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Supplementary Table 1. Dataset details. 
 

Supplementary Table 1: Dataset details. 
 

 

 Flatiron Health - 
NSCLC 

ICU - MIMIC-IV Alzheimer’s Disease - 
ADNI 

Data Type Real World Data Real World Data Observational Study 

# Patients 16496  35131  1140 

# Time Points 773607 1686288 5700 

# Input Variables 320 300 17 

# Output Variables 6 3 3 

Avg. % Missing in Input 94.4% 98.1% 3.9% 

Avg. % Missing in Output 74.5% 35.1% 19.5% 

Female/Male/NA % 51.0/49.0/0.0 39.7/51.1/9.2 56.8/43.2/0.0 

Avg./Std. Age at Start 67.5/10.2 64.0/16.3 73.9/7.0 

Avg./Std. Length of Full 
Patient Trajectory 

160.5/328.6 days 46.78/0.87 hours 727.2/38.05 

Avg./Std. Nr of Total Events 
per Patient Trajectory 

35.4/33.1 47.3/2.3 4.24/0.45 

Avg./Std. average length 
between events 

5.8/17.0 weeks  1.0/0.2 hours 226.9/26.8 days 

Time Point Resolution Weekly Hourly 6 months 

Input Time Horizon Unlimited 24 hours Baseline measurements 

Forecast Time Horizon Up to 13 weeks Up to 24 hours Up to 24 months 



Supplementary Table 2. Details on the NSCLC output variables. 
 

Variable LOINC Impact Mean Standard 
Deviation 

Leukocytes [109/L] 26464-8 NSCLC treatment, particularly 
chemotherapy, can cause 
leukopenia, leading to decreased 
leukocyte counts. This reduction in 
leukocytes can increase the risk of 
infections due to a compromised 
immune system.  

7.18 3.36 

Lymphocytes/Leukocytes 
[%] 

26478-8 This ratio is often used to monitor 
the immune status and 
inflammatory response. 

19.98 10.14 

Neutrophils [109/L] 26499-4 Chemotherapy can lead to 
neutropenia, resulting in a reduced 
neutrophil count. Neutropenia 
increases the risk of infections. 

5.17 3.22 

Lymphocytes [109/L] 26474-7 Lymphocyte counts often decrease 
during NSCLC treatment due to the 
immunosuppressive effects of 
chemotherapy. This reduction can 
impair the body's ability to fight 
infections and may affect the 
overall immune response. 

1.33 0.78 

Lactate Dehydrogenase 
[U/L] 

2532-0 Elevated levels of lactate 
dehydrogenase (LDH) can be 
observed, indicating tissue damage 
or tumor burden. 

253.77 139.47 

Hemoglobin [g/dL] 718-7 Hemoglobin levels may decrease, 
leading to anemia, as a side effect 
of chemotherapy or due to the 
cancer itself. Anemia can cause 
symptoms such as fatigue, 
weakness, and shortness of breath, 
impacting the patient's quality of 
life. 

11.84 1.87 

 
Supplementary Table 2: Details on the NSCLC output variables. 
 

 



Supplementary Table 3. Details on the ICU output variables. 

Variable Mean Standard Deviation 

Respiratory Rate [insp/min] 19.57 5.35 

Oxygen Saturation [%] 96.84 2.63 

Magnesium [mg/dL] 2.09 0.34 

 
Supplementary Table 3: Details on the ICU output variables. 

 



Supplementary Table 4. An overview of key parameters of the ICU 
dataset. 
 

Parameter of ICU Dataset Value 

% of patients with diagnosed renal problems 46.9% 

% of patients intubated and ventilated 26.8% 

% of patients intubated 29.2% 

% of patients ventilated 48.0% 

Supplementary Table 4: An overview of some key parameters of the ICU dataset. We highlight the clinical 
relevance of the forecasting setup on the ICU patients by showing that almost half of all patients have kidney issues, 
where magnesium helps to monitor the patients’ kidney status. Both respiratory rate and oxygen saturation are 
affected by intubation and ventilation, which is seen in half of the patients in the dataset. 

 



Supplementary Table 5. Details on the Alzheimer’s disease output 
variables. 
 

Variable Mean Standard Deviation 

Mini Mental State Examination 
(MMSE) [0-30] 

26.8 3.57 

Alzheimer’s Disease Assessment 
Scale–Cognitive Subscale 
(ADAS11) [0-70] 

11.05 7.74 

Clinical Dementia Rating Scale 
Sum of Boxes (CDRSB) [0-18] 

1.92 2.30 

 
Supplementary Table 5: Details on the Alzheimer’s disease output variables. 

 



Supplementary Note 1. Variable selection strategies. 
For the NSCLC dataset, we selected the number of laboratory variables to incorporate all variables that 
were already used in linear prognostic models, as well to have variables seen in at least 2000 patients. The 
number of diagnoses was chosen to include key information, as well as to have enough patient data for 
useful model training, having at least 1700 observations. With the clinical importance of variables shown 
in Supplementary Table 2. 
 
For the MIMIC-IV dataset, the three variables O2 saturation pulse oximetry, respiratory rate and 
magnesium were selected since at least 50% of the patients have at least one measurement, and they have 
the highest temporal variability. The temporal variability was measured by the R2 of the copy forward 
model, with lower values showing higher variability. The exact values were -0.18 for magnesium, -0.07 
for respiratory rate and -0.05 for 02 saturation pulse oximetry. 
 
For the ADNI dataset, we selected three variables for complete cognitive scores that summarize results 
for separate cognitive tests (Supplementary Table 5) . 

 



Supplementary Table 6. Results for the hemoglobin variable in the 
NSCLC dataset. 
 

 Hemoglobin Forecasting Metrics Hemoglobin Classification Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

AUC 
low↑ 

AUC 
high↑ 

AUC 
weighted↑ 

Trend 
decrease↑ 

Trend 
increase↑ 

DT-GPT 0.440 0.822 0.629 7.577 0.797 0.793 0.850 0.793 0.638 0.704 

Copy 
forward 

0.698 
 

1.308 - 11.605 0.629 0.771 0.899 0.770 0.500 0.500 

Linear 
Regression 

0.486 0.911 0.696 8.377 0.759 0.726 0.599 0.726 0.616 0.652 

LightGBM 0.453 0.848 0.649 7.792 0.780 0.738 0.500 0.738 0.617 0.659 

RNN 0.529 0.992 0.759 9.072 0.689 0.691 0.500 0.691 0.602 0.550 

LSTM 0.526 0.985 0.753 9.012 0.693 0.717 0.500 0.716 0.598 0.569 

Transformer 0.469 0.928 0.710 8.483 0.745 0.733 0.500 0.733 0.612 0.632 

Temporal 
Fusion 
Transformer 

0.469 0.879 0.672 8.056 0.773 0.750 0.500 0.750 0.578 0.647 

TiDE 0.464 0.869 0.665 7.994 0.768 0.733 0.550 0.733 0.629 0.658 

TCN 0.660 1.236 0.945 11.188 0.501 0.550 0.500 0.550 0.603 0.599 

PatchTST 0.684 1.281 0.980 11.415 0.628 0.767 0.900 0.767 0.574 0.641 

LLMTime 0.736 1.377 1.053 12.124 0.594 0.758 0.594 0.756 0.567 0.601 

Time-LLM 0.665 1.246 0.953 11.169 0.612 0.741 0.650 0.741 0.604 0.611 

 
Supplementary Table 6: Results for the hemoglobin variable in the NSCLC dataset. 

 



Supplementary Table 7. Results for the leukocytes variable in the 
NSCLC dataset. 
 

 Leukocytes Forecasting Metrics Leukocytes Classification Metrics 

Model Scale
d 
MAE 
↓ 

MAE
↓ 

MASE
↓ 

SMAPE
↓ 

Spearman 
correlation
↑ 

AUC 
low↑ 

AUC 
high↑ 

AUC 
weighted↑ 

Trend 
decrease↑ 

Trend 
increase↑ 

DT-GPT 0.687 2.308 0.709 33.290 0.547 0.657 0.578 0.614 0.638 0.684 

Copy 
forward 

0.969 3.257 - 43.301 0.333 0.557 0.616 0.554 0.500 0.500 

Linear 
Regression 

0.782 2.629 0.807 37.714 0.441 0.547 0.565 0.545 0.621 0.651 

LightGBM 0.727 2.443 0.750 35.384 0.508 0.560 0.574 0.558 0.631 0.651 

RNN 0.806 2.711 0.832 38.768 0.389 0.528 0.570 0.533 0.567 0.678 

LSTM 0.781 2.625 0.806 37.813 0.397 0.540 0.553 0.537 0.624 0.608 

Transformer 0.749 2.517 0.773 36.329 0.447 0.568 0.541 0.551 0.593 0.653 

Temporal 
Fusion 
Transformer 

0.719 2.418 0.743 35.113 0.504 0.561 0.534 0.547 0.581 0.615 

TiDE 0.737 2.477 0.760 35.743 0.488 0.574 0.564 0.561 0.612 0.639 

TCN 0.857 2.882 0.885 41.424 0.256 0.500 0.505 0.500 0.596 0.589 

PatchTST 0.968 3.254 0.999 43.123 0.349 0.557 0.635 0.559 0.579 0.645 

LLMTime 0.923 3.104 0.953 42.342 0.331 0.557 0.601 0.548 0.588 0.591 

Time-LLM 0.894 3.006 0.923 41.668 0.339 0.542 0.605 0.543 0.601 0.595 

 
Supplementary Table 7: Results for the leukocytes variable in the NSCLC dataset. 

 



Supplementary Table 8. Results for the lymphocytes/leukocytes variable 
in the NSCLC dataset. 
 

 Lymphocytes/ Leukocytes Forecasting Metrics  Lymphocytes/ Leukocytes Classification Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

AUC 
low↑ 

AUC 
high↑ 

AUC 
weighted↑ 

Trend 
decrease↑ 

Trend 
increase↑ 

DT-GPT 0.643 6.519 0.878 37.197 0.583 0.718 0.532 0.696 0.649 0.638 

Copy forward 0.731 7.421 - 44.156 0.499 0.677 0.573 0.660 0.500 0.500 

Linear 
Regression 

0.668 6.779 0.913 39.155 0.545 0.703 0.526 0.684 0.633 0.641 

LightGBM 0.644 6.537 0.881 37.656 0.583 0.717 0.512 0.695 0.628 0.630 

RNN 0.671 6.812 0.918 39.107 0.527 0.697 0.509 0.678 0.610 0.629 

LSTM 0.665 6.743 0.909 38.668 0.540 0.693 0.507 0.674 0.639 0.616 

Transformer 0.683 6.927 0.933 39.896 0.538 0.702 0.507 0.683 0.638 0.609 

Temporal 
Fusion 
Transformer 

0.651 6.604 0.890 37.974 0.563 0.708 0.502 0.689 0.579 0.575 

TiDE 0.655 6.645 0.895 38.347 0.567 0.710 0.508 0.689 0.635 0.633 

TCN 0.752 7.630 1.028 43.412 0.401 0.641 0.500 0.626 0.597 0.595 

PatchTST 0.719 7.294 0.983 43.048 0.508 0.682 0.578 0.665 0,575 0.622 

LLMTime 0.725 7.355 0.991 43.592 0.504 0.679 0.557 0.661 0.590 0.603 

Time-LLM 0.684 6.945 0.936 40.076 0.519 0.688 0.557 0.670 0.614 0.598 

 
Supplementary Table 8: Results for the lymphocytes/leukocytes variable in the NSCLC dataset. 

 



Supplementary Table 9. Results for the lymphocytes variable in the 
NSCLC dataset. 
 

 Lymphocytes Forecasting Metrics Lymphocytes Classification Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

AUC 
low↑ 

AUC 
high↑ 

AUC 
weighted↑ 

Trend 
decrease↑ 

Trend 
increase↑ 

DT-GPT 0.434 0.342 0.764 29.770 0.734 0.788 0.578 0.788 0.635 0.656 

Copy forward 0.569 0.448 - 37.098 0.603 0.722 0.672 0.717 0.500 0.500 

Linear 
Regression 

0.506 0.398 0.889 34.023 0.656 0.741 0.571 0.736 0.618 0.628 

LightGBM 0.456 0.359 0.802 31.194 0.712 0.760 0.558 0.755 0.619 0.636 

RNN 0.511 0.402 0.898 35.401 0.622 0.722 0.571 0.718 0.512 0.656 

LSTM 0.595 0.389 0.870 34.329 0.632 0.733 0.558 0.728 0.577 0.609 

Transformer 0.503 0.396 0.884 34.529 0.670 0.717 0.577 0.713 0.598 0.646 

Temporal 
Fusion 
Transformer 

0.463 0.364 0.813 31.929 0.696 0.760 0.545 0.754 0.557 0.595 

TiDE 0.465 0.366 0.817 32.076 0.704 0.758 0.545 0.752 0.630 0.642 

TCN 0.606 0.476 1.065 40.687 0.477 0.619 0.500 0.617 0.604 0.600 

PatchTST 0.560 0.440 0.984 36.689 0.610 0.727 0.659 0.722 0.576 0.644 

LLMTime 0.601 0.472 1.056 36.997 0.600 0.728 0.642 0.722 0.582 0.579 

Time-LLM 0.544 0.428 0.956 36.155 0.607 0.705 0.622 0.701 0.624 0.610 

 
Supplementary Table 9: Results for the lymphocytes variable in the NSCLC dataset. 

 



Supplementary Table 10. Results for the neutrophils variable in the 
NSCLC dataset. 
 

 Neutrophils Forecasting Metrics Neutrophils Classification Metrics 

Models Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

AUC 
low↑ 

AUC 
high↑ 

AUC 
weighted↑ 

Trend 
decrease↑ 

Trend 
increase↑ 

DT-GPT 0.701 2.265 0.720 43.473 0.499 0.528 0.635 0.629 0.648 0.683 

Copy forward 0.974 3.144 - 54.267 0.323 0.524 0.648 0.641 0.500 0.500 

Linear 
Regression 

0.778 2.512 0.799 47.873 0.410 0.508 0.608 0.605 0.611 0.642 

LightGBM 0.734 2.369 0.753 45.696 0.467 0.502 0.618 0.614 0.611 0.639 

RNN 0.801 2.588 0.823 49.210 0.370 0.503 0.614 0.610 0.564 0.681 

LSTM 0.764 2.466 0.784 47.376 0.379 0.501 0.594 0.590 0.608 0.625 

Transformer 0.741 2.393 0.761 46.242 0.417 0.503 0.573 0.570 0.607 0.632 

Temporal 
Fusion 
Transformer 

0.717 2.315 0.736 45.030 0.476 0.500 0.565 0.562 0.573 0.606 

TiDE 0.740 2.389 0.760 45.907 0.452 0.508 0.598 0.594 0.617 0.651 

TCN 0.832 2.688 0.855 51.678 0.254 0.500 0.512 0.511 0.594 0.592 

PatchTST 0.959 3.097 0.985 53.837 0.321 0.521 0.644 0.637 0.565 0.635 

LLMTime 0.900 2.906 0.924 52.386 0.314 0.519 0.612 0.608 0.588 0.594 

Time-LLM 0.878 2.834 0.901 52.187 0.312 0.511 0.630 0.624 0.602 0.593 

 
Supplementary Table 10: Results for the neutrophils variable in the NSCLC dataset.  

 



Supplementary Table 11. Results for the lactate dehydrogenase variable 
in the NSCLC dataset. 
 

 Lactate Dehydrogenase Forecasting Metrics Lactate Dehydrogenase Classification Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE
↓ 

Spearman 
correlation↑ 

AUC 
low↑ 

AUC 
high↑ 

AUC 
weighted↑ 

Trend 
decrease↑ 

Trend 
increase↑ 

DT-GPT 0.418 58.269 0.966 21.037 0.738 0.753 0.793 0.791 0.641 0.648 

Copy forward 0.433 60.350 - 21.903 0.739 0.782 0.784 0.778 0.500 0.500 

Linear 
Regression 

0.475 66.227 1.097 24.988 0.683 0.530 0.738 0.736 0.564 0.551 

LightGBM 0.425 59.278 0.982 21.940 0.732 0.633 0.773 0.773 0.553 0.540 

RNN 0.433 60.424 1.001 21.880 0.712 0.690 0.773 0.778 0.551 0.573 

LSTM 0.441 61.521 1.019 22.595 0.693 0.640 0.765 0.764 0.592 0.535 

Transformer 0.514 71.699 1.188 27.135 0.650 0.500 0.639 0.648 0.523 0.565 

Temporal 
Fusion 
Transformer 

0.480 66.938 1.109 25.356 0.646 0.500 0.691 0.702 0.531 0.563 

TiDE 0.453 63.126 1.046 23.544 0.668 0.661 0.748 0.752 0.561 0.541 

TCN 0.731 101.89
0 

1.688 37.336 0.137 0.500 0.500 0.500 0.549 0.537 

PatchTST 0.447 62.362 1.033 22.717 0.699 0.746 0.776 0.773 0.549 0.538 

LLMTime 0.437 60.937 1.010 22.507 0.729 0.793 0.775 0.771 0.577 0.534 

Time-LLM 0.443 61.844 1.025 22.625 0.681 0.693 0.768 0.765 0,582 0.548 

 
Supplementary Table 11: Results for the lactate dehydrogenase variable in the NSCLC dataset. 

 



Supplementary Table 12. Results for the magnesium variable in the ICU 
dataset. 
 

 Magnesium Forecasting Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

DT-GPT 0.505 0.175 0.741 8.274 0.609 

Copy forward 0.681 0.236 - 11.192 0.462 

Linear 
Regression 

0.606 0.210 0.890 9.938 0.463 

LightGBM 0.520 0.180 0.763 8.514 0.583 

RNN 0.597 0.207 0.877 9.773 0.459 

LSTM 0.567 0.197 0.833 9.320 0.469 

Transformer 0.537 0.186 0.789 8.804 0.546 

Temporal 
Fusion 
Transformer 

0.537 0.186 0.788 8.799 0.555 

TiDE 0.534 0.185 0.785 8.766 0.549 

TCN 0.612 0.212 0.899 9.988 0.395 

PatchTST 0.671 0.233 0.987 11.048 0.464 

LLMTime 0.759 0.263 1.114 12.159 0.422 

Time-LLM 0.664 0.230 0.976 10.964 0.462 

 
Supplementary Table 12: Results for the magnesium variable in the ICU dataset. 

 



Supplementary Table 13. Results for the respiratory rate variable in the 
ICU dataset. 
 

 Respiratory Rate Forecasting Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

DT-GPT 0.636 3.406 0.827 17.623 0.562 

Copy forward 0.769 4.117 - 21.144 0.470 

Linear 
Regression 

0.680 3.631 0.882 18.816 0.509 

LightGBM 0.634 3.393 0.824 17.569 0.562 

RNN 0.647 3.446 0.842 17.921 0.558 

LSTM 0.643 3.451 0.837 17.817 0.552 

Transformer 0.644 3.403 0.838 17.843 0.549 

Temporal 
Fusion 
Transformer 

0.635 3.402 0.827 17.589 0.562 

TiDE 0.635 3.818 0.826 17.601 0.559 

TCN 0.713 3.398 0.927 19.713 0.407 

PatchTST 0.635 3.398 0.825 17.568 0.562 

LLMTime 0.686 3.671 0.892 18.526 0.538 

Time-LLM 0.655 3.905 0.852 18.110 0.547 

 
Supplementary Table 13: Results for the respiratory rate variable in the ICU dataset. 

 



Supplementary Table 14. Results for the oxygen saturation variable in 
the ICU dataset. 
 

 Oxygen Saturation Forecasting Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

DT-GPT 0.635 1.672 0.851 1.739 0.576 

Copy forward 0.746 1.964 - 2.045 0.484 

Linear 
Regression 

0.681 1.793 0.913 1.863 0.525 

LightGBM 0.644 1.696 0.863 1.763 0.573 

RNN 0.674 1.773 0.903 1.843 0.550 

LSTM 0.642 1.690 0.861 1.757 0.566 

Transformer 0.651 1.713 0.872 1.781 0.559 

Temporal 
Fusion 
Transformer 

0.644 1.695 0.863 1.762 0.576 

TiDE 0.652 1.716 0.874 1.783 0.570 

TCN 0.726 1.911 0.973 1.985 0.440 

PatchTST 0.646 1.701 0.866 1.769 0.556 

LLMTime 0.688 1.810 0.922 1.873 0.528 

Time-LLM 0.665 1.749 0.891 1.820 0.545 

 
Supplementary Table 14: Results for the oxygen saturation variable in the ICU dataset. 
 

 



Supplementary Table 15. Results for the CDRSB variable in the 
Alzheimer’s disease dataset. 
 

 CDRSB Forecasting Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

DT-GPT 0.417 0.765 0.774 41.794 0.902 

Copy forward 0.539 0.988 - 45.519 0.855 

Linear 
Regression 

0.449 0.823 0.833 78.650 0.900 

LightGBM 0.455 0.836 0.845 80.400 0.897 

RNN 0.463 0.850 0.860 78.414 0.891 

LSTM 0.468 0.859 0.869 77.957 0.891 

Transformer 0.485 0.889 0.900 91.937 0.885 

Temporal 
Fusion 
Transformer 

0.451 0.829 0.839 78.464 0.908 

TiDE 0.498 0.914 0.925 80.357 0.881 

TCN - - - - - 

PatchTST 0.540 0.990 1.002 85.056 0.845 

LLMTime 0.539 0.988 1.000 45.519 0.855 

Time-LLM 0.540 0.991 1.002 85.060 0.848 

 
Supplementary Table 15: Results for the CDRSB variable in the Alzheimer’s disease dataset. 

 



Supplementary Table 16. Results for the ADAS11 variable in the 
Alzheimer’s disease dataset. 
 

 ADAS11 Forecasting Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

DT-GPT 0.458 3.031 0.882 31.297 0.852 

Copy forward 0.519 3.437 - 33.102 0.809 

Linear 
Regression 

0.457 3.024 0.880 31.391 0.859 

LightGBM 0.462 3.059 0.890 31.135 0.849 

RNN 0.465 3.079 0.896 30.898 0.846 

LSTM 0.475 3.147 0.916 31.558 0.848 

Transformer 0.481 3.181 0.926 32.367 0.837 

Temporal 
Fusion 
Transformer 

0.466 3.083 0.897 31.023 0.847 

TiDE 0.506 3.347 0.974 33.578 0.837 

TCN - - - - - 

PatchTST 0.506 3.350 0.975 32.703 0.814 

LLMTime 0.503 3.333 0.970 32.652 0.815 

Time-LLM 0.506 3.350 0.975 32.704 0.815 

 
Supplementary Table 16: Results for the ADAS11 variable in the Alzheimer’s disease dataset. 

 



Supplementary Table 17. Results for the MMSE variable in the 
Alzheimer’s disease dataset. 
 

 MMSE Forecasting Metrics 

Model Scaled 
MAE ↓ 

MAE↓ MASE↓ SMAPE↓ Spearman 
correlation↑ 

DT-GPT 0.535 1.574 0.818 6.973 0.782 

Copy forward 0.654 1.925 - 8.305 0.683 

Linear 
Regression 

0.551 1.620 0.842 7.107 0.771 

LightGBM 0.540 1.589 0.826 7.008 0.760 

RNN 0.545 1.603 0.833 7.070 0.782 

LSTM 0.545 1.603 0.833 7.071 0.783 

Transformer 0.553 1.626 0.845 7.143 0.757 

Temporal 
Fusion 
Transformer 

0.520 1.530 0.795 6.775 0.782 

TiDE 0.578 1.700 0.883 7.456 0.744 

TCN - - - - - 

PatchTST 0.654 1.925 1.000 8.305 0.678 

LLMTime 0.654 1.925 1.000 8.305 0.683 

Time-LLM 0.654 1.925 1.000 8.307 0.675 

 
Supplementary Table 17: Results for the MMSE variable in the Alzheimer’s disease dataset. 
 
 

 



Supplementary Note 2. Evaluation results. 
In Supplementary Tables 6-17,  we show the performance of the models across the three datasets. It is 
interesting to note that LightGBM often performs better than more complex models, which we 
hypothesize is due to the high dimensional noisy data, though this has also been observed in the 
literature1,2. In the Alzheimer’s disease dataset, we see that for ADAS11 linear regression has a slightly 
lower scaled MAE, and for MMSE TFT has the lowest MAE. We believe this is due to convergence 
issues since the dataset has less than a thousand training patients. 
 
In the majority of cases DT-GPT outperforms the baselines across all metrics, both in forecasting and 
classification. In the classification metrics, DT-GPT exhibits improved performance over the baselines in 
trend detection, which is an especially clinically relevant component of trajectories. 

Forecasting evaluation 
To statistically quantify the differences between DT-GPT and the second-best performing model, which is 
LightGBM for the NSCLC and ICU datasets and TFT for the ADNI dataset, respectively, a one-tailed 
Wilcoxon signed-rank test with the following hypotheses was conducted: 
 

●​ Null hypothesis (H₀): The distribution of the difference in errors between DT-GPT and the 
second-best performing model is symmetric around zero (i.e. there is no systematic difference 
between models), 

●​ Alternative hypothesis (H₁): The distribution of error between DT-GPT and second-best 
performing model differences is stochastically less than a symmetric distribution around zero (i.e. 
DT-GPT has systematically lower errors than the second-best performing model). 

 
First, the difference of paired-data MAEs calculated for each patient, aggregated over all variables and 
time points,was tested. The difference in error distribution was significant at the confidence level

  in favor of DT-GPT for the NSCLC (p-value = 9.6162×10−17) and ICU (p-value = 0.00043)  α = 0. 05
datasets. While the difference was not statistically significant for the ADNI dataset (p-value = 0.16358), 
DT-GPT still had a lower overall MAE, indicating robustness across diverse clinical settings 
(Supplementary Table 18). 
 
Next, a one-tailed Wilcoxon signed-rank test was performed for each variable separately using paired-data 
MAEs calculated for each patient aggregated over all time points. The Benjamini-Hochberg correction 
procedure with false discovery rate (FDR) threshold of 0.05 was applied to adjust for multiple testing. 
DT-GPT was shown to have significantly systematically lower errors than the second-best performing 
model on 9 out of 12 variables (on all 6 variables for the NSCLC, 2 variables for the ICU and 1 variable 
for the ADNI dataset, respectively; Supplementary Table 19; Supplementary Figure 1).   
 
Furthermore, bootstrapping on the test set was used to determine confidence intervals for the relative 
MAE improvement of DT-GPT to the second best performing model, which is given by 1 -  (MAE 
DT-GPT / MAE second best performing model). On each dataset, MAEs were calculated for each 
variable separately and then averaged across each variable to give each variable the same importance 
independent of the number of values observed. Sampling with replacement was performed for n = 10,000 

https://app.readcube.com/library/e8f01678-52ca-457f-8467-03ed0b310d80/all?uuid=9237589346751091&item_ids=e8f01678-52ca-457f-8467-03ed0b310d80:9135100f-f125-4230-85f2-9901a9336878,e8f01678-52ca-457f-8467-03ed0b310d80:3a2feb76-ad87-4844-bad2-cec5b7516608


times and 95% confidence intervals (CI) were determined by the 2.5th and 97.5th quantiles. 
Bootstrapping showed DT-GPT to have a mean relative MAE improvement of 3.40% with CI [2.79%, 
4.02%] for NSCLC and 1.20% with CI [0.79%, 1.62%] for the ICU dataset, respectively.  However, on  
the ADNI dataset, the mean relative MAE improvement of 1.95% had  CI of [-0.77%, 4.74%] 
(Supplementary Figure 1).  
 
The results of statistical testing and bootstrapping are coherent, whereby DT-GPT significantly 
outperforms LightGBM on the NSCLC and ICU datasets. While the performance improvement on the 
ADNI dataset is not significant, DT-GPT still performs competitively (Supplementary Table 18). This 
result is likely influenced by the relatively small size of the ADNI  training dataset (1,140 patients only), 
which may limit the advantages offered by DT-GPT’s foundation model architecture. Notably, even in this 
constrained setting, DT-GPT maintains performance on par with strong baselines. Furthermore, it is 
important to recognize that our analysis focused on comparison against only the second best performing 
model. Overall, DT-GPT was compared against 14 baseline models, all of which exhibit lower 
performance, underscoring that DT-GPT achieves state-of-the-art results across diverse clinical tasks. 
 
Interestingly, we observe that hemoglobin, lymphocytes, and lactate dehydrogenase exhibit relatively high 
Spearman correlations (above 0.7)3, indicating a strong positive fit. In contrast, variables with lower 
correlations often display spikes in their time series. In these cases, Spearman correlation may not be the 
most appropriate measure, as the magnitude of the spikes is crucial; when calculating the correlation, 
differing spike magnitudes can lead to different ranks even if the overall spike is accurately captured by 
the model. Additionally, Spearman correlation does not capture temporal dependencies. While DT-GPT 
generally outperforms other models in terms of Spearman correlation (Supplementary Tables 6-17), we 
believe that future work can further enhance model performance in this area and incorporate clinical 
trajectory-specific metrics. 

Classification metrics 
DT-GPT generally performs better in clinically relevant classification metrics (Methods) than baselines, 
however the evaluation results suggest that further model optimization is necessary. Taking bleeding as an 
example, while DT-GPT is able to forecast hemoglobin values below the reference range (10 g/dL for 
women and 12 g/dL for men) with ROC AUC score of 0.793, it fails to predict the low values in 
hemoglobin (< 7.5 g/dL) associated with a bleeding with the corresponding ROC AUC score of 0.506. We 
note, however, that only 1.2% of all hemoglobin measurements in the NSCLC dataset are below 7.5 g/dL, 
and the best ROC AUC score achieved by the copy forward baseline is 0.528. Moreover, all models were 
unable to detect high values in leukocytes (> 11.0 109/L) associated with an infection, with the best 
performing baseline copy forward achieving ROC AUC of 0.616 and the second best model DT-GPT of 
0.578, respectively. 
 
On the other hand, DT-GPT is capable of capturing trends in white blood cell dynamics by having the 
highest ROC AUC values for increasing trend detection over the period of three weeks that can be 
associated with a progressive chronic inflammation or infection. We obtain ROC AUC of 0.684, 0.656 
and 0.683 for leukocytes, lymphocytes and neutrophils, respectively.  
 

https://app.readcube.com/library/e8f01678-52ca-457f-8467-03ed0b310d80/all?uuid=14075184186716438&item_ids=e8f01678-52ca-457f-8467-03ed0b310d80:72164b66-aa8f-4b26-a7a5-79e7c6d7f743


Finally, DT-GPT is able to detect values of lactate dehydrogenase (> 222 U/L) that are associated with 
disease progression of NSCLC patients4 with ROC AUC of 0.793, followed by the copy forward baseline 
with ROC AUC of 0.784. 
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Supplementary Table 18. Wilcoxon signed-rank test shows that DT-GPT 
significantly outperforms the second best performing model LightGBM 
on the NSCLC and ICU datasets. 
 

Dataset Test statistics  p-value Sample size 

NSCLC* 1,576,194 9.6162×10−17 2,773 

ICU* 2,885,993 0.00043 3,513 

ADNI 12,076 0.16358 228 

 
Supplementary Table 18: Comparison of DT-GPT against second best performing model across datasets. 
One-tailed Wilcoxon signed-rank test revealed that DT-GPT has significantly lower errors than the second-best 
performing model (LightGBM for the NSCLC and ICU datasets, TFT for the ADNI dataset) at the confidence level 
of . Asterisks indicate datasets with significant test results.  α = 0. 05



Supplementary Table 19. Wilcoxon signed-rank test shows that DT-GPT 
significantly outperforms the second best performing model on 9 out of 
12 variables from NSCLC, ICU and ADNI datasets. 
 
 

Dataset Variable Test 
statistics 

p-value Adjusted p-value Sample size 

NSCLC* Neutrophils* 630,730 2.99×10−11 3.58×10−10 1,754 

NSCLC* Leukocytes* 851,376 2.10×10−9 1.26×10−8 2,003 

ICU* O2 Saturation* 2,758,322 1.09×10−7 4.35×10−7 3,503 

NSCLC* Lymphocytes* 743,642 2.84×10−7 8.51×10−7 1,853 

NSCLC* Hemoglobin* 1,726,761 1.03×10−5 2.46×10−5 2,760 

ICU* Magnesium* 2,641,014 0.00036 0.00072 3,365 

NSCLC* Lymphocytes/ 
Leukocytes* 

873,201 
0.00447 0.76682 

1,936 

ADNI* CDRSB* 10,538 0.00583 0.00874 228 

NSCLC* Lactate 
dehydrogenase* 

41,096 
0.03593 0.0479 

427 

ICU Respiratory Rate 2,988,284 0.14584 0.17501 3,493 

ADNI ADAS11 12,872 0.42798 0.46688 228 

ADNI MMSE 13,993 0.82709 0.82709 228 

 
Supplementary Table 19:  Comparison of DT-GPT against second best performing model on clinical variable 
level. One-tailed Wilcoxon signed-rank test revealed that DT-GPT significantly outperformed the second-best 
performing model (LightGBM for the NSCLC and ICU datasets, TFT for the ADNI dataset) at the confidence level 
of  for 9 out of 12 variables. Asterisks indicate variables with significant test results.  α = 0. 05



Supplementary Figure 1. DT-GPT significantly outperforms the second 
best performing model on 9 out of 12 variables from the NSCLC, ICU 
and ADNI datasets. 
 

 
 
Supplementary Figure 1:  DT-GPT significantly outperforms the second best performing model on 9 out of 12 
variables from the NSCLC, ICU and ADNI datasets. P-values for one-tailed Wilcoxon signed-rank test with 
Benjamini-Hochberg correction (false discovery rate (FDR) of 5%) are reported, whereby DT-GPT has significantly 
systematically lower errors than LightGBM on all 6 variables for the NSCLC dataset, on 2 out of 3 variables for the 
ICU dataset and significantly lower errors than TFT on 1 out of 3 variables for the ADNI dataset. We note that the 
ADNI dataset with 1,140 patients only is the smallest dataset and benefits less from the foundation model strengths 
of DT-GPT. 

 



Supplementary Figure 2. Bootstrapping showed significant relative 
MAE improvement of DT-GPT over the second best performing model 
for NSCLC and ICU datasets. 
 

 
Supplementary Figure 2: Bootstrapping showed significant relative MAE improvement of DT-GPT over the 
second best performing model for NSCLC and ICU datasets. To analyze the robustness of the improvements of 
DT-GPT over the second best model (2nd best) for all three datasets, we apply paired bootstrapping on the 
respective test sets. The overall frequency of the paired MAE for the NSCLC, ICU and Alzheimer's disease (ADNI) 
datasets are depicted in a), b) and c), respectively. In d), e) and f), the histogram of MAE differences of DT-GPT to 
the second best performing model (Δ MAE) are shown. Finally, in g), h) and i), relative MAE improvement is 
evaluated from DT-GPT to the second best performing model. 



Supplementary Figure 3. DT-GPT achieved high inter-variable 
correlations. 

 
Supplementary Figure 3: DT-GPT achieves high inter-variable correlations. a) Inter-variable correlations of 
non-small cell lung cancer (NSCLC) target variables for DT-GPT and second best baseline LightGBM. The closer 
the points are to the dotted diagonal, the closer they are to the observed inter-variable correlation. Each dot 
represents one variable pair, e.g. neutrophils and lymphocytes, with the x value representing the true correlation, and 
the y value the correlation in the predictions. b) Inter-variable correlations of intensity care unit (ICU) target 
variables for DT-GPT and second best baseline LightGBM. c) Inter-variable correlations of Alzheimer’s disease 
target variables for DT-GPT and second best baseline TFT.  



Supplementary Table 20. Ablation study using 1140 patients on NSCLC 
and ICU datasets.  
 

Scaled 
Mean 
Absolute 
Error 

 
 
 
Model 

Non-Small Cell Lung Cancer (NSCLC) - 
1140 patient train subset/full test set  

Intensive Care 
Unit - 1140 train 
subset/full test 

set 

 
Alzheimer’s 

Disease 
(reference) 

Hemo- 
globin 

Leuko- 
cytes 

Lympho- 
cytes/ 

Leuko- 
cytes 

Lympho- 
cytes 

Neutro-
phils 

Lactate 
Dehydro- 

genase 
 Magne- 

sium 
Resp. 
Rate 

Oxygen 
Saturation  MMSE CDSRB ADAS11 

Channel- 
Independent 
Input 

Copy 
Forward 0.698 0.969 0.731 0.569 0.974 0.433  0.681 0.769 0.746  0.654 0.539 0.519 

PatchTST 0.643 0.885 0.697 0.531 0.862 0.435  0.672 0.644 0.661  0.654 0.540 0.506 

Time-LLM 0.658 0.869 0.687 0.542 0.848 0.463  0.655 0.660 0.679  0.654 0.540 0.506 

 LLMTime 0.736 0.923 0.725 0.601 0.900 0.437  0.759 0.686 0.688  0.654 0.539 0.503 

 BioMistral-
7B 0.984 1.097 0.756 0.997 1.953 0.600  0.790 0.770 0.945  2.064 0.883 0.728 

 Qwen3-32B 0.670 0.942 0.736 0.573 0.937 0.453  0.709 0.720 0.791  0.686 0.546 0.555 

 TCN 0.693 0.893 0.776 0.649 0.866 0.705  0.660 0.753 0.758  Not Applicable 

Channel- 
Dependent 
Input 

Linear 
Regression 0.582 0.893 0.738 0.629 0.887 0.493  1.440 1.548 1.627  0.551 0.449 0.457 

RNN 0.557 0.842 0.690 0.552 0.820 0.474  0.578 0.694 0.688  0.545 0.463 0.465 

Transformer 0.577 0.873 0.761 0.614 0.828 0.599  0.680 0.722 0.757  0.553 0.485 0.481 

LSTM 0.551 0.890 0.681 0.554 0.855 0.465  0.596 0.659 0.663  0.545 0.468 0.475 

Temporal 
Fusion 
Transformer 

0.557 0.856 0.740 0.554 0.821 0.694  0.675 0.725 0.720  0.520 0.451 0.466 

TiDE 0.536 0.819 0.712 0.542 0.829 0.511  0.624 0.686 0.697  0.578 0.498 0.506 

LightGBM 0.495 0.801 0.677 0.509 0.801 0.487  0.581 0.683 0.683  0.540 0.455 0.462 

DT-GPT 
(ours) 0.490 0.747 0.684 0.476 0.724 0.531  0.563 0.667 0.682  0.535 0.417 0.458 

 

Supplementary Table 20: Comparison of models using a 1140 randomly subsampled training set and 
evaluated on the standard, full test set. To compare the effect of dataset size on model performance consistently 
across datasets, we randomly subsample 1,140 patients from the NSCLC and ICU training datasets, stratified by age 
and gender. We then process the data as described previously, train the models and evaluate them on the full dataset. 
Looking at the performance, we see it dropping across all datasets, as expected, with DT-GPT outperforming the 

baselines in six out of 12 variables.  



Supplementary Table 21. The percentage of trajectories explained by the 
most important variables and patient baseline characteristics for the 
NSCLC forecasting. 
 

Variable % of predicted trajectories it explains according 
to DT-GPT 

therapy 87.0 

ECOG 55.6 

leukocytes 44.5 

age 36.2 

alanine aminotransferase 26.0 

hemoglobin 21.8 

neutrophils 21.3 

lymphocytes/100 leukocytes 21.0 

body weight and body height 19.4 

body height 19.4 

albumin 16.5 

gender 15.8 

lymphocytes 15.8 

lactate dehydrogenase 2 12.3 

alkaline phosphatase 9.5 

ferritin 7.2 

 
Supplementary Table 18: The percentage of trajectories explained by the most important variables and 
patient baseline characteristics for the NSCLC forecasting. 
 

 



Supplementary Figure 4. Influence of the therapy type on the predicted 
NSCLC trajectories. 
 
 

 
 
Supplementary Figure 4: Influence of the therapy type on the predicted NSCLC trajectories. The most 
important variable, therapy particularly influences the predicted dynamics of neutrophils, hemoglobin, leukocytes 
and lymphocytes to leukocytes ratio. Here, lines represent average trajectories with 95% confidence intervals 
calculated through bootstrapping.  
 

 



Supplementary Figure 5. Influence of the baseline ECOG values on the 
predicted NSCLC trajectories. 
 

 
Supplementary Figure 5: Influence of the baseline ECOG values on the predicted NSCLC trajectories. The 
second most important variable, ECOG, particularly influences the predicted dynamics of hemoglobin and 
lymphocytes to leukocytes ratio. Here, lines represent average trajectories with 95% confidence intervals calculated 
through bootstrapping.  

 



Supplementary Figure 6. Influence of the age on the predicted NSCLC 
trajectories. 
 

 
Supplementary Figure 6: Influence of the age on the predicted NSCLC trajectories. The third most important 
variable, age, particularly influences the predicted dynamics of lactate dehydrogenase (LDH), whereby younger 
patients (less than 50 years old) have on average higher LDH values. Here, lines represent average trajectories with 
95% confidence intervals calculated through bootstrapping.  

 



Supplementary Figure 7. Influence of the baseline leukocytes count on 
the predicted NSCLC trajectories. 
 

 
Supplementary Figure 7: Influence of the baseline leukocytes count on the predicted NSCLC trajectories. The 
fourth most important variable, leukocytes, particularly influences the predicted dynamics of neutrophils, 
hemoglobin, leukocytes and lymphocytes to leukocytes ratio. Here, lines represent average trajectories with 95% 
confidence intervals calculated through bootstrapping.  
 

 



Supplementary Figure 8. Influence of the baseline alanine 
aminotransferase (ALT) values on the predicted NSCLC trajectories. 

 

 
Supplementary Figure 8: Influence of the baseline alanine aminotransferase (ALT) values on the predicted 
NSCLC trajectories. The fifth most important variable, alanine aminotransferase (ALT), particularly influences the 
predicted dynamics of neutrophils, hemoglobin. Here, lines represent average trajectories with 95% confidence 
intervals calculated through bootstrapping.  

 



Supplementary Figure 9. DT-GTP considers different variables when 
predicting low, middle and high level hemoglobin trajectories. 
 

 
 
Supplementary Figure 9: DT-GPT considers different variables when predicting low, middle and high level 
hemoglobin trajectories. Complex and non-trivial explanatory abilities of DT-GPT are highlighted in an example 
of hemoglobin trajectories. A set of obtained important variables for predicted hemoglobin trajectories is not 
constant across all trajectories, but is correlated with the predicted values. We performed quantile-based clustering 
of predicted hemoglobin trajectories by their mean values over time and assign each trajectory to the low level group 
(mean value less than 9.76 g/dL; 0.15 quantile), to the high level group (mean value greater than 13.31 g/dL; 0.85 
quantile) and to the middle level group (mean value between 9.76 and 13.31 g/dL). For each of the groups we 
consider 10 most important variables separately and determine their intersection to define a final set of 16 important 
variables. The fractions of important variables explaining hemoglobin trajectories (e.g., relative frequency of a 
variable to be in the set of important variables as outputted by DT-GPT for the trajectories in each group) are 
different for each of the hemoglobin group. While therapy, age and ECOG are present in each of the groups, the 
ferritin and “cancer is advanced” variables have a slightly higher prevalence in the lower group whilst gender is 
more frequent for the high hemoglobin level group. Chi-squared test for independence rejected the null hypothesis 
(p-value < 2.2e-16) indicating that DT-GPT might put more weight on different variables when predicting 
hemoglobin trajectories of different levels. However, our analysis only reveals correlations between hemoglobin 
level and important variables, thus causal claims are out of scope. (Abbreviations: ECOG - Eastern Cooperative 
Oncology Group performance status scale, LDH - Lactate dehydrogenase, ALT - Alanine aminotransferase, ALP - 
Alkaline phosphatase , AST - Aspartate aminotransferase).  



Supplementary Note 3. Analysis of prediction reasoning. 
We visualize and investigate the influence of the five most important variables, therapy (Supplementary 
Figure 3), ECOG (Supplementary Figure 4), age (Supplementary Figure 5), leukocytes 
(Supplementary Figure 6) and alanine aminotransferase (Supplementary Figure 7) on the dynamics of 
predicted NSCLC output variables. While the variables were marked as important for the prediction of six 
output variables simultaneously, we note that most of them particularly influence dynamics in only a 
subset of output variables. For instance, therapy is correlated with neutrophils, hemoglobin and 
leukocytes trajectories (Supplementary Figure 3), ECOG with hemoglobin and lymphocytes to 
leukocytes ratio trajectories (Supplementary Figure 4), and age with lactate dehydrogenase 
(Supplementary Figure 5), respectively.  
 
For the therapy, we consider 10 most frequent therapies and group them into therapy group as follows: 
carboplatin & paclitaxel, carboplatin & pemetrexed and pemetrexed for the chemotherapy group (450 
patients), pembrolizumab, nivolumab and durvalumab for the immunotherapy group (598 patients), 
carboplatin & pembrolizumab & pemetrexed, docetaxel & ramucirumab, pembrolizumab & pemetrexed 
for the combination therapy group (434 patients) and osimertinib for the target therapy group (112 
patients), respectively. For the ECOG variable, we consider values of 0 (765 patients), 1 (1299 patients), 2 
(384 patients) and 3 (85 patients). For the age, we define the following groups based on the age 
histogram: younger than 50 years old (124 patients), between 50 and 60 years old (474 patients), between 
60 and 70 years old (911 patients), between 70 and 80 years old (981 patients) and older than 80 years old 
(261 patients). For leukocytes, we consider the last observed value within 13 weeks of medical history 
prior to the start of the treatment as a baseline value, and based on the histogram of leukocytes baseline 
values combined with the reference intervals for the leukocytes define four groups: less than 5 109/L (315 
patients), between 5 and 10 109/L (1093 patients), between 10 and 20 109/L (488 patients) and more than 
20 109/L (66 patients). Similarly, for the alanine aminotransferase (ALT) we consider the last observed 
value within 13 weeks of medical history prior to the start of the treatment as a baseline value, and based 
on the histogram of ALT baseline values combined with the reference intervals for the ALT define four 
groups: less than 10 U/L (365 patients), between 10 and 20 U/L (1090 patients), between 20 and 30 U/L 
(602 patients), between 30 and 40 U/L (249 patients) and more than 40 U/L (246 patients). For each of the 
most important variables, only predicted trajectories of patients with available variable values and ground 
truth for output variables were analyzed.  
 
Since we ask DT-GPT to explain all output variables simultaneously, the observed important variables do 
not lead to a “perfect” separation of predicted trajectories conditioned on the variable value. For instance, 
if we perform forecasting of hemoglobin trajectories only, further variables are said to be important by 
DT-GPT (Supplementary Figure 8). Furthermore, the choice of groups in the following analysis can be 
made arbitrary and might influence the results. A better grouping approach would include other variables 
such as age, gender or other demographics or laboratory test data. Specifically, hemoglobin and ALT have 
different reference intervals for males and females. Such interactions were outside of the scope of this 
analysis. Finally, we note that we can establish only the correlation between obtained important variables 
and predicted trajectories; the causal relationships are more complex and are subject to further 
investigation. 



Supplementary Table 22. Zero-shot performance results.  
 

Variable LOINC MAE 
LightGBM 

MAE 
DT-GPT 

ferritin 2276-4 0.07 0.03 

lactate dehydrogenase 14804-9 0.55 0.14 

erythrocytes 789-8 0.15 0.27 

carcinoembryonic ag 2039-6 0.29 0.29 

erythrocytes 2 26453-1 0.26 0.37 

neutrophils.segmented 30451-9 0.71 0.45 

lymphocytes 3 731-0 0.48 0.47 

neutrophils.band form 26507-4 0.65 0.55 

neutrophils 2 751-8 0.70 0.58 

lymphocytes/100 leukocytes 736-9 0.66 0.60 

lymphocytes 732-8 0.68 0.60 

granulocytes 30394-1 0.78 0.67 

leukocytes 6690-2 0.71 0.69 

lymphocytes/100 leukocytes 2 737-7 0.75 0.70 

bilirubin.non-glucuronidated 1971-1 0.57 0.71 

monocytes 26484-6 0.72 0.71 

granulocytes 2 20482-6 0.76 0.72 

alkaline phosphatase 6768-6 0.46 0.78 



Variable LOINC MAE 
LightGBM 

MAE 
DT-GPT 

coagulation tissue factor induced 5902-2 0.58 0.81 

urea nitrogen 3094-0 0.57 0.84 

glomerular filtration rate/1.73 sq m.predicted 2 69405-9 0.40 0.88 

protein 2888-6 0.60 0.93 

monocytes/100 leukocytes 2 5905-5 0.78 0.93 

platelets 2 777-3 0.64 0.97 

glomerular filtration rate/1.73 sq m.predicted.black 48643-1 0.39 1.05 

platelets 26515-7 0.64 1.07 

hematocrit 2 20570-8 0.49 1.10 

glomerular filtration rate/1.73 sq m.predicted.non black 48642-3 0.39 1.12 

calcium 17861-6 0.64 1.14 

creatinine renal clearance.predicted 35591-7 0.33 1.16 

potassium 2 6298-4 0.71 1.17 

coagulation tissue factor induced.inr 38875-1 0.33 1.27 

urate 3084-1 0.51 1.28 

bilirubin.glucuronidated+bilirubin.albumin bound 1968-7 0.60 1.32 

monocytes 2 742-7 0.75 1.34 

monocytes 3 743-5 0.81 1.37 



Variable LOINC MAE 
LightGBM 

MAE 
DT-GPT 

eosinophils 2 26449-9 0.46 1.38 

alanine aminotransferase 1742-6 0.64 1.38 

glucose 2345-7 0.66 1.38 

monocytes/100 leukocytes 26485-3 0.76 1.41 

sodium 2 2947-0 0.67 1.57 

coagulation surface induced 14979-9 0.80 1.57 

monocytes/100 leukocytes 3 744-3 0.71 1.64 

eosinophils/100 leukocytes 2 714-6 0.65 1.65 

hematocrit 4544-3 0.50 1.76 

granulocytes/100 leukocytes 2 19023-1 0.72 1.83 

carbon dioxide 2028-9 0.61 1.87 

glomerular filtration rate/1.73 sq m.predicted 98979-8 0.57 1.88 

bilirubin 1975-2 0.57 1.99 

protein 2 2885-2 0.56 2.00 

albumin 1751-7 0.53 2.02 

potassium 2823-3 0.70 2.24 

sodium 2951-2 0.65 2.47 

creatinine 2 38483-4 0.40 2.52 

granulocytes/100 leukocytes 30395-8 0.71 2.59 

aspartate aminotransferase 1920-8 0.60 2.6 



Variable LOINC MAE 
LightGBM 

MAE 
DT-GPT 

chloride 2075-0 0.63 2.69 

eosinophils/100 leukocytes 26450-7 0.57 2.82 

creatinine 2160-0 0.37 2.84 

magnesium 19123-9 0.60 2.96 

neutrophils/100 leukocytes 26511-6 0.71 3.04 

basophils 704-7 0.60 3.06 

neutrophils/100 leukocytes 2 770-8 0.73 3.09 

eosinophils 712-0 0.54 3.12 

basophils/100 leukocytes 3 706-2 0.69 3.16 

basophils/100 leukocytes 707-0 0.73 3.21 

basophils 2 26444-0 0.64 3.34 

basophils/100 leukocytes 2 30180-4 0.70 3.35 

gamma glutamyl transferase 2324-2 0.37 3.57 

 
Supplementary Table 22:  Zero-shot performance results.  



Supplementary Figure 10: Correlations between target and non-target 
variables. 

 
 
Supplementary Figure 10. Non-target variables, on which DT-GPT outperforms LightGBM, mostly exhibit 
higher correlations with target variables than other zero-shot variables. 11 of 13 non-target variables with better 
(or equal, including CEA) DT-GPT performance have high Spearman correlation coefficient values  (| ) ρ| > 0. 7
with at least one of the target variables.  Only carcinoembryonic ag, bilirubin.non-glucuronidated and ferritin have 
low Spearman correlation coefficient values ( ) with all of the target variables. Correlations between |ρ| <  0. 33
variables were calculated on the training set. LOINC codes uniquely identifying each non-target variable can be 
found in Supplementary Table 22.  



Supplementary Figure 11. Analysis of feature importance for relevant 
zero shot variables. 

 
 
Supplementary Figure 11: Interpretability approach applied to the non-target variables reveals general and 
latent clinical knowledge. (a)-(m): five most important features and percentage of predicted trajectories (% of 
trajectories) explained by them for each non-target variable on which DT-GPT outperforms LightGBM. While 
ECOG is selected as an important feature for almost all variables, most variables include key/target variables that are 
strongly correlated with variables in the list of important features (e.g., neutrophils 2 and neutrophils have Spearman 
correlation coefficient of 0.866). LOINC codes uniquely identifying each non-target variable can be found in 
Supplementary Table 22. 

 



Supplementary Table 23. Zero shot latent knowledge overview. 
 

Zero-shot Variable Key Model 

-Identified 
Features in 
Patient’s 
History 

Direct Clinical Interpretation Hypotheses of Latent Knowledge 
(Second/Third Order Insight) 

Refs. 

Ferritin ECOG, ALT, 
Hemoglobin, 
LDH, 
Albumin 

Ferritin is an acute phase reactant 
whose levels rise with 
inflammation, tumor burden, and 
cell turnover. It is a prognostic 
marker in NSCLC, correlating 
with poor patient condition 
(ECOG), anemia of chronic 
inflammation (low Hemoglobin), 
liver stress (ALT), and cell death 
(LDH).  

The model has potentially learnt the 
components of a composite 
biomarker: The ferritin-to-hemoglobin 
ratio, which captures the interplay 
between inflammation and anemia, is 
a validated independent prognostic 
factor in advanced NSCLC. 

5–8 

Carcinoembryonic 
Ag (CEA) 

ECOG, 
LDH, 
Hemoglobin, 
Leukocytes, 
CEA 

CEA is a tumor marker associated 
with high tumor burden. Elevated 
CEA correlates with poor 
performance status (ECOG), 
systemic inflammation 
(Leukocytes), high cell turnover 
(LDH) and anemia (low 
Hemoglobin). 

The model has potentially learnt the 
prognostic value of CEA and 
Hemoglobin, reflecting a holistic 
"Advanced Disease Syndrome." The 
prognostic significance of an elevated 
CEA is possibly modulated by the 
patient's hematological status 
(anemia). However, the combined 
prognostic factor is not yet robustly 
validated. 

9 

Bilirubin 
(non-glucuronidated) 

ECOG, 
Albumin, 
ALT, 
Hemoglobin, 
Durvalumab 

Unconjugated bilirubin is a 
product of hemoglobin 
breakdown, is transported in the 
blood bound to albumin, and is 
conjugated by the liver (function 
assessed by ALT). Its level 
reflects the balance of production, 
transport, and hepatic clearance. 

The model has potentially learnt part 
of the components of the ALBI 
(Albumin-Bilirubin) score, an 
emerging prognostic marker for 
survival in NSCLC patients receiving 
immunotherapy, such as possibly 
durvalumab. Note that, in the ALBI 
score, total bilirubin is used. 

10–12 

 
Supplementary Table 23: Analysis of the most important features of the zero-shot model and highlighting the 
model’s latent potentially learnt clinical knowledge. We exemplify the potentially learnt latent clinical knowledge 
by analyzing three non-trivially zero-shot variables for which DT-GPT outperformed, or performed on par with, 

https://app.readcube.com/library/e8f01678-52ca-457f-8467-03ed0b310d80/all?uuid=8711352634205184&item_ids=e8f01678-52ca-457f-8467-03ed0b310d80:8b6cbbe7-94dc-4285-aae2-8ed7a5f92218,4759327b-43fe-4bca-8cbe-42118805b4d9:eba81360-f938-4b7c-b1c1-a95c6a09a2e2,e8f01678-52ca-457f-8467-03ed0b310d80:3c3d3c95-8104-4009-9999-72af072b3f17,e8f01678-52ca-457f-8467-03ed0b310d80:59e083c0-362b-4f49-87c4-79c69f437758
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LightGBM. To find non-trivial variables, we first ranked variables that had the same or lower MAE than LightGBM 
by their maximum absolute Spearman correlation to the trained variables, and selected the lowest three. By selecting 
the lowest, we focus on variables that are not spuriously correlated with those that the model learnt, but rather those 
for which the model could have leveraged its wider pre-trained and fine-tuned knowledge. In this table, we briefly 
explore related literature between the three variables with the lowest correlation and the most important features. 
The results highlight the potential of latent clinical knowledge captured by the model but further investigation is 
required to validate it. The ALBI Score was reported as a prognostic factor in NSCLC patients on immunotherapy. 
Additionally, the CEA analysis shows the potential of a relationship between CEA and hemoglobin. Finally, the 
ferritin analysis finds that the model is possibly considering the potential prognostic factor ferritin-to-hemoglobin 
ratio.  



Supplementary Note 4. Forecasting prompt examples. 
We structure the template in four components:  

1.​ The patient’s history is noted down chronologically, using relative dating to prevent overfitting on 
time or date. For each patient visit and for each observed value, we note down the variable’s name 
and value, whilst omitting any missing variables.  

2.​ Next, we include the patient's baseline data, such as age and cancer stage 
3.​ Since we do not impute target values, we include information about which variables should be in 

the output at which future time points.  
4.​ Finally, we add a short prompt. 

 
The target variables are also converted based on templates, containing only the respective target values. 
To reduce the amount of tokens required, the output is formatted so the target variable is provided 
followed by the list of values corresponding to the days that we want to output. 
 
Note that for the MIMIC dataset, for each variable, if the value was observed in the patient’s history, it 
will be forward propagated, ensuring that we have the information even if the context length is normally 
not long enough. Here, we present synthetic examples of both the manual template and JSON input as 
well as output. 
 

Manual Template Input (Synthetic Patient) 

First, patient chronological patient history up until the current day. 
Patient visits for the first time, with the following values: advanced 
cancer diagnosis is non small cell NSCLC, initial cancer diagnosis is non 
small cell NSCLC. 
14 days after previous visit, patient visits again, with the following 
values: ECOG is 0, alanine aminotransferase is 21, albumin is 42, calcium is 
9.4, aspartate aminotransferase is 29, bilirubin is 0.5, carbon dioxide is 
24, carcinoembryonic ag is 78.2, hematocrit 2 is 45.5, creatinine is 0.8, 
glucose is 123, lactate dehydrogenase 2 is 196, basophils 2 is 0, 
eosinophils 2 is 0.2, eosinophils/100 leukocytes is 3.6, erythrocytes 2 is 
4.6, leukocytes 2 is 6.3, lymphocytes 2 is 2.5, lymphocytes/100 leukocytes 3 
is 39.9, monocytes is 0.5, monocytes/100 leukocytes is 8.1, neutrophils is 
3, platelets is 231, protein 2 is 68, basophils/100 leukocytes 2 is 0.7, 
granulocytes is 3, granulocytes/100 leukocytes is 47.7, urea nitrogen is 15, 
glomerular filtration rate/1.73 sq m.predicted.non black is 103, glomerular 
filtration rate/1.73 sq m.predicted.black is 125, alkaline phosphatase is 
49, hemoglobin is 15.5, body height is 191.8, body weight is 116.4. 
 
… 
 
14 days after previous visit, patient visits again, with the following 
values: Dehydration is diagnosed, Adverse effect of antineoplastic and 
immunosuppressive drugs, initial encounter is diagnosed, cisplatin is 60, 
pemetrexed is 1225, ECOG is 0, alanine aminotransferase is 21, albumin is 



41, … glomerular filtration rate/1.73 sq m.predicted.non black is 80, 
glomerular filtration rate/1.73 sq m.predicted.black is 109, alkaline 
phosphatase is 44, hemoglobin is 14.5, body height is 191.8, body weight is 
117.8. 
Next, the baseline data for the patient: birth year is 1948, gender is M, 
ses index is 2, is cancer advanced is True, histology is Non-squamous cell 
carcinoma, cancer stage is Stage IIIB, smoking status is No history of 
smoking, ethnicity is Not Hispanic or Latino, Current line of therapy is 
Cisplatin,Pemetrexed, Current line number is 1. 
Finally, the variables which you should predict, and for which days in the 
future from the current day: {"hemoglobin": [14, 21, 28, 42, 49, 56, 63, 70, 
77], "leukocytes 2": [14, 21, 28, 42, 49, 56, 63, 70, 77], "lymphocytes 2": 
[14, 21, 28, 42, 49, 56, 63, 70, 77], "lymphocytes/100 leukocytes 3": [14, 
21, 28, 42, 49, 56, 63, 70, 77], "neutrophils": [14, 21, 28, 42, 49, 56, 63, 
70, 77]} 
Now, your task is as follows: Given the non small cell NSCLC patient's 
history, please predict for this patient the previously noted down variables 
and future days, in the same JSON format. 

JSON Input (Synthetic Patient) 

{"Patient history, with each visit in chronological order and relative days 
to previous visit": {"0 days": {"initial cancer diagnosis": "non small cell 
NSCLC"}, "28 days": {"body height": "172.2", "body weight": "64.4", "oxygen 
saturation": "98"}, "126 days": {"creatinine": "1.2"}, "14 days": {"body 
weight": "70.4", "oxygen saturation": "99"}, "14 days": {"body height": 
"172.2", "body weight": "64.7", "oxygen saturation": "95"}, "70 days": 
{"creatinine": "1.5"}, "14 days": {"body height": "170.2", "body weight": 
"68.2", "oxygen saturation": "95"}, "21 days": {"body weight": "69.2", 
"oxygen saturation": "98"}, 
 
… 
 
 "14 days": {"body weight": "64.9"}, "7 days": {"Nausea with vomiting, 
unspecified": "diagnosed", "carboplatin": "140", "paclitaxel": "88", 
"alanine aminotransferase": "13", "albumin": "40", "calcium": "8.8", 
"aspartate aminotransferase": "29", "bilirubin": "0.4", "carbon dioxide": 
"20", … "neutrophils": "5.9", "neutrophils/100 leukocytes": "79", 
"platelets": "176", "potassium": "4.6", "protein 2": "69", "sodium": "136", 
"basophils/100 leukocytes 2": "0.1", "urea nitrogen": "15", "glomerular 
filtration rate/1.73 sq m.predicted.non black": "63", "alkaline 
phosphatase": "119", "hemoglobin": "16.4"}}, "Baseline data": {"birth year": 
1941, "gender": "M", "ses index": "4", "is cancer advanced": true, 
"histology": "Non-squamous cell carcinoma", "cancer stage": "Stage IA2", 
"smoking status": "History of smoking", "ethnicity": "Not Hispanic or 
Latino", "line of therapy": "Carboplatin,Paclitaxel", "line number": 1}, 
"Output variables": {"Variables to predict for respective days": 
{"hemoglobin": [7, 14, 21, 28, 35, 42, 49, 56], "lactate dehydrogenase 2": 



[56], "leukocytes 2": [7, 14, 21, 28, 35, 42, 49, 56], "lymphocytes 2": [7, 
14, 21, 28, 35, 42, 49, 56], "lymphocytes/100 leukocytes 3": [7, 14, 21, 28, 
35, 42, 49, 56], "neutrophils": [7, 14, 21, 28, 35, 42, 49, 56]}}, "Prompt": 
"Given the non small cell NSCLC patient's history, please predict for this 
patient the previously noted down variables and future days, in the same 
JSON format."} 

Manual Template Output (Synthetic Patient) 

hemoglobin starts at 15.5 decreases to 14.4 increases to 14.5 decreases to 
13.6 increases to 14.1 increases to 14.8 decreases to 14.4 decreases to 
13.8. 
lactate dehydrogenase 2 starts at 232. 
leukocytes 2 starts at 6 increases to 7.7 decreases to 3.1 decreases to 2.3 
increases to 3.1 increases to 6 decreases to 3.6 increases to 3.7. 
lymphocytes 2 starts at 0.6 increases to 0.9 decreases to 0.4 decreases to 
0.3 stays at 0.3 increases to 0.5 decreases to 0.4 stays at 0.4. 
lymphocytes/100 leukocytes 3 starts at 9.5 increases to 12.3 increases to 
13.1 stays at 13.1 decreases to 11.1 decreases to 8.1 increases to 10.2 
increases to 12.1. 
neutrophils starts at 5.1 increases to 6.2 decreases to 2.5 decreases to 1.8 
stays at 1.8 increases to 4.7 decreases to 2.9 decreases to 2.6. 

JSON Output (Synthetic Patient) 

{"hemoglobin": ["13.9", "12.8", "13.4", "13.7", "12.9", "13.1", "12.9", 
"12.9", "12.8"], "leukocytes 2": ["2.5", "5.2", "2.3", "5", "1.8", "5.2", 
"4.3", "1.7", "2.8"], "lymphocytes 2": ["1.2", "1.5", "0.8", "1.4", "0.6", 
"0.9", "1", "0.7", "0.8"], "lymphocytes/100 leukocytes 3": ["47.7", "28.8", 
"36", "27.7", "32.4", "17.1", "23.1", "39.4", "28.9"], "neutrophils": ["1", 
"3.3", "1.2", "2.9", "0.9", "3.6", "2.7", "0.6", "1.6"]} 

 



Supplementary Figure 12. DT-GPT performance with respect to different 
encoding methods. 

 
Supplementary Figure 12: DT-GPT performance with respect to different encoding methods. The performance 
is measured by scaled mean absolute error (MAE). Here, abbreviations are as follows: TI - “Text Input”, TO - “Text 
Output”, JI - “JSON Input” and JO - “JSON Output”. DT-GPT is stable with respect to different data encoding 
strategies though Text In, JSON Out (TI/JO) and JSON In, TEXT Out (JI/TO) perform best, with TI/JO being 
marginally more efficient. Specifically Text In, Text Out (TI/TO) achieves an average MAE of 0.568 ± 0.05, JSON 
In, JSON Out (JI/JO) reaches 0.556 ± 0.04, JSON In, JI/TO reaches 0.554 ± 0.04, TI/JO attains 0.554 ± 0.04. Error 
bars refer to the standard error of the encoding experiment results aggregated across all variables.  



 

Supplementary Note 5. Hyperparameters for model fine-tuning and 
inference time. 
We initially experimented with applying the loss to the entire sequence, which would also allow 
generating synthetic patients, however the models hallucinated to an unusable point. Instead we employed 
a masking such that the gradient is only computed for the tokens that need to be forecast. For the training, 
we set the learning rate to 10-5, a warm up ratio of 0.1, batch size of 1, employ a cosine learning rate 
scheduler, with a weight decay 0.1 and the optimizer being AdamW. During training, we limit the input 
sequence length to 3,400 tokens due to memory constraints. The optimal epoch was identified based on 
the loss on the validation set, with the training taking around 20 hours on a single NVIDIA A100 80GB 
GPU. For all evaluations, we run the model 30 times on each patient sample, and a maximum final 
sequence length of 4,000 tokens. We used nucleus sampling with top p set to 0.9 and temperature set to 
1.0. 
 
For the chatbot prediction explainability and zero-shot non-target variable forecasting, we used the same 
nucleus sampling parameters (top p = 0.9 and temperature = 1). The maximum sequence length was set to 
200 tokens for the explainability task and 120 tokens for the zero-shot forecasting task, respectively. The 
numbers were selected to cover the desired output sequence length and prevent hallucinations. For the 
zero-shot forecasting, we run DT-GPT 10 times on each patient sample and use mean aggregation to 
obtain the final prediction. 

 



Supplementary Note 6. Baseline details. 
The LightGBM, TFT, TCN, RNN, LSTM, Transformer and TiDE baseline models are implemented in the 
Darts library and the default hyperparameters were used. For the input time horizon, both 35 and 91 days 
were explored for the Flatiron Health NSCLC dataset, whilst the full 24 hours was used for the MIMIC 
dataset, and the baseline measurements in the Alzheimer’s disease dataset. Since the models cannot 
natively deal with missing data, we employ linear interpolation with forward and backward passes on the 
input data, and linear interpolation only with forward pass on the target data. We apply the filtering based 
on three standard deviations, as with DT-GPT, and then apply standardization or one-hot encoding. To 
ensure fairness between the baseline models and DT-GPT, we also provide the baselines with an indicator 
variable, with 1 for every future date that will be measured and 0 for those that are imputed. Using TCN is 
not feasible for the Alzheimer’s disease dataset, since it requires a longer input sequence than output in 
the Darts implementation. 
 
PatchTST and Time-LLM are implemented in the NeuralForecast library. For Time-LLM, the Llama2-7B 
model is used as the base LLM, and both models were explored on 91-day lookback for NSCLC, ensuring 
a comprehensive patient view. All other parameters are set as default, and are applied the same procedure 
as the Darts models, including imputation. 
 
For LLMTime, following the original paper, Llama2-70B is used as the prediction model. Since the 
model can deal with missing data, no imputation is performed. All further aspects are implemented as in 
the original implementation. 

 



Supplementary Note 7. Chatbot  and zero-shot prompt examples. 
A two-step chatbot interaction example for the prediction explainability task is provided below. 
 

Original input prompt (Synthetic Patient) 

First, patient chronological patient history up until the current day. 
Patient visits for the first time, with the following values: metastasis 
Adrenal is Adrenal, metastasis Bone is Bone, metastasis Liver is Liver. 
21 days after previous visit, patient visits again, with the following 
values: advanced cancer diagnosis is non small cell NSCLC, initial cancer 
diagnosis is non small cell NSCLC. 
14 days after previous visit, patient visits again, with the following 
values: Type 2 diabetes mellitus without complications is diagnosed, 
Hyperlipidemia, unspecified is diagnosed. 
 
… 
 
14 days after previous visit, patient visits again, with the following 
values: carboplatin is 900, paclitaxel protein-bound is 255, ECOG is 1, 
alanine aminotransferase is 15, …, hemoglobin is 13.1, body height is 160.2, 
body weight is 91.4, oxygen saturation is 97. 
Next, the baseline data for the patient: birth year is 1954, gender is M, 
ses index is 5 - Highest SES, is cancer advanced is True, histology is 
Non-squamous cell carcinoma, cancer stage is Stage IVB, smoking status is 
History of smoking, ethnicity is Not Hispanic or Latino, Current line of 
therapy is Carboplatin,Paclitaxel Protein-Bound, Current line number is 1. 
 
Finally, the variables which you should predict, and for which days in the 
future from the current day: {hemoglobin: [21, 35], leukocytes 2: [21, 35], 
lymphocytes 2: [21, 35], lymphocytes/100 leukocytes 3: [21, 35], 
neutrophils: [21, 35]} 
Now, your task is as follows: Given the non small cell NSCLC patient's 
history, please predict for this patient the previously noted down variables 
and future days, in the same JSON format. <patient_prediction> 

DT-GPT forecasting results response  

{"hemoglobin": ["11", "9.8"], "leukocytes 2": ["6.4", "4.7"], "lymphocytes 
2": ["0.7", "0.4"], "lymphocytes/100 leukocytes 3": ["11.5", "8.8"], 
"neutrophils": ["5.4", "4.1"]} 

Prediction explainability prompt 



What are the five most important variables or patient's baseline 
characteristics for your prediction? 

DT-GPT explainability response  

The five most important variables or patient's baseline characteristics for 
my prediction are: 1. ECOG 2. alanine aminotransferase 3. albumin 4. 
hemoglobin 5. leukocytes 2. 

 
A two-step chatbot interaction example for the zero-shot forecasting task is provided below. 
 

Original input prompt (Synthetic Patient) 

First, patient chronological patient history up until the current day. 
Patient visits for the first time, with the following values: metastasis 
Adrenal is Adrenal, metastasis Bone is Bone, metastasis Liver is Liver. 
21 days after previous visit, patient visits again, with the following 
values: advanced cancer diagnosis is non small cell NSCLC, initial cancer 
diagnosis is non small cell NSCLC. 
14 days after previous visit, patient visits again, with the following 
values: Type 2 diabetes mellitus without complications is diagnosed, 
Hyperlipidemia, unspecified is diagnosed. 
 
… 
 
14 days after previous visit, patient visits again, with the following 
values: carboplatin is 900, paclitaxel protein-bound is 255, ECOG is 1, 
alanine aminotransferase is 15, …, hemoglobin is 13.1, body height is 160.2, 
body weight is 91.4, oxygen saturation is 97. 
Next, the baseline data for the patient: birth year is 1954, gender is M, 
ses index is 5 - Highest SES, is cancer advanced is True, histology is 
Non-squamous cell carcinoma, cancer stage is Stage IVB, smoking status is 
History of smoking, ethnicity is Not Hispanic or Latino, Current line of 
therapy is Carboplatin,Paclitaxel Protein-Bound, Current line number is 1. 
 
Finally, the variables which you should predict, and for which days in the 
future from the current day: {hemoglobin: [21, 35], leukocytes 2: [21, 35], 
lymphocytes 2: [21, 35], lymphocytes/100 leukocytes 3: [21, 35], 
neutrophils: [21, 35]} 
Now, your task is as follows: Given the non small cell NSCLC patient's 
history, please predict for this patient the previously noted down variables 
and future days, in the same JSON format. <patient_prediction> 



DT-GPT forecasting results response  

{"hemoglobin": ["11", "9.8"], "leukocytes 2": ["6.4", "4.7"], "lymphocytes 
2": ["0.7", "0.4"], "lymphocytes/100 leukocytes 3": ["11.5", "8.8"], 
"neutrophils": ["5.4", "4.1"]} 

Non-target variable forecasting prompt 

Next, the variables which you should predict, and for which days in the 
future from the current day: {calcium: [21, 35]} 
Now, your task is as follows: Given the non small cell NSCLC patient's 
history, please predict for this patient the previously noted down variables 
and future days, in the same JSON format. <patient_prediction> 

DT-GPT non-target forecasting results response  

{"calcium": ["9.4", "10.3”]]} 

 



Supplementary Note 8. Interpretation of forecasting and classification 
metrics.  
Forecasting metrics​

 measures the average magnitude of the errors and operates on the original scale of the variable 𝑀𝐴𝐸
enabling intuitive understanding of model performance. , in turn, is scaled independently and 𝑠𝑐𝑎𝑙𝑒𝑑 𝑀𝐴𝐸
allows comparison across all variables, hence can be used as a primary score to benchmark different 
models and select the best performing approach.  scales  by the mean absolute error of a naive 𝑀𝐴𝑆𝐸 𝑀𝐴𝐸
forecast, which is, in a multi timestep forecasting setting such as ours, equivalent to the copy forward 
forecast.  quantifies the accuracy of a forecast by calculating the average of the absolute 𝑆𝑀𝐴𝑃𝐸
percentage errors between predicted and actual values, adjusted to be symmetric and, similarly to , 𝑀𝐴𝐸
gives an intuitive understanding of model performance. Finally, Spearman correlation coefficient 

 assesses the strength and direction of monotonic relationships, providing insights into how 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 ρ
well the forecasted values preserve the order of the actual values. In the context of clinical signals, a 
Spearman correlation coefficient above 0.4 is in some cases interpreted as "moderate" and above 0.7 as 
"strong" correlation3. Furthermore, the Spearman correlation was shown to be extremely sensitive to 
fluctuations within a narrow range of values13, which is typical of laboratory measurement data, and hence 
should be interpreted only in combination with other statistical properties (e.g. Kolmogorov-Smirnov 
test). 

Classification metrics​
Classification metrics quantify model performance with respect to different properties of a clinical 
trajectory. ,  and  assess the model’s ability to detect absolute deviation from 𝐴𝑈𝐶

𝑙𝑜𝑤
𝐴𝑈𝐶

ℎ𝑖𝑔ℎ
𝐴𝑈𝐶

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑
 

the variable normal range as defined for all patients. For some of the variables (e.g. hemoglobin) only 
 and might be interesting, whereas for other (e.g. lactate dehydrogenase) only increase, i.e., 𝐴𝑈𝐶

𝑙𝑜𝑤

 is relevant. The metrics  and  assess the model's ability to detect directed 𝐴𝑈𝐶
ℎ𝑖𝑔ℎ

𝐴𝑈𝐶
𝑡𝑟𝑒𝑛𝑑 ↓

𝐴𝑈𝐶
𝑡𝑟𝑒𝑛𝑑 ↑

changes in variable value that might be associated with chronic conditions and require closer patient 
observation.​
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https://app.readcube.com/library/e8f01678-52ca-457f-8467-03ed0b310d80/all?uuid=6519383846330503&item_ids=e8f01678-52ca-457f-8467-03ed0b310d80:1b2eca7c-2f0d-435b-976e-f3f10128b23a


Supplementary Note 9. Research in Context. 
Evidence before this study 
Digital Twins (DTs) for forecasting patient-specific clinical trajectories, events and outcomes are being 
increasingly realized by the means of generative artificial intelligence (AI). We conducted a 
comprehensive search using Google Scholar and Scopus for studies and reviews on methods for 
predicting longitudinal patient trajectories, published in English between Jan 1, 2019, and March 31, 
2024. The search employed the following keyword combinations: “forecasting” and “patient trajectory”, 
“forecasting” and “patient”, “forecasting” and “clinical”, “prediction” and “patient trajectory” and “time”, 
”forecasting and electronic health records”, “prediction” and “patient” and “time”, “prediction” and 
“clinical” and “time”, “prediction” and “patient trajectory” and “longitudinal”, “prediction” and “patient” 
and “longitudinal”, “prediction” and “clinical” and “longitudinal”, “foundation model” and “electronic 
health records”, “large language model” and “electronic health records”. We restricted the search results 
to the studies describing generative AI-based methods. The identified studies introduce high-performing 
clinical forecasting methods but their validation is limited to a single application only with a specific 
disease indication or dataset. Additionally, these methods typically require extensive data preprocessing, 
such as imputation of missing values and normalization. While large language models and foundation 
models offer a more general setup applicable to various research questions and datasets, existing methods 
predominantly focus on single time-point predictions rather than longitudinal predictions. Moreover, the 
interpretability of existing models is limited. 
 
Added value of this study 
This study introduces the Digital Twin - Generative Pretrained Transformer (DT-GPT) model, a novel 
method to fine-tune large language models (LLMs) to forecast multi-variable patient trajectories, 
combining the advantages of existing methods while overcoming the limitations of data heterogeneity and 
sparsity associated with electronic health records (EHRs). DT-GPT achieves state-of-the-art forecasting 
performance on long-term US nationwide non-small cell lung cancer datasets, a short-term intensive care 
unit dataset and an Alzheimer’s disease dataset, demonstrating its applicability to multiple disease 
conditions with various time horizons and both regular and irregular time sampling. Furthermore, 
DT-GPT learns relationships and preserves cross-correlation between variables, enabling zero-shot (i.e., 
without any training) prediction of clinical variables previously not trained on. Finally, the interactive 
interface provides preliminary prediction explainability through chatbot functionality. 
 
Implications of all the available evidence  
Generative AI-based models enhance the capabilities of patient DTs for treatment selection, patient 
monitoring, and clinical trial support by creating state-of-the-art patient trajectory predictions. 
DT-GPTshows that LLMs are able to advance the development of DTs by reducing the need for extensive 
data preprocessing and enabling interaction with the model through a human-interpretable interface. We 
anticipate that LLM-based DTs will be easily accessible to clinicians, allowing efficient simulations of 
patient trajectories under various scenarios to support clinical decision-making. 

 



Supplementary Figure 13. Illustration of the trend definition used for 
evaluating time-series forecasts. 
 

 
Supplementary Figure 13: Illustration of the trend definition used for evaluating time-series forecasts. This 
example shows how a 'decreasing trend' label is assigned to a forecasted hemoglobin value at week 7. Using a 
3-week trend window ( ) and weekly resolution, the label requires a consistent week-on-week decrease 𝑠 = 3 𝑤𝑒𝑒𝑘𝑠
in the forecast across the entire relevant period (weeks 4 to 7). This specific prediction ('decreasing trend') is then 
evaluated against the actual trend observed in the patient's data over the same interval (weeks 4 to 7) to calculate 
metrics such as . 𝐴𝑈𝐶

𝑡𝑟𝑒𝑛𝑑 ↓
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