
nature biotechnology

https://doi.org/10.1038/s41587-025-02694-w

Correspondence

Defining and benchmarking open problems  
in single-cell analysis

S
ingle-cell genomics has enabled the 
study of biological processes at an 
unprecedented scale and resolution. 
These studies were enabled by inno-
vative data generation technologies 

coupled with emerging computational tools 
specialized for single-cell data. As single-cell 
technologies have become more prevalent, 
so has the development of new analysis tools, 
which has resulted in over 1,700 published 
algorithms1 (as of February 2024). Thus, there 
is an increasing need to continually evaluate 
which algorithm performs best in which con-
text to inform best practices2,3 that evolve with 
the field.

In many fields of quantitative science, pub-
lic competitions and benchmarks address this 
need by evaluating state-of-the-art methods 
against known criteria, following the con-
cept of a common task framework4. Here, 
we present Open Problems, a living, exten-
sive, community-guided platform including 
12 current single-cell tasks that we envisage 
raising standards for the selection, evaluation 
and development of methods in single-cell 
analysis.

In single-cell genomics, as in many other 
domains, it is typical for analysis algorithms 
to be evaluated using benchmarks. However, 
such benchmarks are often of limited use as 
the field suffers from a lack of standardized 
procedures for benchmarking5, leading to 
different assessments of the same method 
and producing different outcomes. Bespoke 
benchmarks set up by method developers to 
evaluate newly developed algorithms often 
include datasets and metrics chosen to high-
light the advantages of their tools, which 
has been shown to lead to less objective 
assessments6,7. Even if datasets and metrics 
are standardized, historical analysis shows 
that when benchmarks are implemented by 
the same groups introducing new methods, 
the evaluations tend to inflate performance 
of the newest models via custom hyperparam-
eter selection and data processing8.

To provide more uniform and neutral 
assessment, groups can perform special-
ized benchmarking studies independently 
of method development. Tools such as 

registered reports, which promote neutral-
ity of benchmarking results by design, have 
recently gained in popularity to enable such 
studies. These efforts aim to systematically 
evaluate the current state of the art in a given 
area and may be less biased. However, their 
results are static and inevitably age. These 
frameworks are typically not designed for 
extensibility or interoperability, limiting the 
value of reusing a framework to perform addi-
tional systematic benchmarks5. This inability 
to reuse infrastructure leads to repeats of 
non-standardized benchmarks that cannot 
provide the guidance that users need. For 
example, at least four benchmarks of batch 
integration methods exist9–12, each of which 
uses different sets of datasets and metrics and 
suggests different optimal methods (Fig. 1a). 
Similar issues have been reported across other 
single-cell topics, where datasets and metrics 
typically have less than 10% overlap between 
benchmarks13.

Ideally, benchmarks that guide users 
and promote method innovation use con-
sistently applied datasets and metrics that 
are established independently of method 
development and with ongoing community 
participation5,6,13. Such community partici-
pation around quantified tasks requires con-
tinual updates, a process that is hard to realize 
in the typical result–paper framework that 
defines the modern scientific process.

To achieve this goal, we developed the 
Open Problems in Single-Cell Analysis (Open 
Problems) platform. The Open Problems 
platform is an open-source, extensible, liv-
ing benchmarking framework that enables 
quantitative evaluation of best practices in 
single-cell analysis. It combines a permissively 
licensed GitHub repository (https://github.
com/openproblems-bio/openproblems) 
with community-defined tasks, an automated 
benchmarking workflow, and a website to 
explore the results. Currently, Open Problems 
includes 12 defined tasks, in which 81 datasets 
are used to evaluate 171 methods using 37 met-
rics. These tasks were defined by community 
engagement, including on the public GitHub 
repository, in weekly community meetings, 
and at a hackathon in March 2021 with over 

50 participants. This broad involvement has 
already led to new benchmarking insights and 
best practice recommendations while improv-
ing and standardizing previously published 
benchmarks. We envisage Open Problems’ 
community-defined standards for progress in 
single-cell data science raising the bar for the 
selection and evaluation of methods, provid-
ing targets for method innovation, and ena-
bling developers without single-cell expertise 
to contribute to the field.

To enable truly living benchmarks, we 
designed a standardized and automated 
infrastructure that allows members of the 
single-cell community to contribute to Open 
Problems in a seamless manner (Supplemen-
tary Methods). Each Open Problems task 
consists of datasets, methods and metrics 
(Fig. 1b). Datasets define both the input and 
the ground truth for a task, methods attempt 
to solve the task, and metrics evaluate the 
success of a method on a given dataset. We 
provide cloud infrastructure to enable cen-
tralized benchmarking when new methods, 
datasets or metrics are added to our platform. 
Within each task, every method is evaluated 
on every dataset using every metric, and each 
method is then ranked on a per-dataset basis 
by the average normalized metric score and 
presented in a summary table on the Open 
Problems website (https://openproblems.
bio). Normalization is used to make metric 
ranges comparable for comparison and visu-
alization of method results without affecting 
the metric’s ability to highlight method outli-
ers (Supplementary Methods).

Community engagement on the platform 
is centered around an open discussion forum, 
open code contribution opportunities, and 
task leadership. Task leaders are community 
members who have contributed substantially 
to a task, assume organizational responsibili-
ties for the task, and are ultimately respon-
sible for task definition, task maintenance 
and facilitation of community contributions. 
Task definitions, choices of metrics and imple-
mentations of methods are discussed on our 
GitHub repository and can be easily amended 
by pull requests, which are reviewed by task 
leaders and the core infrastructure team. 

 Check for updates
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While this community-centered approach 
may lead to suboptimal metrics being contrib-
uted, it also facilitates a self-cleansing process 
whereby metrics can be removed or amended 
if limitations or biases are uncovered. In this 
manner, Open Problems promotes the longev-
ity of hosted benchmarks.

To enable seamless community involve-
ment in Open Problems, we have designed 
our platform to leverage cloud infrastructure, 
which provides reproducibility, accessibility 
and automation (Supplementary Fig. 1). Each 
task is organized as a directory, with subdi-
rectories for datasets, methods, metrics and 

utilities. Each task must contain at least one 
dataset, one metric and two baseline meth-
ods, which provide upper and lower bounds 
for performance of the task. Components 
(that is, dataset loader, method or metric) 
are Viash components14 that exist as a single 
script (implemented in Bash, Python or R) and 
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Fig. 1 | The Open Problems in Single-cell Analysis living benchmarking 
platform. a, Overview and timeline of published benchmarks of single-cell 
batch integration. Four publications have benchmarked 19 methods using 18 
metrics. Light gray and black squares indicate whether one or two benchmarks 
include this method–metric combination (left). Arrows indicate the range of 
publication times of methods included in the benchmark. b, The Open Problems 

platform. The Open Problems platform consists of tasks that are broken down 
into datasets, methods and metrics. The community contributes code to these 
tasks in the platform, which uses these contributions to extend the benchmarks 
that are run and pushed to the Open Problems website. The community can then 
consult the website for guidance on method selection.
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some metadata (a YAML file named config.vsh.
yaml) in the relevant subdirectory. Adding 
a new method is as simple as opening a pull 
request to the repository and adding a new 
file that follows the API for that task. When 
a community member adds a component, 
the new contribution is automatically tested 
in the cloud. When all tests pass and the new 
contribution is accepted, the results from the 
new contribution are automatically submitted 
to the Open Problems website. To maximize 
reproducibility, each component is run in a 
versioned Docker container defined by the 
method contributor, and all data are down-
loaded from public repositories, including 
Figshare and CELLxGENE15.

We started by defining 9 Open Problems 
tasks (Fig. 2a), which extends to 12 with the 
inclusion of subtasks. While several tasks were 
directly informed by published benchmarking 
papers (for example, batch correction9 or cell–
cell communication16), others were defined 
by method developers in the single-cell com-
munity (for example, spatial decomposition). 
The Open Problems platform was seeded with 
these tasks as they represent a cross-section of 
important and (mostly) well-researched tasks 
in single-cell genomics. We envisage this set of 
tasks being a starting point for further com-
munity development to address and refine 
further open problems in single-cell analysis.

A typical task setup can be exemplified 
by the cell–cell communication (CCC) task 
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Fig. 2 | Task overview, setup and results.  
a, Overview of the 9 tasks currently included in the 
Open Problems platform. Batch integration and 
cell–cell communication (CCC) consist of 3 and 2 
subtasks, respectively, making up the current total 
of 12 tasks. b, The CCC task. This task includes two 
subtasks defined by different types of ground truth: 
spatial cell type co-localization in the source–target 
subtask and cytokine profiling in the ligand–target 
subtask. Methods are run on each subtask to score 
the likelihood of interaction between source and 
target cell types or ligand and target cell types. 
Finally, the area under the precision–recall curve 
(AUPRC) and the odds ratio of true to false positive 
interactions in the top 5% of predicted pairs are used 
to score method outputs (Supplementary Note 1.1). 
c, Collated results of the two CCC subtasks. Methods 
are ranked using the mean of the overall score for 
each subtask (shown as “TNBC atlas” and “Mouse 
brain atlas” blue boxes, respectively). These overall 
scores are computed as the mean of all scaled metric 
results (red boxes). Linear scaling is performed 
using random and perfect baseline methods, whose 
performances are set to 0 and 1, respectively  
(see Supplementary Methods). The results shown 
here are from Open Problems v1 (ref. 24).
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(Fig. 2b and Supplementary Note 1.1). The 
goal of cell–cell communication inference 
methods is to infer which cell types are com-
municating within a tissue to mediate tissue 
function. Typical algorithms base predictions 
on the expression of ligand and receptor genes 
in dissociated single-cell data17. Ground-truth 
data for cellular communication are chal-
lenging to obtain. Thus, this task is divided 
into two subtasks that use different proxies 
for this ground truth: spatial colocalization 
(source–target subtask) and cytokine activity 
(ligand–target subtask). As the CCC methods 
included in this task (Supplementary Meth-
ods)18–21 typically score ligand–receptor pairs 
using either their expression magnitude or 
cell-type specificity, mean and max aggrega-
tion functions are used to score interaction 
strengths between source and target cell types 
(source–target task) or ligands and target 
cell types (ligand–target task). The outputs 
of these methods are finally evaluated using 
the area under the precision–recall curve and 
odds ratios. These metrics measure how well 
ground truth source–target (co-localized 
cell types) or ligand–target (cytokine activity 
within a cell type) pairs are prioritized when 
ranking all interactions and how many true 
pairs are found in the top 5%, respectively.

While the CCC task was contributed to 
Open Problems on the basis of a published 
benchmark16, the task definition and metrics 
evolved with input from the community and 
the Open Problems team. This process has 
enabled the Open Problems results to gen-
erate insight beyond the initial publication 
(Fig. 2c), which focused predominantly on the 
comparison of CCC databases and showed 
variable method performance across tasks. 
In the CCC Open Problems task, we find that 
methods that rely on expression magnitude 
outperform approaches that rely on expres-
sion specificity. Indeed, the top performers 
across tasks are CellPhoneDB and LIANA’s 
ensemble model of expression magnitude 
scoring methods. Furthermore, max aggre-
gation of ligand–receptor scores outper-
formed mean aggregation across tasks and 
methods. This improved inference of cellular 
communication using only the top-predicted 
interactions suggests that methods are bet-
ter at prioritizing a small fraction of relevant 
interactions while being prone to noise when 
their full interaction rankings are considered. 
Thus, analysts interpreting CCC results may 
likewise want to focus only on the most 
high-scoring predictions when inferring 
which cell types interact (Supplementary 
Note 1.1).

Using this combination of expert knowl-
edge and community input, in this manuscript 
we also provide best-practice recommenda-
tions for preprocessing and method selection 
for label projection, dimensionality reduction 
for 2D visualization, batch integration, spa-
tial decomposition, denoising and matching 
of cellular profiles across modalities (Sup-
plementary Note 1). For example, on all four 
reference datasets currently included in the 
Open Problems label projection task, a simple 
logistic regression model outperforms more 
complex methods that explicitly model batch 
effects, even when noise is added to the train-
ing data (Supplementary Note 1.2). Moreo-
ver, we also show that it is easier to correct 
for batch effects in single-cell graphs than in 
latent embeddings or expression matrices 
(Supplementary Note 1.4), that denoising 
methods perform best with non-standard 
preprocessing approaches that better stabi-
lize variance (Supplementary Note 1.6) and 
that simple models tend to outperform more 
complex ones for perturbation prediction 
(Supplementary Note 1.8).

Overall, Open Problems tasks are continu-
ally updated benchmarks that increase in 
robustness as new methods are developed 
and more complex datasets become available. 
Our vision is that these benchmarks will form 
the basis for best-practice recommendations 
by groups such as Single-Cell Best Practices 
(https://www.sc-best-practices.org/).

Open Problems living benchmarking tasks 
also function as a quantifiable target for the 
development of new methods. This prob-
lem definition is particularly useful for the 
wider machine learning community that may 
lack domain knowledge (that is, single-cell 
expertise). Leveraging the batch integration 
and matching modality tasks as a basis, we 
previously set up popular competitions for 
multimodal data integration at NeurIPS 2021  
(refs. 22,23) and 2022, with over 260 and 1,600 
participants, respectively. In these competi-
tions, the developers of multiple top perform-
ers had no previous experience with single-cell 
data, yet were able to submit solutions that 
substantially outperformed state-of-the-art 
methods22. We envisage the Open Problems 
platform driving method development by 
improving the accessibility of open challenges 
in single-cell analysis via defined tasks. To pro-
mote this, Open Problems enables method 
developers to submit both prototype and 
final solutions to the platform for automated 
evaluation against the current state of the art. 
Open Problems results, which are made avail-
able under a Creative Commons Attribution 

(CC-BY) license, can then be included in the 
respective method papers. Similarly, entirely 
new benchmarks can be implemented as tasks, 
run via Open Problems, and published sepa-
rately while remaining updatable.

Taken together, the Open Problems 
platform is a community resource that 
quantitatively defines open challenges in 
single-cell analysis, determines the current 
state-of-the-art solutions, promotes method 
development to improve on these solutions, 
and monitors progress toward these goals. 
Open Problems addresses issues observed 
in custom and decentralized benchmarking 
by providing standardized but flexible infra-
structure and task definitions. Thereby, Open 
Problems enables broader accessibility for 
scientists to contribute to the advancement 
of the field of single-cell analysis. We envisage 
Open Problems bringing about a shift in per-
spective on method selection for data analysts 
and method evaluation for developers, sup-
porting a transition toward higher standards 
for methods in single-cell data science.

Code availability
All Open Problems code is publicly available at 
https://www.github.com/openproblems-bio/
openproblems. This code includes data load-
ers for all datasets used, with associated meta-
data on where this data came from. Code to 
reproduce the figures is publicly available 
at https://github.com/openproblems-bio/
nbt2025-manuscript. Detailed information 
on all datasets is available at https://open-
problems.bio/datasets. Documentation for 
the platform and contribution guides can be 
found at https://openproblems.bio/documen-
tation.
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