
Berger et al., Sci. Adv. 11, eadu7319 (2025)     22 August 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 14

C O M P U T E R  S C I E N C E

Bayesian reconstruction of rapidly scanned 
mid-infrared optoacoustic signals enables fast, 
label-free chemical microscopy
Constantin Berger1,2,3, Myeongseop Kim1,3, Lukas Scheel-Platz1,2,3,4, Andreas Eigenberger5,  
Lukas Prantl5, Panhang Liu1,3, Vipul Gujrati1,3, Vasilis Ntziachristos1,3,6,  
Dominik Jüstel1,2,3*, Miguel A. Pleitez1,3*

Hyperspectral optoacoustic microscopy (OAM) enables obtaining images with label-free biomolecular contrast, 
offering excellent perspectives as a diagnostic tool to assess freshly excised and unprocessed biological samples. 
However, time-consuming raster scanning image formation currently limits the translation potential of OAM into 
the clinical setting, for instance, in intraoperative histopathological assessments, where micrographs of excised 
tissue need to be taken within a few minutes for fast clinical decision-making. Here, we present a non–data-
driven computational framework tailored to enable fast OAM by rapid data acquisition and model-based image 
reconstruction, termed Bayesian raster-computed optoacoustic microscopy (BayROM). Unlike data-driven ap-
proaches, BayROM does not require training datasets, but instead, it uses probabilistic model-based reconstruc-
tion to facilitate fast high-resolution imaging. We show that BayROM enables acquiring micrographs 10 times 
faster on average than conventional raster scanning microscopy and provides sufficient image quality to facili-
tate the intraoperative histological assessment of processed fat grafts for autologous fat transfer.

INTRODUCTION
Intraoperative histopathological examinations are crucial for precise 
surgical decision-making, for instance, in tumor margin analysis (1). 
The clinically established workflow for histological assessment usu-
ally consists of immunohistochemical or hematoxylin and eosin 
stains applied to excised tissue samples, followed by an examination 
via bright-field microscopy (2). Tissue staining uncovers biomolecu-
lar features required for histopathological examinations, such as tu-
mor margin assessments or quality guidance for autologous fat 
transfer. Autologous fat transfer is an innovative therapeutic proce-
dure that is increasingly used in plastic and aesthetic medicine, pri-
marily aimed at promoting tissue regeneration and restoring volume. 
In addition to its regenerative applications, this technique plays a 
crucial role in breast reconstruction following tumor removal, where 
transplanted autologous fat provides both aesthetic and functional 
benefits. Specially mechanically processed fat graft, called cell-enriched 
lipotransfer (CELT or CELTplus), shows strong capabilities to im-
prove tissue regeneration and rejuvenation (3). However, the enrich-
ment process currently lacks an intraoperative imaging step that 
can provide histological metrics on the processed fat graft as a pre-
dictive marker for therapeutic success and to avoid complications. 
Conventional workflows for histological assessments are currently 
insufficient to analyze molecular and morphological compositions of 

freshly excised tissues in real-time due to the time-consuming and 
laborious preparation steps, which can delay or hinder surgical 
decision-making (4). In addition, while current fast histology tech-
niques used in, for instance, intraoperative tumor margin assessment 
are rapid (~10 min), they often come with the risk of inaccuracies, as 
they lack the necessary molecular specificity of conventional histol-
ogy examinations (5).

As an alternative to conventional histology, label-free optoacous-
tic microscopy (OAM) has been proposed as a method for rapid in-
traoperative histology due to its ability to obtain intrinsic molecular 
contrast that enables avoiding the tissue preparation steps usually 
required for exogenous staining (6, 7). In particular, optoacoustic hy-
perspectral imaging, i.e., sequential imaging at multiple excitation 
wavelengths over a spectral range, is key for tissue classification 
based on spectral hallmarks. However, although label-free OAM for 
histological examination saves time in tissue preparation, acquiring 
optoacoustic micrographs is often more time consuming than rou-
tinely used bright-field microscopy as image formation in many 
OAM systems is achieved by point-by-point raster scanning. Al-
though technologies for wide-field OAM were proposed to bypass 
the need for time-consuming raster scanning, these methods often 
suffer from poor spatial resolution and shallow imaging depth (8). 
Low imaging speed is one of the major limiting factors of OAM to-
ward its implementation as an intraoperative histopathological as-
sessment procedure, especially for hyperspectral imaging where time 
cost scales linearly with the number of excitation wave numbers ac-
quired (4). Hyperspectral optoacoustic image formation with fast 
data acquisition, i.e., within a time range of a few minutes, is crucial 
to allow for faster surgical decision-making than conventional tissue 
staining methods (9).

To facilitate fast label-free OAM, several hardware-based meth-
ods have been developed, for instance, optoacoustic microtomogra-
phy (10), which allows the acquisition of numerous wide-field image 
volumes per second. Nevertheless, optoacoustic microtomography 
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leads to complex optical forward problems, making image forma-
tion more prone to artifacts compared to OAM with single-spot 
illumination combined with raster scanning. Further hardware-
based solutions include accelerated raster scanning by optical setups 
involving voice coil stages (11), microelectromechanical systems 
(7,  12,  13), polygonal mirror scanners (14), and galvanometer 
scanners (15). However, in the context of raster scanning OAM, 
hardware-based solutions cannot be applied without substantial 
limitations, such as imaging artifacts that originate, for instance, 
from narrow field-of-views (FOVs). Another common limitation of 
hardware-based strategies for accelerating imaging speed in OAM is 
the sensitivity variation caused by the misalignment of the excita-
tion beam with the detection area of the ultrasound transducer 
typically used for OA detection. In particular, confocal alignment of 
the excitation laser beam with the transducer is of special relevance 
in mid-infrared (mid-IR) OAM and spectroscopy (16), where re-
flective objectives are preferred against diffractive optics to avoid 
achromatic aberration due to the wide spectral range detected (for 
instance, between 2850 and 1000 cm−1). The use of reflective objec-
tives in mid-IR OAM renders using, for instance, galvanometer 
scanning ineffective because of the narrow FOV that can be imaged 
at each location, requiring mosaicking techniques and postprocess-
ing correction of the abovementioned transducer’s sensitivity field 
and laser beam excitation misalignment (17). However, the optical 
and acoustic properties of mid-IR OAM in terms of signal-to-noise 
ratio (SNR), resolution, and the homogenous transducer sensitivity 
field are crucial for enabling the assessment of freshly excised and 
unprocessed biological samples. Hence, an alternative method for 
increased imaging speed of raster scanning OAM, which can over-
come the limitations of existing hardware-based solutions, is re-
quired to advance the field of fast intraoperative histology.

A strategy to enhance imaging speed while maintaining the ad-
vantages of single-point raster scanning of OAM systems, such as 
mid-IR OAM, is the use of rapid raster scanning in combination 
with computational methods. Rapid raster scanning can be achieved 
by (i) sparse scanning, i.e., acquiring only a fraction of all pixel in-
tensities, and (ii) low averaging of optoacoustic signals per pixel and 
consequently reconstructing full images based on sparse and noisy 
data. To reconstruct full images based on sparse data, i.e., compen-
sate for the inherent information loss, data-driven methods involv-
ing machine learning (ML) and deep learning (DL) have been 
applied (18–21). ML and especially DL are effective tools in the 
realm of image processing and enhancement, including denoising 
(22–25). However, in learning-based methods, the model architec-
tures often used operate as black-box models and do not provide the 
necessary transparency to ensure artifact-free images, particularly 
for out-of-distribution data, i.e., sample types that were not covered 
by the training data (26–29). To mitigate the risk of imaging artifacts 
for a broad range of sample types, data-driven methods would re-
quire large amounts of training data, which are often unavailable or 
impractical to collect in OAM. Thus, although data-driven compu-
tational methods have shown promising capabilities for image re-
construction from incomplete data, they cannot ensure artifact-free 
images for a broad range of sample types due to the lack of big train-
ing data in OAM. An alternative to data-driven methods includes, 
for instance, compressed sensing techniques, where prior informa-
tion about the sample is integrated via sparsity assumptions (30, 31). 
Compressed sensing has, for example, been used in the realm of 
electron microscopy to reduce electron doses by sparse imaging 

(32,  33). Another non–data-driven method that has been estab-
lished for electron microscopy is beta process factor analysis (BPFA) 
(34). BPFA is a dictionary-learning method that can, for instance, be 
used for image reconstruction from sparse data. Dictionary-learning 
methods constitute a group of techniques that have furthermore 
been used for image denoising without requiring noise estimates 
(35). Because of a lack of accuracy combined with the high compu-
tational time required for dictionary-learning approaches, further 
methods, including regularized least-squares image reconstruction, 
were proposed (36). However, neither regularized least-squares 
methods, dictionary-learning, nor compressed sensing methods 
usually provide parameters for uncertainty quantification and, thus, 
similarly to data-driven methods, cannot deliver a quality assess-
ment for reconstructed images to ensure artifact-free imaging. Fur-
thermore, the previously summarized methods address either image 
reconstruction from sparsely sampled data or image denoising but 
mostly do not target both at the same time. Hence, a transparent 
alternative for computational reconstruction and denoising for rap-
id raster-scanned OAM data, including a quality-check readout, is 
required to push the boundaries of label-free imaging toward its in-
tegration into intraoperative workflows.

We hypothesized that by implementing rapid data acquisition in 
combination with model-based image reconstruction, we could ac-
celerate the imaging speed of OAM over conventional raster scan-
ning. In addition, by applying model-based image reconstruction, 
we could circumvent the limitations imposed for learning-based 
methods, i.e., the need for big data and/or the nontransparency of 
neural networks. For this purpose, we developed a computational 
imaging method termed Bayesian raster-computed optoacoustic mi-
croscopy (BayROM). BayROM facilitates the reconstruction of im-
ages based on rapid and thus incomplete raster scanning data, while 
not being required to train a model, and thus bypasses the need for 
large amounts of training data in OAM. Instead of implicitly learning 
priors via a dataset, BayROM uses an explicit prior model resembling 
knowledge about the imaged specimen. To maintain similar image 
quality as in full raster scanning, BayROM reconstructs images after 
rapid data acquisition supported by a parameterizable model, includ-
ing optomechanical system properties by means of variational Bayes, 
and thereby achieves a 10-fold increase in imaging speed compared 
to conventional raster scanning in OAM.

Here, we showcase BayROM in the context of fast label-free bio-
molecular imaging by mid-IR hyperspectral microscopy, demon-
strating its capability to reduce imaging time from the timescale of 
hours to only a few minutes. We validated BayROM’s ability for fast 
tissue imaging on several mouse organ tissues as well as synthetic 
phantoms. Moreover, to demonstrate the use of BayROM for clinical 
practice, we investigated its capability to assess fresh fat grafts for 
autologous fat transfer, where a fast molecular imaging modality 
could substantially contribute to further improving treatment out-
comes and reducing the need for follow-up surgeries. Here, we show 
that BayROM can provide high-resolution molecular images within 
only a few minutes, enabling the differentiation between CELTplus 
and nanofat. Nanofat is an enhanced fat graft with insufficiently re-
moved released lipids that can cause complications, including oil 
cysts (37). While conventional histology methods fail to provide 
such assessment of fat grafts intraoperatively, we demonstrate the 
potential of BayROM for intraoperative decision-making in plastic 
surgery to potentially improve therapeutic responses and avoid 
complications and consequent follow-up surgeries.
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RESULTS
Working principle of BayROM
Figure 1 graphically illustrates the working principle of BayROM as 
compared to conventional raster scanning in OAM. Raster scanning 
OAM measures the optoacoustic signal intensity in each pixel loca-
tion to compose an image. BayROM increases imaging speed in 
OAM by systematically skipping raster scanning lines during opto-
acoustic signal acquisition and compensates for the missing infor-
mation using Bayesian image reconstruction. Therein, a prior model 

constrains the reconstruction of unscanned areas to plausible values 
based on the scanned areas. Our knowledge of the measurement 
process (encoded in the forward model) and the measurement noise 
allows us to calculate to what degree a candidate image is compati-
ble with the observed data. Furthermore, a priori knowledge about 
the imaged specimen is included in the form of a generative prior 
model, which statistically describes the structural properties of im-
ages in the harmonic/Fourier domain (see Materials and Methods). 
On the basis of the prior model and likelihood, we can express the 
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Fig. 1. Fast label-free imaging using rapid raster scanning and Bayesian image reconstruction. (A) OAM workflow. Raster-scanning OAM enables label-free imaging 
of unprocessed, freshly excised tissue samples. However, raster scanning is a tedious procedure that prevents fast intraoperative decision-making due to time-consuming 
data acquisition. (B) Workflow of Bayesian raster computed optoacoustic microscopy (BayROM). Rapid raster scanning can be applied to decrease the data acquisition 
time by a factor of 10. Image reconstruction is required to obtain high-resolution micrographs based on the compressed data. (C) Image reconstruction workflow. The 
probabilistic reconstruction framework creates plausible images given the reduced but rapidly acquired data. The plausibility of image candidates can be assessed using 
the Bayesian posterior probability p(i|d), which is proportional to the product between the likelihood p(d|i) and the prior p(i). The likelihood evaluates the compatibility 
of image candidates with observed data given by the forward model. The prior model (correlated field prior) compensates for the information loss due to rapid scanning. 
The mean of the posterior approximated using MGVI serves as the reconstructed image, while the approximated posterior variance provides a metric for quality control.
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plausibility of an image given the acquired data using Bayes’ theo-
rem. Bayes’ theorem allows assigning a plausibility score (posterior 
probability) from 0 (the image is incompatible with the data, prior 
knowledge, or both) to 1 (only this image is compatible with the 
prior knowledge and the observed data). On the basis of the mean 
and standard deviation of the posterior probability distribution, we 
can generate image reconstructions, including pixel-wise uncertainty 
estimates. We approximate the posterior distribution using the met-
ric Gaussian variational inference (MGVI) algorithm (38), which 
generates a set of posterior samples. We subsequently calculate pos-
terior means and standard deviations based on the posterior sam-
ples. The reconstructed image is derived from the posterior mean, 
while the posterior standard deviation gives a lower bound of the 
pixel-wise uncertainty in the reconstruction, which can be used to 
obtain a quality control metric of reconstructed images. More de-
tails on the theoretic principle of BayROM are given in Materials 
and Methods. Uncertainty-based quality control facilitates the eval-
uation of reconstructions without the need to compare to a usually 
unavailable ground truth (GT) measurement. Therefore, we use the 
mean relative standard deviation (MRSD) of the posterior distribu-
tion as a metric to reflect the reconstruction uncertainty. Using 
the MRSD, our Bayesian imaging framework allows for quality-
controlled image reconstruction based on rapid raster scanning to 
enable fast optoacoustic imaging.

Imaging characterization and evaluation in 
synthetic samples
First, we characterized BayROM’s accuracy by comparing BayROM 
reconstructed micrographs of a synthetic test target (carbon tape; see 
Materials and Methods for details) with full raster scanning images, 
used as GT, of the same sample.  Figure  2A shows GT and corre-
sponding BayROM reconstructed micrographs (2 mm–by–2 mm 
FOV and 5-μm pixel size) for the test target at 2850 cm−1 excitation. 
While full raster scanning (GT) required 23.43 min for acquisition, 
data acquisition with 92.5% data reduction, i.e., only 7.5% of the 
amount of data needed for full raster scanning, required only 2.15 min, 
thus achieving an ~10-fold speedup with an excellent reconstruction 
accuracy as determined by a structural similarity index measure 
(SSIM) of 0.978 between GT and BayROM reconstructed micro-
graphs. Figure 2A brings more details on the reconstruction results, 
including a back projection image shown to visualize the usable in-
formation contained in the rapidly acquired data (see Fig. 2B). Fur-
thermore, Fig. 2A exhibits the posterior distribution represented by 
the posterior samples, posterior mean, and posterior standard devia-
tion. The pattern of the posterior standard deviation follows the sam-
ple structure, which reflects localization uncertainties related to the 
point spread function (PSF). Such localization uncertainties can 
mainly be found at sharp intensity edges since the PSF leads to 
smoothed scanning data that represent such edges and thus cause 
uncertainties in their reconstruction. In addition to quantitative as-
sessment of the reconstruction accuracy using the SSIM, Fig. 2C ex-
hibits a qualitative comparison using overlay and cross-sectional 
intensity plots with no noticeable deviations, confirming accurate 
reconstruction. Figure 2D shows that the reconstruction intensities 
(i.e., the values of the micrograph after reconstruction) cover the full 
dynamic range of the GT and follow an almost linear power-law re-
lationship with the GT values, which is important for quantitative 
imaging where contrast levels in a micrograph indicate optical ab-
sorption of the sample at a given wave number. Furthermore, Fig. 2E 

visualizes the distribution of the pixel-wise relative standard devia-
tion (RSD), i.e., the ratios between the posterior standard deviation 
and the posterior mean for all pixels in the image. The overall uncer-
tainty given by the MRSD amounts to 4.7% and thus indicates high 
confidence in the algorithm to reconstruct the images.

Next, we studied the effects of varying data reduction parameters 
on the reconstruction quality to determine a suitable configuration 
for optimal image quality and imaging speedup. The data reduction 
is mainly determined by the sparsity parameter, which describes 
how many raster lines are skipped to increase the data acquisition 
speed. The data acquisition speed scales linearly with the level of 
sparsity, i.e., if half of the raster lines are being skipped, then data 
acquisition will be twice as fast. To generate the results shown 
in Fig. 2 (A to E), we skipped three of four raster lines compared to 
full scanning, i.e., 75% sparsity. With the given sparsity levels, the 
distances between the raster lines remain smaller than the imaged 
structures, such that the relevant structural information of the im-
aged sample is still captured while the scanning speed is increased. 
The sparsity of 75% leads to an overall data reduction of 92.5%, 
since, in addition to sparsity, we decreased the averaging level per 
pixel compared to full raster scanning. High averaging per pixel 
causes slow stage movements along the imaged raster lines, and, 
thus, we decreased the averaging level so that the stage could operate 
at maximum speed. To study the effects of changing the number of 
skipped lines, we analyzed sparsity levels of 50% (every second ras-
ter line imaged), 75% (every fourth raster line imaged), and 87.5% 
(every eighth line skipped), which lead to overall data reduction lev-
els of 85%, 92.5%, and 96.6%. The speedup resulting from the rapid 
data acquisition depends on the level of data reduction and increas-
es with increasing data reduction. At the same time, image quality 
decreases with increasing data reduction levels. We compared the 
reconstruction qualities corresponding to data reduction levels of 
85%, 92.5%, and 96.6%, leading to acquisition speedup factors of ~5, 
10, and 20, respectively. Figure 2F visualizes the error distributions 
of the reconstructions, referring to the pixel-wise absolute errors be-
tween reconstructions and GT, corresponding to each data reduc-
tion level. The analysis of the reconstruction error distribution with 
respect to the data reduction level shows that the mean reconstruc-
tion error remains similar between the compared data reduction 
levels. However, the maximum reconstruction errors increase nota-
bly with increasing data reduction. In general, the choice of a data 
reduction level and, thus, the resulting speedup constitutes a trade-
off in image quality and imaging speed that strongly depends on the 
application and thus needs to be seen as a parameter of BayROM 
and chosen accordingly. The results displayed in Fig. 2 demonstrate 
the capabilities of BayROM to accurately reconstruct images based 
on rapid data acquisition under consideration of varying data re-
duction parameters and inherent imaging speedups.

To further characterize the image enhancement capabilities of 
the reconstruction mechanism, we analyzed BayROM’s resolution 
along with the SNR in reconstructed micrographs. Figure S1 (A to 
E) exhibits the estimated resolution of BayROM. It can be observed 
that the resolution of full raster scanning micrographs is, on aver-
age, 3.1 to 4.0 μm, while for BayROM, the estimated resolution is, on 
average, 4.5 to 5.6 μm. Furthermore, BayROM shows a lower resolu-
tion in the sparsely sampled axis, as indicated by the high variance 
of resolution estimates compared to the densely sampled axis. 
BayROM’s overall resolution is 0.5 to 2.5 μm lower than full raster 
scanning because of the regularization effect of the reconstruction 
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mechanism. Although regularization causes a slightly decreased 
resolution, it enables denoising the reduced scanning data, i.e., 
maintains high SNR in the reconstructions despite noisy data due to 
rapid scanning. To demonstrate the denoising capabilities of Bay-
ROM, we analyzed the SNR of optoacoustic signals before and after 
image reconstruction. Figure  S1 (F and G) shows that BayROM’s 
data SNR, i.e., the SNR of the acquired optoacoustic intensities per 
pixel, is significantly lower, while its image SNR, i.e., the SNR of the 
pixel intensities after image reconstruction, is slightly higher than 
for the case of full raster scanning. With BayROM’s image SNR of 53 
compared to 48 for full raster scanning, we can confirm that Bay-
ROM not only maintains but also slightly increases the image SNR 
compared to full scanning despite substantially more noise due to 
less averaging per pixel. Although we confirmed that BayROM has 

only a slightly decreased resolution compared to full scanning and 
shows promising denoising capabilities, the analysis could poten-
tially differ when being examined under different conditions, i.e., 
different data reduction settings, a larger FOV, or a more heteroge-
neous sample.

Fast hyperspectral imaging of unprocessed white 
adipose tissue
To demonstrate the capabilities of BayROM for fast imaging of bio-
logical specimens, we assessed the imaging speed as well as the re-
construction accuracy of images obtained for white adipose tissue 
(WAT) excised from mice at multiple excitation wave numbers (i.e., 
at multiple contrast channels). Specifically, we imaged fixed epididymal 
WAT taken from Friend leukemia virus B mice for an FOV of 1 mm 

Backprojection

Acquisition time: 2 min 9 s

Reconstruction

Posterior samples Posterior mean

SSIM: 0.978

Acquisition time: 23 min 26 s

Ground truth

Posterior std
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{4–16}
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1 2
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B
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D
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Fig. 2. Reconstruction analysis and characterization on a test phantom. (A) Visual comparison of back-projected data (BP), reconstruction (RC), and ground truth (GT). 
The back projection shows a horizontal line pattern, which originates from the data reduction. The SSIM between reconstruction and GT is 0.978, while the root mean 
square error (RMSE) and the peak signal-to-noise ratio (PSNR) between GT and reconstruction are 10.21 μV and 19.91 dB, respectively. (B) Visualization of the posterior 
distribution. The posterior mean and variance are obtained based on a pixel-wise assessment of the posterior samples. The posterior standard deviation shows a horizon-
tal line pattern, which reflects higher uncertainties in skipped lines due to the sparse data acquisition and increased uncertainty on the boundaries of tissue structures 
due to PSF-related localization uncertainty. (C) Overlay of reconstruction and GT. The overlay as well as the cross-sectional line plots in both the x and y directions confirm 
an almost perfect reconstruction of the GT. (D) Intensity comparison between reconstruction and GT. The distribution of intensities in the GT image versus the recon-
structed image is well aligned on the centerline, meaning that there is negligibly low bias in the intensity profile of the reconstruction. MAE, mean absolute error. 
(E) Histogram of the pixel-wise RSD. The MRSD suggests an average reconstruction uncertainty of 4.7%. (F) Data reduction analysis. A change in the level of data reduction 
results in a similar mean of the pixel-wise error between reconstruction and GT. However, the error distribution gets expanded, as indicated by the bars. An overall data 
reduction level of 92.5% was used to generate the results shown in (A) to (E).
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by 1 mm and a pixel size of 2.5 μm at selected wave numbers, in-
cluding 2856 and 1550 cm−1, which provide mainly contrast for 
lipids and proteins, respectively.  Figure  3 (A to F) shows more 
details about the imaging performance, including an overlay of 
the reconstructions for each channel compared with the corre-
sponding GTs. Figure 3C shows cross-sectional intensity plots of 
the GT and reconstructed image in both the x and y directions, 
demonstrating accurate reconstruction.  Figure  3D shows the GT 
and reconstruction intensity values of all excitation wave numbers 
in a scatterplot, indicating no noticeable biases, thus suggesting 
linear behavior between GT and reconstructed pixel intensities in 
the entire value range. For an overall data reduction of 92.5%, i.e., 
three of four raster lines skipped, BayROM achieves ~10 times faster 
data acquisition while maintaining high image quality expressed by 
an SSIM of 0.950 by comparison with the GT. Similar to the charac-
terization based on the carbon sample, we analyzed different data 
reduction levels, i.e., 85%, 92.5%, and 96.6%, to assess their corre-
sponding performances.  Figure  3 (E and F) shows reconstructed 
hyperspectral images of gonadal WAT imaged in an FOV of 1 mm 
by 1 mm with a pixel size of 2.5 μm. While all data reduction levels 
lead to SSIMs above 0.8, the data reduction of 96.6% shows that the 
structures of the adipocytes are becoming less recognizable in some 
parts of the image (SSIM of 0.805). While the 85% data reduction 
results in the highest SSIM value of 0.950, only a speedup factor of 
~5 was achieved. Thus, imaging at a data reduction level of 92.5% 
offers, with a speedup factor of ~10 and an SSIM of 0.934, the best 
compromise between imaging speed and minimal deviations from 
GT. In this way, BayROM imaging enables higher information 
throughputs than full raster scanning, i.e., imaging more channels 
over time and thus facilitating fast hyperspectral imaging, i.e., the 
sequential image acquisition at different excitation wave numbers, 
which is specifically relevant to assess the biomolecular composition 
of imaged specimens.

Having achieved the ability to acquire images 10 times faster 
than with conventional raster scanning, we applied BayROM for hy-
perspectral imaging. This was demonstrated by sequential raster-
scanning a WAT sample for an FOV of 1 mm by 1 mm and 5-μm 
pixel size at 80 different excitation wave numbers in two spectral 
ranges covering lipid (2800 to 2925 cm−1) and protein contrast 
(1500 to 1700 cm−1). On the basis of an overall data reduction level 
of 92.5%, we reconstructed each channel to compose an image stack. 
In fig. S2 (A and B), we visualized the GT image of WAT acquired by 
full faster scanning based on two channels (2856 and 1550 cm−1) as 
well as the corresponding 80-channel BayROM image stack, denot-
ed as hypercube. The hypercube contains the complete spatial and 
spectral information of the sample, i.e., each pixel on the hypercube 
comprises the mid-IR spectrum for the corresponding location in 
the sample. The spectral stability of hypercubes generated using 
BayROM, i.e., the accuracy of reconstructed spectra obtained from 
rapidly acquired data, was assessed by comparing the spectra ob-
tained with the reconstructed hypercube at selected pixels with the 
GT spectra acquired from the same locations. We visualized the 
spectra from the BayROM hypercube in comparison with the GT 
spectra in fig. S2 (D to G), confirming that BayROM achieves accu-
rate reconstructions of spectra, quantified by the mean relative er-
ror, which amounts to 4.4% for the adipocyte spectra and 1.7% for 
the extracellular matrix (ECM) spectra. To further analyze the im-
aged tissue, we used the GT spectra taken from the locations marked 
in fig. S2A representing adipocytes and ECM and performed linear 

spectral unmixing to generate a spatial mapping of the resulting 
mixing coefficients visualized in fig.  S2C. The spatial mapping of 
unmixing coefficients can be used to assess the biological composi-
tion of the imaged sample, which, according to the unmixing, 
consists of 66.4% adipocytes and 33.6% ECM. In summary, we con-
firmed the hyperspectral imaging capability of BayROM, which is 
crucial for analytic downstream tasks, i.e., methods for data analysis 
applied after imaging, such as biological assessments based on spec-
tral unmixing.

Validation of generalization based on mouse organ tissues
To analyze and validate the capabilities of BayROM on a broad 
range of biologically relevant sample types, we measured fixed tis-
sues from several mouse organs. Specifically, we compared GT im-
ages obtained using full raster scanning with BayROM images based 
on two wave numbers, i.e., 2856 and 1550 cm−1, to assess the lipid 
and protein contrast of the samples. Figure 3 (G to J) shows the re-
sults of muscle, pancreatic, liver, and kidney tissue scans. To prove 
the generalizability of BayROM, we demonstrate images of a 5 mm–
by–5 mm FOV (large FOV) as well as a 1 mm–by–1 mm FOV (small 
FOV) for the muscle tissue and pancreatic tissue samples to show-
case BayROM’s application to particular structures in different 
scales. Furthermore, the same correlated field parameters were used 
to obtain the results displayed in Fig. 3 (G to J), i.e., the same param-
etrization was used for all images to confirm that BayROM is able to 
generalize to various sample types without parameter tuning. With 
average SSIM values ranging from 0.81 to 0.94 and total speedup 
factors ranging from 8.2 to 12.86, the results indicate that BayROM 
has the ability to successfully image various biological features, in-
cluding connective tissue and adipocytes in the pancreatic sample, 
fiber structure in the muscle sample, and vessel structure in the liver 
sample. In summary, the presented results provide valuable insights 
into the generalizability and confirm that BayROM has substantial 
capabilities to reconstruct high-resolution images for arbitrary sam-
ple types while substantially increasing the imaging speed compared 
to full raster scanning.

Optoacoustic quality guidance for autologous fat transfer 
using BayROM
Having confirmed that BayROM enables fast, high-resolution mo-
lecular imaging of biological specimens, we assessed its capabilities 
to provide histological quality metrics for autologous fat transfer. 
Autologous fat transfer substantially enhances the overall quality of 
life for patients by aiding in the restoration of natural breast contour 
and improving tissue quality. Furthermore, autologous fat transfer is 
effectively applied in the treatment of conditions such as scar con-
tracture, systemic sclerosis, and chronic wound healing (39, 40). The 
principle of autologous fat transfer consists of the accumulation of 
stromal vascular cells, particularly adipose-derived stem cells, and 
ECM components using an intraoperative enrichment process to 
reduce the lipid content from depot adipocytes in lipoaspirate.

We applied BayROM to fresh, mechanically processed fat 
grafts aiming to establish quantitative quality control for autologous 
fat transfer. Figure 4 shows a representative example (from n =  3 
independent measurements with similar results, as shown in fig. S3) 
comparing CELTplus and nanofat micrographs obtained by BayROM 
as well as full scanning. CELTplus is an enhanced fat graft obtained 
by mechanical processing of lipoaspirate to avoid nanofat transfer, 
which provides the risk of complications such as, for instance, oil 
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Fig. 3. Validation of BayROM based on biological samples. (A) Comparison of hyperspectral images of WAT using full raster scanning (GT) and BayROM (RC). The aver-
age RMSE and the average PSNR between GT and BayROM are 12.44 μV and 35.1 dB. au, arbitrary unit; h, hours. (B) Comparison of zoomed-in areas between GT and 
BayROM. (C) Comparison of reconstruction and GT using cross-sectional intensity plots in the x and y directions for each excitation wave number. (D) Quantitative com-
parison of reconstruction and GT with indicated MAE. (E) Comparison of data reduction levels. A data reduction level of 92.5% enables high reconstruction quality 
and ~10 times faster data acquisition. (F) Comparison of pixel-wise errors for data reduction levels shown in (E). (G and H) Image comparisons of large FOVs, i.e., 5 mm by 
5 mm, and small FOVs, i.e., 1 mm by 1 mm, of mouse muscle, and pancreatic tissues imaged using full raster scanning (GT) and BayROM (92.5% data reduction). For the 
muscle tissue scans, the average RMSE and PSNR between GT and BayROM are 11.91 μV and 32.96 dB for the large FOVs, and 6.836 μV and 34.04 dB for the small FOVs. For 
the pancreatic tissue scans, the average RMSE and the average PSNR between GT and BayROM are 34.42 μV and 28.12 dB for the large FOVs, and 15.79 μV and 33.02 dB 
for the small FOVs. (I and J) Image comparisons of large FOVs, i.e., 5 mm by 5 mm, of mouse liver and kidney tissues imaged using full raster scanning (GT) and BayROM. 
For the liver tissue scans, the average RMSE and the average PSNR between GT and BayROM are 8.304 μV and 31.24 dB. For the kidney tissue scans, the average RMSE and 
the average PSNR between GT and BayROM are 5.853 μV and 36.89 dB.
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cysts due to insufficiently removed released lipids. Although the me-
chanical processing for CELTplus aims to remove released lipids 
largely, the intraoperative enhancement protocol can only be 
standardized to a limited extent and thus can lead to insufficient 
removal of impurities and free lipids, i.e., nanofat. High-quality 
enhancement of fat grafts is required for treatment success and can 
only be confirmed via histological assessments. Figure 4 (A and B) 
shows micrographs at 2856 and 1550 cm−1 selected to assess the 
lipid and protein contrasts of CELTplus and nanofat, respectively. 
The images were first obtained for a large FOV to reduce selection 
bias. From the large FOV, a zoomed image at a smaller FOV is ob-
tained to further analyze small structures in more detail. BayROM 
achieves an increase of more than an eight times in imaging speed 
for the large FOVs and an increase of almost 14 times for the small 
FOVs compared to full raster scanning, resulting in a scanning time 
of 3 to 5 min per image.

As evident from Fig. 4 (A and B), both the BayROM images 
and the full scans of CELTplus show highly compacted structures, 

including homogeneously distributed adipocytes, identifiable by 
their univacuolar lipid droplets, which are strongly embedded in 
the ECM. These adipocytes tend to be smaller than those typically 
found in adipose tissue depots. In contrast to CELTplus, nanofat 
exhibits a notable presence of free lipids beside less prominent 
regions containing ECM and adipocytes. The free lipids present in 
nanofat could not be removed during the mechanical enrichment 
process. Besides the morphological differences between CELTplus 
and nanofat, the images furthermore allow assessing the intensity 
distributions of both channels, which gives additional insights 
into the molecular compositions of both samples. Figure 4 (C to 
F) shows that the distributions calculated based on the BayROM 
images match the GT distributions. Comparing lipid and protein 
intensity distributions between CELTplus and nanofat, the protein 
channel shows distinctly higher signals for nanofat than for 
CELTplus. A predominately strong protein signal could indicate 
impurities caused by blood that are more present in nanofat than 
CELTplus. Overall, the results suggest that BayROM enables a clear 
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Fig. 4. Optoacoustic quality guidance of autologous fat transfer using BayROM. (A) Image comparisons of large FOVs, i.e., 4.5 mm by 4.5 mm (left column), and small 
FOVs, i.e., 1 mm by 1 mm (right column), of CELTplus imaged using full raster scanning (GT) and BayROM (92.5% data reduction). The average RMSE and the average PSNR 
between GT and BayROM are 39.28 μV and 22.63 dB for the FOVs, and 13.27 μV and 31.04 dB for the small FOVs. (B) Image comparisons of large FOVs, i.e., 4.5 mm by 4.5 mm 
(left column), and small FOVs, i.e., 1 mm by 1 mm (right column), of nanofat imaged using full raster scanning (GT) and BayROM. The RMSE and the average PSNR between 
GT and BayROM are 34.15 μV and 26.67 dB for the large FOVs, and 11.25 μV and 32.62 dB for the small FOVs. (C and D) Intensity distributions of lipid and protein signals in 
large FOV images of CELTplus obtained using full raster scanning (GT) and BayROM. (E and F) Intensity distributions of lipid and protein signals in large FOV images of 
nanofat obtained using full raster scanning (GT) and BayROM.
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morphological and molecular distinction between CELTplus and 
nanofat based on the two-channel images and their correspond-
ing intensity distributions. By providing fast, label-free images at 
imaging times below 5 min, BayROM could facilitate the quality 
assessment of mechanically processed fat grafts and thus enable 
interoperative decision-making for autologous fat transfer within 
a surgically reasonable time frame.

DISCUSSION
We showed that rapid data acquisition in OAM combined with 
Bayesian image reconstruction using BayROM leads to ~10 times 
faster imaging speed compared to full raster scanning while pre-
serving image quality. Specifically, we validated BayROM based on 
synthetic samples and selected tissues from mouse organs that Bay-
ROM retains accurate reconstructions when compared to GT im-
ages acquired using full raster scanning. Raster scanning OAM is 
considered a low-throughput imaging technique due to its slow im-
aging speed. Slow imaging speed in OAM is a key limitation pre-
venting its translation into clinical workflows despite its proven 
label-free molecular imaging capabilities. We demonstrated Bay-
ROM’s translational potential for the case of autologous fat transfer, 
enabling rapid intraoperative histopathological assessment of fresh, 
unprocessed specimens. Thereby, BayROM achieves to overcome 
time-consuming image acquisition while avoiding limitations asso-
ciated with hardware-based solutions, i.e., transducer defocusing, 
and bypassing the need for large datasets required by learning-based 
approaches that involve neural networks.

Model-based image reconstruction by BayROM is a non–data-
driven approach that compensates for the data reduction using a 
generative prior model. Unlike learning-based approaches, Bay-
ROM does not require domain-specific training datasets to reliably 
compensate for missing information without the risk of generating 
artifacts. This main advantage of BayROM makes the tedious and 
often infeasible collection of large training datasets in OAM unnec-
essary. In addition, shifting from black-box DL-based reconstruction 
approaches to Bayesian image reconstruction offers more transpar-
ency by incorporating quality control parameters, i.e., the recon-
struction uncertainty, for assessing the uncertainty associated with 
reconstruction results. However, image reconstruction with Bay-
ROM requires more computational effort/time than DL-based solu-
tions. A high computational effort is required because model-based 
image reconstruction by BayROM is achieved using MGVI, a varia-
tional inference algorithm that solves a high-dimensional optimiza-
tion problem. Contrary to data-driven DL-based solutions, where 
image reconstruction could be achieved by single forward propaga-
tion processes of neural networks, variational inference is solved 
in iterative loops. Nonetheless, fast image reconstruction using 
BayROM could be achieved by (i) increasing the computational 
power used for image reconstruction, (ii) optimizing hardware us-
ing graphics processing units for parallelized implementations of 
computational operations, etc., or (iii) approximate reconstruction, 
meaning that the posterior distribution is approximated with fewer 
iterations of the MGVI algorithm, making reconstructions faster 
than full reconstruction. To showcase the effects of approximate re-
construction, we analyzed the reconstruction accuracy for approxi-
mated versus full image reconstruction (fig. S4). To do this, we used 
three instead of five iterations of MGVI combined with eight instead 
of 16 samples drawn from the posterior distribution to reconstruct 

the images presented in Fig. 3 (A to F). Approximate reconstruction 
was carried out in only 2 min and 38 s compared to 10 min and 6 s 
needed for full reconstruction. The result shows that, even with ap-
proximate reconstruction, similar reconstruction residuals can be 
achieved compared to standard reconstruction while saving ~75% 
of the computational time. However, the maximum uncertainty in 
the approximate reconstruction is approximately twofold compared 
to the standard reconstruction method, which shows that the ap-
proximate solution provides less confidence about the resulting im-
age than the full reconstruction and thus needs to be applied with 
the awareness that the imaging is potentially less accurate. In addi-
tion to approximate reconstruction, a potential strategy for acceler-
ated computing could be realized by parallelizing the reconstruction 
of multiple image channels associated with different excitation 
wavelengths. When combining solutions 1, 2, and 3, we expect that 
the computational time required for image reconstruction using 
BayROM could be substantially lowered to obtain images within a 
few seconds instead of several minutes. While a hardware-efficient 
implementation is subject to further research to enable fast image 
reconstruction, the currently required computational time, which 
was necessary to assess the fat grafts presented in Fig. 4, is in the 
order of magnitude of 2 to 4 min per channel using approximate 
reconstruction. Hence, even without further developments, image 
reconstruction within a few minutes would currently delay but not 
hinder intraoperative decision-making using BayROM.

BayROM provides a parameterizable imaging framework that 
can be tuned to meet the specific needs of the application. The ad-
justable parameters include the data reduction setting, i.e., the num-
ber of skipped raster lines, as well as the pixel-wise averaging level, 
and define the imaging speed but also parameters referring to the 
reconstruction, such as the latent variables of the prior model (see 
Materials and Methods). However, since the correlated field model 
is tuned to act as a weakly informative prior, the appearance and 
quality of reconstructed images are not strongly influenced by the 
parameterization of the prior model. Instead, the reconstruction 
mechanism is rather affected by the correlation structure along the 
densely sampled axis, which gets projected to the sparsely sampled 
axis. Since most biological samples have similar correlation struc-
tures in all directions, such behavior aids highly resolved recon-
struction without relying on a precise parameterization of the prior 
model for specific sample types. Benefiting from the ability to assess 
the correlation structure of images based on reduced data, we con-
firmed BayROM’s capabilities to generalize to various sample types 
(see Fig. 3, G to J) without reparameterization.

Despite the generalization capabilities, the mechanism of captur-
ing an overall correlation structure of images also provides the risk 
of artifacts, which is especially the case for images that express 
strongly differing correlation structures in different image areas. 
Figure S5 demonstrates two examples with blur and noisy artifacts 
resulting from different correlation structures expressed over the 
imaged FOV. Figure  S5 (A and B) shows blurred fine structures, 
which can be the consequence of the reconstruction method captur-
ing the dominant bulk areas and projecting their correlation struc-
ture also to areas with fine structures. Conversely, fig. S5 (C and D) 
shows an example where a bulk area in the BayROM image is noisi-
er than the comparably smooth structure in the GT image. Such 
noisy bulk structures can be explained by the predominant correla-
tion structures of small features in the images that are projected 
onto the bulk areas and make them appear as noisy. To avoid such 
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reconstruction artifacts, it is important to choose sparsity parame-
ters such that the acquired data provide enough information about 
the structures of interest to enable their successful reconstruction. 
Hence, a thorough choice of parameters has to be made for data re-
duction levels to match the requirements of the clinical application 
and potential computational downstream analysis.

The overall benefit of our work is faster OAM imaging based on 
rapid data acquisition compared to conventional raster scanning 
OAM imaging. BayROM provides a parameterizable imaging frame-
work that does not require the collection of training data, unlike 
related data-driven methods for image reconstruction based on re-
duced data. Furthermore, BayROM does not suffer from stitching 
artifacts in larger FOVs, such as common hardware-based solutions 
for fast scanning. A combination of optomechanical speedup methods 
with BayROM could potentially enable synergy between the hardware-
based and software-based methods to further increase the data 
acquisition speed toward high-speed and high-throughput OAM 
applications. On the other hand, the overall limitation of BayROM is 
the high computational effort required for image reconstruction 
compared to DL methods. The next step is a hardware-optimized 
and parallelized implementation to be operated using more compu-
tational power to assess the imaging performance for clinical appli-
cations. An additional promising clinical application could be tumor 
margin segmentation based on fast hyperspectral imaging, which 
would be an important step toward the clinical implementation of 
BayROM with optimized computation.

In summary, we showed that BayROM, a rapid imaging method 
combined with a probabilistic image reconstruction algorithm, en-
ables about 10 times faster data acquisition and accurate reconstruc-
tions, which we validated based on several mouse organ tissues. The 
impact of faster data acquisition is that increased scanning speed of 
raster scanning OAM by a factor of 10 could enable its integration 
into surgical workflows, such as quality guidance for autologous fat 
transfer. Although here, the application of BayROM for quality-
guided autologous fat transfer was demonstrated only as a proof-of-
concept, we were able to retrieve morphological and molecular 
differences between CELTplus and nanofat. To move BayROM to-
ward its clinical implementation, the next steps involve a clinical 
trial with a larger patient cohort to statistically investigate and vali-
date the parameters retrieved for quality guidance of fat grafts. In 
conclusion, BayROM can facilitate the intraoperative histopatho-
logical assessment of freshly derived specimens showing great po-
tential to enable fast surgical decision-making based on label-free 
molecular imaging.

MATERIALS AND METHODS
Molecular contrast formation and optomechanical setup
The ability of biological molecules to convert light to sound via the 
optoacoustic effect strongly depends on the arrangement and inter-
action of their constituent atoms and atomic bonds, as well as the 
wavelength of the light interacting with them. For this reason, bio-
logical molecules have characteristic optoacoustic spectral finger-
prints, which OAM exploits to generate label-free molecular contrast. 
The types of molecules present in a sample, their spatial distribution, 
and local concentrations all shape a sample’s ability to generate opto-
acoustic signals. OAM measures this position- and excitation wave-
length–dependent optoacoustic signal generation ability, henceforth 
called the optoacoustic signal strength field OASS(x, λ) . Molecular 

prevalences in tissues can be deduced by identifying molecular fin-
gerprints in the optoacoustic signal strength field.

Mid-infrared optoacoustic microscopy (MiROM) (16), the OAM 
technique used in this work, uses a broadly tunable quantum cas-
cade laser (MIRcat, Daylight Solutions) to probe the optoacoustic 
signal strength field of a sample with mid-IR radiation in the wave 
number range of 2941 to 909 cm−1 (3.4 to 11 μm). The sample is 
placed on a mid-IR transparent zinc sulfide window (Crystal) and 
illuminated from below. The laser beam is focused on a plane located 
in the imaged sample using a 0.5–numerical aperture reflective ob-
jective (36×; Newport Corporation) to confine the optical excitation 
to a small tissue volume. To sense the generated optoacoustic signal, 
we placed a focused ultrasound transducer (Imasonic) with a cen-
tral frequency of 20 MHz above the tissue and coaligned to the focal 
spot of the mid-IR laser, capturing the optoacoustic signals through 
a coupling medium (deionized water). The optoacoustic signals are 
acquired using a data acquisition card (Gage Applied) after being 
amplified by a 63-dB low-noise amplifier (MITEQ) and processed 
by a 50-MHz low-pass filter (Mini-Circuits). The mid-IR laser has a 
repetition rate of 100 kHz and a pulse duration of 20 ns. Three ex-
emplary wavelengths were used to assess the molecular response in 
investigated samples: 2856 cm−1 causing symmetric stretching of 
CH2 functional groups, 1550 cm−1 causing N─H bending/C─N 
stretching, and 1470 cm−1 causing CH2/CH3 bending.

Raster scanning OAM maps the optoacoustic signal strength 
field by spatially raster-scanning the sample for each selected excita-
tion wavelength. In each pixel location (indexed by the pixel coordi-
nates k ∈ {1, … , n} and l ∈ {1, … ,m} ), the optoacoustic signal 
strength field is probed with multiple laser pulses (indexed by the 
pulse number j ∈ {1, … , 50} ), yielding a set of optoacoustic tran-
sient signals OATj

k,l
(t) . These transient signals are subsequently av-

eraged with respect to the laser pulses to increase the SNR, resulting 
in the averaged optoacoustic transient signal OATk,l(t) . To form a 
MiROM micrograph

with n ⋅m pixels (henceforth called “image”), the peak-to-peak am-
plitudes of the averaged optoacoustic transient signals OATk,l(t) are 
extracted as the image pixel values

We speed up data acquisition by skipping raster scanning 
lines l  (sparsity) and reducing the number of optoacoustic tran-
sient signals acquired in each measurement location from 50 to 
15 (decreased averaging). This acquisition approach yields re-
duced observations

where OAT�

k,v
(t) denotes the averaged optoacoustic transient signals 

formed from 15 laser pulses, and w denotes the raster scanning line 
acquisition stride. When measuring every fourth raster scan line 
( w = 4 ), the amount of data acquired reduces by 92.5% with respect 
to a full scan.
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The rapid measurements permit a substantial speedup of the data 
acquisition process but are realized at the cost of information loss 
with respect to the baseline. The increased stride between raster 
scanning lines creates areas in the micrograph where the optoacous-
tic signal strength field is not directly probed, and the reduction in 
repeated transient measurements leads to a reduced SNR in the data 
d . Consequently, reconstructing dense micrographs i based on the 
reduced data d is an ill-posed inverse problem (i.e., does not have a 
unique solution), which we address in the framework of Bayesian 
image reconstruction.

Exploitation of structural regularities in imaged samples
Many samples of interest for OAM have characteristic structural 
regularities, such as the grain structure of carbon tape or the arrange-
ment, sizes, and shapes of adipocytes in WAT. The core concept of 
BayROM is that OAM images can be reconstructed faithfully from 
reduced data if the imaged samples exhibit structural regularities, 
which can be used to deduce the image values in areas without mea-
surements from measurements in other areas. For example, knowl-
edge of the typical shape and size of adipocytes in WATs allows 
predicting the full contour of a partially imaged adipocyte.

In general, i.e., for arbitrary samples, such structural regularities 
are not known a priori. Nevertheless, to reconstruct a broad range of 
samples, BayROM estimates the structural regularities of the imaged 
sample during the image reconstruction process based on the avail-
able data d and forms the image using the estimated regularities. For 
this purpose, we model the image as a (nonlinearly transformed) 
Gaussian random field with approximately Matérn covariance struc-
ture. The covariance structure encodes the structural regularities of 
the image and is inferred in the image reconstruction process. Al-
though exploiting the structural regularities of the sample constrains 
the solution space, the imaging problem remains ill-posed.

Bayesian image reconstruction
Given that there is no unique solution to the image reconstruction 
problem, we pursue a probabilistic image reconstruction approach. 
We recover the discrete posterior probability distribution of images 
p(i ∣d) , which expresses how likely it is that a full OAM scan would 
produce the image i given that a rapid scan has produced the data d . 
On the basis of the posterior distribution of images, we can estimate 
the expected image for a full OAM scan (via the posterior mean) 
and the uncertainty of this estimate (via the posterior variance).

Following Bayes’ theorem, the posterior probability of an image i 
is proportional to the product of the so-called likelihood p(d∣i) and 
prior probability distribution p(i)

The likelihood encodes how probable it is to observe the data d 
for a sample that a full scan would produce the image i , given our 
knowledge about the measurement process. The prior probability 
distribution encodes our a priori knowledge about studied samples 
and their associated OAM images, such as the fact that the images 
are strictly positive-valued. We also encode our expectation that the 
images will have relevant structural regularities in the prior.

Computing posterior statistics given p(i∣d) is challenging be-
cause of the high dimensionality of the images. We use variational 
inference to approximate the posterior distribution p(i∣d) with a para-
metric distribution Q

�
(i), which is constructed so that efficient com-

putation of its distribution statistics becomes possible. The posterior 

mean and standard deviation can then be estimated using Qϕ(i) . 
Variational inference approximates the true posterior distribution 
by minimizing the Kullback-Leibler (KL) divergence

between the posterior and the variational distribution Q
�
(i). We use 

an algorithm optimized for high-dimensional spaces, MGVI (38), 
which represents the variational distribution Q

�
(i) as a vector of la-

tent samples � =

(
�1,�2, … ,�nMGVI

)
 . The image reconstruction 

process was implemented in the probabilistic inference framework 
Numerical Information Field Theory (NIFTy) (41, 42) and was exe-
cuted on an M2 MacBook Pro (Apple).

System forward model and likelihood definition
We model the measurement process of rapid OAM with the com-
bination of a deterministic system response R(i) and additive sto-
chastic noise n

The deterministic system response includes, on the one hand, the 
effect of the PSF of the system and, on the other hand, the choice of 
measurement locations implied by the stage trajectories. The system 
PSF was characterized based on an image taken from a 1-μm (sub-
resolution) polystyrene sphere (16). Numerically, the operator R is 
implemented as sequentially applying a PSF convolution operator 
RPSF (which convolves the image i with a two-dimensional Gaussian 
kernel with a standard deviation of 5 μm in both spatial dimensions) 
and Rstages , which models the distribution of measurement locations 
and selectively copies values of the PSF-convolved image 

(
RPSF i

)
k,l

 
to entries of the simulated data vector d . The additive noise n was 
characterized based on the dark noise of the system, which is mea-
sured by acquiring an image while blocking the quantum cascade 
laser beam and assessing the distribution of the pixel intensities. The 
dark noise was found to be independent and identically distributed 
Gaussian noise with a standard deviation of σ = 9.318 × 10−7 V . In 
summary, the rapid OAM measurement is modeled as

Accordingly, the likelihood p(d∣i) is given by

where G is a Gaussian distribution with mean � = 0 and covariance 
N = σ2I.

Image prior implementation
Following (38), we implement the image prior as a hierarchical gen-
erative model i = f (�) , which deterministically transforms latent 
parameters � into images i . As stated in the “Exploitation of struc-
tural regularities in imaged samples” section, the images are mod-
eled as a Gaussian random field GF with approximately Matérn 
covariance structure, which is nonlinearly transformed to model the 
strict positivity of OAM images

p(i∣d) ∝ p(d∣i) ⋅ p(i) (4)

DKL

�
Q

�
‖p� = �

i

Q
�
(i)log

�
Q

�
(i)

p(i∣d)

�
(5)

d = R(i) + n (6)

d = Ri + n =

(
Rstages◦RPSF

)
i + n (7)

p(d∣i) = G
[
d−Ri ∣�=0,N=σ2I

]
(8)

f (�) = r ⋅ sigmoid
[
GF

(
�

GF
)
+ s(�

s
)

]
(9)
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Here, r is a constant scaling factor setting the maximal obtainable 
image value. The sigmoid function ensures positivity of the gener-
ated images, while s is an additive offset that controls the average 
pixel value. The optimal additive offset for a given data vector d is 
inferred during reconstruction and a priori follows a Gaussian dis-
tribution with mean μs = 0.5 and standard deviation σs = 0.25.

The Gaussian random field GF
(
�

GF
)
 is meant to capture and ex-

ploit the correlation structure of the image as described above. It is 
constructed via the Hartley amplitude field A

(
�

GF
)
 , which is a har-

monic representation similar to Fourier mode amplitudes based on 
the Hartley transform (HT)

We model A as being separable into a length-scale dependent 
Hartley spectrum function E(∣k∣) and a Gaussian random field �� . 
Here, k = (k, l) is the wave vector indexing the Hartley modes. The 
Hartley spectrum function captures the smoothed spectral power 
distribution in A, while the Gaussian random field �� captures de-
viations of the Hartley amplitudes A from E . Correspondingly, the 
Hartley amplitudes Ak,l is defined as

E(∣k∣) is constructed as a Matérn spectrum with learnable pa-
rameters a(ψa) , b

(
ψb

)
 , and c(ψc)

This formulation of GF allows us to incorporate the a priori ex-
pectation of Matérn covariance for the image while permitting the 
reconstruction to produce images with covariance structures deviat-
ing from the Matérn form if the data suggest it. The priors for the 
Hartley spectrum function parameters a , b , and c are chosen as weak-
ly informative to minimize the risk of biasing the reconstruction.

In summary, the hierarchical image model f (�) nonlinearly 
transforms latent parameter vectors � =

(
�

�,ψa,ψb,ψc ,ψs
)
 into 

images i , which a priori exhibit Matérn covariance. Inserting 
i = f (�) into the measurement equation

the image reconstruction problem can be reformulated as recon-
structing the posterior distribution of the latent parameters p(�∣d) , 
which has practical benefits as outlined in (43).

Postprocessing
The outcome of the MGVI, i.e., a set of posterior samples 
ϕ =

(
�1,�2, … ,�nMGVI

)
 , is used to compute the posterior mean 

image iRC

iRC serves as reconstructed images after applying additional post-
processing steps. Postprocessing includes cropping the edges of the 
image, which were added to the reconstructed micrographs in the 

numerical convolution with the PSF. Furthermore, if needed, the re-
constructed images are interpolated using linear interpolation to al-
low pixel-wise comparison of the reconstruction based on reduced 
data with the GT images. For visualization, contrast-limited adap-
tive histogram equalization (CLAHE) was applied to micrographs 
to emphasize image contrast. Images i that were processed with 
CLAHE are indicated as î  . The reported computational times in-
clude the full image generation processes, i.e., reconstruction and 
postprocessing. However, the indicated imaging times do not in-
clude the computational time.

Uncertainty quantification
To quantify the overall uncertainty in reconstructed images, the 
MRSD was used. The MRSD is calculated based on the estimated 
posterior mean iRC

k,l
 and standard deviation uRC

k,l
 for each pixel

Since the MRSD expresses the average uncertainty relative to the 
reconstructed intensity values for the entire image, it can be used as 
a quality metric for reconstructed images without the comparison to 
a GT image.

Hyperspectral linear unmixing
For a demonstration of spectral unmixing based on the hypercube ac-
quired using BayROM, linear unmixing was performed pixel-wise. 
Therefore, the spectra obtained using single-point optoacoustic spec-
troscopy were grouped into adipose tissue and ECM and averaged. The 
model for linear unmixing assumes that each pixel’s spectrum is com-
posed of a linear combination of both the adipose tissue and the ECM 
average spectrum. Therefore, the mixing coefficients were restricted to 
non-zero and determined using pixel-wise least-squares minimiza-
tion. The result provides two coefficients for each pixel, which were 
mapped to the image using an overlay to visualize the unmixing result.

Evaluation metrics
The quantitative evaluation of BayROM is twofold. Because of the 
trade-off between the acquisition speed and the image quality, we 
report a speedup factor on the one hand and image quality metrics 
on the other hand. The speedup factor denotes the ratio between the 
data acquisition time of the full raster scans and the rapid scans. On 
the other hand, to quantify the image quality, i.e., the reconstruction 
accuracy, we report the SSIM, the root mean square error (RMSE), 
and the peak signal-to-noise ratio (PSNR) between the reconstruct-
ed images and the GTs. The SSIM is defined as

where μRC and μGT are the mean values of the reconstructed GT im-
ages, σRC and σGT are the variances of the reconstructed GT images, 
and σRC,GT is the covariance between reconstruction and GT. The 
variables c1 = 0.0001 and c2 = 0.0009 stabilize the division by small 
denominators. The RMSE error is defined as

GF
(
�

GF
)
= HT

[
A
(
�

GF
)]

(10)

Ak,l = Ek,l

(
ψa,ψb,ψc

)
⋅ ψ

�

k,l
(11)

Ek,l = a

⎡⎢⎢⎣
1+

�√
k2+ l2

b

�2⎤⎥⎥⎦

c

4

(12)

d=Ri(�)+n=
(
Rstages◦RPSF◦f

)
�+n (13)

iRC =
1

nMGVI

nMGVI∑
i=1

f
(
�i

)
(14)

MRSD =
1

m ⋅ n

n∑
k=1

m∑
l=1

uRC
k,l

iRC
k,l

(15)

SSIM =

(
2μRCμGT+c1

)(
2σRC,GT+c2

)
(
μ2
RC

+μ2
GT

+c1
)(
σ2
RC

+σ2
GT

+c2
) (16)

RMSE =

√√√√ 1

m ⋅ n

n∑
k=1

m∑
l=1

(
iGT
k,l

− iRC
k,l

)
(17)
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where iGT
k,l

 and iRC
k,l

 denote the intensity values of the GT image and the 
reconstruction for each pixel, respectively. The PSNR is defined as

where imax denotes the maximum possible intensity value.

Signal-to-noise ratio
We used the SNR to characterize the data acquired using full raster 
scanning and rapid scanning. Thereby, we denote the SNR of unpro-
cessed signals corresponding to a single pixel as data SNR. The data 
SNR is defined as

where μk,l denotes the peak-to-peak amplitude of the averaged opto-
acoustic signal, and σk,l is the standard deviation of the peak-to-
peak amplitudes of each optoacoustic signal that is subject to be 
averaged and mapped to a pixel {k, l} . Furthermore, we reported the 
image SNR as the SNR in the image space, i.e., after image forma-
tion. Thereby, the image SNR is defined as

where ĩ  is a selected subregion in an image i that is expected to have 
identical intensities. mean

(
ĩ

)
 and std

(
ĩ

)
 denote the mean intensity 

and the standard deviation of intensities in the subregion ĩ .

Resolution
To characterize BayROM’s capabilities of precise image reconstruc-
tion, we computed resolution estimates based on the edge spread 
functions (ESFs) obtained from a synthetic sample with sharp inten-
sity transitions. To obtain resolution estimates, we used the first de-
rivative of a line profile perpendicular to a sharp intensity transition 
and defined the full width at half maximum of a Gaussian fit to the 
ESF as the resolution.

Animal tissue preparation
Male B6(Cg)-Tyrc-2J/J mice were maintained under specific pathogen-
free conditions with a 12-hour light/dark cycle at a controlled ambient 
temperature (20° to 24°C). Standard rodent chow and sterile-filtered 
water were provided ad libitum throughout the study. After 38 weeks 
of feeding, all mice were euthanized via intraperitoneal injection 
of 0.8-ml anesthetic cocktail (composition: 6 ml of NaCl, 1 ml of 
ketamine, and 0.25 ml of xylazine). After blood removal, muscle 
tissues, pancreatic tissues, liver tissues, and kidney tissues were 
excised and immediately fixed in 4% paraformaldehyde phosphate-
buffered saline solution at room temperature for subsequent anal-
yses. For BayROM imaging, tissue specimens were prepared as 
follows: The samples were placed in a custom-designed dish 
equipped with a 12.7-mm-diameter ZnSe window. Ultrasonic gel 
was uniformly applied to the tissue surface to avoid air bubbles 
and ensure sufficient sound coupling. The gel-covered tissue was 
sealed with polyethylene film, followed by the addition of D₂O as 
an optical coupling medium. All animal experiments were ap-
proved by the government of Upper Bavaria and carried out in 

accordance with the approved guidelines under the following file 
number: TV 55.2-2532.Vet_02-20-121.

Human fat graft preparation
Human lipoaspirate was obtained with informed patient consent and 
approval from the Ethics Committee of the University of Regens-
burg, Germany (24-3640-101, amendment number 24-3640_1-101). 
Discarded tissue from elective liposuction procedures was used for 
sample collection. The procedure was performed using water jet–
assisted liposuction (body-jet evo, Human Med AG, Schwerin, 
Germany) as previously described (3), using a pulsatile jet of saline 
(0.9% NaCl containing epinephrine at 1:200,000) to gently dislodge 
adipose tissue. Suction peaks below 0.5 bar were avoided. Postharvest, 
samples were centrifuged at 1600g relative centrifugal force for 2 min 
(ROTOFIX 32 A, Andreas Hettich GmbH & Co. KG, Tuttlingen, 
Germany) to remove residual saline, completely for CELTplus and 
partially for nanofat preparation. To ensure comparability, all pro-
cessing steps followed the CELT protocol (3), except for mechanical 
emulsification. For CELTplus, the lipoaspirate was passed five times 
between two 10-ml syringes through a 2.1-mm connector and then 
five additional times through a 1.0-mm constriction. For nanofat 
processing, less force and a wider connector (2.1 to ~1.5 mm) were 
used. All samples were recentrifuged under identical conditions. In 
CELTplus samples, a distinct oil phase (>50% of the total volume) was 
removed postcentrifugation. In nanofat samples, no separable oil 
phase was observed, and the entire volume was retained.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5
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