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Abstract
Aims/hypothesis  Type 1 diabetes manifests after irreversible beta cell damage, highlighting the crucial need for markers 
of the presymptomatic phase to enable early and effective interventions. Current efforts to identify molecular markers of 
disease-triggering events lack resolution and convenience. Analysing frequently self-collected dried blood spots (DBS) could 
enable the detection of early disease-predictive markers and facilitate tailored interventions. Here, we present a novel strat-
egy for monitoring transient molecular changes induced by environmental triggers that enable timely disease interception.
Methods  Whole blood (10 μl) was sampled regularly (every 1–5 days) from adult NOD mice infected with Coxsackievirus 
B3 (CVB3) or treated with vehicle alone. Blood samples (5 μl) were dried on filter discs. DBS samples were analysed by 
proximity extension assay. Generalised additive models were used to assess linear and non-linear relationships between pro-
tein levels and the number of days post infection (p.i.). A multi-layer perceptron (MLP) classifier was developed to predict 
infection status. CVB3-infected SOCS-1-transgenic (tg) mice were treated with immune- or non-immune sera on days 2 and 
3 p.i., followed by monitoring of diabetes development.
Results  Frequent blood sampling and longitudinal measurement of the blood proteome revealed transient molecular changes 
in virus-infected animals that would have been missed with less frequent sampling. The MLP classifier predicted infection 
status after day 2 p.i. with over 90% accuracy. Treatment with immune sera on day 2 p.i. prevented diabetes development in 
all (100%) of CVB3-infected SOCS-1-tg NOD mice while five out of eight (62.5%) of the CVB3-infected controls treated 
with non-immune sera developed diabetes.
Conclusions/interpretation  Our study demonstrates the utility of frequently collected DBS samples to monitor dynamic 
proteome changes induced by an environmental trigger during the presymptomatic phase of type 1 diabetes. This approach 
enables disease interception and can be translated into human initiatives, offering a new method for early detection and 
intervention in type 1 diabetes.
Data and code availability  Additional data available at https://​doi.​org/​10.​17044/​scili​felab.​27368​322. Additional visualisa-
tions are presented in the Shiny app interface https://​mouse-​dbs-​profi​ling.​serve.​scili​felab.​se/.

Keywords  Biomarkers · Coxsackievirus B · Disease intervention · Disease prediction · Disease trigger · Dried blood spots · 
Enterovirus · Immune-mediated diseases · Machine learning · Microsampling · Proteomics · Proximity extension assay · 
Screening · Type 1 diabetes
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PFU	� Plaque forming units
p.i.	� Post infection
ROC	� Receiver operating characteristic
SOCS-1-tg	� SOCS1 transgenic

Introduction

An essential goal of precision medicine is to prevent dis-
eases before they manifest [1]. This relies on the identifica-
tion of predictive biomarkers that can be detected in asymp-
tomatic individuals. Existing molecular tools and approaches 
remain suboptimal for precise molecular monitoring of at-
risk individuals. One key limitation is that current monitor-
ing schemes cannot detect fluctuations in molecular markers 
that are transiently induced by a trigger of disease.

Type 1 diabetes is characterised by the loss of functional 
pancreatic beta cells and reduced insulin production. The 
autoimmune origin of type 1 diabetes is intimated by the 
appearance, approximately 6 months to a few years before 
disease onset, of islet reactive autoantibodies (AAbs). This 

occurs in over 95% of those who develop the condition. 
Additionally, autoreactive T cells are detected in the pan-
creas before clinical symptoms manifest [2]. Environmental 
factors play a role in mediating type 1 diabetes risk, but the 
exact triggers behind the break in immunological tolerance 
to the beta cells remain unknown [3]. Several studies suggest 
an enterovirus infection may precede the first appearance of 
islet AAbs [4]. Consequently, a well-timed antiviral therapy 
could intervene in the events that initiate islet autoimmunity 
and may also help preserve beta cell function at diagnosis 
[5]. Treatment with the T cell targeting anti-CD3 antibody 
(teplizumab) can delay disease onset for 2–3 years in islet 
AAb-positive individuals at very high-risk of type 1 diabetes 
[6–8]. Identifying those who have been infected by a poten-
tially diabetogenic virus but not yet developed islet autoim-
munity, or who are islet AAb positive and near disease onset, 
remains a significant and currently unresolved challenge.

A global analysis of proteins may offer valuable insights 
into different disease stages, disease progression and treat-
ment responses [9]. Accordingly, advanced proteomic 
techniques may be leveraged for the detection of early 
stages of disease, ideally in easily accessible body fluids 
[10, 11]. Recent breakthroughs have enabled precise and 
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high-throughput measurements of blood proteins [10, 12]. 
These cutting-edge techniques allow comprehensive pro-
teome analysis and can identify subtle disease-related or 
predictive protein changes [13]. Despite new advances in 
detecting proteomic disease signatures [14], blood sam-
pling often still necessitates visits to healthcare centres. This 
inconvenience frequently results in singular blood samples 
or lengthy timespans between samples (e.g. months to years) 
which miss rapid and transient proteome changes associated 
with the events that trigger disease and/or disease progres-
sion. Previous prospective studies (e.g. TEDDY and DIPP) 
identified serum proteome changes that are linked to the 
onset of islet AAbs or type 1 diabetes, but proteome profiles 
have not yet been correlated with a disease-triggering event 
[15, 16]. Overcoming the limitation of infrequent sampling 
is crucial for timely disease detection and the implementa-
tion of personalised disease interventions.

Promising remote sampling methods which could per-
mit frequent self-sampling include the collection of dried 
blood spots (DBS). DBS samples can be shipped by regular 
mail to advanced laboratories. We recently demonstrated 
that at-home unsupervised volumetric DBS sampling by 
finger-pricking allows for the precise measurement of mul-
tiple circulating antibodies associated with COVID-19 [17]. 
Using state-of-the-art proteomic tools, we also showed that 
10 µl of dried blood was sufficient to successfully quantify 
hundreds of circulating proteins [18]. Building on this, we 
hypothesised that quantitative analysis of frequently col-
lected DBS can reveal circulating proteins or proteome sig-
natures that are indicative of a disease-triggering event. In 
this study, we used experimental models of enterovirus-trig-
gered type 1 diabetes [19–21] to investigate whether frequent 
blood microsampling and affinity-based proteomics capture 
changes in the circulating proteome that are induced by a 
disease trigger and whether this enables timely, molecularly 
informed interventions.

Methods

Animal husbandry and monitoring of animal health  NOD-
Shi and SOCS1 transgenic (SOCS-1-tg) NOD [19, 22] mice 
were bred in-house and maintained at the Karolinska Uni-
versity Hospital Huddinge, Stockholm, Sweden. Approval 
was received from the local ethics committee (Linköpings 
djurförsöksetiska nämnd, Dnr 9222-2019 and 04291-2024). 
Studies were conducted according to institutional guidelines 
and Swedish national laws. Mice were randomly allocated 
to treatment groups and researchers remained unblinded. 
Health status was closely monitored. See further details in 
ESM Methods.

Virus infections and serum transfers  Female NOD mice 
(8–9 weeks old) were infected with 105 plaque forming 
units (PFU) of Coxsackievirus B3 (CVB3; Nancy) or vehicle 
(mock; RPMI media), by i.p. injection (total volume 200 µl). 
Blood samples were collected at the indicated time points 
until day 14 post infection (p.i.; Fig. 1a). Animals were 
classified as infected if they exhibited a reduction in blood 
glucose levels during the acute phase of infection (days 
0–7 p.i.) and showed histological evidence of pancreatic 
damage at the end of the study. Based on these criteria, 
one animal from each infection experiment was excluded 
from the analyses (total n = 2). To produce immune sera, 
male and female NOD mice (11–12 weeks) were infected 
with CVB3 (5 × 104 PFU; i.p. injection) and blood was 
collected 2 weeks p.i. by terminal heart puncture. Non-
immune sera were collected from age-matched uninfected 
NOD mice. Male and female SOCS-1-tg mice (8–10 weeks 
old) were infected with CVB3 (105 PFU; 200 µl/mouse; i.p. 
injection) and injected with pooled and heat-inactivated sera 
(inactivated at 56°C for 30 min; 200 µl/injection; i.p. route) 
on days 2 and 3 p.i.

Blood collection, glucose measuring and monitoring of 
diabetes development  Blood was collected for proteome 
analysis from the tip of the tail. A sample of 5 µl was trans-
ferred onto paper-based sampling discs (Capitainer, 710-
0020, Solna, Sweden) and left to dry until analysis (see ESM 
Methods). Blood glucose levels from tail vein blood were 
measured using a Bayer Contour XT blood glucose meter 
(Bayer, Basel, Switzerland). Diabetes was diagnosed when 
blood glucose levels were ≥18 mmol/l or after two consecu-
tive daily measurements of 13–18 mmol/l.

Histology and immunohistochemistry  Formalin-fixed, 
paraffin-embedded pancreas was sectioned (5 µm) and 
H&E stained (morphological assessments) or immunohis-
tochemically stained for insulin and glucagon as previously 
described [19, 23] (see ESM Methods).

Blood sample processing and proteomics assay  Briefly, 
DBS samples were eluted in PBS with 0.05% Tween 20 
(Thermo Fisher Scientific, Stockholm, Sweden). The Olink 
Target 96 Mouse Exploratory panel was used to measure 92 
circulating proteins from the eluates which were assessed 
by proximity extension assays (PEA). Linear and non-lin-
ear relationships between protein levels and days p.i. were 
assessed using generalised additive models (GAMs). See 
ESM Methods for detailed information.

Statistical analysis  Statistical analyses were performed using 
Prism 10 software (version 10.3.1; GraphPad, La Jolla, CA) 
and R (version 4.4.1, https://​www.R-​proje​ct.​org/) [24] unless 
otherwise stated. Plots were produced in Prism or R using 

https://www.R-project.org/
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Fig. 1   Longitudinal DBS pro-
tein profiling reveals dynamic 
proteome alterations in CVB3-
infected NOD mice. (a) Sche-
matic of study design. In two 
independent studies, NOD mice 
aged 8–9 weeks were infected 
with CVB3 (200 µl RPMI 
medium containing 105 PFU 
CVB3, i.p.) or mock-infected 
(200 µl of RPMI medium). In 
the first study, the control and 
the CVB-infected groups con-
sisted of four animals each and 
in the second study, the control 
group consisted of four animals 
and the CVB-infected group of 
five animals. A blood sample (5 
µl) was collected from the tail 
vein at indicated time points 
and dispensed onto filter discs 
(Capitainer). Blood samples 
were eluted and proteins were 
measured using PEA (Olink), 
followed by data analysis. 
Created in BioRender. Byvald, 
F. (2024) https://BioRender.
com/t83q649. (b) Heatmaps 
showing the mean protein levels 
(z score) per sampling day for 
each protein for the infected 
(left) and control (right) groups. 
The proteins are clustered based 
on the levels in the infected 
group. Red indicates a high z 
score and blue indicates a low z 
score. (c) Protein profiles for six 
proteins. Each dot represents a 
sample, and colour indicates if 
the included mouse belonged to 
the infected (yellow) or control 
(green) group. Smooth lines 
have been fitted to each group, 
with the 95% CI around the 
smooth line
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the ggplot2 package (version 3.5.1, https://​ggplo​t2.​tidyv​
erse.​org) [25]. Data are expressed as mean ± SD. False dis-
covery rate (FDR) correction of multiple testing was per-
formed using the Benjamini-Hochberg/Bonferroni method. 
A nominal p value or FDR <0.05 was considered statisti-
cally significant. The reproducibility of DBS sampling and 
the proteomics assay process was tested in biological repli-
cates collected concurrently (six samples from one mouse 
in Study 1; five samples from one mouse in Study 2), and in 
technical duplicates. See ESM Methods for details.

Generation of a classifier to predict infection status  Machine 
learning (ML) techniques were used to generate a multi-
layer perceptron (MLP) classifier to predict infection status. 
See ESM Methods for details.

Web‑based interface  The shiny package (version 1.8.1.1, 
https://​shiny.​posit.​co/) [26] was used to create an interactive 
web interface. The app allows a protein-centric visualisation 
of the proteomics data with interactive heatmaps for protein-
protein correlations using heatmaply package (version 1.5.0, 
https://​talga​lili.​github.​io/​heatm​aply/​artic​les/​heatm​aply.​html) 
[27]. All packages and versions used for visualisation are 
stated in the app.

Results

Frequent blood microsampling and pancreas pathology in 
CVB3‑infected NOD mice  To study the effects of a type 1 
diabetes associated enterovirus [4] on the circulating pro-
teome, two independent longitudinal studies (denoted Study 
1 and Study 2) were conducted. Female NOD mice, aged  
8–9 weeks, were infected with CVB3 or mock infected. Pre-
vious studies have shown that the pancreas is permissive 
to CVBs, but infection of NOD mice at this age does not 
induce diabetes [19, 20]. For each mouse, 5 µl of blood was  
collected on individual filter paper discs before infection and 
at several time points thereafter until 14 days p.i. (Fig. 1a). 
DBS were stored at room temperature until analysis. In both 
studies infected mice lost weight from days 5–6 p.i. (ESM 
Fig. 1) and four mice were euthanised on days 9, 10 or 13 
p.i. due to excessive weight loss (>15%; n = 2; ESM Fig. 1). 
Upon termination, buffer-treated mice had normal looking  
pancreas, while most infected animals had a smaller pan-
creas with clear histopathological signs of infection (ESM 
Fig. 2). Notably, no animals developed diabetes (data not 
shown).

Proteome profiling of DBS samples collected from 
CVB3‑infected NOD mice  DBS samples were analysed 
using PEA. Ninety-two proteins were measured in longi-
tudinal DBS samples from all animals. The data were first 

normalised using Protein-specific Probabilistic Quotient 
Normalization (ProtPQN), as previously described [18] and 
no outliers were identified (ESM Fig. 3a). The data were 
then scaled and centred using z score transformation. After 
pre-processing, no significant differences in overall protein 
levels were found between the two studies (p>0.05), and 
the per cent variance explained by the first principal com-
ponent (PC1) decreased from 80% to 17% (ESM Fig. 3b–c). 
Unless specified, the pre-processed and transformed data 
from the two studies were combined and used in downstream 
analyses.

To assess the reproducibility of the affinity proteomics 
method, we collected multiple concurrent samples (n = 6 
in Study 1, n = 5 in Study 2) from the same animal. Using 
pre-processed data, we observed a mean CV of 10.2% and 
20.5% across all proteins in Studies 1 and 2, respectively. Per 
sample, Spearman correlations of rho = 0.99 for Study 1 and 
rho = 0.94 for Study 2 were obtained for the inter-animal 
replicate samples (ESM Fig. 4) confirming the suitability of 
the data for further investigations.

The detectability of the proteomics data was calculated 
for each study using unprocessed normalised protein expres-
sion values by calculating the number of data points above 
the limit of detection (LOD). In Study 1, 64.2% of data 
points were above the LOD, compared with 61.1% in Study 
2. This detectability did not differ significantly between the 
infected and control groups (ESM Fig. 5a, b). When divided 
by sampling day, in Study 2 a greater number of proteins 
were detected above the LOD in the infected group on day 
3 p.i., whereas the detectability was lower on days 1, 9 and 
14 p.i. (p < 0.05) (ESM Fig. 5d). No significant differences 
were found in Study 1 (ESM Fig. 5c).

Longitudinal proteome profiling of DBS samples reveals 
dynamic and transient protein changes induced by CVB3 
infection  To gain a first, unbiased overview of the tempo-
ral levels of circulating proteins, we performed hierarchical 
clustering of proteins over time and in response to CVB3 
infection (Fig. 1b, c). The obtained protein clusters were 
then applied to the control data to illustrate the p.i. protein 
dynamics.

For example, in infected animals, proteins involved 
in immune responses such as CCL2, CXCL9, CXCL1, 
TNFRSF11B, LGMN and CCL5 increased after infection, 
peaking around day 4 p.i. Additionally, a noticeable yet 
minor increase in CCL2 levels was observed in the control 
group in the first 5–6 days p.i. (Fig. 1b, c).

Other proteins, including CCL20, GHRL and CLMP, 
increased in abundance in CVB3-infected mice from days 
5–7 p.i. A cluster of proteins, including PARP1, RIOX2, 
FOXO1 and FLI1, decreased in level in infected mice 
between days 4 and 7 p.i. but returned to baseline by day 
14. Conversely, protein levels for DCTN2, AXIN1, CNTN1 

https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://shiny.posit.co/
https://talgalili.github.io/heatmaply/articles/heatmaply.html
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and CDH6 declined around day 5 p.i. and remained low 
until the end.

The control group displayed a more uniform distribu-
tion of z scores, with fewer changes in protein levels com-
pared with infected mice. Some proteins, including YES1, 
remained unchanged over time in both groups (Fig. 1b, c). 
An interactive web interface was developed to enable brows-
ing of protein-centric results (https://​mouse-​dbs-​profi​ling.​
serve.​scili​felab.​se/). The interface presents the profile of 
each protein and summarises the data in terms of precision, 
variance and protein-protein correlations (ESM Fig. 6).

Next, to identify infection-associated changes we per-
formed statistical tests to compare the protein levels in 
infected mice with those in the control group at each time 
point (Fig. 2). Notably, CCL2 was significantly elevated in 
the infected group of animals compared with the uninfected 

controls as early as day 2 p.i. (FDR-adjusted p value <0.05), 
which persisted until day 14 p.i. (Fig. 2; ESM Table 1). Sim-
ilarly, CXCL9 levels were elevated in the infection group 
from day 3 until day 9 p.i., indicating a temporal pattern in 
the host immune response. The highest number of proteins 
(n = 12) with significantly different time-dependent pro-
files between the infected and control animals were found 
on days 4 and 5 p.i. In the infected group seven proteins 
were elevated on day 4 p.i., and six were increased on day 
5 p.i. By day 14 p.i., significant differences were detected 
in the levels of six proteins between the groups, with only 
CCL2 slightly elevated in infected mice compared with the 
controls (Fig. 2).

We also used GAMs to assess linear and non-linear rela-
tionships between protein levels and the number of days p.i. 
This revealed a notable number of non-linear relationships 
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between time p.i. and protein levels for several proteins 
after Bonferroni correction (infected group n = 37, control 
group n = 8; Table 1; ESM Table 2). These included CCL2, 
CXCL9 and CXCL1, which fluctuated over time. Seven pro-
teins (TNFRSF11B, CCL5, CCL2, CXCL9, CXCL1, GHRL 
and EDA2R) had significantly different time-detection pro-
files between the groups using this model.

DBS protein levels predict infection status early after infec‑
tion  By applying ML techniques to our longitudinal pro-
teome dataset (Fig. 3a), we next constructed a classifier for 
infection prediction. Preliminary analyses using the dataset 
generated in Study 1 and application of permutation fea-
ture importance identified CCL2 and CXCL9 as the most 
informative biomarkers for this task. Using an MLP classi-
fier, we leveraged the trajectories of these proteins from day 
0 to various time points p.i. By day 2 p.i., we accurately pre-
dicted the infection status for 13 out of 17 mice (76%) and by 
day 3 p.i., 16 out of 17 (94%) (Fig. 3b and ESM Table 3). For 
the remaining mouse, which exhibited a delayed response 
trajectory, infection status was correctly predicted by day 
4 p.i. Overall, after day 2 p.i., our classifier correctly pre-
dicted the infection status for 83 out of 85 mouse-timestep 
combinations, equating to an accuracy rate of approximately 
97.6%. A receiver operating characteristic (ROC) curve was 
calculated for the binary classification of infection status 
(Fig. 3c), and the area under the ROC curve (AUROC) was 
0.995. A ROC for the training set is shown in ESM Fig. 7.

Monitoring‑informed intervention prevents virus‑induced 
diabetes development  The ML-based classifier demon-
strated that infection status could be predicted early p.i. 
(day 2), even before clear signs of infection, like weight 
loss, became noticeable (ESM Fig. 1). Therefore, we next 
explored whether this early disease prediction could offer a 
window for preventive treatments.

For this we employed an experimental model for CVB-
induced type 1 diabetes, the SOCS-1-tg mouse [19–21]. In 
these NOD mice, the overexpression of the human SOCS1 
gene under the control of the human insulin promoter ren-
ders the beta cells unresponsive to IFN stimulation. Con-
sequently, in the beta cells, critical autonomous antiviral 
defence mechanisms which are typically activated during 
virus infections via type I IFNs are compromised. Therefore, 
the beta cells succumb to CVB infection, and SOCS-1-tg 
mice develop diabetes approximately 5–12 days after infec-
tion [19–21].

While potent antiviral treatments for CVB infections 
are lacking, passive immunisations have shown promise 
[28–30]. We explored this and generated non-immune and 
immune sera from separate groups of NOD mice. Subse-
quently, SOCS-1-tg mice were infected with CVB3, and 
treated with non-immune or immune sera on days 2 and 
3 p.i. (see Fig. 4a). In the non-immune sera-treated group, 
diabetes was triggered in five out of eight mice (Fig. 4b, c). 
Histological assessment of pancreas revealed that most of 
these mice had extensive exocrine tissue damage and mini-
mal or absent insulin-positive cells in the islets (Fig. 4d, e, 
ESM Fig. 8). Remarkably all six mice treated with immune 
sera remained diabetes free (6/6) (Fig. 4b, c) with intact pan-
creases and islets expressing insulin and glucagon (Fig. 4d, 
e, ESM Fig. 8).

Discussion

To achieve preventive treatments for people at risk of devel-
oping type 1 diabetes through precision medicine it is crucial 
that disease-triggering events that occur in the early, non-
symptomatic stage(s) are identified. While sensors and apps 
can help track symptoms, conditions and/or behaviour, we 
still lack the tools to monitor molecular changes that are 
indicative of early disease. Of the accessible sample types, 
blood provides system-wide and organ-specific insights into 
health. Proteins, lipids and other small molecules can be 
reliably measured in large numbers to track changes [31]. 
However, the timing of blood draws is crucial for identifying 
changes before disease tipping points are reached, thereby 
necessitating longitudinal sampling in presymptomatic 
individuals.

Thanks to the development of self-sampling DBS meth-
ods, new routines for health monitoring have been intro-
duced [32]. The ease of fingertip blood collection and the 
advent of technologies that are compatible with small sam-
ple volumes raises the question of whether data collected 
after frequent sampling can effectively track disease pro-
gression and facilitate early preventive interventions. Using 
type 1 diabetes models combined with the identification of 

Table 1   p values from GAM for top ten proteins differentiating 
CVB3-infected and control animals

Gene UniProt p value for infec-
tion status

Deviance 
explained by 
model

Ccl2 P10148 2.86 × 10−8 0.89
Cxcl9 P18340 3.56 × 10−6 0.81
Ccl5 P30882 0.00059 0.74
Cxcl1 P12850 0.0062 0.75
Ghrl Q9EQX0 0.0086 0.56
Eda2r Q8BX35 0.011 0.71
Tnfrsf11b O08712 0.017 0.69
Dll1 Q61483 0.076 0.32
Foxo1 Q9R1E0 0.15 0.59
Riox2 Q8CD15 0.36 0.47
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proteins in DBS, we asked if frequent blood microsampling 
and the analysis of time-resolved protein patterns could iden-
tify predictive disease markers and the optimal time win-
dow for effective disease interventions. We demonstrate that 
repeated sampling of small volumes of blood (5 µl) followed 
by multiplexed protein analysis of DBS samples can effi-
ciently monitor proteome changes during an infection with 
a type 1 diabetes associated virus and in turn enable timely 
disease interventions.

Through analysis of DBS samples using a commer-
cially available protein panel, we monitored >90 proteins 

relevant to various biological processes and disease areas. 
These included immune response proteins, growth factors, 
cell signalling proteins, proteins involved in cardiovascu-
lar and neurological diseases and various cancer associ-
ated proteins. Among the immune response proteins, the 
chemokine CCL2 showed a transient increase in infected 
and control animals. It peaked in CVB3-infected animals 
around day 5 p.i., while the increase was earlier and lower 
in the controls. This suggests the initial blood sampling 
triggered CCL2 production, which concurs with the known 
crucial role of CCL2 in the recruitment of monocytes and 
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Fig. 3   Model performance for classifier to predict infection status. 
(a) ML pipeline for preliminary analysis of Study 1 samples aimed 
at identifying key features for infection prediction. Permutation fea-
ture importance was applied to quantify the contribution of covariates 
(proteins) to the model’s output. Here the model is a binary classi-
fier that takes all 92 protein measurements at each time step as inputs 
for predicting infection status. Feature importance is assessed by 
randomly permuting each feature’s values and measuring the result-
ing drop in performance compared with the original unaltered input. 
Notably, permuting CCL2 and CXCL9 resulted in the largest accu-
racy drops, underscoring their significance. Their predictive relevance 
is visually confirmed in the plot depicting their temporal evolution. 
Note that the model used in the preliminary analysis differs from the 

one employed in the main experiments. In the ‘Fit neural network’ 
box, step 1 = day 1, step 2 = day 2, step 3 = day 3, step 4 = day 4, 
step 5 = day 5, step 6 = day 7 and step 7 = day 9. Created in BioRen-
der. Byvald, F. (2024) https://​BioRe​nder.​com/​y07z0​21. (b, c) Results 
from the model used in the main analysis including data from both 
independent studies (Study 1 and Study 2). (b) Percentage accuracy 
of the model up to day 7 days p.i. in control (n = 8; green; circles) 
and infected (n = 9; yellow; triangles) mice. Individual animals are 
represented by individual symbols. (c) ROC curve illustrating the 
performance of the binary classification for infection status for the 
validation set (Study 2). Sensitivity (true positive rate) is plotted 
against 1-specificity (false positive rate). The AUROC was 0.995. 
NN, neural network; Std, standard
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Fig. 4   Early intervention prevents virus-induced type 1 diabetes. 
SOCS-1-tg mice were infected with CVB3 (105 PFU CVB3, i.p.). 
On days 2 and 3 p.i., animals were treated with either non-immune 
(n = 8) or immune sera (n = 6) by i.p. injection (total volume 200 µl/
mouse). (a) Experimental schematic. Created in BioRender. Byvald, 
F. (2024) https://BioRender.com/b43t411. (b) Blood glucose values 
of individual animals treated with non-immune sera (n  = 8; black 
line) or immune sera (n  = 6; dotted blue line). Mice were deemed 
diabetic when the blood glucose level was equal to or exceeded 
18 mmol/l, or when two consecutive daily measurements ranged 
between 13 and 18 mmol/l. Dotted black line marks 13 mmol/l glu-
cose. (c) Diabetes incidence curves summarising results shown in (b). 

*p<0.05 comparing the two groups by logrank (Mantel–Cox) test. 
(d) Representative images of sequential pancreas sections from mice 
infected with CVB3 and treated with non-immune or immune sera. 
Pancreas was stained for insulin (panels on left) or glucagon (panels 
on right). Positive areas are stained brown. Scale bars, 100 µm. (e) 
Percentage of animals with damaged and intact tissue morphology in 
pancreas specimens from mice treated with non-immune sera (n = 7) 
or immune sera (n = 5). The infection status of two animals, one from 
each treatment group, could not be determined histologically due to 
insufficient quality of the formalin-fixed, paraffin-embedded sections, 
and were excluded from the assessment

https://BioRender.com/b43t411
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other immune cells to sites of inflammation caused by tis-
sue injury or infection [33]. Minor but similar temporary 
increases in other immune-related proteins, including 
CCL20 and IL1β, were detected in both groups (Fig. 1). 
This important observation demonstrates that the sampling 
procedure itself, especially when samples are repeatedly 
taken from the same location, may temporarily impact cer-
tain protein levels. The protein data from the uninfected 
control group, however, displayed a more uniform distri-
bution of z scores with fewer protein changes than the 
infected group (Fig. 1). This indicates that, overall, the 
repeated handling and blood sampling was well tolerated.

Recent work summarised the current understanding of 
immune responses to CVB infection [4]. Our study offers 
high resolution of systemic proteome alterations that occur 
during the acute phase of an infection. The greatest differ-
ences in circulating protein levels were observed between 
days 4 and 7 p.i. Despite under-representation in the panel, 
most of these proteins are associated with the immune 
system. Given that robust innate antiviral defence mecha-
nisms are activated and peak earlier than day 4 p.i. [29, 
34], future studies using a panel that covers additional 
immune-related proteins may identify further candidates 
with altered abundance early after infection. Moreover, 
unique patterns may be found which could distinguish 
enterovirus infections from those with other viruses. Com-
plementary insights into infection biology could also be 
provided by other proteomics methods (e.g. MS), along-
side the analysis of other molecules including metabolites 
and/or lipids. Our study underscores the dynamic nature 
of protein changes in response to acute infection, with 
specific proteins exhibiting significant temporal expres-
sion patterns. Importantly, these patterns would have been 
missed with less frequent sampling.

The dynamic protein changes observed during acute 
CVB infection also revealed proteins that decreased in abun-
dance. For example, FOXO1 and CNTN1 levels temporarily 
dropped during infection. The implications of these changes 
are an area of future interest.

Interestingly, we correlated altered protein expression 
with a physical readout, highlighting an indirect infection 
effect. In CVB3-infected mice, there was a late increase in 
ghrelin levels which significantly correlated with weight loss 
(r = −0.51; p = 2.1 × 10–6; as determined by Spearman cor-
relation). Ghrelin, known for stimulating appetite and regu-
lating hunger and energy balance, typically increases after 
significant weight loss [35]. The CVB3-infected animals 
experienced weight loss throughout the infection, which 
was likely due to their extensive exocrine pancreas damage. 
Collectively, this highlights that through the analysis of lon-
gitudinal DBS samples, we can identify molecular footprints 
induced by CVB3 infections that are indicative of the direct, 
indirect and broader impacts that CVBs have on health.

ML methods are becoming pivotal for analysing com-
plex datasets, particularly for the prediction and staging 
of diseases, and for individualised patient care [10]. After 
applying ML techniques to our longitudinal proteome data-
set, we successfully constructed a classifier for infection 
prediction. The proteins CCL2 and CXCL9 emerged as the 
most informative biomarkers for this task, consistent with 
classical approaches. By day 2 p.i. we predicted the infection 
status with an accuracy rate of >75% which was >95% by 
day 3 p.i. The effectiveness of this prediction for informing 
relevant time points for treatment interventions was demon-
strated using an experimental model for virus-induced type 
1 diabetes [19–21]. Infected animals treated with immune 
sera on days 2 and 3 p.i. were protected from significant 
pancreatic damage and type 1 diabetes development. This 
underscores the potential of ML-based approaches in using 
plasma proteomics for early and precise infection status pre-
diction, opening new avenues for appropriate interventions 
and improved disease management.

Prospective cohort studies which have followed children 
from infancy have significantly enhanced our understand-
ing of type 1 diabetes pathogenesis, including the sequence 
of islet AAb appearance [36–39]. However, these studies 
have not yet identified the early triggers and the precise time 
when beta cell autoimmunity is induced, which is crucial for 
implementing preventive therapies. This limitation may be 
partly due to the relatively lengthy sampling intervals (e.g. 
3 months or more between samples). More frequent blood 
sampling may have facilitated the detection of a disease-
triggering event, such as infection by a virus with known 
islet-tropism.

This study presents a monitoring scheme for frequent 
blood microsampling which is translatable to humans. It 
addresses several current bottlenecks in identifying transient 
molecular indicators of disease triggers in islet autoimmun-
ity and type 1 diabetes progression. First, many screening 
initiatives still collect samples at primary care centres, which 
is impractical for participants and limits sampling frequency. 
Additionally, current initiatives for at-home capillary blood 
sampling for islet AAb screening require up to 250 µl blood 
[40], posing a challenge that may lower compliance. Previ-
ously we reported successful unsupervised volumetric DBS 
sampling by finger-pricking in a home setting [17], which 
facilitated frequent sample collection. Here, we extended 
these efforts by showing that as little as 5 µl of whole blood 
is needed to reveal blood proteome signatures, significantly 
simplifying the collection procedure and reducing the risk 
of insufficient sample volume. Furthermore, we report the 
successful proteome analysis of DBS samples stored at room 
temperature, which simplifies at-home storage, lowers the 
risk of compromising sample integrity during transport and 
reduces pre-analysis storage costs in diagnostic or clinical 
laboratories. While daily DBS sampling may not be possible 
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in humans, a weekly or bi-weekly collection regimen could 
be feasible.

Our study has some limitations. First, it was conducted in 
a mouse model rather than in humans. However, our afore-
mentioned work demonstrated the feasibility of performing 
DBS sampling followed by proteomics analysis in human 
participants [17]. Second, while current PEA-based assays 
can monitor 5000–6000 human proteins, the available assays 
for murine samples are more limited. Consequently, applying 
a similar monitoring approach in humans would provide a 
broader more comprehensive insight into proteome changes 
induced by infection or another environmental factor.

In conclusion, our proof-of-concept study highlights the 
importance of more frequent sampling in capturing tempo-
ral protein changes induced by a disease trigger. This new 
approach for analysing frequently collected DBS samples 
provides a more accurate picture of biomarker fluctuations 
and holds significant potential for identifying novel disease-
predictive molecular markers and informing early interven-
tion strategies for type 1 diabetes. Moreover, it may facili-
tate the discovery of disease-specific endotypes. Integrating 
genetic risk scores with measurements of AAbs or other 
markers with a proteome-informed intervention strategy 
could significantly expedite the prevention of type 1 diabe-
tes. Additionally, incorporating repeated sampling and pro-
teomics analysis in clinical trials is an attractive opportunity 
to better understand the trajectories of treatment responses.
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