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Abstract

Aims/hypothesis Type 1 diabetes manifests after irreversible beta cell damage, highlighting the crucial need for markers
of the presymptomatic phase to enable early and effective interventions. Current efforts to identify molecular markers of
disease-triggering events lack resolution and convenience. Analysing frequently self-collected dried blood spots (DBS) could
enable the detection of early disease-predictive markers and facilitate tailored interventions. Here, we present a novel strat-
egy for monitoring transient molecular changes induced by environmental triggers that enable timely disease interception.

Methods Whole blood (10 pl) was sampled regularly (every 1-5 days) from adult NOD mice infected with Coxsackievirus
B3 (CVB3) or treated with vehicle alone. Blood samples (5 pl) were dried on filter discs. DBS samples were analysed by
proximity extension assay. Generalised additive models were used to assess linear and non-linear relationships between pro-
tein levels and the number of days post infection (p.i.). A multi-layer perceptron (MLP) classifier was developed to predict
infection status. CVB3-infected SOCS-1-transgenic (tg) mice were treated with immune- or non-immune sera on days 2 and
3 p.i., followed by monitoring of diabetes development.

Results Frequent blood sampling and longitudinal measurement of the blood proteome revealed transient molecular changes
in virus-infected animals that would have been missed with less frequent sampling. The MLP classifier predicted infection
status after day 2 p.i. with over 90% accuracy. Treatment with immune sera on day 2 p.i. prevented diabetes development in
all (100%) of CVB3-infected SOCS-1-tg NOD mice while five out of eight (62.5%) of the CVB3-infected controls treated
with non-immune sera developed diabetes.

Conclusions/interpretation Our study demonstrates the utility of frequently collected DBS samples to monitor dynamic
proteome changes induced by an environmental trigger during the presymptomatic phase of type 1 diabetes. This approach
enables disease interception and can be translated into human initiatives, offering a new method for early detection and
intervention in type 1 diabetes.

Data and code availability Additional data available at https://doi.org/10.17044/scilifelab.27368322. Additional visualisa-
tions are presented in the Shiny app interface https://mouse-dbs-profiling.serve.scilifelab.se/.

Keywords Biomarkers - Coxsackievirus B - Disease intervention - Disease prediction - Disease trigger - Dried blood spots -
Enterovirus - Immune-mediated diseases - Machine learning - Microsampling - Proteomics - Proximity extension assay -
Screening - Type 1 diabetes
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What is already known about this subject?

e Type 1 diabetes occurs following permanent damage to the beta cells, underscoring the importance of early
interventions guided by biomarker appearance in the presymptomatic phase

e |dentifying molecular markers indicative of the early triggers of islet autoimmunity is instrumental for the
development and timely use of novel therapeutic interventions

e  Current approaches to identify molecular markers of disease-triggering events lack resolution and convenience

What is the key question?

e  Could analysing frequently self-collected dried blood spots (DBS) enable the detection of proteome markers of

initial disease-triggering events, thereby allowing timely disease intervention?
What are the new findings?

e  Frequent blood sampling and longitudinal analysis of blood revealed dynamic proteome changes that were
induced by a disease trigger and would have been missed with less frequent sampling

e  Proteome data, when combined with machine learning techniques, can be leveraged to predict disease status
during the presymptomatic stages that follow a disease-triggering event

e |dentifying early molecular markers of a disease-triggering event allows for early disease prediction and timely
intervention

How might this impact on clinical practice in the foreseeable future?

e  Frequent and minimally invasive DBS sampling in a home setting could reduce costs and logistical challenges,
while enabling the identification of disease triggers and the detection of early markers of disease, thereby
facilitating timely intervention strategies for type 1 diabetes

PFU Plaque forming units occurs in over 95% of those who develop the condition.

p.i. Post infection
ROC Receiver operating characteristic
SOCS-1-tg  SOCSI transgenic

Introduction

An essential goal of precision medicine is to prevent dis-
eases before they manifest [1]. This relies on the identifica-
tion of predictive biomarkers that can be detected in asymp-
tomatic individuals. Existing molecular tools and approaches
remain suboptimal for precise molecular monitoring of at-
risk individuals. One key limitation is that current monitor-
ing schemes cannot detect fluctuations in molecular markers
that are transiently induced by a trigger of disease.

Type 1 diabetes is characterised by the loss of functional
pancreatic beta cells and reduced insulin production. The
autoimmune origin of type 1 diabetes is intimated by the
appearance, approximately 6 months to a few years before
disease onset, of islet reactive autoantibodies (AAbs). This
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Additionally, autoreactive T cells are detected in the pan-
creas before clinical symptoms manifest [2]. Environmental
factors play a role in mediating type 1 diabetes risk, but the
exact triggers behind the break in immunological tolerance
to the beta cells remain unknown [3]. Several studies suggest
an enterovirus infection may precede the first appearance of
islet AAbs [4]. Consequently, a well-timed antiviral therapy
could intervene in the events that initiate islet autoimmunity
and may also help preserve beta cell function at diagnosis
[5]. Treatment with the T cell targeting anti-CD3 antibody
(teplizumab) can delay disease onset for 2—3 years in islet
AAb-positive individuals at very high-risk of type 1 diabetes
[6-8]. Identifying those who have been infected by a poten-
tially diabetogenic virus but not yet developed islet autoim-
munity, or who are islet AAb positive and near disease onset,
remains a significant and currently unresolved challenge.

A global analysis of proteins may offer valuable insights
into different disease stages, disease progression and treat-
ment responses [9]. Accordingly, advanced proteomic
techniques may be leveraged for the detection of early
stages of disease, ideally in easily accessible body fluids
[10, 11]. Recent breakthroughs have enabled precise and
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high-throughput measurements of blood proteins [10, 12].
These cutting-edge techniques allow comprehensive pro-
teome analysis and can identify subtle disease-related or
predictive protein changes [13]. Despite new advances in
detecting proteomic disease signatures [14], blood sam-
pling often still necessitates visits to healthcare centres. This
inconvenience frequently results in singular blood samples
or lengthy timespans between samples (e.g. months to years)
which miss rapid and transient proteome changes associated
with the events that trigger disease and/or disease progres-
sion. Previous prospective studies (e.g. TEDDY and DIPP)
identified serum proteome changes that are linked to the
onset of islet AAbs or type 1 diabetes, but proteome profiles
have not yet been correlated with a disease-triggering event
[15, 16]. Overcoming the limitation of infrequent sampling
is crucial for timely disease detection and the implementa-
tion of personalised disease interventions.

Promising remote sampling methods which could per-
mit frequent self-sampling include the collection of dried
blood spots (DBS). DBS samples can be shipped by regular
mail to advanced laboratories. We recently demonstrated
that at-home unsupervised volumetric DBS sampling by
finger-pricking allows for the precise measurement of mul-
tiple circulating antibodies associated with COVID-19 [17].
Using state-of-the-art proteomic tools, we also showed that
10 pl of dried blood was sufficient to successfully quantify
hundreds of circulating proteins [18]. Building on this, we
hypothesised that quantitative analysis of frequently col-
lected DBS can reveal circulating proteins or proteome sig-
natures that are indicative of a disease-triggering event. In
this study, we used experimental models of enterovirus-trig-
gered type 1 diabetes [19-21] to investigate whether frequent
blood microsampling and affinity-based proteomics capture
changes in the circulating proteome that are induced by a
disease trigger and whether this enables timely, molecularly
informed interventions.

Methods

Animal husbandry and monitoring of animal health NOD-
Shi and SOCS1 transgenic (SOCS-1-tg) NOD [19, 22] mice
were bred in-house and maintained at the Karolinska Uni-
versity Hospital Huddinge, Stockholm, Sweden. Approval
was received from the local ethics committee (Link&pings
djurforsoksetiska namnd, Dnr 9222-2019 and 04291-2024).
Studies were conducted according to institutional guidelines
and Swedish national laws. Mice were randomly allocated
to treatment groups and researchers remained unblinded.
Health status was closely monitored. See further details in
ESM Methods.

Virus infections and serum transfers Female NOD mice
(8-9 weeks old) were infected with 10° plaque forming
units (PFU) of Coxsackievirus B3 (CVB3; Nancy) or vehicle
(mock; RPMI media), by i.p. injection (total volume 200 pl).
Blood samples were collected at the indicated time points
until day 14 post infection (p.i.; Fig. 1a). Animals were
classified as infected if they exhibited a reduction in blood
glucose levels during the acute phase of infection (days
0-7 p.i.) and showed histological evidence of pancreatic
damage at the end of the study. Based on these criteria,
one animal from each infection experiment was excluded
from the analyses (total n = 2). To produce immune sera,
male and female NOD mice (11-12 weeks) were infected
with CVB3 (5 x 10* PFU; i.p. injection) and blood was
collected 2 weeks p.i. by terminal heart puncture. Non-
immune sera were collected from age-matched uninfected
NOD mice. Male and female SOCS-1-tg mice (8—10 weeks
old) were infected with CVB3 (10° PFU; 200 pl/mouse; i.p.
injection) and injected with pooled and heat-inactivated sera
(inactivated at 56°C for 30 min; 200 ul/injection; i.p. route)
on days 2 and 3 p.i.

Blood collection, glucose measuring and monitoring of
diabetes development Blood was collected for proteome
analysis from the tip of the tail. A sample of 5 pl was trans-
ferred onto paper-based sampling discs (Capitainer, 710-
0020, Solna, Sweden) and left to dry until analysis (see ESM
Methods). Blood glucose levels from tail vein blood were
measured using a Bayer Contour XT blood glucose meter
(Bayer, Basel, Switzerland). Diabetes was diagnosed when
blood glucose levels were >18 mmol/l or after two consecu-
tive daily measurements of 13—18 mmol/I.

Histology and immunohistochemistry Formalin-fixed,
paraffin-embedded pancreas was sectioned (5 pm) and
H&E stained (morphological assessments) or immunobhis-
tochemically stained for insulin and glucagon as previously
described [19, 23] (see ESM Methods).

Blood sample processing and proteomics assay Briefly,
DBS samples were eluted in PBS with 0.05% Tween 20
(Thermo Fisher Scientific, Stockholm, Sweden). The Olink
Target 96 Mouse Exploratory panel was used to measure 92
circulating proteins from the eluates which were assessed
by proximity extension assays (PEA). Linear and non-lin-
ear relationships between protein levels and days p.i. were
assessed using generalised additive models (GAMs). See
ESM Methods for detailed information.

Statistical analysis Statistical analyses were performed using
Prism 10 software (version 10.3.1; GraphPad, La Jolla, CA)
and R (version 4.4.1, https://www.R-project.org/) [24] unless
otherwise stated. Plots were produced in Prism or R using

@ Springer


https://www.R-project.org/

2280

Diabetologia (2025) 68:2277-2289

Fig. 1 Longitudinal DBS pro-
tein profiling reveals dynamic
proteome alterations in CVB3-
infected NOD mice. (a) Sche-
matic of study design. In two
independent studies, NOD mice
aged 8-9 weeks were infected
with CVB3 (200 ul RPMI
medium containing 10° PFU
CVB3, i.p.) or mock-infected
(200 pl of RPMI medium). In
the first study, the control and
the CVB-infected groups con-
sisted of four animals each and
in the second study, the control
group consisted of four animals
and the CVB-infected group of
five animals. A blood sample (5
ul) was collected from the tail
vein at indicated time points
and dispensed onto filter discs
(Capitainer). Blood samples
were eluted and proteins were
measured using PEA (Olink),
followed by data analysis.
Created in BioRender. Byvald,
F. (2024) https://BioRender.
com/t83q649. (b) Heatmaps
showing the mean protein levels
(z score) per sampling day for
each protein for the infected
(left) and control (right) groups.
The proteins are clustered based
on the levels in the infected
group. Red indicates a high z
score and blue indicates a low z
score. (¢) Protein profiles for six
proteins. Each dot represents a
sample, and colour indicates if
the included mouse belonged to
the infected (yellow) or control
(green) group. Smooth lines
have been fitted to each group,
with the 95% CI around the
smooth line
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the ggplot2 package (version 3.5.1, https://ggplot2.tidyv
erse.org) [25]. Data are expressed as mean + SD. False dis-
covery rate (FDR) correction of multiple testing was per-
formed using the Benjamini-Hochberg/Bonferroni method.
A nominal p value or FDR <0.05 was considered statisti-
cally significant. The reproducibility of DBS sampling and
the proteomics assay process was tested in biological repli-
cates collected concurrently (six samples from one mouse
in Study 1; five samples from one mouse in Study 2), and in
technical duplicates. See ESM Methods for details.

Generation of a classifier to predict infection status Machine
learning (ML) techniques were used to generate a multi-
layer perceptron (MLP) classifier to predict infection status.
See ESM Methods for details.

Web-based interface The shiny package (version 1.8.1.1,
https://shiny.posit.co/) [26] was used to create an interactive
web interface. The app allows a protein-centric visualisation
of the proteomics data with interactive heatmaps for protein-
protein correlations using heatmaply package (version 1.5.0,
https://talgalili.github.io/heatmaply/articles/heatmaply.html)
[27]. All packages and versions used for visualisation are
stated in the app.

Results

Frequent blood microsampling and pancreas pathology in
CVB3-infected NOD mice To study the effects of a type 1
diabetes associated enterovirus [4] on the circulating pro-
teome, two independent longitudinal studies (denoted Study
1 and Study 2) were conducted. Female NOD mice, aged
8-9 weeks, were infected with CVB3 or mock infected. Pre-
vious studies have shown that the pancreas is permissive
to CVBs, but infection of NOD mice at this age does not
induce diabetes [19, 20]. For each mouse, 5 pl of blood was
collected on individual filter paper discs before infection and
at several time points thereafter until 14 days p.i. (Fig. 1a).
DBS were stored at room temperature until analysis. In both
studies infected mice lost weight from days 5-6 p.i. (ESM
Fig. 1) and four mice were euthanised on days 9, 10 or 13
p.i. due to excessive weight loss (>15%; n = 2; ESM Fig. 1).
Upon termination, buffer-treated mice had normal looking
pancreas, while most infected animals had a smaller pan-
creas with clear histopathological signs of infection (ESM
Fig. 2). Notably, no animals developed diabetes (data not
shown).

Proteome profiling of DBS samples collected from
CVB3-infected NOD mice DBS samples were analysed
using PEA. Ninety-two proteins were measured in longi-
tudinal DBS samples from all animals. The data were first

normalised using Protein-specific Probabilistic Quotient
Normalization (ProtPQN), as previously described [18] and
no outliers were identified (ESM Fig. 3a). The data were
then scaled and centred using z score transformation. After
pre-processing, no significant differences in overall protein
levels were found between the two studies (p>0.05), and
the per cent variance explained by the first principal com-
ponent (PC1) decreased from 80% to 17% (ESM Fig. 3b—c).
Unless specified, the pre-processed and transformed data
from the two studies were combined and used in downstream
analyses.

To assess the reproducibility of the affinity proteomics
method, we collected multiple concurrent samples (n = 6
in Study 1, n = 5 in Study 2) from the same animal. Using
pre-processed data, we observed a mean CV of 10.2% and
20.5% across all proteins in Studies 1 and 2, respectively. Per
sample, Spearman correlations of rho = 0.99 for Study 1 and
rho = 0.94 for Study 2 were obtained for the inter-animal
replicate samples (ESM Fig. 4) confirming the suitability of
the data for further investigations.

The detectability of the proteomics data was calculated
for each study using unprocessed normalised protein expres-
sion values by calculating the number of data points above
the limit of detection (LOD). In Study 1, 64.2% of data
points were above the LOD, compared with 61.1% in Study
2. This detectability did not differ significantly between the
infected and control groups (ESM Fig. 5a, b). When divided
by sampling day, in Study 2 a greater number of proteins
were detected above the LOD in the infected group on day
3 p.i., whereas the detectability was lower on days 1, 9 and
14 p.i. (p < 0.05) (ESM Fig. 5d). No significant differences
were found in Study 1 (ESM Fig. 5c¢).

Longitudinal proteome profiling of DBS samples reveals
dynamic and transient protein changes induced by CVB3
infection To gain a first, unbiased overview of the tempo-
ral levels of circulating proteins, we performed hierarchical
clustering of proteins over time and in response to CVB3
infection (Fig. 1b, c). The obtained protein clusters were
then applied to the control data to illustrate the p.i. protein
dynamics.

For example, in infected animals, proteins involved
in immune responses such as CCL2, CXCL9, CXCLI1,
TNFRSF11B, LGMN and CCLS5 increased after infection,
peaking around day 4 p.i. Additionally, a noticeable yet
minor increase in CCL2 levels was observed in the control
group in the first 5-6 days p.i. (Fig. 1b, c¢).

Other proteins, including CCL20, GHRL and CLMP,
increased in abundance in CVB3-infected mice from days
5-7 p.i. A cluster of proteins, including PARP1, RIOX?2,
FOXO1 and FLI1, decreased in level in infected mice
between days 4 and 7 p.i. but returned to baseline by day
14. Conversely, protein levels for DCTN2, AXIN1, CNTN1
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and CDH6 declined around day 5 p.i. and remained low
until the end.

The control group displayed a more uniform distribu-
tion of z scores, with fewer changes in protein levels com-
pared with infected mice. Some proteins, including YESI,
remained unchanged over time in both groups (Fig. 1b, c).
An interactive web interface was developed to enable brows-
ing of protein-centric results (https://mouse-dbs-profiling.
serve.scilifelab.se/). The interface presents the profile of
each protein and summarises the data in terms of precision,
variance and protein-protein correlations (ESM Fig. 6).

Next, to identify infection-associated changes we per-
formed statistical tests to compare the protein levels in
infected mice with those in the control group at each time
point (Fig. 2). Notably, CCL2 was significantly elevated in
the infected group of animals compared with the uninfected

controls as early as day 2 p.i. (FDR-adjusted p value <0.05),
which persisted until day 14 p.i. (Fig. 2; ESM Table 1). Sim-
ilarly, CXCL9 levels were elevated in the infection group
from day 3 until day 9 p.i., indicating a temporal pattern in
the host immune response. The highest number of proteins
(n = 12) with significantly different time-dependent pro-
files between the infected and control animals were found
on days 4 and 5 p.i. In the infected group seven proteins
were elevated on day 4 p.i., and six were increased on day
5 p.i. By day 14 p.i., significant differences were detected
in the levels of six proteins between the groups, with only
CCL2 slightly elevated in infected mice compared with the
controls (Fig. 2).

We also used GAMs to assess linear and non-linear rela-
tionships between protein levels and the number of days p.i.
This revealed a notable number of non-linear relationships
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Fig.2 Protein dynamics across sampling time in CVB3-infected and
control NOD mice. DBS samples were collected from CVB3- (n =
9) and mock-infected (n = 8) NOD mice for 14 days p.i. as described
in Fig. la. Proteins were measured using PEA and the protein sig-
nals were transformed to z scores before combining the data from two
independent studies. The figure shows volcano plots for each sam-
pling day for the log, (fold change) between the infected and control
groups plotted against the FDR-adjusted p value obtained from two-
sided Student’s ¢ test. Each dot represents a protein. The horizontal
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dotted line represents a p value of 0.05, and proteins above are con-
sidered significant. The vertical dotted line represents a fold change
of zero, and proteins to the right of the line are found at higher levels
in the infected group and vice versa. Yellow and green dots are pro-
teins that are up- or downregulated, respectively, in the infected mice
compared with the controls. Grey dots are proteins that were not con-
sidered significantly different between infected and control animals.
FC, fold change
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between time p.i. and protein levels for several proteins
after Bonferroni correction (infected group n =37, control
group n=38; Table 1; ESM Table 2). These included CCL2,
CXCL9 and CXCL1, which fluctuated over time. Seven pro-
teins (TNFRSF11B, CCL5, CCL2, CXCL9, CXCL1, GHRL
and EDA?2R) had significantly different time-detection pro-
files between the groups using this model.

DBS protein levels predict infection status early after infec-
tion By applying ML techniques to our longitudinal pro-
teome dataset (Fig. 3a), we next constructed a classifier for
infection prediction. Preliminary analyses using the dataset
generated in Study 1 and application of permutation fea-
ture importance identified CCL2 and CXCL9 as the most
informative biomarkers for this task. Using an MLP classi-
fier, we leveraged the trajectories of these proteins from day
0 to various time points p.i. By day 2 p.i., we accurately pre-
dicted the infection status for 13 out of 17 mice (76%) and by
day 3 p.i., 16 out of 17 (94%) (Fig. 3b and ESM Table 3). For
the remaining mouse, which exhibited a delayed response
trajectory, infection status was correctly predicted by day
4 p.i. Overall, after day 2 p.i., our classifier correctly pre-
dicted the infection status for 83 out of 85 mouse-timestep
combinations, equating to an accuracy rate of approximately
97.6%. A receiver operating characteristic (ROC) curve was
calculated for the binary classification of infection status
(Fig. 3c), and the area under the ROC curve (AUROC) was
0.995. A ROC for the training set is shown in ESM Fig. 7.

Monitoring-informed intervention prevents virus-induced
diabetes development The ML-based classifier demon-
strated that infection status could be predicted early p.i.
(day 2), even before clear signs of infection, like weight
loss, became noticeable (ESM Fig. 1). Therefore, we next
explored whether this early disease prediction could offer a
window for preventive treatments.

Table1 p values from GAM for top ten proteins differentiating
CVB3-infected and control animals

Gene UniProt p value for infec-  Deviance
tion status explained by
model
Ccl2 P10148 2.86 x 1078 0.89
Cxcl9 P18340 3.56 x 1076 0.81
Ccl5 P30882 0.00059 0.74
Cxcll P12850 0.0062 0.75
Ghrl QI9EQXO0 0.0086 0.56
Eda2r Q8BX35 0.011 0.71
Tnfrsfl1b 008712 0.017 0.69
Dil1 Q61483 0.076 0.32
Foxol QI9R1EO 0.15 0.59
Riox2 Q8CD15 0.36 0.47

For this we employed an experimental model for CVB-
induced type 1 diabetes, the SOCS-1-tg mouse [19-21]. In
these NOD mice, the overexpression of the human SOCS!
gene under the control of the human insulin promoter ren-
ders the beta cells unresponsive to IFN stimulation. Con-
sequently, in the beta cells, critical autonomous antiviral
defence mechanisms which are typically activated during
virus infections via type I [FNs are compromised. Therefore,
the beta cells succumb to CVB infection, and SOCS-1-tg
mice develop diabetes approximately 5—-12 days after infec-
tion [19-21].

While potent antiviral treatments for CVB infections
are lacking, passive immunisations have shown promise
[28-30]. We explored this and generated non-immune and
immune sera from separate groups of NOD mice. Subse-
quently, SOCS-1-tg mice were infected with CVB3, and
treated with non-immune or immune sera on days 2 and
3 p.i. (see Fig. 4a). In the non-immune sera-treated group,
diabetes was triggered in five out of eight mice (Fig. 4b, c).
Histological assessment of pancreas revealed that most of
these mice had extensive exocrine tissue damage and mini-
mal or absent insulin-positive cells in the islets (Fig. 4d, e,
ESM Fig. 8). Remarkably all six mice treated with immune
sera remained diabetes free (6/6) (Fig. 4b, c) with intact pan-
creases and islets expressing insulin and glucagon (Fig. 4d,
e, ESM Fig. 8).

Discussion

To achieve preventive treatments for people at risk of devel-
oping type 1 diabetes through precision medicine it is crucial
that disease-triggering events that occur in the early, non-
symptomatic stage(s) are identified. While sensors and apps
can help track symptoms, conditions and/or behaviour, we
still lack the tools to monitor molecular changes that are
indicative of early disease. Of the accessible sample types,
blood provides system-wide and organ-specific insights into
health. Proteins, lipids and other small molecules can be
reliably measured in large numbers to track changes [31].
However, the timing of blood draws is crucial for identifying
changes before disease tipping points are reached, thereby
necessitating longitudinal sampling in presymptomatic
individuals.

Thanks to the development of self-sampling DBS meth-
ods, new routines for health monitoring have been intro-
duced [32]. The ease of fingertip blood collection and the
advent of technologies that are compatible with small sam-
ple volumes raises the question of whether data collected
after frequent sampling can effectively track disease pro-
gression and facilitate early preventive interventions. Using
type 1 diabetes models combined with the identification of
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(a) ML pipeline for preliminary analysis of Study 1 samples aimed
at identifying key features for infection prediction. Permutation fea-
ture importance was applied to quantify the contribution of covariates
(proteins) to the model’s output. Here the model is a binary classi-
fier that takes all 92 protein measurements at each time step as inputs
for predicting infection status. Feature importance is assessed by
randomly permuting each feature’s values and measuring the result-
ing drop in performance compared with the original unaltered input.
Notably, permuting CCL2 and CXCL9 resulted in the largest accu-
racy drops, underscoring their significance. Their predictive relevance
is visually confirmed in the plot depicting their temporal evolution.
Note that the model used in the preliminary analysis differs from the

proteins in DBS, we asked if frequent blood microsampling
and the analysis of time-resolved protein patterns could iden-
tify predictive disease markers and the optimal time win-
dow for effective disease interventions. We demonstrate that
repeated sampling of small volumes of blood (5 pl) followed
by multiplexed protein analysis of DBS samples can effi-
ciently monitor proteome changes during an infection with
a type 1 diabetes associated virus and in turn enable timely
disease interventions.

Through analysis of DBS samples using a commer-
cially available protein panel, we monitored >90 proteins
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against 1-specificity (false positive rate). The AUROC was 0.995.
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relevant to various biological processes and disease areas.
These included immune response proteins, growth factors,
cell signalling proteins, proteins involved in cardiovascu-
lar and neurological diseases and various cancer associ-
ated proteins. Among the immune response proteins, the
chemokine CCL2 showed a transient increase in infected
and control animals. It peaked in CVB3-infected animals
around day 5 p.i., while the increase was earlier and lower
in the controls. This suggests the initial blood sampling
triggered CCL2 production, which concurs with the known
crucial role of CCL2 in the recruitment of monocytes and
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Fig.4 Early intervention prevents virus-induced type 1 diabetes.
SOCS-1-tg mice were infected with CVB3 (103 PFU CVB3, i.p.).
On days 2 and 3 p.i., animals were treated with either non-immune
(n = 8) or immune sera (n = 6) by i.p. injection (total volume 200 pl/
mouse). (a) Experimental schematic. Created in BioRender. Byvald,
F. (2024) https://BioRender.com/b43t411. (b) Blood glucose values
of individual animals treated with non-immune sera (n = 8; black
line) or immune sera (n = 6; dotted blue line). Mice were deemed
diabetic when the blood glucose level was equal to or exceeded
18 mmol/l, or when two consecutive daily measurements ranged
between 13 and 18 mmol/l. Dotted black line marks 13 mmol/l glu-
cose. (¢) Diabetes incidence curves summarising results shown in (b).

*p<0.05 comparing the two groups by logrank (Mantel-Cox) test.
(d) Representative images of sequential pancreas sections from mice
infected with CVB3 and treated with non-immune or immune sera.
Pancreas was stained for insulin (panels on left) or glucagon (panels
on right). Positive areas are stained brown. Scale bars, 100 um. (e)
Percentage of animals with damaged and intact tissue morphology in
pancreas specimens from mice treated with non-immune sera (n = 7)
or immune sera (n = 5). The infection status of two animals, one from
each treatment group, could not be determined histologically due to
insufficient quality of the formalin-fixed, paraffin-embedded sections,
and were excluded from the assessment
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other immune cells to sites of inflammation caused by tis-
sue injury or infection [33]. Minor but similar temporary
increases in other immune-related proteins, including
CCL20 and IL1p, were detected in both groups (Fig. 1).
This important observation demonstrates that the sampling
procedure itself, especially when samples are repeatedly
taken from the same location, may temporarily impact cer-
tain protein levels. The protein data from the uninfected
control group, however, displayed a more uniform distri-
bution of z scores with fewer protein changes than the
infected group (Fig. 1). This indicates that, overall, the
repeated handling and blood sampling was well tolerated.

Recent work summarised the current understanding of
immune responses to CVB infection [4]. Our study offers
high resolution of systemic proteome alterations that occur
during the acute phase of an infection. The greatest differ-
ences in circulating protein levels were observed between
days 4 and 7 p.i. Despite under-representation in the panel,
most of these proteins are associated with the immune
system. Given that robust innate antiviral defence mecha-
nisms are activated and peak earlier than day 4 p.i. [29,
34], future studies using a panel that covers additional
immune-related proteins may identify further candidates
with altered abundance early after infection. Moreover,
unique patterns may be found which could distinguish
enterovirus infections from those with other viruses. Com-
plementary insights into infection biology could also be
provided by other proteomics methods (e.g. MS), along-
side the analysis of other molecules including metabolites
and/or lipids. Our study underscores the dynamic nature
of protein changes in response to acute infection, with
specific proteins exhibiting significant temporal expres-
sion patterns. Importantly, these patterns would have been
missed with less frequent sampling.

The dynamic protein changes observed during acute
CVB infection also revealed proteins that decreased in abun-
dance. For example, FOXO1 and CNTNI1 levels temporarily
dropped during infection. The implications of these changes
are an area of future interest.

Interestingly, we correlated altered protein expression
with a physical readout, highlighting an indirect infection
effect. In CVB3-infected mice, there was a late increase in
ghrelin levels which significantly correlated with weight loss
(r=-051;p=2.1x 107%; as determined by Spearman cor-
relation). Ghrelin, known for stimulating appetite and regu-
lating hunger and energy balance, typically increases after
significant weight loss [35]. The CVB3-infected animals
experienced weight loss throughout the infection, which
was likely due to their extensive exocrine pancreas damage.
Collectively, this highlights that through the analysis of lon-
gitudinal DBS samples, we can identify molecular footprints
induced by CVB3 infections that are indicative of the direct,
indirect and broader impacts that CVBs have on health.

@ Springer

ML methods are becoming pivotal for analysing com-
plex datasets, particularly for the prediction and staging
of diseases, and for individualised patient care [10]. After
applying ML techniques to our longitudinal proteome data-
set, we successfully constructed a classifier for infection
prediction. The proteins CCL2 and CXCL9 emerged as the
most informative biomarkers for this task, consistent with
classical approaches. By day 2 p.i. we predicted the infection
status with an accuracy rate of >75% which was >95% by
day 3 p.i. The effectiveness of this prediction for informing
relevant time points for treatment interventions was demon-
strated using an experimental model for virus-induced type
1 diabetes [19-21]. Infected animals treated with immune
sera on days 2 and 3 p.i. were protected from significant
pancreatic damage and type 1 diabetes development. This
underscores the potential of ML-based approaches in using
plasma proteomics for early and precise infection status pre-
diction, opening new avenues for appropriate interventions
and improved disease management.

Prospective cohort studies which have followed children
from infancy have significantly enhanced our understand-
ing of type 1 diabetes pathogenesis, including the sequence
of islet AAb appearance [36-39]. However, these studies
have not yet identified the early triggers and the precise time
when beta cell autoimmunity is induced, which is crucial for
implementing preventive therapies. This limitation may be
partly due to the relatively lengthy sampling intervals (e.g.
3 months or more between samples). More frequent blood
sampling may have facilitated the detection of a disease-
triggering event, such as infection by a virus with known
islet-tropism.

This study presents a monitoring scheme for frequent
blood microsampling which is translatable to humans. It
addresses several current bottlenecks in identifying transient
molecular indicators of disease triggers in islet autoimmun-
ity and type 1 diabetes progression. First, many screening
initiatives still collect samples at primary care centres, which
is impractical for participants and limits sampling frequency.
Additionally, current initiatives for at-home capillary blood
sampling for islet AAb screening require up to 250 pl blood
[40], posing a challenge that may lower compliance. Previ-
ously we reported successful unsupervised volumetric DBS
sampling by finger-pricking in a home setting [17], which
facilitated frequent sample collection. Here, we extended
these efforts by showing that as little as 5 ul of whole blood
is needed to reveal blood proteome signatures, significantly
simplifying the collection procedure and reducing the risk
of insufficient sample volume. Furthermore, we report the
successful proteome analysis of DBS samples stored at room
temperature, which simplifies at-home storage, lowers the
risk of compromising sample integrity during transport and
reduces pre-analysis storage costs in diagnostic or clinical
laboratories. While daily DBS sampling may not be possible
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in humans, a weekly or bi-weekly collection regimen could
be feasible.

Our study has some limitations. First, it was conducted in
a mouse model rather than in humans. However, our afore-
mentioned work demonstrated the feasibility of performing
DBS sampling followed by proteomics analysis in human
participants [17]. Second, while current PEA-based assays
can monitor 5000-6000 human proteins, the available assays
for murine samples are more limited. Consequently, applying
a similar monitoring approach in humans would provide a
broader more comprehensive insight into proteome changes
induced by infection or another environmental factor.

In conclusion, our proof-of-concept study highlights the
importance of more frequent sampling in capturing tempo-
ral protein changes induced by a disease trigger. This new
approach for analysing frequently collected DBS samples
provides a more accurate picture of biomarker fluctuations
and holds significant potential for identifying novel disease-
predictive molecular markers and informing early interven-
tion strategies for type 1 diabetes. Moreover, it may facili-
tate the discovery of disease-specific endotypes. Integrating
genetic risk scores with measurements of AAbs or other
markers with a proteome-informed intervention strategy
could significantly expedite the prevention of type 1 diabe-
tes. Additionally, incorporating repeated sampling and pro-
teomics analysis in clinical trials is an attractive opportunity
to better understand the trajectories of treatment responses.
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