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Large language models forecast patient
health trajectories enabling digital twins

Check for updates

Nikita Makarov1,2,3,7, Maria Bordukova1,2,3,7, Papichaya Quengdaeng2,4, Daniel Garger2,3,
Raul Rodriguez-Esteban5, Fabian Schmich1 & Michael P. Menden2,6

Generative artificial intelligence is revolutionizing digital twin development, enabling virtual patient
representations that predict health trajectories, with large language models (LLMs) showcasing
untapped clinical forecasting potential. We developed the Digital Twin—Generative Pretrained
Transformer (DT-GPT), extending LLM-based forecasting solutions to clinical trajectory prediction.
DT-GPT leverages electronic health records without requiring data imputation or normalization and
overcomes real-world data challenges such as missingness, noise, and limited sample sizes.
Benchmarking on non-small cell lung cancer, intensive care unit, and Alzheimer’s disease datasets,
DT-GPT outperformed state-of-the-art machine learning models, reducing the scaled mean absolute
error by 3.4%, 1.3% and 1.8%, respectively. It maintained distributions and cross-correlations of
clinical variables, and demonstrated explainability through a human-interpretable interface.
Additionally, DT-GPT’s ability to perform zero-shot forecasting highlights potential advantages of
LLMs as clinical forecasting platforms, proposing a path towards digital twin applications in clinical
trials, treatment selection, and adverse event mitigation.

Clinical forecasting involves predicting patient-specific health outcomes
and clinical events over time, which is essential for patient monitoring,
treatment selection, and drug development1. An emerging approach to
support such forecasting is the use of digital twins2,3. These are virtual
representations of patients that generate detailed, multivariable predictions
of future health states by leveraging longitudinal medical history3,4. When
initialized with individual patient characteristics, digital twins can simulate
real-time personalized responses to medical interventions or treatments2,4,5.

Digital twinsoffer a comprehensive framework forpatientmodelingby
integrating diverse data streams, which can include history of medical
examinations, diagnoses and treatments, deep molecular profiling, lifestyle
and environmental factors, aswell as general biomedical knowledge6–8. They
provide a holistic reflection of an individual’s status within the broader
context of the patient population, accounting for the interplay of disease
dynamics and medical interventions4. By bridging the gap between
population-level evidence and individual-level insights, the application of
digital twins is poised to revolutionize healthcare in areas such as precision
and personalized medicine, predictive analytics, virtual testing, continuous
monitoring, and enhanced decision support3,4.

Generative artificial intelligence (AI) holds promise for creating digital
twins due to its potential to produce synthetic yet realistic data, but this area
of application is still in its infancy4. Generative AI methods for predicting
patient trajectories include recurrent neural networks, transformers and
stable diffusion9–13. These often fall short in terms of handling missing data,
interpretability and performance. These challenges can be partially
addressed by causal machine learning14, but these algorithms face limita-
tions related to small datasets or being confined to simulations15.

Recent breakthroughs in generative AI have been achieved with
foundation models, which are pre-trained AI models adaptable to various
specific tasks involving different types of data. Most foundation models for
patient forecasting focus on single-point predictions rather than compre-
hensive longitudinal patient trajectories, which are needed for clinical
decision-making16. Recently, clinically focused, LLM-inspired methods
have been proposed17, however, with their evaluation focus still being on
single-point predictions rather than longitudinal trajectories, and without
using the knowledge of pretrained LLMs. Less explored for this purpose
remain text-focused Large Language Models (LLMs), which have demon-
strated forecasting capabilities18,19, including some approaches showing the
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ability of zero-shot forecasting, i.e., forecasting without any prior specific
training in the task, thus highlighting their remarkable generalizability20–22.

LLM-based forecasting hasmade great progress in general forecasting.
However, some common methods, such as LSTPrompt20, LLMTime21,
Time-LLM22, and GPT4TS23, make assumptions whichmay not necessarily
hold in clinical trajectory forecasting. One example is channel indepen-
dence, whereby, for multivariate time series, channel-independent models
process each time series separately,withoutmodeling interactions and inter-
time series dependencies. This approach may not be optimal in the clinical
setting, inwhichweoftenobserve correlated time series, putativelydrivenby
causal biological links, highlighting the need to process all aspects of a
patient simultaneously.

We propose the creation of digital twins based on LLMs that leverage
data from electronic health records (EHRs) from real world data (RWD)
and observational studies. EHRs are a key source of training data for
machine learningmodels inhealthcare, as they recordpatient characteristics
such as demographics, diagnoses, and lab results over time24. However, they
pose specific challenges such as data heterogeneity, rare events, sparsity, and
quality issues16. There have been developments in machine learning to
overcome these challenges, especially for data sparsity, usually by adapting
the model’s architecture, resulting in increased model complexity and the
introduction of further assumptions on the data10,13.

We hypothesize that LLMswill empower the next generation of digital
twins in healthcare. Here, we introduce the Digital Twin - Generative
Pretrained Transformer (DT-GPT) model (Fig. 1), which

enables: (i) forecasting of clinical variable trajectories, (ii) zero-shot
predictions of clinical variables not previously trained on, and (iii) pre-
liminary interpretability utilizing chatbot functionalities. DT-GPT is an
extension of previous LLM-based forecasting solutions, based on fine-
tuning LLMson clinical data using a straightforward data encoding scheme.
Themethod is designed to solve clinically specific issues, bemodel-agnostic
and to be applied to any text-focused LLMwithout any further architectural
changes.

Results
We analyzed the performance of DT-GPT by forecasting various clinical
values on diverse datasets, including on a short-term scale (next 24 h) for
Intensive Care Unit (ICU) patients, a medium-term scale (up to 13 weeks)
for non-small cell lung cancer (NSCLC) patients, as well as a long-term
Alzheimer’s Disease dataset (next 24 months). The ICU dataset is based on
Medical InformationMart for Intensive Care IV (MIMIC-IV)25 with 35,131
patients, whilst the NSCLC dataset is based on the the nationwide Flatiron
Health EHR-derived de-identified database, containing 16,496 NSCLC

patients (“Methods”; Supplementary Tables 1–4; Supplementary Note 1).
The Alzheimer’s disease dataset is derived from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, containing 1,140 patients (Sup-
plementary Tables 1 and 5; Supplementary Note 1). The datasets comple-
ment the analysis to understand how the model works on short-, medium-
and long-term scales, aswell as ondifferent amounts of patients available for
training. All details on task setup, data preprocessing, model training, and
evaluation are provided in the “Methods” section.

DT-GPT achieved state-of-the-art forecasting performance
DT-GPT achieved the lowest overall scaled mean absolute error (MAE)
across benchmark tasks in comparison with state-of-the-art models (Table
1), with the z-score scaling allowing comparison and aggregation across
variables (“Methods”). In the NSCLC dataset, we predicted six laboratory
values weekly for up to 13 weeks post-therapy initiation, leveraging all pre-
treatment data to model patient trajectories under treatment. For the ICU
task, we forecasted the next 24 h by predicting respiratory rate, magnesium
andoxygen saturationbasedon theprevious 24 hhistory, enabling real-time
monitoring and timely intervention. In the Alzheimer’s dataset, we fore-
castedMiniMental State Examination (MMSE)26, ClinicalDementia Rating
sum of boxes (CDR-SB)27 and Alzheimer’s Disease Assessment Scale
(ADAS11)28 cognitive scores, over the next 24 months at 6 month intervals
using baselines measurements. All comparisons were performed on unseen
patients.

We compared DT-GPT to 14 multi-step, multivariate baselines,
ranging from a naïve model that copies over the last observed value to
state-of-the-art forecasting models. These included linear regression
model, time series LightGBM model, Temporal Fusion Transformer
(TFT), Temporal Convolutional Network (TCN), Recurrent Neural
Network (RNN), Long Short-TermMemory (LSTM), Transformer, and
Time-series Dense Encoder (TiDE) model12,29,30. The naïve model
ensured that models with better performance capture nonstationary
time series, whilst advanced models were chosen for their ability to
handle future variables and achieving state-of-the-art performance in
bothmedical and standard time series forecasting31,32. To understand the
contribution of fine-tuning, we also run the general, state-of-the-art
LLM Qwen3-32B and the biomedical LLM BioMistral-7B33,34. Note that
DT-GPT is a fine-tuned 7-billion-parametermodel based on BioMistral,
whilst Qwen3 is a significantly larger model at 32 billion parameters.
Additionally, we benchmarked advanced time-series LLM-based
methods, i.e. Time-LLM and LLMTime21,22, as well as a patch based
model PatchTST35, all of which are channel-independent models, which
process each input time series separately.

Fig. 1 | The LLM-based DT-GPT framework enables forecasting patient trajec-
tories, identifying key variables, and zero-shot predictions. Here exemplified,
a sparse patient timeline, which b DT-GPT utilizes for generating longitudinal

clinical variable forecasts, e.g., c neutrophil and d hemoglobin blood levels. DT-GPT
can e chat and respond to inquiries about important variables, as well as (f) perform
zero-shot forecasting on clinical variables previously not used during training.
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On the NSCLC dataset, DT-GPT achieved an average scaled MAE of
0.55 ± 0.04, whilst LightGBM, the second best model, achieved an average
scaledMAE of 0.57 ± 0.05, showing a relative improvement of 3.4% (Table
1), On the ICU dataset, DT-GPT achieved an average scaled MAE of
0.59 ± 0.03, whilst the second best model, LightGBM, performed at
0.60 ± 0.03, equivalent to a 1.3% improvement (Table 1). On the Alzhei-
mer’s disease dataset, DT-GPT achieved an average scaled MAE of
0.47 ± 0.03, with Temporal Fusion Transformer being the second best
model with 0.48 ± 0.02, representing a relative improvement of 1.8%. We
note that the scaled MAE is normalized by standard deviation, with DT-
GPT consistently achieving absolute MAE (Supplementary Tables 6–17)
that is lower than the standard deviation, indicating that forecasting errors
are smaller than thenatural variability present in thedata.DT-GPTis shown
to be the best performer out of 14 models across all datasets, and achieving
statistical significance over the second-best performing model on the
NSCLC (p value < 9.6162 × 10−17) and ICU (p-value < 0.00043) datasets
(Supplementary Note 2; Supplementary Tables 18–19; Supplementary
Figs. 1–2).

Channel-independent models, such as LLMTime, Time-LLM and
PatchTST, perform worse with respect to scaled MAE on variables that are
more sparse and correlate less with other time series. Inversely, we see that
the channel-independent models perform relatively better on respiratory
rate andoxygen saturation,whichhave generallymoredensemeasurements
and are less correlated to time series such as treatment, in comparison, for
example, to neutrophils in NSCLC.

TheLLMswithoutfine-tuningperformed significantlyworse thanDT-
GPT, often incorrectly hallucinating results. DT-GPT outperformed Bio-
Mistral by 47.9%, 29.1% and 61.1%, and outperformed the larger Qwen3-
32B model by 22.9%, 19.9% and 21.1% on NSCLC, ICU and Alzheimer’s
disease datasets, respectively.

To comprehensively evaluate DT-GPT, we assessed a range of metrics,
including derived classification metrics (“Methods”). DT-GPT consistently
performed well across various metrics, capturing trajectory trends effectively
(Supplementary Tables 6–17). For forecasting, we compared scaled MAE,
absolute MAE, mean absolute scaled error (MASE), symmetric mean abso-
lute percentage error (SMAPE), and SpearmanCorrelation (“Methods”). For
classification, we evaluated the area under the receiver operating character-
istic curve (AUC) of clinically low/high predictions and overall trends
(Supplementary Tables 6–11). These metrics collectively offer insights into
different aspects of model performance (Supplementary Note 2).

DT-GPT shows strong potential in capturing clinically relevant lab
trends but has limitations in predicting specific critical events. For example,
DT-GPT struggled with forecasting critically low hemoglobin levels
( < 7.5 g/dL; ROC AUC= 0.506), likely due to their low prevalence (1.2%;
Methods; Supplementary Tables 6–11; Supplementary Note 2). Similarly,
prediction of high leukocyte counts ( > 11.0 × 10⁹/L) was modest (ROC
AUC= 0.578) and fell below the copy-forward baseline (ROC
AUC= 0.616).

Notably,DT-GPTdemonstrated robust predictive performance across
several routine yet clinically informative laboratory parameters. This
includes detection of mild anemia (hemoglobin below reference; ROC
AUC= 0.793) and elevated LDH (lactate dehydrogenase; >222U/L; ROC
AUC= 0.793), a marker of NSCLC progression36. It also captured three-
week trends in hemoglobin (increasing/decreasing; ROC

AUCs = 0.704/0.638) and rising leukocytes, lymphocytes, and neu-
trophils suggestive of inflammation (ROC AUCs = 0.65–0.68)37.

DT-GPT forecasts preserved inter-variable relationships. The corre-
lations between the variables forecasted by DT-GPT aligned with the cor-
relations between the variables in the test datasets with an R2 of 0.98 and
0.99, whilst those of LightGBM achieved an R2 of 0.97 and 0.99 (Supple-
mentary Fig. 3) on theNSCLC and ICU datasets, respectively. Additionally,
DT-GPT outperformed LightGBM in the majority of timepoints in both
datasets, demonstrating that the improvement was consistent across time
(Fig. 2a, b). For Alzheimer’s disease, both DT-GPT and the second best
model TFT achieved an R2 of 0.99.

DT-GPT can be further improved by utilising alternative trajectory
aggregation methods. To inspect both low and highMAE predictions from
DT-GPT, we visualized two sample individual-patient forecasts for the
variable neutrophils (Fig. 2c, d) picked from the low and high end of per-
formance distribution (Fig. 2e).

It is important to note that the final prediction was derived by aver-
aging 30 generated trajectories and that, even in poor performing cases,
individual non-averaged forecasted trajectories sometimes succeeded in
capturing aspects of the true trajectory.

To assess the impact of trajectory aggregation, we calculated the error
given an optimal aggregation. To this end, we selected the individual tra-
jectories with the lowest scaled MAE and recalculated the hypothetical
scaledMAE on the NSCLC dataset, achieving a 26% improvement in error
to 0.40 ± 0.02, without any further model training, noting that this is a
theoretical lower bound. Finally, we observed that in the distribution of
scaledMAE for neutrophils across all patients,most of the errorswere right-
skewed, indicating that high errors came from a small number of patients
with likely uncommon trajectories (Fig. 2e).

DT-GPT preserves the overall distribution of target variables—a
property that, while not sufficient, is arguably necessary for clinically
meaningful forecasting. To assess this, we computed the
Kolmogorov–Smirnov (KS) statistic across all target variables in the
NSCLC cohort, comparing predicted and true distributions (Fig. 3a).
DT-GPT exhibited the lowest median KS score among all models,

indicating the best distributional alignment. Notably, several recent
baselines, including TiDE, TCN, and TFT, struggled with the distribution
modeling.We also visualized the distributions of the ground truth (Fig. 3b)
and DT-GPT predictions (Fig. 3c), alongside LLMTime which had the
second lowest mean score on the Kolomogorov-Smirnov statistic (Fig. 3d),
and LightGBM which was the best performing baseline with respect to
scaled MAE (Fig. 3e).

DT-GPT is robust to common RWD challenges
DT-GPT is flexible and robust to common practical data challenges, exhi-
biting desired properties in a variety of ablation studies, here exemplified on
the average performance on all six clinical variables of the NSCLC dataset.
First, DT-GPT performance was competitive with baselines after training
with data corresponding to 5000 patients and it further improved with the
numberof patients in the trainingdataset (Fig. 4a;Table 1), andconsistent in
further subsampling ablation studies (Supplementary Table 20). Addi-
tionally, DT-GPT could handle increased input missingness, with perfor-
mance degradation only showing after more than 20% of the input was
randomly masked, on top of the 94.4% initial missingness of the NSCLC
dataset (Fig. 4b). Thirdly, DT-GPT was stable to misspellings in the input,
only significantlydegrading inperformance after 25misspellings per patient
sample (Fig. 4c). We note that misspellings cannot be handled by most
established machine learning methods and either require completely
dropping or manual curation of the data.

DT-GPT enables prediction insights and zero-shot forecasting
DT-GPT retains its conversational capability post-fine-tuning for the
forecasting task, facilitating user interaction and enabling the inquiries into
the reasoning behind predictions. For each patient sample, 10 predicted
trajectories were generated, accompanied by a set of explanatory variables
elucidating these predictions (Fig. 5a). We extracted explanatory variables
from 25,575 out of 27,730 chatbot responses. The most influential variables
were therapy, ECOG status and leukocyte count (Fig. 5b; Supplementary
Table 21; Supplementary Figs. 4–9; Supplementary Note 3).

Therapy emerged as a key determinant of hemoglobin dynamics,
aligning with existing literature38,39. Patients receiving immunotherapy and
targeted therapy generally exhibited higher hemoglobin levels over time
compared to those undergoing chemotherapy or combination therapies
(i.e., chemotherapy and immunotherapy), where hemoglobin levels tended
to decline due to the chemotherapy-induced bone marrow suppression
(Fig. 5c; Supplementary Fig. 4)40.
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ECOG status also played a significant role in shaping hemoglobin
trajectories. The last recordedECOGvalue in a patient’smedical historywas
predictive of future hemoglobin levels (Fig. 5d), with lower ECOG values—
indicative of fewer performance restrictions—correlating with higher
hemoglobin levels over time, consistent with prior research41,42. Addition-
ally, age has been widely recognized as an important prognostic factor43.
Notably, these findings are also reflected in the original data, reinforcing the
validity of DT-GPT’s predictions (Supplementary Fig. 9).

DT-GPT enables zero-shot forecasting of non-target clinical variables,
expanding its applicability beyond fine-tuned predictions. It can forecast 69
non-target clinical variables that are recorded in patient medical histories
but were not explicitly included during model fine tuning. In our experi-
ments, we forecasted each non-target variable separately (Fig. 5e) and
extracted 81,004 trajectories from 81,918 forecasting results.

To benchmark DT-GPT’s zero-shot performance, we compared it
against a traditional machine learning approach. We extensively trained 69
LightGBMmodels, each using data from over 13,000 patients for individual
target variables, and compared their performance to a single DT-GPT
model that received no such additional training (i.e., zero-shot setting) and
therefore was at a disadvantage. LightGBM was therefore anticipated to
perform better than the zero-shot DT-GPT model.

Surprisingly, zero-shotDT-GPToutperformedLightGBMon13outof
69 non-target variables (Fig. 5f. The variables with improved performance
can be described as closely related to the target variables (Fig. 5g). For
instance, segmented neutrophils, band form neutrophils and neutrophils by
automated count have different LOINC codes from the trained variable
(30451-9, 26507-4, 751-8, respectively), but these measurements were
functionally related to the target variable neutrophils (LOINC 26499-4). A

table containing scaled MAE values for DT-GPT and the LightGBM
baseline is provided in Supplementary Table 22.

We identified that DT-GPT performs better in zero-shot predictions
for variables highly correlated with the fine-tuned targets. Specifically, 11 of
13 non-target variables for which DT-GPT demonstrates equal or superior
performance compared to LightGBM, exhibit a strong Spearman correla-
tion coefficient ( | ρ | > 0.7) with at least one fine-tuned target variable
(Supplementary Fig. 10). For the remaining well-performing zero-shot
targetswithout strong correlations, feature importance analysis and relevant
literature suggest that DT-GPT may capture clinically meaningful rela-
tionships, such as the ferritin-to-hemoglobin ratio and components of the
Albumin-Bilirubin (ALBI) score in NSCLC patients (Supplementary Fig.
11; Supplementary Table 23)44–46.

Discussion
Ourmain finding is that a simple yet effectivemethod allows training LLMs
on EHRs and study data to generate detailed patient trajectories that pre-
serve inter-variable correlations. This method achieves state-of-the-art
performance in clinical forecasting, while closely reproducing the dis-
tribution of original data and outperforming baselines in predicting clini-
cally meaningful events in the trajectory. This highlights the potential of
using LLMs as a digital twin platform that can mimic individual patients,
with applications such as treatment selection and clinical trial support.

Building on past LLM research in general forecasting, DT-GPT out-
performs existing baselines20,21 in NSCLC, ICU and Alzheimer’ s disease
datasets. These findings align with recent LLM forecasting developments,
demonstrating that clinically-specific adjustments enable accurate
predictions18,19. Further analysis of several existing LLM forecasting

Fig. 2 | DT-GPT achieves state-of-the-art performance for clinical trajectory
forecasting. a The long-term non-small cell lung cancer (NSCLC) and b the short-
term intensive-care unit (ICU) dataset, with the x-axis showing relative time points
and the y-axis the corresponding scaled mean absolute error (MAE), comparing
with the second best forecasting model LightGBM. The scaling is done by the

standard deviation, allowing comparison across variables with different value ranges
and calculating a final performance score by averaging across the variables. Here
exemplified, DT-GPT forecasts of neutrophil counts in patients with (c) low and
d high error, for all weeks where the ground truth exists. e Histogram of MAE
distribution for all predicted neutrophil counts.
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approaches reveals that channel dependent modeling is a crucial aspect for
patient trajectories,withDT-GPTshowing that evena simple approachhere
can be highly effective. Notably, fine-tuning remains necessary for optimal
performance, as demonstrated by the lower accuracy of non-fine-tuned
LLMs, even when benchmarked against significantly larger models. Addi-
tionally, DT-GPT’s generative nature allows for multiple trajectory simu-
lations per patient, offering insights into possible patient scenarios, cohort
simulations, and uncertainty estimates. Finally, while all models were
optimized for the forecasting task only,DT-GPT consistently outperformed
baselines in classification tasks in detecting clinically relevant events by
achieving best or second-best performance.

The positive performance of LLMs for patient forecasting may stem
from parallels between natural language and biomedical data, such as non-
random missingness. For example, a doctor might skip measuring blood
pressure if a patient appears healthy, indicating information by omission.

Natural language implicitly handles such ambiguity; unspoken words can
still conveymeaning or none at all. Recent advancements suggest that LLMs
can capture these complex relationships47.

DT-GPT addresses EHR challenges including noise, sparsity, and lack
of data normalization16. Unlike most established machine learning models
that require data normalization and imputation, DT-GPT operates without
these requirements. Here, we demonstrated its robustness to sparsity,
misspellings, and noisy medical data often encountered in real-world
datasets. Moreover, EHR data often contain mixed data encodings; for
instance, drug informationmay vary in encoding, such as the dosage used or
noted only as “administered”, both of which DT-GPT handles without
additional preprocessing. Overall, DT-GPT simplifies and streamlines data
preparation, thus enabling faster deployment across diverse datasets.

DT-GPT can be inquired about the rationale of predictions, which
increases the interpretability of the model. This capability helps bridge

Fig. 3 | DT-GPT resembles the distribution of the original data. aThe distribution
ofDT-GPT forecasted values is the closest to the ground truth distribution according
to the absolute Kolmogorov-Smirnov distance. This can also be observed from the
distribution histograms associated with (b) the ground truth, c DT-GPT,

d LLMTime, and e LightGBM. While LightGBM has the lowest scaled MAE after
DT-GPT, LLM-basedmethods such as LLMTimemore accurately resemble ground-
truth data distribution. Lymph./Leuk. lymphocytes/leukocytes).

Fig. 4 | DT-GPT is robust to commonRWD issues
in the long-term NSCLC dataset. aMean absolute
error (MAE) according to the number of patients in
the training set. Assessing impact on MAE based on
(b) added missingness, on top of the baseline 94.4%
missingness of the NSCLC dataset, and c injected
misspellings in the input.
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the gap between medical expert andmodel, enabling the exploration of
prediction rationales and alternative patient scenarios efficiently. We
believe that this advancement could enhance human-computer
interaction with AI predictions and may positively affect clinical
practices in the near future.

DT-GPT enables zero-shot predictions, demonstrating its ability to
forecast variables not explicitly included in its fine-tuning phase by learning
their dynamics andadapting tonovel tasks.Remarkably, zero-shotDT-GPT
outperforms a supervised, fully-trainedmachine learningmodel on a subset

of clinical variables, highlighting the pioneering potential of LLM-based
approaches in RWD forecasting.

Applying the preliminary interpretability approach also on the zero
shot variables, we hypothesize that the model is potentially able to capture
latent clinical knowledge, such as the importance of the ferritin-to-
hemoglobin ratio and parts of the Albumin-Bilirubin (ALBI) score, both
which are emerging prognostic biomarkers in NSCLC45,46. It is important to
note that the underlying BioMistral 7Bmodel was trained on a vast amount
of biomedical databases and publications. Therefore, these are preliminary

Fig. 5 | DT-GPT preserves its conversational ability after the fine-tuning,
allowing inquiring into prediction rationale and zero-shot forecasting.
a Example of a chatbot interaction providing explanations for predictions. b Five
most important variables for predicting all variables derived from forecasting test
patient samples with 10 predicted trajectories each. c The most important variable,
therapy, influences predicted hemoglobin trajectories, with (d) the corresponding
ground truth. Here, the lines show average trajectories and the error bars correspond
to the standard error. e The second most important variable, ECOG, influences
predicted hemoglobin trajectories, and f showing the corresponding ground truth.

Lines represent average trajectories and the error bars correspond to the standard
error. g Example of a chatbot interaction for forecasting a variable not previously
trained on. hWe train 69 separate LightGBM models on other variables, whilst the
single DT-GPT model receives no further training, resulting in DT-GPT out-
performing LightGBM models on 13 out of 69 non-target variables. i DT-GPT is
superior for variables more biologically related to the target variables used during
fine tuning, with the respective LOINC codes depicted in parentheses. ECOG
Eastern Cooperative Oncology Group performance status scale, LDH lactate
dehydrogenase, ALT alanine aminotransferase).
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hypotheses that require extensive investigation and validation from clinical
experts.

DT-GPT shows promise for clinical trajectory forecasting, with strong
performance on standard metrics (e.g., MAE) and robust modeling of
temporaldependencies. It effectivelydetectsmoderate abnormalities suchas
anemia, tracks inflammation-related trends, and predicts progression
markers such as elevated LDH. However, performance declines for specific
acute events—e.g., severe hemoglobin drops or high leukocyte counts—
highlighting the challenge of forecasting low-prevalence, high-variance
outcomes. Future improvements will require methods that enhance sensi-
tivity to high-risk events, such as tailored loss functions, anomaly detection,
and integration of unstructured clinical data.

A challenge of LLM-based models is the restricted number of
simultaneously forecasted variables. The current constraint on the
number of forecasted variables is due to the limited sequence length of
both input and output of the LLMs used in fine-tuning. Advances in
extending the context length will enable modeling of additional patient
variables, such as by using larger, more advanced models such as
Qwen3-32B as the base model. Furthermore, we anticipate that tran-
sitioning from zero-shot to few-shot learning, where the model
receives further training on a small subset of data, would enable a wider
span of forecasted variables and extend DT-GPT’s applicability to
broader clinical challenges.

Future work can also take inspiration from developments in LLM-
based forecasting. Specifically, ideas such as patching and prompt-as-a-
prefix from Time-LLM22, as well as normalization and generation of con-
tinuous likelihoods fromLLMTime21, canbe adapted for clinical use, further
improving forecasting performance. Additionally, even though DT-GPT
was able to capture the clinically relevant events better than other models,
performance can still be improved to increase clinical relevance, therefore
we consider the optimization of the classification performance to be an
important direction of future work. Related to this, future research should
also focus on developing disease-specific forecasting metrics that correlate
well with clinical utility.

Another established shortcoming of LLM-based models is their ten-
dency to hallucinate, as well as recreating the biases from the underlying
data. In our case, the hallucination could be reflected in explainability results
not necessarily providing true answers. This is a critical aspect for the
medical domain, and we believe that a human-in-the-loop setup will be
required, together with advanced training of clinicians on the use of LLM
outputs. Regarding model biases, it is well established that models recreate
the biases from the underlying data, which is especially pronounced in
minority populations48. To overcome the bias issues, methodological work,
training of users, as well as the gathering of large scale, diverse clinical
datasets, is needed.

Finally, we observe that high error predictions often occur due to the
high variance between the multiple generated trajectories of each patient
sample, with the mean aggregation into the final prediction not capturing
key dynamics. It is thus an open challenge to develop improved aggregation
methods, for example by using a second LLM as an arbiter or by having a
human expert select the most realistic trajectory.

In conclusion, DT-GPT highlights the utility of using LLMs as a
digital twin forecasting platform, enabling state-of-the-art and stable
predictions, exploratory interpretability via a natural-language inter-
face, and forecasting of patient variables not used in fine-tuning.
Whilst further advancements are needed for wide-scale deployment,
DT-GPT exhibits digital twin behaviors, potentially reproducingmany
aspects of the patients it represents, and surpassing traditional AI
methods optimized for individual variables. We believe that through
further method development and extensive validation, patient-level
digital twins will impact clinical trials by supporting biomarker
exploration, trial design, and interim analysis. Additionally, future
digital twins will assist doctors in treatment selection and patient
monitoring. Overall, we envision LLM-powered digital twins becom-
ing integral to healthcare systems.

Methods
DT-GPT is amethod that employs pre-trained LLMs fine-tuned on clinical
data (Fig. 6a). Notably, this method is agnostic regarding the underlying
LLM and can be applied without architectural changes to any general-
purpose or specialized text-focused LLM. We trained and evaluated DT-
GPT for forecasting patients’ laboratory values across three independent
datasets, i.e., non-small cell lung cancer (NSCLC), intensive care unit (ICU),
and Alzheimer’s disease patients.

NSCLC dataset
For the US-based NSCLC dataset, we used the nationwide Flatiron Health
EHR-derived de-identified database. The data are de-identified and subject
to obligations to prevent re-identification and protect patient con-
fidentiality. The Flatiron Health database is a longitudinal database, com-
prising de-identified patient-level structured and unstructured data, curated
via technology-enabled abstraction49,50. During the study period, the de-
identified data originated from approximately 280 cancer clinics ( ~ 800
sites of care).

The study included 16,496 patients diagnosed with NSCLC from 01
January 1991 to 06 July 2023. The majority of patients in the database
originate fromcommunityoncology settings; relative community/academic
proportions may vary depending on the study cohort. Patients with a birth
year of 1938 or earlier may have an adjusted birth year in Flatiron Health
datasets due to patient de-identification requirements. To harmonize the
data, we aggregated all values in a week based on the last observed value.

We focused on the 50most common diagnoses and 80most common
laboratory measurements, complemented by the Eastern Cooperative
Oncology Group (ECOG) score, metastases, vitals, drug administrations,
response, and mortality variables totaling 773,607 patient-days across 320
variables.

For every NSCLC patient, we divided their trajectory into input and
output segments based on the start date of each line of therapy to create each
patient sample. All variables up to the start date were considered input data.
The objective was to predict the weekly values up to 13 weeks after the start
date of the following variables and their respective LOINC codes: hemo-
globin (718-7), leukocytes (26464-8), lymphocytes/leukocytes (26478-8),
lymphocytes (26474-7), neutrophils (26499-4) and lactate dehydrogenase
(2532-0). These variables were selected due to their frequent measurement
and relevance in reflecting key characteristics ofNSCLC treatment response
(Supplementary Tables 1, 2).

ICU dataset
To demonstrate the generalizability of DT-GPT, we analyzed ICU trajec-
tories from the publicly-accessible Medical Information Mart for Intensive
Care IV (MIMIC-IV) dataset25. We employed an established processing
pipeline, resulting in 300 input variables across 1,686,288 time points from
35,131 patients51.

Here, the objective was to predict a patient’s future hourly lab variables
given their first 24 h in the ICU. Specifically, the patient history was con-
sidered as the first 24 h for all variables, and the task was to forecast the
future 24 hourly values for the following variables: O2 saturation pulse
oximetry, respiratory rate and magnesium. These variables were selected
due to having the highest temporal variability, thus making the forecasting
task more challenging, and the fact that at least 50% of patients had at least
one measurement for each, highlighting their widespread clinical usage
(Supplementary Tables 1, 3, 4). These criteria not only increased the fore-
casting challenge, but also ensured wide representation across the patient
population.

Alzheimer’s disease dataset
To further demonstrate the generalizability of DT-GPT, we ran DT-GPT
and the baseline models on the Alzheimer’s disease dataset, based on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator MichaelW.Weiner, MD. The primary goal of
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ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biologicalmarkers, and clinical
and neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD).

We preprocessed the dataset, including 1140 patients. The task was to
predict the 24 month trajectory of three cognitive variables, given the
baseline measurements of the patients. Specifically, the variables were Mini
Mental State Examination (MMSE), ClinicalDementia Rating sumof boxes
(CDR-SB) andAlzheimer’s Disease Assessment Scale (ADAS11), which are
key indicators of cognitive decline commonly measured in Alzheimer’s
disease patients (Supplementary Tables 1, 5).

Data splitting and filtering
The NSCLC and ICU datasets were split at the patient level into 80%
training, 10% validation, and 10% test set. The splitting was performed
randomly for the ICU dataset, whilst stratified by group stage, smoking
status, number of observations per visit and number of visits with drug
administrations to ensure a balanced evaluation. The Alzheimer’s disease
dataset was randomly split into 80% training and 20% test, selected due to
the small sample size, with all hyperparameters determined via a further
splittingon the training set. Thus, each set compriseddisjoint sets of patients
to avoid data leakage. The test sets were solely used for final evaluation and
to assess the model’s generalizability (Fig. 6b).

We applied a two-step outlier filtering procedure on all datasets: all
target values below or above three standard deviationswere filtered out first,

thenwe calculated new standard deviation values on the filtered dataset and
clipped target values below and above those values. This approach ensured
that the noise present in the data was removed, while some of the outliers
were replaced with reasonable low or high values to maintain the biological
signal. The data for all of the baselines excluding DT-GPT were then also
standardized using z-scores.

Encoding
We encoded patient trajectories by using templates that converted medical
histories based on EHRs into a text format compatible with LLMs, as pro-
posed byXue et al.19 andLiu et al.19,20 (Fig. 6c, d; SupplementaryNote 4). The
input template is structured into four components: (1) patient history, (2)
demographic data, (3) forecast dates and (4) prompt. The patient history
contains a chronological description of patient visits, requiring no data
imputation for missing variables. The output trajectories were also encoded
using templates, containing only the relevant output variables for the
forecasted time points.We utilized amanually developed template for input
encoding and JSON-format encoding for the output (Supplementary
Fig. 12).

LLMs and fine-tuning
We utilized the biomedical LLM BioMistral 7B DARE, since it is pro-
vided with an open source license and based on a recognized LLM33.
Furthermore, BioMistral is instruction tuned and through its biomedical
specialization incorporates compressed representations of vast amounts
of biomedical knowledge. We further fine tuned this LLM using the

Fig. 6 | The DT-GPT framework transforms EHRs into text and subsequently
fine-tunes an LLM on this data. a Overview of the pipeline: datasets are split and
encoded into input/output text based on landmark timepoints, then used to fine-
tune an LLM, here BioMistral. The model output is evaluated for trajectory fore-
casting whilst zero-shot predictions and variable importances are explored via a chat

interface. b Sample size, visit frequency, and sparsity of the Alzheimer’s disease
(AD), non-small cell lung cancer (NSCLC), intensive care unit (ICU) datasets.
c Input and d output encoded examples, emphasizing the chronological encoding of
observations.
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standard cross entropy loss, masked so that the gradient was only
computed on the output text. We performed 30 predictions for each
patient sample during evaluation, then took the mean for each time
point as the final prediction21,52. All hyperparameters of DT-GPT used
fine-tuning (Supplementary Note 5) and are compared to baseline
models (Supplementary Note 6).

Handling of missing and noise data
We investigated the ability of DT-GPT as a LLM-based model to handle
missing data and misspelling in the input prompts. For the missing data
study, we randomly masked between 0 and 80% of data, in addition to the
alreadymissing data in a dataset. Evaluation of the effect ofmissingness was
performed on a randomly sampled 200 patients from the test set, which can
potentially lead to higher variance in the results, but allowed for a more
extensive exploration.

For the noise study, we introduce a misspelling algorithm. This algo-
rithm randomly performs either perturbation, insertion, deletion, or
replacement, using all ASCII letters & digits, applied to the entire input text.
This includes dates, variable names, values, baseline information, and
prompts. One operation is considered one misspelling.

For the evaluation of the effects of RWD missingness and noise we
randomly sampled 200 patients of the test set, which can potentially lead to
higher variance in the results, but allowed for a more extensive exploration.

Chatbot and zero-shot learning
We employed the DT-GPT model to run a chatbot based on patient his-
tories for prediction explanation and zero-shot forecasting. For this, first we
used DT-GPT to generate forecasting results from patient history and,
consecutively, added a task-specific prompt surrounded by the respective
instruction-indication tokens to the DT-GPT chat history for receiving a
response. For prediction explanation, the prompt asked for the most
important variables influencing the predicted trajectory. For zero-shot
forecasting, the prompt specified the output format and days to predict new
clinical variables that were not subject to optimization during training.
Example prompts and chatbot interactions for both tasks are provided in
Supplementary Note 7 and Fig. 5a, e.

Forecasting evaluation
Forecasting metrics, i.e. Eqs. (1)–(5), are designed to quantify the disparity
between predicted and observed numeric values, providing an objective
measure of themodel’s predictive accuracy (SupplementaryNote8). Letvt

ðiÞ

be an observed (non-missing) value of clinical variable v for a subject i,
i ¼ 1; � � � ; n, where n is the total number of subjects, and time step t,
t ¼ 1; � � � ;Ti, whereTi is the total number of time steps for the subject i. Let
baseline value vðiÞ0 be the baseline value at time step t0, t ¼ 0. We denote
predicted values as v̂ðiÞt . The forecastingmetrics usedaremean absolute error
(MAE), scaledMAE,mean absolute scaled error (MASE), symmetric mean
absolute percentage error (SMAPE) and Spearman correlation coefficient
defined as follows:

MAE ¼ 1
n

Xn

i¼1

1
Ti

XTi

t¼1

jvðiÞt � v̂ðiÞt j ð1Þ

scaled MAE ¼ MAE
σ

ð2Þ

whereσ is the standarddeviationof the clinical variable afteroutlierfiltering;

MASE ¼ MAE
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where 1 is the indicator function to avoid division by 0;
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where R½:� is a rank function, ordering values from lowest to the highest,
whereby, for the data points with the same value, their average rank is
assigned, and R½v� ¼ 1

n
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n
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1
Ti

PTi
t¼1 R½bvðiÞt � are the mean ranks of actual and predicted

values, respectively.
We chose scaled MAE, i.e., Eq. (2), as our primary metric as it allows

comparison across all variables, and hence can be used to benchmark dif-
ferent models on all datasets.

Classification evaluation. Classification metrics assess the model’s
clinical utility to capture events, such as abrupt changes in clinical vari-
ables indicative of acute conditions (e.g., sudden drops or increases) or
prolonged trends in variable changes that are characteristic of a chronic
condition (e.g., gradual increases or decreases over extended periods).
Below, we provide detailed definitions of the metrics employed in our
evaluation. An interpretation of introduced metrics is provided in Sup-
plementary Note 8.

First, we assess the model’s ability to detect values outside the normal
range of clinical variables. Let ½vmin ; vmax� be the reference interval for the
clinical variable v. We label the observed variable value vðiÞt as “low” if
vðiÞt < vmin, as “high” if v

ðiÞ
t > vmax and as “normal” if vmin < v

ðiÞ
t < vmax. We

define vðiÞt as “not low” if it is “normal” or “high”, as “not high” if it is
“normal” or “low”, and as “not normal” if it is “low” or “high”. Analogously,
we label each predicted variable value v̂ðiÞt . With this, we are in the classifi-
cation task settings.

For the binary classification tasks “low” versus “not low”, “high” versus
“not high”, and “normal” versus “not normal”, we calculate area under the
receiver operating characteristic curve (AUC ROC) and denote it as
AUClow, AUChigh and AUCnormal , respectively. For the multiclass classifi-
cation task “low” versus “normal” versus “high”, we calculateweightedAUC
ROC, denoted by AUC weighted (Eq. (6)), that is given by

AUCweighted ¼
ðAUClow × #lowÞ þ ðAUCnormal × #normalÞ þ ðAUChigh × #highÞ

#low þ #normalþ #high

ð6Þ

where#low,#normal and#high, correspond to the number of observed
variables values vt

ðiÞ labeled as “low”, “normal” and “high” respectively.
Weightedaggregation accounts for the class imbalance,wherebymost of the
variable values fall within the reference range and are labeled as “normal”.

We evaluated the model’s trend forecasting performance by analyzing
its predicted value trajectories over a specified time interval s. Within these
forecasts, a predicted value vðiÞt was classified as ‘decreasing trend’ if
vðiÞtþ1 < v

ðiÞ
t or as an ‘increasing trend’ if vðiÞtþ1 > v

ðiÞ
t . For a trend to be classified

at time t, the direction of change between consecutive predicted values had
to be consistent throughout the entire preceding lookback window. Speci-
fically, vðiÞt was classified as ‘decreasing trend’ only if vðiÞkþ1 < v

ðiÞ
k for all time

steps k within the interval ½timeðtÞ � s; timeðtÞ�, and ‘increasing trend’ only
if vðiÞkþ1 > v

ðiÞ
k for all k in that same interval. Here, timeðtÞ represents the time

since the last input measurement. Ground truth trends were derived simi-
larly fromobserveddata.We thenassessed themodel’s classificationof these
trends in its forecasts using two binary classification tasks: ‘decreasing’
versus ‘not decreasing’, and ‘increasing’ versus ‘not increasing’. Performance
was quantified by calculating the area under the receiver operating char-
acteristic curve (AUC) based on the forecasted values, yielding AUCtrend#
and AUCtrend". Forecasted values were excluded from this analysis if
timeðtÞ < s to ensure a complete lookbackwindowwas available.Weprovide
an example and illustration in Supplementary Fig. 13.
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We performed the classification evaluation only on the NSCLC data.
For this,weusedparameters for the reference ranges ½vmin; vmax� as found in
the literature. For hemoglobin [g/dL], we set [14, 18] and [12, 16] for male
and female patients53, respectively.We set [4.5, 11.0] for leukocytes [109/L]54,
[20, 40] for leukocytes/lymphocytes [%]54, [1.0, 4.0] for lymphocytes
[109/L]55, [1.8, 7.5] for neutrophils [109/L]55 and [122, 222] for lactate
dehydrogenase [U/L]36.

We further address the model ability to detect a significant drop in
hemoglobin associated with a bleeding by calculating AUClow with
vmin = 7.5. As for the trend detection, we consider time intervals of 3 weeks
and set s ¼ 21 days for all NSCLC variables. This time period is clinically
relevant to capture the increasing or decreasing dynamics of a clinical
variable.

Data availability
The Flatiron Health data that support the findings of this study were ori-
ginated by and are the property of Flatiron Health, Inc., which has restric-
tions prohibiting the authors from making the data set publicly available.
Requests fordata sharingby license orbypermission for the specificpurpose
of replicating results in this manuscript can be submitted to Pub-
licationsDataAccess@flatiron.com. The Medical Information Mart for
Intensive Care IV (MIMIC-IV) is available online upon request under
https://physionet.org/content/mimiciv. The Alzheimer’s Disease Neuroi-
maging Initiative (ADNI) dataset is available online upon request under
https://adni.loni.usc.edu/data-samples/adni-data/.

Code availability
The code is available at https://github.com/MendenLab/DT-GPT, includ-
ing all package and Python versions, as well as license information. Specific
parameters used to generate and analyze the datasets presented in this
manuscript are detailed in the repository’s README file and relevant
configuration files.
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