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EDITORIAL

Advanced machine learning for innovative 
drug discovery
Igor V. Tetko1,2* and Djork‑Arné Clevert3 

Abstract 

This editorial presents an analysis of the articles published in the Journal of Cheminformatics Special Issue “AI in Drug 
Discovery”. We review how novel machine learning developments are enhancing structural-based drug discov‑
ery; providing better forecasts of molecular properties while also improving various elements of chemical reaction 
prediction. Methodological developments focused on increasing the accuracy of models via pre-training, estimating 
the accuracy of predictions, tuning model hyperparameters while avoiding overfitting, in addition to a diverse range 
of other novel and interesting methodological aspects, including the incorporation of human expert knowledge 
to analysing the susceptibility of models to adversary attacks, were explored in this Special Issue. In summary, the Spe‑
cial Issue brought together an excellent collection of articles that collectively demonstrate how machine learning 
methods have become an essential asset in modern drug discovery, with the potential to advance autonomous 
chemistry labs in the near future.
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The special issue “AI in Drug Discovery” was organised 
in connection to a workshop of the same name organised 
during the 33rd International Conference on Artificial 
Neural Networks (ICANN2024) conference https://e-​
nns.​org/​icann​2024. It has received a lot of interest and 
attention, attracting 63 submissions from 20 countries, of 
which 26 were published as articles in the journal. Here, 
we critically review these contributions, which covered 
various aspects of new developments in machine learning 
(ML) and chemoinformatics methods in chemistry and 
drug discovery. We also organised the Tox24 challenge 
within the framework of ICANN2024. Readers interested 
in evaluating the recent developments in ML methods 
to predict toxicity of chemical compounds are invited 
to read about it in a dedicated article by Eytcheson and 
Tetko [1].

Structural‑based drug discovery: binding site, 
docking and scoring functions
A critical step in structure-based drug discovery is the 
identification of binding pockets, which can be used to 
develop new active molecules. The (Contrastive Learn-
ing and Pre-trained Encoder for Small Molecule Binding) 
CLAPE-SMB method by Wang et al [2] predicts protein-
DNA binding sites using only sequence data. The method 
demonstrated better or comparable performance in 
comparison to other methods—even those of them that 
used 3D information. Interestingly, using focal loss [3] to 
address data imbalance (since binding sites correspond 
only to less than 5% of all aminoacids) did not provide a 
significant improvement.

Once binding sites are identified, users traditionally 
use docking tools, such as AutoDock [4], to correctly 
score top poses to identify active molecules. In contrast 
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to traditional docking methods (using force-field based 
or empirical scoring functions) Gnina [5] uses Convo-
lutional Neural Networks to score such poses. A novel 
edition of Gnina (v1.3) by McNutt et  al [6] retrained 
the CNN scoring function on an updated docking data-
set and introduced knowledge-distilled CNN scoring 
to increase inference speed. Importantly, a new scor-
ing function for covalent docking was also added, thus 
extending functionality of the software. Another novel 
scoring function based on constructing weighted colored 
subgraphs from the 3D structure of protein–ligand com-
plexes was proposed by Mukta et al. [7]. The authors con-
verted protein ligand complexes to 3D sub-graphs based 
on SYBYL atom types both for ligands and proteins. 
Eigenvalues and eigenvectors of sub-graphs were used 
to generate almost 17 k descriptors (such as sum, mean, 
max, etc. of eigenvalues). The descriptors were further 
analysed by gradient boosting trees to develop a regres-
sion model—the AGL-EAT-Score (Algebraic Graph 
Learning with Extended Atom-Type Scoring Function) 
for predicting binding affinities. Of course, successful 
application of AGL-EAT-Score and Gnina 1.3 as a whole 
still depends on the successful identification of true bind-
ing poses.

Do current methods correctly identify interactions 
between small molecules and proteins? The importance 
of direct assessment of the interactions of molecules with 
the protein, such as pharmacophores, in addition to phys-
ical plausibility of ligand placement was highlighted by 
Errington et al. [8] The authors concluded that classical 
methods produced poses that were better at recovering 
the considered types of interaction and suggested incor-
porating explicit protein–ligand interaction fingerprints 
or pharmacophore-sensitive loss to the training of ML 
models. Such constraints are not directly modelled, e.g. 
in DeepTGIN by Wang et al., [9] which predicts binding 
affinity using Transformers [10] and Graph Isomorphism 
Networks [11]. This multimodal architecture efficiently 
learns and combines features of ligand (represented as 
graph), pocket in addition to capturing global charac-
teristics of the protein (both represented as sequence) to 
achieve its high accuracy. The attention scores do allow 
visualisation and interpretation of the interactions, which 
are important for designing novel compounds, but incor-
poration of additional physical validation of predicted 
poses could be a promising extension and enhancement 
of this study.

To our knowledge, the generative model PoLiGenX by 
Le et al [12] is one of the first to directly address correct 
pose prediction by conditioning of the ligand generation 
process on reference molecules located within a spe-
cific protein pocket. This strategy allowed the authors to 
generate ligands with favorable poses that have reduced 

steric clashes and lower strain energies compared to 
those generated with other diffusion models. The phar-
macophore-sensitive information actually corresponds to 
human expert knowledge since generation of pharmaco-
phores is usually based on expert analysis of interactions 
of ligands with protein. Nahal et al [13] further analysed 
how leveraging a human expert’s knowledge can be used 
to improve active learning by using their feedback to 
refine selection of molecules. Human insights allowed 
better navigation of chemical space and generation of 
chemicals with more favourable properties.

While interpretations of models using deep learn-
ing methods based on SMILES representations, such as 
Transformers, may not always be consistent [14], group 
graphs, which are based on a substructure-level molec-
ular representation, developed by Cao [15] allowed 
unambiguous interpretation of importance of groups for 
molecular properties predictions. This representation 
also increased the accuracy of models while decreasing 
training time.

Prediction of properties
Of course, for computational studies, like those men-
tioned above, researchers have to rely on prediction 
properties of molecules. In this respect, the development 
of highly accurate Absorption, Distribution, Metabolism, 
Excretion, and Toxicity (ADMET) models is very impor-
tant [16]. AttenhERG by Yang et al., [17] which is based 
on the Attentive FP algorithm [18] has achieved the high-
est accuracy in a benchmarking study against different 
external datasets while also allowing interpretation of 
which atoms contribute most to the toxicity of chemicals. 
In some cases, hERG toxicity is detected during the later 
preclinical phase in drug development, when preparing 
the Investigational New Drug (IND) Application dos-
sier, or even after a drug is approved in the clinic. Car-
dioGenAI by Kyro et al [19] was developed for the early 
identification of drugs likely to exhibit hERG toxicity and 
to redesign such drugs to reduce the risk of hERG toxic-
ity while preserving their pharmacological activity. The 
authors used an autoregressive transformer to generate 
valid molecules conditioned on the molecular scaffold 
and physicochemical properties which are further fil-
tered based on models predicting hERG properties. The 
authors demonstrate their framework by re-engineering 
several drugs with known hERG liability. Drug-induced 
liver injury (DILI) is another important toxicological 
end-point for computational toxicology [20]. DILI is a 
complex property and can be linked to many different 
pathways, such as cholestasis, leading to bile acid accu-
mulation in the liver and resulting in hepatotoxicity. 
StreamChol developed by Rodríguez-Belenguer [21] pro-
vides a user-friendly web-based tool to estimate potential 
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toxicity of compounds with respect to this endpoint. 
Of course, undesired properties of compounds are not 
necessarily limited to ADMET. E-GuARD developed by 
Palmacci [22] was designed to predict compounds likely 
to interfere with biological assays (frequent hitters). The 
authors mentioned a scarcity of such data, which are also 
highly imbalanced (e.g., only 0.7–3.3% of compounds are 
interfering with luciferase [23]. The authors used artificial 
data augmentation to address data imbalance thus allow-
ing their model to improve its performance by learning 
not only from experimental data but also from newly 
generated compounds.

Toxicity can be also a desired property in molecules, 
i.e. those used for cancer treatments, such as photoacti-
vated chemotherapy. Vigna et al [24] developed a model 
based on different 2D fingerprints to estimate propen-
sity of transition metal-based complexes to absorb light 
in the therapeutic window. The use of ML allowed the 
authors to significantly increase speed of calculations 
compared to traditional Time-Dependent Density Func-
tional Theory (TDDFT) calculations, while interpretation 
of models enabled them to make informed modifica-
tions to the chemical structure so that they could absorb 
light. It should also be mentioned that recent advances 
in machine learning can be directly used instead of tra-
ditional DFT [25] calculations by learning accurate and 
transferable potential for organic molecules, which can 
be of several magnitude orders faster [26]. The learning 
of potentials requires data points to be stored for discrete 
representations of the electron density as grids, for which 
uniform grids are frequently used. However, the data 
points can contain very large variations in density values 
(from 10–20 to 10 [4]) which complicate neural network 
training. To address this issue Ushenin et al [27] propose 
a core suppression model that reduces the amplitude of 
core orbitals and allows for better convergence of neural 
network models. The authors also developed the Lebe-
dev-Angular Grid Network (LAGNet) architecture which 
stores data points as a standard grid—specifically, a com-
bination of radial and Lebedev (angular) grids—which 
allowed the authors to decrease storage space require-
ments and computation costs.

Analysis and benchmarking machine learning 
methods
In order for a compound to find use as a drug, it should 
have certain physico-chemical and ADMET properties. 
The prediction of these properties is difficult due to the 
limited amount of experimental data, as well as the fre-
quency of experimental measurements errors and data 
imbalance. Several studies have investigated whether 
modern deep learning can contribute better models. 
There are many data splitting strategies that have been 

proposed in these studies and using one or another 
approach may provide different results. Guo et  al. [28] 
found that the Uniform Manifold Approximation and 
Projection (UMAP) split provided more challenging and 
realistic benchmarks for model evaluation than other tra-
ditional methods, such as Butina splits, scaffold splits and 
random splits. Graph Neural Networks, such as ChemP-
rop [29, 30] can be used to model physico-chemical and 
ADMET properties of compounds, and these methods 
frequently give excellent performances. However, the 
question of whether learned representations can pro-
vide better performances still remains. The authors of 
ChemProp decided to investigate whether a combination 
of deep neural networks with a well-developed package 
of Mordred [31] descriptors, fastprop [32], can provide 
similar results to this method. The results obtained when 
testing this algorithm on several sets showed similar per-
formances, but the use of fastprop yielded results con-
siderably faster (around 10x). The authors also suggested 
that end-users use it with the default hyperparameters, 
since their extensive optimisation can result in overfit-
ting, in particular for small sets. The latter problem was 
exemplified in another publication [33] with respect to 
solubility prediction studies [34]. Tetko et al [33] showed 
that using a preselected set of hyperparameters could 
produce models with similar or even better accuracy 
than those obtained using grid optimisation for Chem-
Prop [30] and Attentive Fingerprint [18]. Importantly, 
the results obtained using pre-selected hyperparameters 
were calculated around 10,000 × faster than the results 
obtained using optimised parameters. Moreover, another 
method, Transformer CNN [35] yielded a significantly 
higher performance compared to both of these graph 
neural methods. Interestingly, the authors of fastprop 
also compared their method with Transformer CNN but 
did not use SMILES augmentation (which is an essen-
tial feature of the method). While such use resulted in 
potential underperformance of Transformer CNN, it still 
had an accuracy similar to both fastprop and ChemProp 
methods.

The pre-training of models is important for increas-
ing the accuracy of their predictions for downstream 
tasks. The pre-training can be done in many different 
ways, e.g., by predicting canonical SMILES based on 
augmented (sometimes also called random or enumer-
ated [36]) SMILES, which is done with Transformer 
CNN [35]. Incorporation of calculated properties into 
pre-training can be beneficial for certain models. Fallani 
et al [37] analysed the pre-training of a Graphormer [38], 
which is a Transformer for graphs. The authors found 
that pretraining of models on quantum-chemical prop-
erties contributed better models for ADMET datasets. A 
similar conclusion on the importance of data pertaining 
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was reached by Masood et  al. [39] Their VitroBERT 
model pre-trained on in  vitro data showed a significant 
improvement for highly imbalanced DILI tasks.

While properties of compounds can be predicted, not 
all predictions have the same accuracy. An estimation of 
accuracy of predictions could be done by, e.g., defining 
a distance to model function, which measures similarity 
of molecules to the training set/model and calibrating it 
using it cross-validation or/and test sets [40]. Friesacher 
et al [41] investigated several different strategies, as well 
as the influence of model hyper-parameter tuning, which 
can provide the best model calibration. Interestingly, the 
authors found that using a novel Bayesian uncertainty 
estimation method allowed them to obtain models both 
with higher calibration as well as accuracy. In another 
study Masood et al [42] used a transformer-based BERT 
model to reliably estimate uncertainty and improve active 
learning.

The possibility of sharing information without sharing 
data has been a topic of careful investigation in drug dis-
covery, in particular when using federated learning [43, 
44]. Earlier investigations have also explored the shar-
ing of data using descriptors and concluded that it may 
indeed be possible to reverse engineer molecules from 
descriptors [45], which was later confirmed experi-
mentally [46]. An alternative method using surrogate 
data was proposed [45] and was recently used to share 
CYP3A4 inhibition data [47]. However, does sharing of 
models also lead to the data leakage? Krüger et  al [48] 
used recent developments in cryptography to evaluate 
vulnerabilities across different molecular representa-
tions and algorithms. The authors found that using vari-
ous attacks the adversary can identify molecules from the 
training set and, in particular, underrepresented com-
pounds, which are usually the most valuable (e.g., active 
compounds in virtual screening). The use of representa-
tion learning graph neural networks significantly reduced 
vulnerability to these attacks.

Reaction predictions
Two articles submitted to the Special Issue focused on 
reaction prediction. In the first study, Torren-Peraire 
et al [49] developed a benchmark set and a strategy for 
identifying complex routes with multiple target mol-
ecules sharing common intermediates, thus allowing 
for the synthesis of 30% more compounds simultane-
ously than is possible using traditional multi-step syn-
thesis planning. The acceleration of inference times to 
decrease computational costs is an important prob-
lem, in particular when considering the effect of deep 
learning computations on CO2 emissions and cli-
mate change [50]. Andronov et  al [51] achieved over 
3 × faster inference in reaction product prediction tasks 

with no loss in accuracy when using speculative decod-
ing, which proposes several tokens simultaneously, 
with the model deciding whether or not it can accept 
them. Considering the urgent need for data, Vangala 
et al [52] proposed using LLMs to extract high quality 
data from patent documents by collecting 26% more 
new reactions compared to existing tools.

While the articles published in this Special Issue 
describe various neural network architectures, appli-
cations as well as use cases, of course, they do not 
cover the diversity of developments within this area 
of research. However, this Special Issue also has a 
dedicated review of various deep learning chemical 
language models by Flores-Hernandez and Martinez-
Ledesma [53], which provides readers with a systematic 
analysis of the current developments in the field.

In conclusion, we see very active development of new 
machine learning approaches for different aspects of 
drug discovery. These methods are becoming more pow-
erful and successfully competing with various traditional 
computational chemistry approaches, such as docking, 
DFT, machine learning methods based on traditional 
descriptors, etc. The explanation of models’ predictions, 
as well as incorporation of expert knowledge, are also 
very important development and progress in these fields 
is continuing, as was highlighted in a previous editorial 
[54]. The widespread use of deep learning methods has 
brought novel issues to the attention of the scientific 
community, such as the need to decrease computational 
resources and carbon footprint and to understand secu-
rity issues when sharing models developed with different 
molecular representations. The widespread use of com-
putational predictions, in connection with modern hard-
ware implementations to advance autonomous chemistry 
labs, is likely to be the next big development as machine 
learning methods continue to progress.

Acknowledgements
We thank Katya Ahmad for her remarks and corrections.

Author contributions
IVT drafted the manuscript. DAC provided critical feedback and edited the 
manuscript.

Funding
This editorial was partially funded by the European Union’s Horizon 2020 
research and innovation programme under the Marie Skłodowska-Curie 
Actions grant agreement “Advanced machine learning for Innovative Drug 
Discovery (AIDD,https://ai-dd.eu)” No. 956832 and Horizon Europe Marie 
Skłodowska-Curie Actions Doctoral Network grant agreement No. 101120466 
“Explainable AI for Molecules” (AiChemist,https://aichemist.eu).

Author details
1 Institute of Structural Biology, Molecular Targets and Therapeutics Center, 
Helmholtz Munich - Deutsches Forschungszentrum Für Gesundheit Und 
Umwelt (GmbH), 86764 Neuherberg, Germany. 2 BIGCHEM GmbH, Valerystr. 
49, 85716 Unterschleißheim, Germany. 3 Machine Learning Research, Pfizer, 
Friedrichstraße 110, 10117 Berlin, Germany. 

https://ai-dd.eu
https://aichemist.eu


Page 6 of 7Tetko and Clevert ﻿Journal of Cheminformatics          (2025) 17:122 

References
	1.	 Eytcheson SA, Tetko IV (2025) Which modern AI methods provide accu‑

rate predictions of toxicological endpoints? Analysis of Tox24 challenge 
results. Chem Res Toxicol. https://​doi.​org/​10.​1021/​acs.​chemr​estox.​5c002​
73

	2.	 Wang J, Liu Y, Tian B (2024) Protein-small molecule binding site prediction 
based on a pre-trained protein language model with contrastive learn‑
ing. J Cheminformatics 16:125

	3.	 Cui Y, Jia M, Lin T-Y, Song Y, Belongie S (2019) Class-balanced loss based 
on effective number of samples. IEEE, New York

	4.	 Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accu‑
racy of docking with a new scoring function, efficient optimization, and 
multithreading. J Comput Chem 31:455–461

	5.	 McNutt AT et al (2021) GNINA 1.0: molecular docking with deep learning. 
J Cheminformatics 13:43

	6.	 McNutt AT, Li Y, Meli R, Aggarwal R, Koes DR (2025) GNINA 1.3: the next 
increment in molecular docking with deep learning. J Cheminformatics 
17:28

	7.	 Mukta FT, Rana MM, Meyer A, Ellingson S, Nguyen DD (2025) The alge‑
braic extended atom-type graph-based model for precise ligand–recep‑
tor binding affinity prediction. J Cheminformatics 17:10

	8.	 Errington D, Schneider C, Bouysset C, Dreyer FA (2025) Assessing interac‑
tion recovery of predicted protein-ligand poses. J Cheminformatics 17:76

	9.	 Wang G et al (2024) DeepTGIN: a novel hybrid multimodal approach 
using transformers and graph isomorphism networks for protein-ligand 
binding affinity prediction. J Cheminformatics 16:147

	10.	 Vaswani A et al (2017) Attention is all you need. ArXiv170603762 Cs. arXiv 
preprint arXiv:​1706.​03762, https://​doi.​org/​10.​48550/​arXiv.​1706.​03762

	11.	 Xu K, Jegelka S, Hu W, Leskovec J (2019) How powerful are graph neural 
networks? arXiv preprint arXiv:181000826. https://​doi.​org/​10.​48550/​arXiv.​
1810.​00826

	12.	 Le T, Cremer J, Clevert D-A, Schütt KT (2025) Equivariant diffusion for 
structure-based de novo ligand generation with latent-conditioning. J 
Cheminformatics 17:90

	13.	 Nahal Y et al (2024) Human-in-the-loop active learning for goal-oriented 
molecule generation. J Cheminformatics 16:138

	14.	 Hartog PBR, Krüger F, Genheden S, Tetko IV (2024) Using test-time 
augmentation to investigate explainable AI: inconsistencies between 
method, model and human intuition. J Cheminformatics 16:39

	15.	 Cao P-Y et al (2024) Group graph: a molecular graph representation with 
enhanced performance, efficiency and interpretability. J Cheminformat‑
ics 16:133

	16.	 Tetko IV, Bruneau P, Mewes H-W, Rohrer DC, Poda GI (2006) Can we 
estimate the accuracy of ADME-Tox predictions? Drug Discov Today 
11:700–707

	17.	 Yang T et al (2024) AttenhERG: a reliable and interpretable graph neural 
network framework for predicting hERG channel blockers. J Cheminfor‑
matics 16:143

	18.	 Xiong Z et al (2020) Pushing the boundaries of molecular representation 
for drug discovery with the graph attention mechanism. J Med Chem 
63:8749–8760

	19.	 Kyro GW, Martin MT, Watt ED, Batista VS (2025) CardioGenAI: a machine 
learning-based framework for re-engineering drugs for reduced hERG 
liability. J Cheminformatics 17:30

	20.	 de GarciaLomana M, Gadaleta D, Raschke M, Fricke R, Montanari F (2025) 
Predicting liver-related in vitro endpoints with machine learning to 
support early detection of drug-induced liver injury. Chem Res Toxicol 
38:656–671

	21.	 Rodríguez-Belenguer P, Soria-Olivas E, Pastor M (2025) StreamChol: a 
web-based application for predicting cholestasis. J Cheminformatics 17:9

	22.	 Palmacci V et al (2025) E-GuARD: expert-guided augmentation for the 
robust detection of compounds interfering with biological assays. J 
Cheminformatics 17:64

	23.	 Ghosh D, Koch U, Hadian K, Sattler M, Tetko IV (2018) Luciferase advisor: 
high-accuracy model to flag false positive hits in luciferase HTS assays. J 
Chem Inf Model 58:933–942

	24.	 Vigna V, Cova TFGG, Pais AACC, Sicilia E (2025) Prediction of Pt, Ir, Ru, and 
Rh complexes light absorption in the therapeutic window for photo‑
therapy using machine learning. J Cheminformatics 17:1

	25.	 Kohn W (1999) Nobel lecture: electronic structure of matter–-wave func‑
tions and density functionals. Rev Mod Phys 71:1253–1266

	26.	 Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network 
potential with DFT accuracy at force field computational cost. Chem Sci 
8:3192–3203

	27.	 Ushenin K et al (2025) LAGNet: better electron density prediction for 
LCAO-based data and drug-like substances. J Cheminformatics 17:65

	28.	 Guo Q, Hernandez-Hernandez S, Ballester PJ (2025) UMAP-based cluster‑
ing split for rigorous evaluation of AI models for virtual screening on 
cancer cell lines. J Cheminformatics 17:94

	29.	 Heid E et al (2024) Chemprop: a machine learning package for chemical 
property prediction. J Chem Inf Model 64:9–17

	30.	 Yang K et al (2019) Analyzing learned molecular representations for 
property prediction. J Chem Inf Model 59:3370–3388

	31.	 Moriwaki H, Tian Y-S, Kawashita N, Takagi T (2018) Mordred: a molecular 
descriptor calculator. J Cheminformatics 10:4

	32.	 Burns JW, Green WH (2025) Generalizable, fast, and accurate DeepQSPR 
with fastprop. J Cheminformatics 17:73

	33.	 Tetko IV, van Deursen R, Godin G (2024) Be aware of overfitting by hyper‑
parameter optimization! J Cheminformatics 16:139

	34.	 Meng J et al (2022) Boosting the predictive performance with aqueous 
solubility dataset curation. Sci Data 9:71

	35.	 Karpov P, Godin G, Tetko IV (2020) Transformer-CNN: swiss knife for QSAR 
modeling and interpretation. J Cheminformatics 12:17

	36.	 Bjerrum EJ (2017) SMILES enumeration as data augmentation for neural 
network modeling of molecules. arXiv170307076. https://​doi.​org/​10.​
48550/​arXiv.​1703.​07076

	37.	 Fallani A et al (2025) Pretraining graph transformers with atom-in-a-mol‑
ecule quantum properties for improved ADMET modeling. J Cheminfor‑
matics 17:25

	38.	 Ying, C. et al. Do transformers really perform bad for graph representa‑
tion? in proceedings of the 35th international conference on neural infor‑
mation processing systems Article 2212 (Curran Associates Inc., 2021).

	39.	 Masood A et al (2025) VitroBERT - modeling DILI by pretraining 
BERT on in vitro data. J Cheminformatics. https://​doi.​org/​10.​1186/​
s13321-​025-​01048-7

	40.	 Tetko IV et al (2008) Critical assessment of QSAR models of environmental 
toxicity against Tetrahymena pyriformis: focusing on applicability domain 
and overfitting by variable selection. J Chem Inf Model 48:1733–1746

	41.	 Friesacher HR, Engkvist O, Mervin L, Moreau Y, Arany A (2025) Achieving 
well-informed decision-making in drug discovery: a comprehensive 
calibration study using neural network-based structure-activity models. J 
Cheminformatics 17:29

	42.	 Masood MA, Kaski S, Cui T (2025) Molecular property prediction using 
pretrained-BERT and Bayesian active learning: a data-efficient approach 
to drug design. J Cheminformatics 17:58

	43.	 Heyndrickx W et al (2024) MELLODDY: cross-pharma federated learning 
at unprecedented scale unlocks benefits in QSAR without compromising 
proprietary information. J Chem Inf Model 64:2331–2344

	44.	 Bassani D, Brigo A, Andrews-Morger A (2023) Federated learning in com‑
putational toxicology: an industrial perspective on the effiris hackathon. 
Chem Res Toxicol 36:1503–1517

	45.	 Tetko IV, Abagyan R, Oprea TI (2005) Surrogate data–a secure way to 
share corporate data. J Comput Aided Mol Des 19:749–764

	46.	 Le T, Winter R, Noé F, Clevert D-A (2020) Neuraldecipher–reverse-engi‑
neering extended-connectivity fingerprints (ECFPs) to their molecular 
structures. Chem Sci 11:10378–10389

	47.	 Fluetsch A, Trunzer M, Gerebtzoff G, Rodríguez-Pérez R (2024) Deep learn‑
ing models compared to experimental variability for the prediction of 
CYP3A4 time-dependent inhibition. Chem Res Toxicol 37:549–560

	48.	 Krüger FP, Östman J, Mervin L, Tetko IV, Engkvist O (2025) Publishing neu‑
ral networks in drug discovery might compromise training data privacy. J 
Cheminformatics 17:38

	49.	 Torren-Peraire P et al (2025) Improving route development using conver‑
gent retrosynthesis planning. J Cheminformatics 17:26

https://doi.org/10.1021/acs.chemrestox.5c00273
https://doi.org/10.1021/acs.chemrestox.5c00273
http://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1703.07076
https://doi.org/10.48550/arXiv.1703.07076
https://doi.org/10.1186/s13321-025-01048-7
https://doi.org/10.1186/s13321-025-01048-7


Page 7 of 7Tetko and Clevert ﻿Journal of Cheminformatics          (2025) 17:122 	

	50.	 Hartog PBR, Westerlund AM, Tetko IV, Genheden S (2025) Investigations 
into the efficiency of computer-aided synthesis planning. J Chem Inf 
Model 65:1771–1781

	51.	 Andronov M, Andronova N, Wand M, Schmidhuber J, Clevert D-A (2025) 
Accelerating the inference of string generation-based chemical reaction 
models for industrial applications. J Cheminformatics 17:31

	52.	 Vangala SR et al (2024) Suitability of large language models for extraction 
of high-quality chemical reaction dataset from patent literature. J Chem‑
informatics 16:131

	53.	 Flores-Hernandez H, Martinez-Ledesma E (2024) A systematic review of 
deep learning chemical language models in recent era. J Cheminformat‑
ics 16:129

	54.	 Tetko IV, Engkvist O (2020) From big data to artificial intelligence: chemo‑
informatics meets new challenges. J Cheminformatics 12:74

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Advanced machine learning for innovative drug discovery
	Abstract 
	Structural-based drug discovery: binding site, docking and scoring functions
	Prediction of properties
	Analysis and benchmarking machine learning methods
	Reaction predictions
	Acknowledgements
	References


