practices’* that evolve with
the field.

Inmany fields of quantitative science, pub-
liccompetitions and benchmarks address this
need by evaluating state-of-the-art methods
against known criteria, following the con-
cept of a common task framework*. Here,
we present Open Problems, a living, exten-
sive, community-guided platform including
12 current single-cell tasks that we envisage
raising standards for the selection, evaluation
and development of methods in single-cell
analysis.

In single-cell genomics, as in many other
domains, it is typical for analysis algorithms
to be evaluated using benchmarks. However,
such benchmarks are often of limited use as
the field suffers from a lack of standardized
procedures for benchmarking®, leading to
different assessments of the same method
and producing different outcomes. Bespoke
benchmarks set up by method developers to
evaluate newly developed algorithms often
include datasets and metrics chosen to high-
light the advantages of their tools, which
has been shown to lead to less objective
assessments®’. Even if datasets and metrics
are standardized, historical analysis shows
that when benchmarks are implemented by
the same groups introducing new methods,
the evaluations tend to inflate performance
ofthe newest models via custom hyperparam-
eter selection and data processing®.

To provide more uniform and neutral
assessment, groups can perform special-
ized benchmarking studies independently
of method development. Tools such as

registered reports, which promote neutral-
ity of benchmarking results by design, have
recently gained in popularity to enable such
studies. These efforts aim to systematically
evaluate the current state of the artinagiven
area and may be less biased. However, their
results are static and inevitably age. These
frameworks are typically not designed for
extensibility or interoperability, limiting the
value of reusing aframework to performaddi-
tional systematic benchmarks’. This inability
to reuse infrastructure leads to repeats of
non-standardized benchmarks that cannot
provide the guidance that users need. For
example, at least four benchmarks of batch
integration methods exist’?, each of which
uses different sets of datasets and metrics and
suggests different optimal methods (Fig. 1a).
Similarissues have beenreported across other
single-cell topics, where datasets and metrics
typically have less than 10% overlap between
benchmarks".

Ideally, benchmarks that guide users
and promote method innovation use con-
sistently applied datasets and metrics that
are established independently of method
development and with ongoing community
participation®®'. Such community partici-
pation around quantified tasks requires con-
tinual updates, a process thatis hard torealize
in the typical result-paper framework that
defines the modern scientific process.

To achieve this goal, we developed the
Open Problems in Single-Cell Analysis (Open
Problems) platform. The Open Problems
platform is an open-source, extensible, liv-
ing benchmarking framework that enables
quantitative evaluation of best practices in
single-cellanalysis. It combines a permissively
licensed GitHub repository (https://github.
com/openproblems-bio/openproblems)
with community-defined tasks, an automated
benchmarking workflow, and a website to
exploretheresults. Currently, Open Problems
includes12 defined tasks, inwhich 81 datasets
areused to evaluate 171 methods using 37 met-
rics. These tasks were defined by community
engagement, including on the public GitHub
repository, in weekly community meetings,
and at a hackathon in March 2021 with over

50 participants. This broad involvement has
already led to new benchmarkinginsightsand
best practice recommendations whileimprov-
ing and standardizing previously published
benchmarks. We envisage Open Problems’
community-defined standards for progress in
single-cell datascience raising the bar for the
selection and evaluation of methods, provid-
ing targets for method innovation, and ena-
bling developers without single-cell expertise
to contribute to the field.

To enable truly living benchmarks, we
designed a standardized and automated
infrastructure that allows members of the
single-cell community to contribute to Open
Problems in a seamless manner (Supplemen-
tary Methods). Each Open Problems task
consists of datasets, methods and metrics
(Fig. 1b). Datasets define both the input and
the ground truth for a task, methods attempt
to solve the task, and metrics evaluate the
success of amethod on a given dataset. We
provide cloud infrastructure to enable cen-
tralized benchmarking when new methods,
datasets or metrics areadded to our platform.
Within each task, every method is evaluated
onevery dataset using every metric,and each
method is then ranked on a per-dataset basis
by the average normalized metric score and
presented in a summary table on the Open
Problems website (https://openproblems.
bio). Normalization is used to make metric
ranges comparable for comparison and visu-
alization of method results without affecting
the metric’s ability to highlight method outli-
ers (Supplementary Methods).

Community engagement on the platform
iscentered around an open discussion forum,
open code contribution opportunities, and
task leadership. Task leaders are community
members who have contributed substantially
toatask, assume organizational responsibili-
ties for the task, and are ultimately respon-
sible for task definition, task maintenance
and facilitation of community contributions.
Task definitions, choices of metrics and imple-
mentations of methods are discussed on our
GitHub repository and can be easily amended
by pull requests, which are reviewed by task
leaders and the core infrastructure team.
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Fig.1| The Open Problems in Single-cell Analysis living benchmarking
platform. a, Overview and timeline of published benchmarks of single-cell
batchintegration. Four publications have benchmarked 19 methods using 18
metrics. Light gray and black squares indicate whether one or two benchmarks
include this method-metric combination (left). Arrows indicate the range of

publication times of methods included in the benchmark. b, The Open Problems
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platform. The Open Problems platform consists of tasks that are broken down
into datasets, methods and metrics. The community contributes code to these
tasks in the platform, which uses these contributions to extend the benchmarks
thatare run and pushed to the Open Problems website. The community can then
consult the website for guidance on method selection.

While this community-centered approach
may lead to suboptimal metrics being contrib-
uted, italso facilitates a self-cleansing process
whereby metrics can beremoved oramended
if limitations or biases are uncovered. In this
manner, Open Problems promotes the longev-
ity of hosted benchmarks.

To enable seamless community involve-
ment in Open Problems, we have designed
our platformto leverage cloudinfrastructure,
which provides reproducibility, accessibility
and automation (Supplementary Fig.1). Each
task is organized as a directory, with subdi-
rectories for datasets, methods, metrics and

utilities. Each task must contain at least one
dataset, one metric and two baseline meth-
ods, which provide upper and lower bounds
for performance of the task. Components
(that is, dataset loader, method or metric)
are Viash components™ that exist as a single
script (implementedin Bash, PythonorR) and
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some metadata (a YAML file named config.vsh.
yaml) in the relevant subdirectory. Adding
anew method is as simple as opening a pull
request to the repository and adding a new
file that follows the API for that task. When
a community member adds a component,
the new contribution is automatically tested
in the cloud. When all tests pass and the new
contributionis accepted, the results fromthe
new contribution are automatically submitted
to the Open Problems website. To maximize
reproducibility, each componentisrunina
versioned Docker container defined by the
method contributor, and all data are down-
loaded from public repositories, including
Figshare and CELLXGENE".

We started by defining 9 Open Problems
tasks (Fig. 2a), which extends to 12 with the
inclusion of subtasks. While several tasks were
directlyinformed by published benchmarking
papers (forexample, batch correction’ or cell-
cell communication’®), others were defined
by method developers in the single-cell com-
munity (for example, spatial decomposition).
The Open Problems platform was seeded with
these tasks astheyrepresenta cross-section of
important and (mostly) well-researched tasks
insingle-cellgenomics. We envisage this set of
tasks being a starting point for further com-
munity development to address and refine
further open problems in single-cell analysis.

A typical task setup can be exemplified
by the cell-cell communication (CCC) task

Fig.2| Task overview, setup and results.

a, Overview of the 9 tasks currently included in the
Open Problems platform. Batchintegrationand
cell-cell communication (CCC) consist of 3and 2
subtasks, respectively, making up the current total
of12tasks. b, The CCC task. This task includes two
subtasks defined by different types of ground truth:
spatial cell type co-localization in the source-target
subtask and cytokine profilingin the ligand-target
subtask. Methods are run on each subtask to score
thelikelihood of interaction between source and
target cell types or ligand and target cell types.
Finally, the area under the precision-recall curve
(AUPRC) and the odds ratio of true to false positive
interactions in the top 5% of predicted pairs are used
to score method outputs (Supplementary Note 1.1).
¢, Collated results of the two CCC subtasks. Methods
areranked using the mean of the overall score for
each subtask (shown as “TNBC atlas” and “Mouse
brain atlas” blue boxes, respectively). These overall
scores are computed as the mean of all scaled metric
results (red boxes). Linear scaling is performed
using random and perfect baseline methods, whose
performances aresetto O and 1, respectively

(see Supplementary Methods). The results shown
here are from Open Problems v1 (ref. 24).
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(Fig. 2b and Supplementary Note 1.1). The
goal of cell-cell communication inference
methods is to infer which cell types are com-
municating within a tissue to mediate tissue
function. Typical algorithms base predictions
ontheexpression ofligand and receptor genes
indissociated single-cell data”. Ground-truth
data for cellular communication are chal-
lenging to obtain. Thus, this task is divided
into two subtasks that use different proxies
for this ground truth: spatial colocalization
(source-target subtask) and cytokine activity
(ligand-target subtask). As the CCC methods
included in this task (Supplementary Meth-
ods)"®?'typically score ligand-receptor pairs
using either their expression magnitude or
cell-type specificity, mean and max aggrega-
tion functions are used to score interaction
strengths between source and target cell types
(source-target task) or ligands and target
cell types (ligand-target task). The outputs
of these methods are finally evaluated using
theareaunder the precision-recall curve and
odds ratios. These metrics measure how well
ground truth source-target (co-localized
celltypes) or ligand-target (cytokine activity
within a cell type) pairs are prioritized when
ranking all interactions and how many true
pairs are found in the top 5%, respectively.

While the CCC task was contributed to
Open Problems on the basis of a published
benchmark®, the task definition and metrics
evolved with input from the community and
the Open Problems team. This process has
enabled the Open Problems results to gen-
erate insight beyond the initial publication
(Fig.2c), whichfocused predominantly on the
comparison of CCC databases and showed
variable method performance across tasks.
Inthe CCC Open Problems task, we find that
methods that rely on expression magnitude
outperform approaches that rely on expres-
sion specificity. Indeed, the top performers
across tasks are CellPhoneDB and LIANA’s
ensemble model of expression magnitude
scoring methods. Furthermore, max aggre-
gation of ligand-receptor scores outper-
formed mean aggregation across tasks and
methods. Thisimproved inference of cellular
communication using only the top-predicted
interactions suggests that methods are bet-
ter at prioritizing asmall fraction of relevant
interactions while being prone to noise when
their fullinteraction rankings are considered.
Thus, analysts interpreting CCC results may
likewise want to focus only on the most
high-scoring predictions when inferring
which cell types interact (Supplementary
Note1.1).

Using this combination of expert knowl-
edge and community input, in thismanuscript
we also provide best-practice recommenda-
tions for preprocessing and method selection
forlabel projection, dimensionality reduction
for 2D visualization, batch integration, spa-
tial decomposition, denoising and matching
of cellular profiles across modalities (Sup-
plementary Note 1). For example, on all four
reference datasets currently included in the
OpenProblems label projectiontask, asimple
logistic regression model outperforms more
complex methods that explicitly model batch
effects, even when noiseis added to the train-
ing data (Supplementary Note 1.2). Moreo-
ver, we also show that it is easier to correct
for batch effects in single-cell graphs than in
latent embeddings or expression matrices
(Supplementary Note 1.4), that denoising
methods perform best with non-standard
preprocessing approaches that better stabi-
lize variance (Supplementary Note 1.6) and
thatsimple models tend to outperform more
complex ones for perturbation prediction
(Supplementary Note 1.8).

Overall, Open Problems tasks are continu-
ally updated benchmarks that increase in
robustness as new methods are developed
and more complex datasets become available.
Our visionis that these benchmarks will form
thebasis for best-practice recommendations
by groups such as Single-Cell Best Practices
(https://www.sc-best-practices.org/).

Open Problems living benchmarking tasks
also function as a quantifiable target for the
development of new methods. This prob-
lem definition is particularly useful for the
wider machine learning community that may
lack domain knowledge (that is, single-cell
expertise). Leveraging the batch integration
and matching modality tasks as a basis, we
previously set up popular competitions for
multimodal dataintegration at NeurIPS 2021
(refs. 22,23) and 2022, with over 260 and 1,600
participants, respectively. In these competi-
tions, the developers of multiple top perform-
ershadno previous experience with single-cell
data, yet were able to submit solutions that
substantially outperformed state-of-the-art
methods?’. We envisage the Open Problems
platform driving method development by
improving the accessibility of open challenges
insingle-cell analysis via defined tasks. To pro-
mote this, Open Problems enables method
developers to submit both prototype and
final solutions to the platform for automated
evaluationagainst the currentstate of theart.
Open Problems results, which are made avail-
able under a Creative Commons Attribution

(CC-BY) license, can then be included in the
respective method papers. Similarly, entirely
new benchmarks canbeimplemented as tasks,
run via Open Problems, and published sepa-
rately while remaining updatable.

Taken together, the Open Problems
platform is a community resource that
quantitatively defines open challenges in
single-cell analysis, determines the current
state-of-the-art solutions, promotes method
development to improve on these solutions,
and monitors progress toward these goals.
Open Problems addresses issues observed
in custom and decentralized benchmarking
by providing standardized but flexible infra-
structure and task definitions. Thereby, Open
Problems enables broader accessibility for
scientists to contribute to the advancement
ofthefield of single-cell analysis. We envisage
Open Problems bringing about a shift in per-
spective onmethod selection for dataanalysts
and method evaluation for developers, sup-
porting a transition toward higher standards
for methodsin single-cell data science.

Code availability

AllOpen Problems codeis publicly available at
https://www.github.com/openproblems-bio/
openproblems. This code includes dataload-
ersforall datasets used, with associated meta-
data on where this data came from. Code to
reproduce the figures is publicly available
at https://github.com/openproblems-bio/
nbt2025-manuscript. Detailed information
on all datasets is available at https://open-
problems.bio/datasets. Documentation for
the platform and contribution guides can be
found at https://openproblems.bio/documen-
tation.
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