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Abstract

This editorial presents an analysis of the articles published in the Journal of Cheminformatics Special Issue “Al in Drug
Discovery” We review how novel machine learning developments are enhancing structural-based drug discov-

ery; providing better forecasts of molecular properties while also improving various elements of chemical reaction
prediction. Methodological developments focused on increasing the accuracy of models via pre-training, estimating
the accuracy of predictions, tuning model hyperparameters while avoiding overfitting, in addition to a diverse range
of other novel and interesting methodological aspects, including the incorporation of human expert knowledge

to analysing the susceptibility of models to adversary attacks, were explored in this Special Issue. In summary, the Spe-
cial Issue brought together an excellent collection of articles that collectively demonstrate how machine learning
methods have become an essential asset in modern drug discovery, with the potential to advance autonomous
chemistry labs in the near future.
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The special issue “Al in Drug Discovery” was organised
in connection to a workshop of the same name organised
during the 33rd International Conference on Artificial
Neural Networks (ICANN2024) conference https://e-
nns.org/icann2024. It has received a lot of interest and
attention, attracting 63 submissions from 20 countries, of
which 26 were published as articles in the journal. Here,
we critically review these contributions, which covered
various aspects of new developments in machine learning
(ML) and chemoinformatics methods in chemistry and
drug discovery. We also organised the Tox24 challenge
within the framework of ICANN2024. Readers interested
in evaluating the recent developments in ML methods
to predict toxicity of chemical compounds are invited
to read about it in a dedicated article by Eytcheson and
Tetko [1].

Structural-based drug discovery: binding site,
docking and scoring functions
A critical step in structure-based drug discovery is the
identification of binding pockets, which can be used to
develop new active molecules. The (Contrastive Learn-
ing and Pre-trained Encoder for Small Molecule Binding)
CLAPE-SMB method by Wang et al [2] predicts protein-
DNA binding sites using only sequence data. The method
demonstrated better or comparable performance in
comparison to other methods—even those of them that
used 3D information. Interestingly, using focal loss [3] to
address data imbalance (since binding sites correspond
only to less than 5% of all aminoacids) did not provide a
significant improvement.

Once binding sites are identified, users traditionally
use docking tools, such as AutoDock [4], to correctly
score top poses to identify active molecules. In contrast
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to traditional docking methods (using force-field based
or empirical scoring functions) Gnina [5] uses Convo-
lutional Neural Networks to score such poses. A novel
edition of Gnina (v1.3) by McNutt et al [6] retrained
the CNN scoring function on an updated docking data-
set and introduced knowledge-distilled CNN scoring
to increase inference speed. Importantly, a new scor-
ing function for covalent docking was also added, thus
extending functionality of the software. Another novel
scoring function based on constructing weighted colored
subgraphs from the 3D structure of protein-ligand com-
plexes was proposed by Mukta et al. [7]. The authors con-
verted protein ligand complexes to 3D sub-graphs based
on SYBYL atom types both for ligands and proteins.
Eigenvalues and eigenvectors of sub-graphs were used
to generate almost 17 k descriptors (such as sum, mean,
max, etc. of eigenvalues). The descriptors were further
analysed by gradient boosting trees to develop a regres-
sion model—the AGL-EAT-Score (Algebraic Graph
Learning with Extended Atom-Type Scoring Function)
for predicting binding affinities. Of course, successful
application of AGL-EAT-Score and Gnina 1.3 as a whole
still depends on the successful identification of true bind-
ing poses.

Do current methods correctly identify interactions
between small molecules and proteins? The importance
of direct assessment of the interactions of molecules with
the protein, such as pharmacophores, in addition to phys-
ical plausibility of ligand placement was highlighted by
Errington et al. [8] The authors concluded that classical
methods produced poses that were better at recovering
the considered types of interaction and suggested incor-
porating explicit protein-ligand interaction fingerprints
or pharmacophore-sensitive loss to the training of ML
models. Such constraints are not directly modelled, e.g.
in DeepTGIN by Wang et al.,, [9] which predicts binding
affinity using Transformers [10] and Graph Isomorphism
Networks [11]. This multimodal architecture efficiently
learns and combines features of ligand (represented as
graph), pocket in addition to capturing global charac-
teristics of the protein (both represented as sequence) to
achieve its high accuracy. The attention scores do allow
visualisation and interpretation of the interactions, which
are important for designing novel compounds, but incor-
poration of additional physical validation of predicted
poses could be a promising extension and enhancement
of this study.

To our knowledge, the generative model PoLiGenX by
Le et al [12] is one of the first to directly address correct
pose prediction by conditioning of the ligand generation
process on reference molecules located within a spe-
cific protein pocket. This strategy allowed the authors to
generate ligands with favorable poses that have reduced
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steric clashes and lower strain energies compared to
those generated with other diffusion models. The phar-
macophore-sensitive information actually corresponds to
human expert knowledge since generation of pharmaco-
phores is usually based on expert analysis of interactions
of ligands with protein. Nahal et al [13] further analysed
how leveraging a human expert’s knowledge can be used
to improve active learning by using their feedback to
refine selection of molecules. Human insights allowed
better navigation of chemical space and generation of
chemicals with more favourable properties.

While interpretations of models using deep learn-
ing methods based on SMILES representations, such as
Transformers, may not always be consistent [14], group
graphs, which are based on a substructure-level molec-
ular representation, developed by Cao [15] allowed
unambiguous interpretation of importance of groups for
molecular properties predictions. This representation
also increased the accuracy of models while decreasing
training time.

Prediction of properties

Of course, for computational studies, like those men-
tioned above, researchers have to rely on prediction
properties of molecules. In this respect, the development
of highly accurate Absorption, Distribution, Metabolism,
Excretion, and Toxicity (ADMET) models is very impor-
tant [16]. AttenhERG by Yang et al., [17] which is based
on the Attentive FP algorithm [18] has achieved the high-
est accuracy in a benchmarking study against different
external datasets while also allowing interpretation of
which atoms contribute most to the toxicity of chemicals.
In some cases, hERG toxicity is detected during the later
preclinical phase in drug development, when preparing
the Investigational New Drug (IND) Application dos-
sier, or even after a drug is approved in the clinic. Car-
dioGenAl by Kyro et al [19] was developed for the early
identification of drugs likely to exhibit hERG toxicity and
to redesign such drugs to reduce the risk of hERG toxic-
ity while preserving their pharmacological activity. The
authors used an autoregressive transformer to generate
valid molecules conditioned on the molecular scaffold
and physicochemical properties which are further fil-
tered based on models predicting hERG properties. The
authors demonstrate their framework by re-engineering
several drugs with known hERG liability. Drug-induced
liver injury (DILI) is another important toxicological
end-point for computational toxicology [20]. DILI is a
complex property and can be linked to many different
pathways, such as cholestasis, leading to bile acid accu-
mulation in the liver and resulting in hepatotoxicity.
StreamChol developed by Rodriguez-Belenguer [21] pro-
vides a user-friendly web-based tool to estimate potential
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toxicity of compounds with respect to this endpoint.
Of course, undesired properties of compounds are not
necessarily limited to ADMET. E-GuARD developed by
Palmacci [22] was designed to predict compounds likely
to interfere with biological assays (frequent hitters). The
authors mentioned a scarcity of such data, which are also
highly imbalanced (e.g., only 0.7-3.3% of compounds are
interfering with luciferase [23]. The authors used artificial
data augmentation to address data imbalance thus allow-
ing their model to improve its performance by learning
not only from experimental data but also from newly
generated compounds.

Toxicity can be also a desired property in molecules,
i.e. those used for cancer treatments, such as photoacti-
vated chemotherapy. Vigna et al [24] developed a model
based on different 2D fingerprints to estimate propen-
sity of transition metal-based complexes to absorb light
in the therapeutic window. The use of ML allowed the
authors to significantly increase speed of calculations
compared to traditional Time-Dependent Density Func-
tional Theory (TDDFT) calculations, while interpretation
of models enabled them to make informed modifica-
tions to the chemical structure so that they could absorb
light. It should also be mentioned that recent advances
in machine learning can be directly used instead of tra-
ditional DFT [25] calculations by learning accurate and
transferable potential for organic molecules, which can
be of several magnitude orders faster [26]. The learning
of potentials requires data points to be stored for discrete
representations of the electron density as grids, for which
uniform grids are frequently used. However, the data
points can contain very large variations in density values
(from 1072 to 10 [4]) which complicate neural network
training. To address this issue Ushenin et al [27] propose
a core suppression model that reduces the amplitude of
core orbitals and allows for better convergence of neural
network models. The authors also developed the Lebe-
dev-Angular Grid Network (LAGNet) architecture which
stores data points as a standard grid—specifically, a com-
bination of radial and Lebedev (angular) grids—which
allowed the authors to decrease storage space require-
ments and computation costs.

Analysis and benchmarking machine learning
methods

In order for a compound to find use as a drug, it should
have certain physico-chemical and ADMET properties.
The prediction of these properties is difficult due to the
limited amount of experimental data, as well as the fre-
quency of experimental measurements errors and data
imbalance. Several studies have investigated whether
modern deep learning can contribute better models.
There are many data splitting strategies that have been
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proposed in these studies and using one or another
approach may provide different results. Guo et al. [28]
found that the Uniform Manifold Approximation and
Projection (UMAP) split provided more challenging and
realistic benchmarks for model evaluation than other tra-
ditional methods, such as Butina splits, scaffold splits and
random splits. Graph Neural Networks, such as ChemP-
rop [29, 30] can be used to model physico-chemical and
ADMET properties of compounds, and these methods
frequently give excellent performances. However, the
question of whether learned representations can pro-
vide better performances still remains. The authors of
ChemProp decided to investigate whether a combination
of deep neural networks with a well-developed package
of Mordred [31] descriptors, fastprop [32], can provide
similar results to this method. The results obtained when
testing this algorithm on several sets showed similar per-
formances, but the use of fastprop yielded results con-
siderably faster (around 10x). The authors also suggested
that end-users use it with the default hyperparameters,
since their extensive optimisation can result in overfit-
ting, in particular for small sets. The latter problem was
exemplified in another publication [33] with respect to
solubility prediction studies [34]. Tetko et al [33] showed
that using a preselected set of hyperparameters could
produce models with similar or even better accuracy
than those obtained using grid optimisation for Chem-
Prop [30] and Attentive Fingerprint [18]. Importantly,
the results obtained using pre-selected hyperparameters
were calculated around 10,000 X faster than the results
obtained using optimised parameters. Moreover, another
method, Transformer CNN [35] yielded a significantly
higher performance compared to both of these graph
neural methods. Interestingly, the authors of fastprop
also compared their method with Transformer CNN but
did not use SMILES augmentation (which is an essen-
tial feature of the method). While such use resulted in
potential underperformance of Transformer CNN, it still
had an accuracy similar to both fastprop and ChemProp
methods.

The pre-training of models is important for increas-
ing the accuracy of their predictions for downstream
tasks. The pre-training can be done in many different
ways, e.g., by predicting canonical SMILES based on
augmented (sometimes also called random or enumer-
ated [36]) SMILES, which is done with Transformer
CNN [35]. Incorporation of calculated properties into
pre-training can be beneficial for certain models. Fallani
et al [37] analysed the pre-training of a Graphormer [38],
which is a Transformer for graphs. The authors found
that pretraining of models on quantum-chemical prop-
erties contributed better models for ADMET datasets. A
similar conclusion on the importance of data pertaining
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was reached by Masood et al. [39] Their VitroBERT
model pre-trained on in vitro data showed a significant
improvement for highly imbalanced DILI tasks.

While properties of compounds can be predicted, not
all predictions have the same accuracy. An estimation of
accuracy of predictions could be done by, e.g., defining
a distance to model function, which measures similarity
of molecules to the training set/model and calibrating it
using it cross-validation or/and test sets [40]. Friesacher
et al [41] investigated several different strategies, as well
as the influence of model hyper-parameter tuning, which
can provide the best model calibration. Interestingly, the
authors found that using a novel Bayesian uncertainty
estimation method allowed them to obtain models both
with higher calibration as well as accuracy. In another
study Masood et al [42] used a transformer-based BERT
model to reliably estimate uncertainty and improve active
learning.

The possibility of sharing information without sharing
data has been a topic of careful investigation in drug dis-
covery, in particular when using federated learning [43,
44]. Earlier investigations have also explored the shar-
ing of data using descriptors and concluded that it may
indeed be possible to reverse engineer molecules from
descriptors [45], which was later confirmed experi-
mentally [46]. An alternative method using surrogate
data was proposed [45] and was recently used to share
CYP3A4 inhibition data [47]. However, does sharing of
models also lead to the data leakage? Kriiger et al [48]
used recent developments in cryptography to evaluate
vulnerabilities across different molecular representa-
tions and algorithms. The authors found that using vari-
ous attacks the adversary can identify molecules from the
training set and, in particular, underrepresented com-
pounds, which are usually the most valuable (e.g., active
compounds in virtual screening). The use of representa-
tion learning graph neural networks significantly reduced
vulnerability to these attacks.

Reaction predictions

Two articles submitted to the Special Issue focused on
reaction prediction. In the first study, Torren-Peraire
et al [49] developed a benchmark set and a strategy for
identifying complex routes with multiple target mol-
ecules sharing common intermediates, thus allowing
for the synthesis of 30% more compounds simultane-
ously than is possible using traditional multi-step syn-
thesis planning. The acceleration of inference times to
decrease computational costs is an important prob-
lem, in particular when considering the effect of deep
learning computations on CO2 emissions and cli-
mate change [50]. Andronov et al [51] achieved over
3 X faster inference in reaction product prediction tasks
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with no loss in accuracy when using speculative decod-
ing, which proposes several tokens simultaneously,
with the model deciding whether or not it can accept
them. Considering the urgent need for data, Vangala
et al [52] proposed using LLMs to extract high quality
data from patent documents by collecting 26% more
new reactions compared to existing tools.

While the articles published in this Special Issue
describe various neural network architectures, appli-
cations as well as use cases, of course, they do not
cover the diversity of developments within this area
of research. However, this Special Issue also has a
dedicated review of various deep learning chemical
language models by Flores-Hernandez and Martinez-
Ledesma [53], which provides readers with a systematic
analysis of the current developments in the field.

In conclusion, we see very active development of new
machine learning approaches for different aspects of
drug discovery. These methods are becoming more pow-
erful and successfully competing with various traditional
computational chemistry approaches, such as docking,
DFT, machine learning methods based on traditional
descriptors, etc. The explanation of models’ predictions,
as well as incorporation of expert knowledge, are also
very important development and progress in these fields
is continuing, as was highlighted in a previous editorial
[54]. The widespread use of deep learning methods has
brought novel issues to the attention of the scientific
community, such as the need to decrease computational
resources and carbon footprint and to understand secu-
rity issues when sharing models developed with different
molecular representations. The widespread use of com-
putational predictions, in connection with modern hard-
ware implementations to advance autonomous chemistry
labs, is likely to be the next big development as machine
learning methods continue to progress.
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