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Abstract Cardiovascular disease (CVD) is the leading cause of mortality globally, with over 20 million deaths each year. While traditional
risk factors—such as hypertension, diabetes, smoking, and poor diet—are well-established, emerging evidence underscores the
profound impact of environmental exposures on cardiovascular health. Air pollution, particularly fine particulate matter (PMys),
contributes to approximately 8.3 million deaths annually, with over half attributed to CVD. Similarly, noise pollution, heat extremes,
toxic chemicals, and light pollution significantly increase the risk of CVD through mechanisms involving oxidative stress, inflamma-
tion, and circadian disruption. Recent translational and epidemiological studies show that chronic exposure to transport noise
increases the risk of myocardial infarction, stroke, and heart failure. Air pollution, even below regulatory thresholds, promotes
atherosclerosis, vascular dysfunction, and cardiac events. Novel threats such as micro- and nano-plastics are emerging as
contributors to vascular injury and systemic inflammation. Climate change exacerbates these risks, with heatwaves and wildfires
further compounding the cardiovascular burden, especially among vulnerable populations. The cumulative effects of these
exposures—often interacting with behavioural and socioeconomic risk factors—are inadequately addressed in current prevention
strategies. The exposome framework offers a comprehensive approach to integrating lifelong environmental exposures into car-
diovascular risk assessment and prevention. Mitigation requires systemic interventions including stricter pollution standards, noise
regulations, sustainable urban design, and green infrastructure. Addressing environmental determinants of CVD is essential for re-
ducing the global disease burden. This review calls for urgent policy action and for integrating environmental health into clinical
practice to safeguard cardiovascular health in the Anthropocene.

* Corresponding author. Tel: +00491742189542; fax: +00496131176293, E-mail: tmuenzel@uni-mainz.de

© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,
and reproduction in any medium, provided the original work is properly cited.

GZ0Z 1200190 Z0 U0 Jasn usyouanjy wniusz zjoywaH Aq Z1L LOSZ8/ES9L/L L/LZ 1L /3Io1e/Sa1oseAolpIed/woo dnoolwepese//:sdiy wWoll papeojumod


https://orcid.org/0000-0001-5503-4150
https://orcid.org/0000-0002-7302-4789
https://orcid.org/0000-0001-6307-3846
https://orcid.org/0000-0003-2435-851X
https://orcid.org/0000-0002-7078-597X
https://orcid.org/0000-0002-2769-0094
mailto:tmuenzel@uni-mainz.de
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/cvr/cvaf119

1654

T. Minzel et al.

Graphical Abstract

Climate Change

« Temperature extremes
+ Wildfires (PM2.5)

= Severe Storms

» Flooding

Noise / Light Pollution

« Traffic, construction and
Industrial noise

+ Streetlight, building lights,
advertising signs

Air Pollution
» Particulate matter

Cardiovascular
Disease

Chemical Pollution
+ >16,000 chemicals
« BPA, PCBs, PFAS, phthalates

Soil Pollution

» Perturbed microbial ecology
» Nitrogen loading

+ Chemicals

+ Toxic metals

« Micro/Nanoplastics

» Ozone
« Volatile organic compounds
- 0,50, NO,
» Acid rain
Water Pollution
+ Arsenic and Copper
+ Lead and Mercury
« Eutrophication
» Micro/Nanoplastics
Keywords

Endothelial dysfunction

1. Introduction: GBD and the
environment

Cardiovascular diseases (CVD), including coronary artery disease (CAD),
heart failure, arrhythmias, stroke, and arterial hypertension, affected over
half a billion people worldwide in 2021 and were responsible for 20.5 mil-
lion deaths—nearly one-third of all global fatalities.” Modifiable risk factors
that contributed to excess CVD deaths globally were low physical activity
(0.4 million deaths), high body mass index (2.0 million deaths), high fasting
plasma glucose (2.3 million deaths), elevated LDL cholesterol (3.8 million
deaths), tobacco use (8.0 million deaths), and elevated blood pressure
(10.8 million deaths).

Cardiovascular disease (CVD)—the leading cause of death in the EU and
globally—affects more than 60 million Europeans, accounts for over 1.7
million deaths annually on the continent, and costs its economy an

Environment e Air pollution ® Noise exposure ® Soil and water pollution ® Chemical pollution ® Oxidative stress ®

estimated €282 billion each year.” The burden is not evenly distributed
across the continent, as morbidity and mortality rates are generally higher
in central and eastern Europe compared with northern and western re-
gions. Over the past decades, improved screening, treatment, and lifestyle
changes, such as reduced smoking, have led to significant declines in CVD
mortality across European countries. However, CVD incidence has not de-
clined as much, mainly due to an ageing population and the persistent influ-
ence of modifiable risk factors.

Traditionally, efforts to prevent CVD have focused on well-established clin-
ical and behavioural risk factors, including high blood pressure, high LDL chol-
esterol, excess weight, diabetes, tobacco use, physical inactivity, and unhealthy
diets. While these risk factors remain critically important, growing evidence
highlights the substantial contribution of environmental factors to CVD. Air
pollution, extremes of heat and cold, noise, and toxic chemicals—especially
lead—are increasingly recognized as key environmental contributors.*
These factors do not operate in isolation but interact with clinical and
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Figure 1 The burden of CVD deaths and key risk factors. (A): Significant cardiovascular risk factors, with high blood pressure as the leading cause, followed by
air pollution, responsible for 8.1 million deaths. LDL, low-density lipoprotein. (B): the steady increase in CVD deaths, reaching 20.5 million in 2021. (C): The
environmental contribution to CVD in Europe is striking, with an estimated 18% of all CVD-related deaths attributed to these factors. Panel (A) is based on data
of the GBD Study and adapted from a report of the Health Effects Institute in 2024 with permission.® Panel (B) is adapted from the World Heart Report 2023.”

Panel C reproduced with permission from.

behavioural risk factors and socioeconomic determinants such as low income,
education, and job insecurity, further compounding their effects on vulnerable
populations. The environmental contribution to CVD in Europe is striking,
with an estimated 18% of all CVD-related deaths attributed to these factors’
(Figure 1). This figure is likely a strong underestimate of the environmental
contribution to CVD, as current calculations often omit workplace exposures,
the effects of environmental noise, and other toxic chemicals beyond lead.®
Air pollution remains the most significant environmental risk, especially fine
particulate matter [particulate matter (PM) with a diameter of 2.5 micro-
metres or less; PM;s]. In 2021, air pollution was estimated to contribute to
8.3 million deaths globally, making up about 12% of total deaths.” PM, 5 alone
accounted for 7.9 million deaths,” more than 90% of the total air pollution dis-
ease burden.

In addition, a recent analysis established that 5.545 million [95%
Confidence Interval (Cl): 2.305-8.271 million] adults died from CVD in
2019 just due to lead exposure.'®

Importantly, concerning the risk factors for death, ambient air pollution
is now ranked number 2 (Figure 1), just surpassed by the leading risk factor,
arterial hypertension.® However, in terms of disability-adjusted life years
(DALYs), air pollution has been the number one contributing factor to
the global disease burden substantially for decades.""
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Yet, despite these staggering statistics, pollution reduction has received §
limited attention in cardiovascular prevention programmes. Most policies §_
continue to focus primarily on individual lifestyle choices, mainly neglecting @
the broader environmental context. Given the scale of pollution-related ¢
CVD deaths, addressing environmental risks must become a central pillar &

of cardiovascular prevention strategies. S
Unlike behavioural risk factors, which individuals can modify to some S

extent, ecological exposures often require systemic, population-wide Q
interventions to be effective. Government policies to reduce g_'
pollution, mitigate climate change, and enforce stricter environmental &
regulations could profoundly benefit public health. Adapting to climate &
change, improving air quality, and minimising exposure to hazardous &
chemicals and noise pollution would reduce CVD incidence and yield
co-benefits for overall health and well-being. A comprehensive ap-
proach integrating environmental risk reduction into traditional preven-
tion strategies is essential for effectively combating CVD in the coming
decades.

This in-depth expert review will examine the epidemiology and patho-
physiology of environmental stressors (although we exclude the impact
of environmental health risk factors such as mental stress'* and ionising ra-
diation, either from anticancer therapy'?® or ionospheric and geomagnetic
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exposures'* as beyond the present scope). We will explore potential solu-
tions and mitigation strategies to reduce environmental stressors’ adverse
health effects, with a particular emphasis on CVD.

2. Air pollution

2.1 Sources in the anthropocene

Air pollutants have been recognized since ancient times, but their sources
and composition have significantly changed with industrialisation and ur-
banisation, most markedly in the Anthropocene, the current geologic
epoch in which humankind has become the dominant influence on planet-
ary systems. Modern anthropogenic pollutants, many of which are derived
from combustion processes, are now a critical public health concern,'>"
The characteristics of air pollution result from complex chemical reactions
in the atmosphere in addition to emissions from various sources. This com-
plexity necessitates new classification criteria for fine particles, focusing not
only on size or mass, but also on properties such as surface reactivity and
contamination with hazardous substances, polycyclic aromatic hydrocar-
bons (PAHSs) or microbial pathogens. Furthermore, there is a need to re-
flect the chemical properties of airborne particles as they change with age
and during atmospheric transport.’”'8

Urban pollutants consist of gaseous compounds like ozone (Os3), nitro-
gen oxides (NOx = NO + NO,), volatile organic compounds (VOCs, e.g.
benzene, toluene, aldehydes), carbon monoxide (CO), and sulfur dioxide
(SO,). In the atmosphere, these gases react photochemically, and the
lower-volatility products can form PM, s, which is typically a mixture of or-
ganic and inorganic compounds.19 There is extensive mechanistic and epi-
demiological evidence that PM, 5 is a major contributor to morbidity and
mortality.”*' The particles can partially be directly emitted as PM,s,
such as black and organic carbon, in addition to larger ones, including min-
eral dust, PMyo (PM with a diameter of <10 pm), or ultrafine particles
(UFPs; or PMg 4, with a diameter <0.1 um). Nanosized UFPs may be par-
ticularly harmful to cardiovascular health due to their small size, reactive
chemical composition (e.g.  pro-oxidative  properties), large
surface-to-mass ratio, and ability for these particles to penetrate alveoli,
enter the circulation, and directly damage multiple organs, thus having im-
plications for many different diseases.?**®

While CO is toxic at very high concentrations, such levels are uncom-
mon in ambient air. However, due to its ability to displace oxygen in
haemoglobin of blood cells, leading to oxygen deprivation in organs, chron-
ic exposure of lower concentrations has been linked to adverse health ef-
fects, including CVD.* Pollutants like NO,, O3, and PM cause oxidative
stress in tandem with inflammatory responses.®>

These oxidative pollutants generate reactive oxygen species (ROS),
often catalytically, emphasising the need for comprehensive toxicologic-
al, modelling, and epidemiological studies.”’° Ozone (O;), a highly re-
active molecule with strong oxidising power, contributes to systemic
oxidative stress by generating ROS such as hydrogen peroxide
(H,0,),and an irritant to the respiratory system, exacerbating asthma,
while long-term exposure causes chronic obstructive pulmonary disease
(COPD).31 NO, is also formed in the atmosphere, via the reaction be-
tween NO and oxygen, O3 or VOCs with NO, which is directly emit-
ted by fossil fuel combustion in traffic and energy generation. NO,
irritates the airways and causes asthma and other respiratory diseases,
but has also been associated with CVDs, various other health conditions
and mortality.>>

Climate change significantly influences air pollution, as hot weather and
intense solar radiation in cloud-free conditions increase the formation of
reactive air pollutants. Conversely particularly black carbon, ozone, and
methane (CHy; a relatively long-lived VOC) contribute to global warming,
creating a feedback loop that exacerbates cardiovascular health risks.
Therefore, simultaneously mitigation of air pollution and climate change,
which have many common emission sources (notably from fossil fuel com-
bustion), is a leading option to improve public health and will produce a co-
benefit, or double benefit.>>~>° A recent evaluation of 1500 climate policies
worldwide in the past decades identified only 63 effective interventions

(<5%) that have led to significant emission reductions of greenhouse gases.
This review identifies stringent air pollution standards as one of the most
successful interventions.®®

2.2 Global burden of disease

Air pollution poses a significant health risk, contributing to disease
and excess deaths on a global scale. According to the World Health
Organization (WHO), both gaseous and particulate pollutants are signifi-
cant factors for respiratory infections, COPD, lung cancer, and cardiovas-
cular conditions such as heart attacks and strokes.?’

Chronic exposure to air pollution is of particular concern due to its link
to non-communicable diseases (NCDs), which are being investigated
through epidemiological cohort studies performed in many countries.
Health risks have been identified even at PM concentrations well below
the annual PM, s and PMyq limits recommended by European guidelines.
In 2021, the WHO decreased the guideline annual concentration of
PM,5 from 10 to 5 pg/m? a level below which adverse health impacts
may be expected, though they are considered not yet proven.®® While
the European Union has proposed a new PM, s limit of 10 pg/m® annually,
the legal limit remains 25 pg/m’.

Exposure of the global population to PM, s and O3 can be estimated
with satellite and ground-based measurements and data-informed model-
ling.> The FUSION risk model was developed to assess health outcomes
and utilizes hazard ratio functions based on many cohort studies per-
formed in various countries.*® Results include excess mortality rates and
years of life lost from six disease categories: lower respiratory tract infec-
tions, COPD, ischaemic heart disease (IHD), cerebrovascular diseases (e.g.
strokes), diabetes type 2, lung cancer, and another category that covers
non-accounted NCDs (this category is the residual between all-cause
and disease-specific mortality attributable to air pollution, including neuro-
logical disorders and hypertension‘”).9

A recent Global Burden of Disease (GBD) study identified PM as the
leading specific health risk factor, contributing 8% to the total loss of
DALYs (the sum of years of life lost and the years lived in disability), fol-
lowed by high systolic blood pressure, smoking, low birthweight and short
gestation, and high fasting plasma glucose."’

Applying the FUSION risk model and consistent with this assessment,
Lelieveld et al’ estimated the global number of excess deaths from
PM,5 and Os at 8.3 (95% Cl: 5.6 to 11.2) million per year (Figure 2).

About 57% of the global disease-specific excess mortality is attributed to
CVD, i.e. IHD and strokes. In Central and Western Europe, with a popu-
lation of about 550 million, the number of annual excess deaths attributed
to air pollution is estimated at 423 000 (292 000 to 550 000).*? The excess
mortality fraction from cardiovascular relative to other disease-specific
mortality in Europe is close to 60%. The global total contribution from ex-
posure to fossil fuel-related air pollution to excess mortality is 61%, i.e. 5.1
(95% Cl: 3.6 to 6.3) million deaths annually.” Therefore, a complete theor-
etical phaseout of fossil fuels would avert 82% of all avoidable deaths from
anthropogenic air pollution. Smaller reductions in fossil fuel-related emis-
sions, rather than a radical phaseout, still yield significant positive health
outcomes. Different from earlier assessments, it was found that the health
benefits respond relatively linearly to the lowering of exposure, suggesting
mitigation interventions at all ambient air pollution levels directly translate
into health improvement (Figure 2). In high-income nations, the halfway
scenario (50% reduction of fossil fuel-related emissions) is comparatively
most effective because, in some countries, the counterfactual PM, 5 level
(~5 pg/m3) can be reached under this scenario, effectively reducing mortal-
ity to zero. Additional epidemiological analyses are needed to determine if
health impacts at PM, 5 levels below 5 pg/m? persist. Nevertheless, the 50%
phaseout already dramatically improves air quality in all regions, strongly
motivating strict ambient air quality legislation, implementation and en-
forcement, which should be considered a significant and achievable health
improvement intervention.

A recent analysis43 has addressed general questions about mortality risk
calculations. This review showed that disease burden analyses, based on
growing epidemiological data and supported by numerous clinical and
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Figure 2 Annual all-cause excess deaths attributable to ambient fine particulate matter (PM,s) and ozone (O3). (A) Excess mortality attributable to long-
term exposure to PM, s indicated in numbers per area of 10 km X 10 km. Areas with the highest mortality are found in South and East Asia, particularly India
and China, followed by parts of Africa and Southeast Asia. Densely populated regions show the most significant burden, highlighting stark global health inequal-
ities and the urgent need for air quality improvements in low- and middle-income countries. (B) Regional variations in mortality reduction (in %) under different
air pollution mitigation strategies, with the highest mortality reductions from emission controls in Central-Eastern Europe, Central Asia, and high-income re-
gions. Southeast Asia and South Asia also show significant reductions. Relatively lower impacts on excess mortality are found in Sub-Saharan Africa due to its
lower fossil fuel pollution exposure and the larger role of communicable diseases. These findings emphasize the critical role of fossil fuel reduction in mitigating
air pollution-related mortality worldwide (A and B reproduced from® with permission). In figures A and B, we present results for both PM2.5 and O5 (added).
However, since PM2.5 accounts for about 95% of the mortality burden, the figures may also be considered approximately representative for the effects of

PM2.5.
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toxicological studies, have become increasingly robust in recent decades.
Concerns about accuracy that were raised several decades ago, such as
the representativeness of relatively small cohort studies, have been largely
overcome. Nevertheless, challenges persist in fully accounting for con-
founding factors.

Globally, the health burden of air pollution surpasses the combined mor-
tality from HIV/AIDS, tuberculosis, and malaria, while also resulting in tril-
lions of dollars in annual monetary losses. ** Additionally, higher
concentrations of air pollution and specific pollutants, such as diesel ex-
haust (a major source of harmful UFPs in urban environments), have
been correlated with increased COVID-19 prevalence and mortality rates,
indicating comorbidities related to air pollution, exacerbations and poten-
tial synergistic effects.*>*® Conversely, lockdowns in many high- and
middle-income countries during the COVID-19 pandemic led to reduced
air pollution levels, which were associated with decreased cardiovascular
events.*’*

2.3 Epidemiology, air pollution and CVD

In 2019, PM was responsible for 26% of age-standardized CVD deaths in
the Eastern Mediterranean region, with CAD being the primary contribu-
tor.* Even in high-income countries with relatively low ambient PM levels,
long-term exposure remains associated with increased CVD mortality.>°

Numerous observational studies have consistently linked PM, 5 expos-
ure to subclinical atherosclerosis, elevated coronary artery calcium scores,
formation of high-risk plaques, and accelerated plaque progression.>'~3
Long-term exposure is also related to increased carotid intima-media
thickness—an established marker of subclinical atherosclerosis—and ab-
normalities in coronary vasomotor function>* A meta-analysis of 11
European cohort studies demonstrated that each 5 pg/m? increase in an-
nual mean PM, s was associated with a 13% rise in acute coronary syn-
drome (ACS) events, while a 10 ug/m? increase in PMyq correlated with
a 12% increase in ACS events.>® More recent large population data on
long-term PM2.5 associated ischaemic heart events support these previous
findings.>®>” Short-term PM exposure has also been associated with a high-
er incidence of acute myocardial infarction (MI), particularly ST-segment
elevation M, and increased mortality—especially among older individuals
with preexisting CAD or major cardiovascular risk factors.>®>?

Beyond CAD, there is growing consensus on the association between
PM exposure and stroke. The GBD 2019 analysis reported that ambient
PM, 5 was responsible for approximately 1.14 million stroke-related deaths
globally.®® Supporting this, a recent study in women found that individuals
in the highest quartile of PM, s exposure had a hazard ratio (HR) of 2.14
(95% ClI: 1.87-2.44) for all cerebrovascular events compared with those
in the lowest quar‘tile.61 These female data are complemented by general
population data reporting a HR of 1.19 (95% Cl: 0.88-1.62), which was fur-
ther increased in subjects >60 years to 1.40 (95% Cl: 1.05-1.87) per annual
increment of 5 pg/m?.%? Both short- and long-term PM exposure have also
been linked to increased risk of heart failure (HF), including higher rates of
hospitalisation and mortality. A meta-analysis of 35 studies showed that
every 10 ug/m3 increase in PM, 5 and PMyo was associated with a 2.12%
and 1.63% increase in HF-related hospitalisations and deaths, respectively.®®
Notably, even in low-pollution regions such as Tasmania, acute PM expos-
ure was associated with higher HF incidence.>> PM exposure is also
implicated in the development of cardiac arrhythmias, particularly atrial fib-
rillation (AF). Research involving patients with implantable cardioverter de-
fibrillators revealed that elevated concentrations of PM, s and PMqo were
linked to an increased risk of AF and ventricular arrhythmias.>®¢* A
large-scale South Korean study further confirmed that long-term PM ex-
posure was strongly associated with various arrhythmias, with risk increas-
ing proportionally to PMyo and PM, s levels.®® A publication from 2025
estimated a yearly global CVD incidence of 5.6 (95% Cl: 1.1-9.3) million,
attributable to the exposure to UFPs,® using UFP exposure-reponse func-
tions from a Dutch cohort.®”

There is also robust evidence that PM exposure contributes to the de-
velopment of cardiovascular risk factors, including hypertension, hyperlip-
idaemia and diabetes mellitus®® and obesity.®” A recent meta-analysis found

that a 10 pg/m? increase in PM, 5 long-term exposure was linked to rises of
0.63 mmHg in systolic and 0.31 mmHg in diastolic blood pressure.”
Supporting these findings, randomized trials comparing air filtration to
sham filtration revealed that personal air purifiers significantly reduced
mean systolic blood pressure by nearly four mmHg (95% Cl: =7.00 to —
0.89) over a median duration of 13.5 days.”" Studies have demonstrated
significant associations between PM exposure and elevated levels of total
cholesterol, triglycerides, and low-density lipoprotein (LDL) cholesterol.”*
In the GBD 2019 analysis, PM, 5 was identified as the third leading environ-
mental risk factor for diabetes, accounting for roughly one-fifth of the glo-
bal diabetes burden and contributing to approximately 13.4% of
diabetes-related deaths.”

2.4 Pathophysiology of air pollution-induced
CvD

This section outlines the mechanistic pathways through which air pollution
promotes the development and progression of atherosclerosis, the major
pathology underlying many CVD, drawing primarily from recent in vitro and
in vivo experimental evidence.

Adverse cardiovascular effects are, to some extent, consistent across
various particles and reactive gases, including PM,s and UFPs/*+7
Exposure to PM,s increases circulating sphingolipids—bioactive lipids
that stimulate the production of apolipoprotein B-containing lipoproteins,
which are causally linked to atherogenesis and cardiovascular risk.”®””
While LDL cholesterol initiates plaque formation, high-density lipoprotein
(HDL) protects against atherosclerosis via reverse cholesterol transport
and anti-inflammatory functions. However, air pollution impairs HDL func-
tionality by promoting oxidative modifications and reducing apolipoprotein
A-l levels, thus attenuating cholesterol efflux.%°

Oxidative stress is a key pathogenic mechanism. Both PM, s and UFPs
generate ROS, reducing endogenous nitric oxide bioavailability, and dis-
rupting endothelial function.”® These effects are potentiated by surface-
bound constituents in PM such as heavy metals and PAHs.2" The systemic
consequences extend beyond the vasculature, inducing cerebrovascular
damage and neuroinflammation. In ApoE_/_ mice, a common model for
athersoclerosis, PM,s exposure upregulates oxidative stress markers
and activates the Nrf2 antioxidant defence pathway.®* These oxidative
conditions facilitate LDL oxidation, promoting the formation of oxLDL,
which is avidly taken up by macrophages to form foam cells—an early fea-
ture of atherogenesis.®® Diesel exhaust particles (DEP) and other
traffic-related emissions impair HDL antioxidant capacity and increase sys-
temic lipid peroxidation (for review see®). Even in the absence of PM, gas-
eous emissions from gasoline engines elevate vascular oxidative stress and
endothelin-1 levels, promoting vasoconstriction.®> These changes contrib-
ute to myocardial ischaemia, diastolic dysfunction, and reduced cardiac
contractile reserve, especially in vulnerable populations.2®

Inflammatory pathways are also a hallmark of air pollution exposure.
Exposure to PM, s increases levels of pro-inflammatory cytokines such
as tumour necrosis factor alpha (TNF-a), monocyte chemoattractant
protein-1 (MCP-1), and interleukin-12 (IL-12), while suppressing anti-
inflammatory IL-10.87 The nicotinamide adenine dinucleotide phosphate
oxidase (NADPH) oxidase (NOX2)-mediated Toll-like receptor signalling
enhances oxidative stress and induces inflammatory lipid mediators, includ-
ing 7-ketocholesterol and oxidized phospholipids (oxPAPC).%

PMyo elevates IL-6 levels and promotes endothelial expression of
ICAM-1 and VCAM-1, facilitating monocyte adhesion and transmigra-
tion.®? Due to their small size and high surface area, UFPs translocate
across the alveolar epithelium, enter the bloodstream, and accumulate
in atherosclerotic |:>|aques.90 Furthermore, inhaled UFPs can penetrate
remote organs such as the heart and brain, where they elicit oxidative
and inflammatory responses.?® These particles can also activate the sym-
pathetic nervous system via pulmonary afferents or olfactory nerve path-
ways, contributing to hypertension, Ml, and neuroinflammation.”’=%* In
contrast, larger microparticles predominantly remain in the lungs, causing
localized pulmonary inflammation.®® DEP and ozone exacerbate endo-
thelial dysfunction via CD36, which mediates oxLDL uptake and foam
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cell formation.”* PM exposure increases circulating monocyte levels, par-
tially driven by cytokine release from lung-resident immune cells.”®
Emerging data suggest that local vascular oxidative injury may be more
relevant than systemic inflammation in the pathogenesis of
atherosclerosis.”®

Foam cell accumulation in atherosclerotic plaques is aggravated by in-
creased CD36 expression, enhanced lipid uptake, mitochondrial damage,
and defective efferocytosis due to tyrosine kinase MerTK downregulation,
ultimately promoting necrotic core expansion.””*® These processes are
strongly influenced by exposure to PM2.5, especially from traffic-related
air pollution. For example, PM2.5 can polarize macrophages toward a
pro-inflammatory M1 phenotype and impair their ability to clear apoptotic
cells, a key step in plaque resolution. 79

Additionally, T-cell activation, particularly of Chemokine receptor type 3
(CXCR3™) CD4" and CD8" subsets, drives a helper T-cell (Th1)-skewed
immune response. This favours the activation of the NOD-like receptor
protein 3 (NLRP3) inflammasome and subsequent pro-inflammatory cyto-
kine release, contributing to plaque instability and potential rupture.””'%
Notably, DEP can amplify this immune activation through non-canonical
IL-1B pathways, further aggravating vascular inflammation.'® In addition,
IL-1B and IL-6 are key pro-inflammatory cytokines released by alveolar
macrophages following the exposure to PM2.5 are contributing to CVD
and its risk factors.'®"~"%3

As plagues evolve, thin fibrous caps form over necrotic cores predis-
poses to rupture.'® PM enhances the expression of matrix metalloprotei-
nases (MMP-2 and MMP-9), impairs extracellular matrix stability, and
increases necrotic burden, all contributing to plaque destabilisation.'®>'%
In ApoE_/_ mice exposed to DEP morphological changes in plaques sug-
gest the presence of previous plaque ruptures.®® In both animal and human
studies, PM, 5 exposure has been associated with platelet activation and
elevated thrombogenic mediators such as CD40 ligand and fibrin degrad-
ation |:>roducts.107’109

Beyond classical vascular injury, air pollution interferes with circadian
rhythm regulation. PM, s disrupts core clock genes such as BMALT and
CLOCK, producing effects similar to those of nocturnal noise and artificial
light exposure (see below)."®""" Circadian disruption is a recognized car-
diovascular risk factor for metabolic dysregulation, insulin resistance, and
obesity."">""3 Recent experimental models of combined exposure to
PM and aircraft noise reveal synergistic cardiovascular toxicity: PM primar-
ily induces oxidative stress and pulmonary inflammation, whereas noise ac-
tivates neuronal and systemic stress responses, both converging to amplify
cardiovascular damage.”™""™ In summary, air pollution promotes athero-
genesis and cardiovascular events through converging oxidative stress, in-
flammation, immune dysregulation, endothelial dysfunction, circadian
misalignment, and plaque destabilisation—mechanisms.

3. Noise pollution

Noise is a ubiquitous exposure, especially in urban populations. In a 2022
noise mapping of the European Union, more than 20% of the population
was reported to live in areas where transport noise levels exceeded the
EU threshold (55 dB Lden noise over a whole day, with a penalty of
5 dB for evening noise and 10 dB for night noise)""® (Figure 3). When ap-
plying the stricter threshold of 53 dB for road traffic noise recommended
by the WHO,"" this number increased to more than 30%. Importantly,
this mapping is mainly based on noise estimation in larger urban areas,
and in these areas, most countries reported that 30-60% of the population
was exposed to above 55 dB (Figure 3).

In 2018, a WHO expert panel conducted a systematic review reporting
that road traffic noise is associated with a higher risk of IHD based on high-
quality evidence.""® This quality assessment was performed using the
Grading of Recommendations Assessment, Development and Evaluation,
with evaluation of several criteria for each study, including study design,
consistency and precision of the results, directness of the evidence, publi-
cation bias, and exposure-response gradient. For other CVD, the panel
concluded that there was either very low, low, or moderate quality

evidence, or that the evidence was not evaluated, e.g. for heart failure.
Since then, many studies investigating associations between transport noise
and the risk of CVD have been published,"”""® necessitating an updated
evaluation of evidence, as this information is a vital input in health risk
assessments.

In collaboration with Swiss and Spanish researchers, the European
Environment Agency (EEA) recently conducted an Umbrella+ review of
epidemiological studies on the health effects of environmental noise,
with subsequent meta-analyses and evidence evaluation, applying the 5
same criteria as used in the 2018 WHO report."" In this comprehensive 5
evaluation, risk estimates from the 2018 WHO report were updated with §
those obtained in more recent studies (published until mid-2023), mainly & o
identified using high-quality systematic reviews. The Umbrella+ review =
concluded that long-term exposure to road traffic noise was associated S
with a higher risk of IHD based on high-quality evidence, with an estimated =
relative risk (RR) of 1.04 (95% ClI: 1.02—1.06) per 10 dB higher noise. The @ 3
Umbrella+ review also concluded that road traffic noise is associated with a &
higher risk of incident stroke (RR: 1.05, 95% CI: 1.01-1.08 per 10 dB) and
heart failure (RR: 1.04, 95% CI: 1.02-1.07 per 10 dB) as well as cardiovas-
cular mortality (RR: 1.05, 95% CI: 1.02-1.07 per 10 dB). For arrhythmias,
only few cohort studies exist, and the quality evidence was concluded to £
be moderate with an RR of 1.01 (1.00-1.02) per 10 dB road traffic noise. 8
Although many studies have investigated associations between transport 3
noise and hypertension, these are mainly of cross-sectional design, and §
the quality of evidence was evaluated to be low. For all CVD, the proof g
of an association with airport and railway noise remains limited and incon-
sistent,”” highlighting the need for more studies on the health impacts of &
these exposures.

The threshold at which transport noise no longer affects cardiovascular
health has yet to be determined. Currently, the EU calculates transport
noise and health impacts from 55 dB Lden and up, while the WHO 2018 =
recommended a threshold of 53 dB for road traffic noise and 45 dB for air-
craft noise to protect the population.''® Recent studies on large popula- 3
tions with substantial variations in noise exposure (from 35 to 40 dB and =
up) have shown associations between road traffic noise and CVD at levels £
below 53 dB."”"""® Based on this, the Umbrella+ review recommended as-
sessment of the health risks from noise levels of 45 dB Lden and up.""”

In addition to the established associations between chronic exposure to i~
road traffic noise and CVD described above, recent studies have investi- <
gated whether short-term noise can trigger CVD. A study from %
Switzerland found that nighttime aircraft noise of 40-50 dB and >50 dB 3.
within two hours before CVD death was associated with odds ratios of
1.33 (1.05-1.67) and 1.4 (1.03-2.04), respectively.'?® A study based on y
the population living near Heathrow Airport (London, UK) found small as-
sociations between levels of evening aircraft noise and cardiovascular hos-
pitalisations, but no associations with CVD death or with other exposure
periods."?’

Several studies have examined the associations between transport noise g
and key cardiovascular risk factors and comorbidities, including metabolic CD
disease and poor mental health.""”"?27'2* These studies have consistently ¢ c
shown road traffic noise is associated with a higher risk of type 2 diabetes, &
resulting in an evaluation of high quality evidence in the recent EEA report S
with an estimated pooled RR of 1.06 (1.03—1.09) per 10 dB road traffic Q
noise.""® Similarly, road traffic noise has been associated with adiposity 9
measures and mental health outcomes, including depression, anxiety and o
suicide 1123124 suggesting that these are important contributors on the % 8
pathway between noise and CVD.

Health effects of transport noise among children and adolescents were &
evaluated in a recent Umbrella+ review from the EEA."*® For these age
groups, most previous studies focused on noise effects on reading and
oral comprehension, behavioural problems, and being overweight, based
on which the review concluded moderate certainty of evidence for an as-
sociation with noise. The review also identified five papers investigating as-
sociations between transport noise (in school, home, or both) and blood
pressure in children. The results of these studies are, however, inconsist-
ent, and more research is needed to determine whether noise increases
cardiovascular risk markers in childhood.
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Figure 3 Estimated percentage of residents within larger European cities exposed to road traffic noise of 55 dB or more in 2022. Calculations are performed
by all EU member countries as part of the EU Environmental Noise Directive and summarized by the EEA."'> Exposure levels vary widely, with Luxembourg,
Germany, and Czechia reporting the highest proportions, with >60% exposed in urban areas. In contrast, countries like Estonia and Malta report much lower

percent exposed.

3.1 Translational studies explaining the
noise-induced pathophysiology

3.1.1 Translational noise studies in humans

Field studies show that nighttime aircraft and railway noise negatively im-
pact vascular function, sleep quality, and stress-related biomarkers in
both healthy individuals and those with CVD."**'*’ These effects appear
to be dose-related, becoming more severe at higher levels of exposure.
Exposure to aircraft noise (30—60 events per night) at a sound level
(Leq) of 46.3 dB(A) with peaks at 60 dB(A) led to endothelial dysfunction
and increased adrenaline levels, impairing vascular function measured by
flow-mediated dilation (FMD)."?” The effects were worse with prior noise
exposure, indicating a priming effect. Vitamin C supplementation improved
endothelial function, suggesting ROS drive noise-induced vascular dam-
age.'”® Increased oxidative stress markers, such as 3-nitrotyrosine and
8-isoprostane, further confirmed this hypothesis. Railway noise had similar
effects, impairing FMD and elevating oxidative stress and inflammatory
biomarkers."*” Importantly, the worsening of endothelial function in re-
sponse to noise was more pronounced in patients with established CVD
compared with healthy subjects.’*® Studies have found that both infre-
quent loud and frequent lower-level aircraft noise at night caused endothe-
lial dysfunction and diastolic heart dysfunction.131 Long-term noise
exposure alters immune function, increasing levels of interleukin-12
and high-sensitivity C-reactive protein, while reducing natural killer cell
activity."*>"3* The Swiss SAPALDIA cohort identified DNA methylation
changes affecting inflammation pathways in individuals exposed to chronic

noise.”>* Additionally, long-term exposure to train or road traffic noise was
linked to arterial stiffness and early-stage atherosclerosis,'>>'*¢ further
strengthening the close link between noise and CVD.

3.1.2 Translational noise studies in animals

Animal studies have also reveal that noise exposure triggers vascular
dysfunction. Mice exposed to aircraft noise (Leq 72 dB(A)) exhibited in-
creased stress hormones, elevated blood pressure, and ROS generation
through NADPH oxidase (NOX-2) activation."*” Noise also uncoupled
endothelial nitric oxide synthase, reducing nitric oxide bioavailability
and impairing vascular function. Importantly, white noise exposure under
similar conditions did not cause these effects, highlighting that noise char-
acteristics, not just intensity, are critical.’®” Further studies showed that
noise-induced vascular constriction and inflammation were absent in
NOX-2 knockout mice."?®"® Inflammatory markers, including interleu-
kins and immune cells, were significantly elevated in noise-exposed
mice.”®® These findings suggest shared mechanisms between noise-
induced vascular damage and other CVD risk factors like diabetes and
hypertension.140 Noise exposure dysregulated genes related to vascular
integrity, particularly in pathways associated with TGF- signalling, autop-
hagy, and inflammation. RNA sequencing in noise-exposed mice revealed
disruptions in NF-kB signalling, circadian rhythm, and oxidative
stress. 28137 Nighttime noise exposure had more severe effects, impair-
ing Foxo3 signalling and exacerbating neuroinflammation. Mice exposed
to noise during sleep experienced more significant cardiovascular damage
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than exposure during wakefulness, emphasising the role of circadian
rhythms.'”® Noise-induced oxidative stress and inflammation affected
vascular and cerebrovascular systems, reinforcing the need to mitigate
nighttime noise exposure. Chronic noise exposure led to persistent
endothelial dysfunction and oxidative stress in mice, with no signs of
adaptation over 28 days."*" However, after 4 days of noise cessation,
endothelial function in large vessels normalized, though some micro-
vascular attenuation remained.*? These results indicate that prolonged
quiet periods may be essential for full vascular recovery. In a recent study,
aircraft noise was found to worsen cardiovascular outcomes in three
mouse models of diabetes: type 1 diabetes (streptozotocin-induced),
type 2 diabetes (5961 insulin receptor antagonist-induced), and metabolic
syndrome (high-fat diet-induced).143 Noise exposure exacerbated hyper-
glycaemia and endothelial dysfunction in all models, leading to increased
blood pressure, more pronounced endothelial dysfunction, and increased
oxidative stress. Mitochondrial assessments revealed noise-induced im-
pairments in respiratory chain function, further compounding diabetes-
related cardiovascular risks. These findings strongly suggest that noise
amplifies metabolic and cardiovascular complications in diabetics.'**

Noise activates stress pathways involving the renin-angiotensin-
aldosterone system and sympathetic nervous system, mediated by oxida-
tive stress and NOX-2 activation."*”"* Noise exposure increased levels
of angiotensin-Il, endothelin-1, and catecholamines, intensifying vascular in-
flammation and oxidative stress."*’” Similar mechanisms are seen in classical
hypertension models.™® Human studies highlight the amygdala’s role in
linking noise to stress-induced vascular inflammation and increased cardio-
vascular risk.'*” Noise exposure before acute stressors worsened Ml
outcomes in mice, increasing infarct size, oxidative stress, and cardiac dys-
function'*® (Figure 4).

The findings of some of the preclinical studies in mice have been repro-
duced in humans. Individuals exposed to high levels of aircraft noise had
poorer Ml prognosis, with higher inflammatory markers and reduced left
ventricular ejection fraction."*® Furthermore, clinical studies in patients fol-
lowing ACS found that aircraft noise increased the risk of recurrent cardio-
vascular events in patients with ACS'* (Figure 4).

Non-pharmacological interventions such as physical activity, intermit-
tent fasting, and pharmacological activation of endothelial AMP-kinase
(AMPK) mitigated noise-induced vascular damage in mice."** These ap-
proaches also restored endothelial function and reduced oxidative stress.
In endothelial-specific AMPK knockout mice, these protective effects were
absent, highlighting the critical role of the endothelial AMPK’s in noise re-
silience. This suggests that lifestyle modifications and pharmacological
AMPK activation could serve as effective countermeasures against noise-
induced cardiovascular dysfunction.

We recently studied the protective effects of cardiovascular drugs
against aircraft noise-induced vascular damage using an established mouse
model. Mice were exposed to aircraft noise (72 dB(A)) for 4 days
while treated with the beta-blocker propranolol or the alpha-blocker phe-
noxybenzamine."*® Noise exposure caused hypertension and impaired
endothelial function in large arteries and cerebral microcirculation, accom-
panied by increased oxidative stress and inflammation. Treatment with
propranolol and phenoxybenzamine effectively preserved endothelial
function. It reduced oxidative stress and inflammation in heart tissue, sug-
gesting that pharmacological dampening of the sympathetic nervous sys-
tem may represent a practical approach to ameliorate cardiovascular
side effects of noise.!

4. Outdoor light pollution

Light pollution is a growing environmental concern, affecting approximate-
ly 83% of the global population and nearly all individuals in the USA and
EU.">" Exposure to artificial light at night disrupts circadian rhythms, in-
creased premature mortali‘cy.152 In humans, circadian misalignment contri-
butes to CVD by impairing inflammatory control in atherosclerosis' ' and
altering metabolic pathways linked to obesity and hyperglycaemia.'®>">*
Individual chronotypes, determined by genetic predisposition to

‘morningness’ or ‘eveningness’, influence diabetes risk and overall health
outcomes.'*>'%¢ Studies associate artificial light at night with an elevated
risk of coronary heart disease (CHD) and mortality in older adults.">’
Higher exposure levels correlate with increased CHD hospitalisations
and mortality, particularly when combined with air pollution, in both hu-
man and animal studies.''®"*® Overweight or obese individuals appear
more susceptible to these adverse effects, emphasising the interaction be-
tween environmental and metabolic health factors. Animal models provide
further evidence of the impact of disrupted light cycles on cardiovascular
health. In a shift work model, light-dark cycle alterations led to higher
stroke-induced mortality in male rats, while female rats experienced great-
er infarct volumes and sensorimotor deficits.'>” Constant light exposure in
high-fat-fed rats exacerbated glucose abnormalities, insulin resistance, and
inflammation leading to liver disease.® Similarly, chronic circadian disrup-
tion increased atherosclerosis and dyslipidemia in female, but not male,
ApoE™"~ mice."®" Light pollution also influences cardiovascular function
in humans. A 5 lux increase in outdoor night-time lighting was associated
with a 3—4 mmHg rise in blood pressure among elderly individuals.'®* A
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meta-analysis further linked night-time light exposure to elevated risks of ‘D

HF, CHD, stroke, and Ml in a study of 579 Chinese counties.'®> More ex-
tensive research is required to validate these findings across diverse popu-
lations and age groups.

5. Climate change and extreme
temperature, desert storms, and
wildfires

5.1 Extreme temperatures or non-optimal

temperatures

High air temperatures pose significant health risks, whether occurring dur-
ing isolated hot days or prolonged heatwaves. These dangers extend be-
yond immediate effects like dehydration or heatstroke to exacerbating
chronic conditions, including CVD, respiratory illnesses, kidney disorders,
and electrolyte imbalances."®* Individuals with pre-existing health issues,
particularly those with CVD, are especially vulnerable, leading to increased
emergency room visits and hospital admissions.'®>~"¢” Several factors, in-
cluding age, socioeconomic status, and underlying health conditions,
heighten the risk of heat-related acute cardiovascular events such as Ml
and acute left heart decompensation.’®® Furthermore, environmental con-
ditions, particularly air pollution, can compound the health effects of hlgh
temperatures, worsening health outcomes.'®” Rapid urbanisation, an aging
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population, and shifting socioeconomic development pathways also amp- ¢

lify vulnerability to heat stress."”® With global climate change continuing
to worsen, the frequency, duration, and intensity of heatwaves are ex-
pected to rise.””

The 2019 GBD study identified non-optimal temperatures (NOT)
(heat or cold) as a significant risk factor for human health, contributing to
the loss of 11.7 million DALYs globally."”* According to the WHO, climate
change could lead to 250 000 deaths annually between 2030 and 2050 due
to increased heat exposure, particularly among the elderly, and rising inci-
dences of diarrheal diseases, malaria, dengue, and childhood stunting.173
These figures are likely underestimations of the full burden of
climate-change-related mortality as they exclude other climate-sensitive
health conditions and extreme weather’s effects on health services, as well
as the indirect effects of climate change in food systems, availability of clean
water, sanitation, social economic insecurity, and population displacement.

Extreme temperatures contribute significantly to cardiovascular mor-
bidity and mor‘tality.”“’175 A 2021 global analysis estimated that over 5 mil-
lion deaths annually are linked to NOT."”® Although the relationship
between outdoor air temperature and cardiovascular mortality appears al-
ready very robust, the effects of temperature on cardiovascular morbidity
are smaller and more variable."”” Cold-related deaths currently outnum-
ber heat-related ones, but increasing heatwaves are shifting this balance."”®
The human body responds to heat stress by redistributing blood flow and
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Aircraft noise exposure before Ml causes a pro-inflammatory cardiovascular condition
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Figure 4 The impact of aircraft noise exposure on cardiovascular health Panel (A): An experimental model of Ml in mice showing that (a) prior noise ex-
posure worsens cardiac function post-Ml. (b) noise-induced “priming” of the heart, leading to increased inflammation, oxidative stress, and endothelial dys-
function. (c) echocardiographic images showing worsened infarction with noise exposure. (d) and (e) statistical data demonstrating reduced ejection
fraction, stroke volume, and endothelial relaxation with noise. Panel B: A dose-dependent relationship between noise levels and recurrent ACS in post-Ml
patients. (A): with permission from'*®; (B): with permission from.'*® C57BL/6J, ‘black six’ mouse strain; LAD, left anterior descending artery; OCR, oxygen
consumption rate; IL, interleukin; Vcam1, vascular cell adhesion protein 1; TNFa, tumour necrosis factor alpha; Nox2, catalytic subunit of the phagocytic
NADPH oxidase (gp91phox); p47phox, regulatory cytosolic subunit of the phagocytic NADPH oxidase; CD11b, integrin a-M (Mac-1); Ly6C, lymphocyte anti-
gen 6 (UPARY); LVEF, left ventricular ejection fraction; PLAX, parasternal long axis view; ACh, acetylcholine; Le,, day—evening—night noise level (weighted noise
average over an entire day); dB, decibel.
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secreting sweat, which, in individuals with compromised cardiovascular
function, can result in ischaemia, infarction, and cardiovascular col-
Iapse.179’180 Cardiovascular strain from heat stress, particularly among old-
er adults, is a leading cause of heatwave-related mor'tality.170

5.1.1 Interaction of heat with air pollution

Interactions between rising temperatures and air pollution magnify cardio-
vascular risk. High temperatures can coincide with stagnant atmospheric
conditions, promoting the photochemical formation of air pollutants and
preventing their dispersion. Temperature inversions can similarly trap pol-
lutants, leading to episodes of extreme cold and increased air pollution,
heightening cardiovascular risk. Epidemiological studies have demonstrated
that high temperatures and air pollution collectively increase CVD mortal-
ity. Research has shown that PM, s exacerbates the association between
rising temperatures and CVD mortality, with the combined effect being
more significant than the impact of each factor alone'®"'8? (Figure 5).
The two environmental factors share common pathomechanisms in
many regulatory processes in the body. It is therefore conceivable that in-
teractions and synergies between air temperature and air pollutants are
likely.'®* However, studies from California have reported inconsistencies
in the interactive effects of extreme PM, s and heat.'® Yet a global analysis
of 482 cities found that pollutants such as PMyo, PM; 5, O3 and NO, amp-
lified high temperatures’ effects on CVD mortality, with O3 and NO,
showing the most pronounced impact Collectively, these findings empha-
size the need to consider air pollution and temperature as interconnected
factors influencing cardiovascular health.
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5.2 Desert dust

Airborne soil contamination is an often-overlooked health risk. Agricultural
activities, unpaved roads, and construction contribute to dust emissions,
but the largest source is desert wind erosion, particularly from the ‘dust
belt’ spanning North Africa, the Middle East, and parts of Asia.'® Desert
dust can account for 30-50% of atmospheric aerosols'®” and can travel
vast distances, affecting populations far from its origin. Desert dust is not
entirely natural—anthropogenic influences, such as industrial pollution, ex- o
acerbate its toxicity."®® Cardiopulmonary mortality linked to desert dust S
exposure is estimated at 1.8% globally (actually up to 0.99 million deaths =
per year) but reaches 15-50% in highly affected regions.'®® As urban and §_
industrial air pollution declines due to regulatory efforts, climate change &
is projected to make desert dust a dominant air quality concern, especially
due the drying effects of temperatures increasing the potential aerosoliza- 3
tion of ground dust."® Desert dust exposure induces oxidative stress, in-_%
flammation, and respiratory tract damage.191 Fine dust particles provoke
systemic responses, impacting cardiovascular and immune functions.'”? %,\’
Toxicity increases when desert dust interacts with urban pollutants, form- %
ing sulfates and nitrates (contaminated with toxic metals and polycyclic hy- 3.
drocarbons) that enhance oxidative stress.'”* Studies in China confirm that
desert dust passing through industrial areas carries higher levels of pollu--§
tants, amplifying its harmful effects.'”* Epidemiological research has linked 8
desert dust exposure to cardiovascular mortality. In Japan, Asian dust 3
events were associated with an increase in acute MI.'*> A meta-analysis £
found that each 10 pg/m? increase in PMyo dust exposure correlates
with a 2% rise in cardiovascular mortality, persisting for up to two days
post-exposure.'® Further research is needed to assess the long-term
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Figure 5 The impact of extreme heat and air pollution on cardiovascular health. High temperatures cause vasodilation, dehydration, electrolyte imbalances,
hypercoagulability, and increased cardiac strain, potentially leading to ischaemia or plaque rupture. Air pollution contributes to endothelial dysfunction, platelet
activation, systemic inflammation, and fibrotic changes, further exacerbating cardiovascular risk. These combined stressors increase the likelihood of CAD,
heart failure, stroke, venous thrombosis, and cardiovascular mortality. The interaction between heat and pollution underscores the urgent need for mitigation

strategies to protect cardiovascular health in an increasingly warming and polluted environment. Modified from

183 with permission.
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cardiovascular consequences of chronic desert dust exposure, and to what
extent the dust itself engenders risk compared with the other sources of
constituents it may carry.

5.3 Wildfires

Climate change has intensified wildfire frequency and severity. Large wildfires
have occurred in Greece, Australia, Brazil, and the U.S., where over 70 000
wildfires occur annually, and the burned acreage has tripled over the past
30 years."”” Between 2008 and 2012, more than 10 million individuals were
exposed to hazardous air pollution from wildfires for extended periods.'”®
Wildfire smoke can travel thousands of kilometres, as demonstrated by the
June 2023 Canadian fires, which affected air quality across major U.S. cities,
such as New York. Wildfires are a significant source of air pollution, emitting
PM, s, toxic gases, and volatile organic compounds. In 2005 wildfires contrib-
uted ~18% of U.S. PM, s emissions,'”” and exposure has increased by 77%
since 2002.2%° PM, 5 levels during wildfires often exceed 300500 pg/m?>, rival-
ling the pollution levels of the world’s most contaminated megacities.”" The
toxicity of wildfire PM varies depending on biomass composition, burning con-
ditions, and the combustion of other material that may have been present in
the blaze.?*? Some studies have suggested wildfire PM is more harmful than
urban PM due to smaller particle sizes compared with some other sources
of urban PM, oxidative potential, and co-exposure to extreme heat,zo1 al-
though it is difficult to address other confounding influences (Figure 6).
Wildfire smoke is responsible for an estimated 339 000 to 675 000 premature
deaths annually.”® The 2023 Canadian wildfires were linked to increased hos-
pital admissions for respiratory and cardiovascular conditions in the U.5.2%*
Meta-analyses indicate that every 10 pg/m® increase in wildfire PM, s is asso-
ciated with a 1.9—-3.3% rise in cardiovascular mor'tali‘cy.205 Wildfire smoke ex-
posure is linked to increased hospitalisations for acute coronary events,
stroke, cardiac arrhythmias, HF exacerbation, and hypertensive crises'?720¢
(Figure 6). Firefighters exposed to wildfire smoke have demonstrated in-
creased arterial stiffness, elevated inflammatory markers, and impaired vascu-
lar function.””” Experimental studies reinforce these findings. Controlled
exposure to woodsmoke in humans raises blood pressure, impairs vascular
function, and promotes coagulation.”® Long-term indoor biomass burning
is linked to carotid atherosclerosis.*” In preclinical models, wildfire PM in-
duces oxidative stress, DNA damage, and ischaemic cardiac injury.zm’211
Mitigation strategies are crucial for reducing wildfire-related cardiovascular
risks. Forecasting high-risk events, educating citizens and patients, and adjusting
medication regimens during smoke episodes can minimize health impacts.?'
Given the increasing prevalence of wildfires, further research is needed to
understand their long-term cardiovascular effects fully, and develop advice
for those most at risk.

6. Chemical pollution and plastics

Contaminated soil and water significantly threaten human health through ex-
posure to toxic chemicals. According to the WHO, 2 million deaths and 53
million DALY's were lost in 2019 due to chemical exposures, a sharp rise
from 2016 figures (1.6 milion deaths and 45 milion DALYs)2"
Hazardous substances include heavy metals, PAHs, per- and polyfluorinated
substances (PFAS), pesticides, and organic solvents. While these chemicals
have been linked to cancer and respiratory diseases, they are increasingly
associated with CVD.?'® While chemical exposures can be very common
in populated regions of LMICs, biomonitoring studies have also detected
numerous chemicals in both European and U.S. populations.>'**'>

6.1 Cardiovascular effects of chemical
pollutants

6.1.1 Heavy metals

Heavy metals such as arsenic, cadmium, lead, and mercury are major risk
factors for CVD. Lead exposure, even at low concentrations, is a well-
established cause of hypertension and cardiovascular mor‘tality.m'216217
Cadmium exposure is associated with CAD, atherosclerosis, and
HF,'0218219 \ith oxidative stress, vascular damage, and endothelial

dysfunction playing central roles.”*® Methylmercury contributes to carotid
atherosclerosis and Ml risk,*?' while copper promotes atherosclerosis
through cuproptosis.”*> Arsenic exposure has been associated with
increased carotid intima-media thickness, a surrogate for early atheroscler-
osis and IHD.223?2* Preclinical studies confirm these effects, with ApoE_/_
mice showing increased plaque formation upon arsenic and cadmium
exposure.”>*% Mercury exposure similarly exacerbates atherosclerosis
markers in LDL receptor knockout mice, another model of atheroscler-
osis.*?’ These findings underscore the role of heavy metals in vascular in-
flammation, oxidative stress, and endothelial dysfunction (Figure 7).2%3

6.1.2 Endocrine disruptors

Endocrine-disrupting chemicals, including PFAS, bisphenol A (BPA), and per-
sistent organic pollutants, elevate cardiovascular risks through metabolic dys-
regulation, oxidative stress, and inflammation®>**** (Figure 7). BPA exposure
is associated with increased CVD prevalence, hypertension, and HF 25628
Similarly, PFAS compounds contribute to dyslipidemia and atheroscler-
osis. > Organophosphate pesticides have also been linked to severe cardiac
complications, including arrhythmias and cardiac ECG Q-T prolongation.?*°
Furthermore, dioxins, pesticides, and plastic-associated compounds may
promote atherosclerosis via common pathophysiological mechanisms. 26"
Preclinical studies confirm these associations, with exposure to dioxins,
pesticides, and BPA exacerbating atherosclerotic plaque development in
APOE—/— mice.2637265

6.2 Micro- and nano-plastics

Global plastic production has surged from 2 million tons in 1950 to over
460 million tons in 2019, with waste projected to triple by 2060.2°¢ The
degradation of plastics generates micro-plastics (<5 mm) and nano-plastics
(<1000 nm), contaminating soil, water, and marine ecosystems.’
Humans are exposed to micro- and nano-plastics (MNPs) primarily
through seafood consumption, inhalation, and ingestion of contaminated
water.282%° MNPs act as carriers for toxic chemical additives, including
phthalates, BPA, PFAS, and heavy metals, further amplifying cardiovascular
risk.2’® MNP exposure induces oxidative stress, inflammation, and vascular
dysfunction. Studies show that MNPs trigger endothelial cell senescence by
upregulating p53, p21, and p16, contributing to endothelial dysfunction and
atherosclerosis.””" In preclinical models, MNP ingestion promotes fat accu-
mulation, oxidative stress, and cardiometabolic disease.”’? Wistar rats ex-
hibit cardiac fibrosis and pyroptosis via the NLRP3/caspase-1 pathway
upon MNP exposure.”’>*”* Additionally, MNPs impair nitric oxide signal-
ling and activate inflammatory pathways, exacerbating vascular injury.””>
A recent study found MNPs in carotid atheromas in humans, the presence
of which was linked to a 4.5-fold increased risk of Ml, stroke, and cardio-
vascular mortality.?”® Higher plastic particle numbers in plaques also corre-
lated with elevated inflammatory markers, including interleukin-6, TNF-a,
and CDé68. Emerging evidence suggests MNP deposits in various vascular
beds, further supporting their role in atherosclerosis.”’” Moreover,
MNPs promote prothrombotic effects and haemolysis, increasing cardio-
vascular complica‘cions.278'279 Preclinical data support these human find-
ings, with polystyrene nano-plastics exacerbating atherosclerosis in
ApoE—/— mice.?8*8!" MNPs also stimulate vascular smooth muscle cell
proliferation, accelerating atherosclerotic lesion formation,*8%2%3
Rigorous research is required to further ascertain the risks posed by
MNPs, especially in terms of specific methods to detect MNPs in biological
specimens and the use of environmentally relevant MNPs in toxicological
studies.”®* Nonetheless, these studies highlight MNPs as emerging cardio-
vascular risk factors with significant implications for public health (Figure 8).

7. Mitigation measures
7.1 Air pollution

Air pollution, predominantly from fossil fuel combustion, is a leading envir-
onmental risk factor for CVD, responsible for an estimated 8.3 million pre-
mature deaths annually worldwide, according to Lelieveld et al.” Of these,

GZ0Z 1200190 Z0 U0 Jasn usayouanjy wniuaz z)joywaH Aq Z1L L0SZ8/ES9 L/ L L/LZ 1L /3101e/Sa1oseAoIpIed/woo dnoolwepese//:sdiy woll papeojumod



Statement on environmental risk factors of CVD

1665

Local lung
inflammation

Mediators of
inflammation

\

Cardiovascular damage

Particles . @
(coarse, fine, ultrafine)
= PM <10pum

« PM,, <25pum

« Nanoparticles < 0.1 pm

Autonomic regulation
of the sympatheticand
parasympathetic nervous

system

Figure 6 This figure illustrates the impact of wildfire smoke on cardiovascular health. Wildfires release reactive gases (CO, SO,, NO,, O3, volatile organic
compounds (VOCs)) and particulate matter (PMyq, PM, s, ultrafine particles), which enter the lungs via inhalation. Fine particles can translocate into the blood-
stream, causing vascular damage, inflammation, and oxidative stress. Additionally, inhaled pollutants disrupt autonomic nervous system regulation, contributing
to cardiovascular dysfunction. Local lung inflammation triggers systemic inflammation, further exacerbating heart and vascular damage. These combined effects

increase the risk of CVD such as heart attacks and strokes.

5.1 million deaths could be prevented by phasing out fossil fuels, underlining
the immense potential for cardiovascular health gains through energy sys-
tem transformation.?®

To mitigate the cardiovascular burden of air pollution, comprehensive
action is needed across both societal and individual levels. At the global
scale, transitioning to a 100% renewable energy system—dominated by so-
lar and wind—would lead to an 83-99% reduction in major pollutants

(NO,, SO,, PM, 5, PM40) by 2050.287 Such a transition would also reduce
greenhouse gas emissions and slow climate change, thus producing a dou-
ble benefit.

Adherence to air quality guidelines is central to pollution mitigation. The
WHO’s 2021 guidelines suggest to limit annual mean PM, s to <5 pg/m®
and NO, to 10 pg/m*—levels linked with minimal CVD risk.2"
However, most urban areas exceed these guidelines, underscoring the
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need for stricter national air quality standards and enforcement, especially
in highly polluted regions like South Asia, where cardiovascular mortality
from pollution is disproportionately high.

In addition to societal reforms, personal-level strategies can offer signifi-
cant protection, particularly in high-exposure settings. Rajagopalan et al.”®®

recommend evidence-based measures such as:

Using high-efficiency particulate air filters indoors, which can reduce

indoor PM, s levels by up to 60%.

Wearing N95 masks during episodes of high outdoor pollution or

while commuting, which would reduce PM exposure.

Avoiding or limiting outdoor activity during peak pollution hours, par-

ticularly near traffic-heavy areas.

+ Dietary interventions rich in antioxidants and omega-3 fatty acids may
mitigate pollutant-induced oxidative stress and inflammation.

» Optimising cardiovascular risk management, including tight control of

hypertension, diabetes and dyslipidemia, to enhance resilience to air

pollution’s effects.

These personal actions, while beneficial, are not substitutes for regula-
tory or structural mitigation. IT is important to re-emphasize that mitigat-
ing the cardiovascular effects of air pollution requires a dual approach:
urgent structural reforms to phase out fossil fuels and meet WHO air qual-
ity limits, alongside personal strategies to reduce exposure, especially in
those who may be particularly vulnerable and/or susceptible. Together,

these measures can deliver profound health benefits, save millions of lives,
and reduce the global economic burden of pollution, aligning with both
public health and climate goals.

7.2 Noise exposure

Local authorities can mitigate noise from roads, railways, and aircraft
through various strategies (for review see''"). For road traffic, noise pri-
marily comes from the tire-road contact at speeds above 30-35 km/h
for cars and 55-65 km/h for heavy vehicles. Therefore, transitioning to
an electric car fleet will only result in minor noise reductions, if any. As elec-
tric cars often weigh more than cars with a combustion engine, they are
likely to emit higher levels of rolling noise. Effective measures include noise
barriers (up to 10 dB(A) reduction), noise-reducing asphalt (3—6 dB(A)),
and speed limit reductions (~1 dB(A) per 10km/h decrease).
Developing low-noise tires could lower noise by 2—-3 dB(A) nationwide, al-
though care will be needed to ensure that material used does not cause
airborne tire wear PM to have more toxicity. Urban infrastructure invest-
ments—promoting biking, ride-sharing, and public transport—can also re-
duce noise. Since individual measures yield modest reductions, combining
strategies is essential in densely populated areas. For aircraft, optimising air
traffic routes via GPS guidance reduces noise over urban areas. Also, night
flight bans significantly cut nighttime aircraft noise—a time-window known
to be particularly harmful to CVD health. A continuous descent approach,
with steeper and smoother landings, a continuous descending approach
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Figure 8 Environmental and modelling studies indicate that micro- and nano-plastics (MNPs) are present in air (indoor and outdoor), water (bottled and
tap), food, and cosmetics, making human exposure widespread. As shown in animal models, MNPs can enter the body through inhalation, ingestion, and pos-
sibly skin contact. Once in the bloodstream, MNPs may accumulate in cardiovascular tissues, triggering harmful processes such as inflammation, oxidative
stress, endothelial dysfunction, and cell damage. Studies on human ex-vivo samples confirm their presence in arterial plaques, with clinical evidence linking

MNPs in carotid plaques to increased risks of M, stroke, and all-cause mortality. (Taken modified from

minimizes noise impact. For railway noise, key strategies include rail grind-
ing to reduce track wear and noise, upgrading brakes to quieter composite
materials, and restricting nighttime operations near residential zones.
These combined efforts can significantly reduce transportation-related
noise pollution.

7.3 Heat and wildfires

7.3.1 Mitigating the health risks of extreme heat
Public health interventions are essential to reduce heat-related cardiovas-
cular mortality. Cooling strategies, improved air conditioning, and public
awareness campaigns should be expanded, such as those of the US.
CDC’s Climate and Health Program.>*” Home monitoring of weight, blood
pressure, and symptoms of heat-related illness can help prevent complica-
tions. Urban planning should address heat islands by increasing green
spaces, using reflective roofing materials, and enhancing city tree coverage,
which could prevent thousands of premature deaths.?**?°" Heatwaves dis-
proportionately affect low-income and marginalized populations, particu-
larly in regions least responsible for greenhouse gas emissions.'®®
Effective public health policies and interventions are essential to mitigate
these risks and protect vulnerable populations. In addition, as climate
change intensifies extreme temperatures, incorporating cardiovascular
health considerations in particular concerning city design will become in-
creasingly necessary.

285 with permission).

7.3.2 Protecting cardiovascular health from wildfires

Mitigation strategies are crucial for reducing wildfire-related cardiovascular
risks. Forecasting high-risk events, educating patients, and adjusting medica-
tion regimens during smoke episodes can minimize health impacts.212
Indoor air filtration, designated clean air shelters, and adequately fitted
NO95 masks effectively protect against smoke inhalation.?”* Given the in-
creasing prevalence of wildfires, further research is needed to understand
their long-term cardiovascular effects fully.

7.4 Heart-healthy city design
Urban areas remain hotspots for environmental stressors, including cli-
mate change, air pollution, noise, light pollution, and heat from urban
heat islands.?”* Additional risk factors such as crime, limited green spaces,
social isolation, prolonged sitting, sedentary lifestyles, and poor nutrition
contribute to the burden of NCDs. Physical inactivity alone accounts for
70 million DALYs and 3.2 million deaths annually.?”>

Compact cities, characterized by high density, shorter travel distances,
and diverse land use, are promoted for sustainability and public health ben-
efits. Increased active transportation, such as walking and cycling, reduces
CO, emissions and enhances fitness, and reduces CVD risk.2”> However, a
study of 1000 European cities found that very densely populated compact
cities also experience higher air pollution, intensified heat island effects, re-
duced green spaces, and elevated mortality rates.*”’ Boston, USA, and
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Melbourne, Australia, with 80 and 85% car-dependent transport, respect-
ively, could significantly benefit from alternative land use and transport pol-
icies.”> While compact cities offer benefits, poor planning can lead to
adverse health outcomes. For instance, Barcelona, Spain, despite its com-
pact structure, still faces high air pollution and traffic-related risks.
Currently, Barcelona allocates 60% of public space to cars, despite only
25% of transportation involving motor vehicles.>”* Policies to reduce traffic
density, enhance air quality, and expand green spaces can lower mortality
rates and disease burdens.?*®

Innovative urban planning concepts, including Superblocks, low-traffic
neighbourhoods, 15-min cities, and car-free models, aim to reduce car de-
pendency and enhance green infrastructure. These strategies improve air
quality, lower noise pollution, mitigate heat island effects, and promote
physical activity, benefiting cardiovascular health.”’* Reducing car domin-
ance allows for more parks, cycling paths, and pedestrian-friendly spaces.
The 15-min city model, implemented in Paris, prioritizes access to work,
education, shops, entertainment, and social activities within a short walk
or bike ride, fostering a healthier lifestyle.”® Barcelona’s plan to create
500 Superblocks limits motorized traffic within designated areas, promot-
ing green spaces, social interactions, and economic activity. These efforts
aim to prevent up to 700 premature deaths annually by improving air qual-
ity, reducing noise pollution, preventing heat islands, and increasing physical
activity.””" Similarly, low-traffic neighbourhoods can be implemented
quickly through streetscape changes, making cities safer for walking and
cycling while reducing traffic-related injuries and air pollution. Hamburg
aims to become a car-free city by 2034, responding to climate change
and public health needs. Car-free neighbourhoods, such as Vauban in
Freiburg and Pontevedra in Spain, demonstrate the viability of pedestrian-
friendly urban models with low CO, emissions. Utrecht’s Merwede district
in the Netherlands, designed for 12000 residents, follows a similar ap-
proach.?’” These models alleviate air pollution-related health burdens,
promote active transportation, and enhance urban liveability.

Long-term urban planning efforts require complementary short-term
policies. Measures such as 30 km/h speed limits and ultra-low emission
zones significantly improve public health by reducing accidents and air pol-
lution.??®2%% Tactical urbanism—temporary, cost-effective urban improve-
ments—can also rapidly transform public spaces and pilot new
infrastructure designs. Fossil fuel reliance for energy and transportation re-
mains a primary source of air pollution and climate change.300 In 2019, only
0.18% of the global land area had PM, 5 exposure below WHO’s 5 pug/m?
guidelines, " The largest urban PM, 5 contributors include energy produc-
tion, transportation, industry, and residential heating.212 Electrification of
transport and renewable energy adoption can reduce both greenhouse
gas emissions and air pollution, yielding significant health benefits.>*?
However, reliance on biofuels and biomass burning could pose additional
risks, as some fuels appear to generate more toxic PM, 5 than fossil fuels.?'?
Green spaces mitigate urban environmental risks by reducing air pollution,
noise, and heat while promoting physical activity and mental well-
being.>%33%* Studies suggest that green areas’ proximity, size, and connect-
ivity influence cardiovascular health benefits.3*> Moreover, equitable access
to green spaces is essential, as low-income neighbourhoods often lack high-
quality parks.306

Urban heat islands, caused by heat-absorbing surfaces and reduced vege-
tation, increase cardiovascular-related mortality.>®” A study across 93 cities
found that urban heat islands raise temperatures by an average of 1.5°C,
causing 6700 premature deaths annually. Increasing tree coverage to
30% could lower city temperatures by 0.4°C and prevent 2644 deaths.””!
Transportation infrastructure impacts CVD through air pollution, noise,
stress, and inactivity. Globally, 1 in 4 adults and 3 in 4 adolescents fail to
meet WHO physical activity recommendations.>*® Active transportation—
walking and cycling—improves cardiovascular health, yet urban planning
must ensure safe infrastructure to maximize benefits while mitigating pollution
exposure.®®’

Urban food environments influence cardiovascular risk beyond diet
quality. Food insecurity, stress from economic hardship, and exposure to
air pollution from food transport contribute to health disparities.'®*""
Policies promoting healthier food systems include reducing sugar-sweetened

beverage sales, supporting local farmers’ markets, and integrating sustain-
ability goals into urban planning.'* Contaminated urban water supplies
and inadequate waste management expose populations to harmful metals
and chemicals linked to CVD.?'® Substances such as lead, cadmium, and
per- and PFAS disrupt cardiovascular function.*™* Solid waste mismanage-
ment further exacerbates pollution and environmental degradation, dis-
proportionately affecting marginalized communities.>'® Implementing
sustainable water and waste policies is crucial for improving urban public
health.*"®

Thus, heart-healthy urban planning must integrate sustainable mobility,
green spaces, energy-efficient systems, and equitable infrastructure.
Compact cities, low-traffic neighbourhoods, and car-free models offer
promising solutions but require careful implementation to minimize unin-
tended health risks. Policy interventions, including speed limits, emission
zones, and urban greenery expansion, can provide immediate health ben-
efits. Addressing climate change, pollution, food security, and waste man-
agement is integral to fostering resilient and healthy cities.

8. Calculating cardiovascular risk by
using the exposome

CVD remains the leading cause of mortality worldwide, with risk factors
traditionally classified into modifiable (e.g. smoking, hypertension, diabetes,
dyslipidemia) and non-modifiable (e.g. age, sex, genetic predisposition) cat-
egories. While these traditional risk factors provide a strong foundation for
estimating cardiovascular risk, and their application has saved many millions
of lives, they fail to account for the complex interactions between environ-
mental exposures and biological responses over an individual’s lifetime. The
concept of the exposome, which encompasses the totality of environmen-
tal exposures from conception onward, is essential for accurately quanti-
fying cardiovascular risk in @ modern and holistic manner (Figure 9).

8.1 Limitations of traditional cardiovascular

risk factors

Traditional cardiovascular risk prediction models such as the Framingham
Risk Score or SCORE have significantly contributed to CVD prevention.
However, these models predominantly focus on lifestyle and genetic pre-
dispositions while neglecting environmental factors, which have become in-
creasingly significant contributors to cardiovascular health. The GBD
highlights that factors such as air pollution, noise, chemical exposure, and
socioeconomic stressors play a critical role in the pathogenesis of CVD,
yet they remain under-represented in conventional risk assessment
frameworks."%317

8.2 The exposome: a comprehensive

approach to cardiovascular risk

Christopher Wild introduced the exposome concept in 20053 It inte-
grates all environmental factors an individual encounters throughout life,
including chemical pollutants, social determinants, lifestyle choices, and psy-
chosocial stressors. By examining these exposures about genetic suscepti-
bility and biological responses, the exposome provides a more precise and
individualized assessment of cardiovascular risk (Figure 9).

(1) Multi-Exposure Synergy: Traditional models assume isolated risk
factors, yet environmental exposures rarely occur in isolation.
Urban environments expose individuals to a combination of air pol-
lution, noise, heat, and social stressors, which together exert a cu-
mulative and potentially synergistic impact on cardiovascular
health.*"

(2) Biological Pathways and Mechanisms: Exposome research enables
the identification of novel biomarkers and molecular pathways link-
ing environmental exposures to CVD. For example, air pollution
triggers oxidative stress pathways that accelerate atherosclerosis,
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while chronic noise exposure disrupts circadian rhythms and ele-
vates stress hormones, contributing to hypertension.®*

(3) Precision Medicine and Public Health Interventions: The exposome
allows for personalized risk assessments by integrating genetic sus-
ceptibility with real-world exposures. This can guide targeted inter-
ventions such as urban planning to reduce pollution, noise
regulations, and policies aimed at minimising occupational and socio-
economic stressors.*!

Thus, to achieve a truly precise cardiovascular risk estimation, we must
move beyond traditional risk factors and adopt an exposomic approach.
Incorporating environmental determinants into cardiovascular risk predic-
tion models will enhance individual risk assessment and inform public
health 155trategies to mitigate the growing burden of CVD in the modern
world.

9. The detrimental costs of inaction:

The economic consequences of failing to address environmental expo-
sures—particularly air pollution and noise—are staggering and extend
far beyond healthcare. In the United States alone, calculations show that
fossil fuel-related air pollution contributes to at least 107 000 premature
deaths annually, incurring health-related costs exceeding $820 billion per
year.322 Globally, the World Bank estimated the cost of inaction on air pol-
lution in 2019 to be $8.1 trillion, representing 6.1% of global GDP guide to
assessing. Within the European Union, research suggests that the social
cost of noise and air pollution in the EU—including death and disease—
could be nearly €1 trillion. For comparison, the social cost of alcohol in
the EU has been estimated to be €50—-120 billion and smoking at €544 bil-
lion—however, investments in clean air yield significant economic

. Life course dimension -

Figure 9 The exposome encompasses all lifelong environmental exposures, their impact on biochemical pathways, and related health effects. The most
significant environmental health risk in the general external environment is chemical pollution, while in the specific external environment, tobacco smoking
and unhealthy diets have the greatest impact. Mental health can also be affected by environmental factors like social isolation and work strain, though their
contribution to disease burden may be underestimated due to limited exposure—response data. Exposures influence the internal environment, often measured
through transcriptome, epigenome, proteome, and metabolome changes. Key biochemical alterations include circadian dysregulation, stress hormone release
(cortisol, catecholamines), oxidative stress from mitochondria and immune cells, inflammation, and oxidative tissue damage. Environmental exposures can act
synergistically with genetic predisposition or existing CVD, worsening outcomes such as atherosclerosis, vascular stenosis, MI, heart failure, and stroke. Taken

returns.>> For instance, the U.S. Clean Air Act was estimated to have a
benefit-cost ratio of approximately 30:1, with the vast majority of benefits
arising from reduced mortality due to improved air quality.*** In the UK,
introducing clean air zones, such as in Bradford, has been estimated to
already have led to monthly National Health Service savings exceeding
£30000 and reductions in respiratory and cardiovascular morbidity.>>
Similarly, London’s Ultra Low Emission Zone in the UK is projected to pre-
vent over 1.4 million air pollution-related hospital admissions by 2050.32¢
Beyond health, improved air quality also enhances urban economic S
value—cities that achieve a 10% improvement in air quality report a =
5.6% increase in property values, with projected capital gains of over
$60 billion in the U.S. alone.3?” Moreover, clean air action is cost-effective
in terms of productivity: workplace exposures to PM; 5 and heat are asso-
ciated with substantial losses in labour output, particularly in lower-income
and industrial sectors.>*® Despite these straightforward returns on invest-
ment, clean air initiatives still receive only 1% of international development
funding,**? a discrepancy that underscores the need to prioritize environ-
mental health in national and global policy agendas. Recent modelling stud-
ies by Lelieveld et al? show that a 50% phase out of fossil fuel combustion
could eliminate up to 82% of premature deaths from air pollution, demon-
strating the economic and health imperative of swift and systemic
mitigation efforts.”

In addition, inaction on noise and soil and water pollution impose signifi-
cant economic burdens through rising rates of CVD and associated health-
care costs. In the United States, the total healthcare costs attributable to
man-made pollution—including contaminated air, water, and soil—range
between $240 billion and $883 billion annually, with a substantial portion
related to cardiovascular outcomes.®*? In Europe, exposure to PFAS,
known as ‘forever chemicals,” incurs estimated health costs of €52—84 bil-
lion annually.?3° Also, recent findings estimate that removing toxic chemi-
cals from plastics would yield substantial health and economic benefits by
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reducing the burden of CVD and other diseases.>*® In addition, lead expos-
ure is expected to be responsible for over 5.5 million cardiovascular deaths
annually and $6 trillion in economic losses, equivalent to 7% of global
GDP." Lastly, the EEA has found transport noise to result in 40000
new cases yearly of IHD in EU annually, a number that is expected to be
underestimated for CVDs; including other CVDs (stroke, HF, and CVD
mortality), a lower threshold than the current calculation threshold of
55dB, and nationwide noise calculations will increase these numbers
significantly.3'332

When compared to other environmental health threats, transport noise
ranks among the top three—just behind air pollution and temperature-re-
lated factors. Chronic exposure to noise from transport contributes to
66,000 premature deaths annually in Europe, while also leading to around
50,000 new cardiovascular disease cases and 22,000 cases of type 2 dia-
betes.>** These findings emphasize the urgent need for preventative action
to mitigate the cardiovascular and economic consequences of air, noise,
soil, and water pollution.

10. Gaps in knowledge

Despite significant advancements in understanding the impact of environ-
mental risk factors on CVD, substantial gaps remain in mechanistic insights
and epidemiological evidence. Addressing these gaps is crucial for develop-
ing targeted interventions and public health strategies. The long-term
effects of noise pollution are not fully understood, particularly the cumula-
tive effects of lifelong exposure. While acute noise exposure is known to
impair vascular function and increase stress hormone levels, the potential
for irreversible cardiovascular damage due to chronic exposure remains
unclear. Additionally, the interplay between noise and other environmental
stressors such as air pollution, artificial light at night, and climate factors is
not well studied, limiting our understanding of their combined effects.
Individual susceptibility, influenced by genetic predisposition, pre-existing
conditions, and socioeconomic factors, also requires further research to
identify vulnerable and susceptible populations.

The cardiovascular effects of air pollution at low doses remain uncertain.
While high levels of PM, s and UFPs are established risk factors, the impact
of exposure below current regulatory limits needs further investigation.
Air pollution rarely occurs in isolation, yet studies on co-exposure to dif-
ferent pollutants, such as PM, s with nitrogen oxides, remain scarce. The
dominant hypothesis attributes air pollution-induced CVD to oxidative
stress and inflammation, but other pathways, including epigenetic modifica-
tions and microbiome alterations, need exploration. Emerging pollutants,
such as microplastics and novel industrial chemicals, require urgent atten-
tion due to their increasing presence in air, water, and food, with unknown
cardiovascular consequences. We also want to have a better assessment of
the CVD benefits of interventions reducing air pollution levels.

Climate change and extreme weather events pose additional risks. The
physiological mechanisms linking heat waves to cardiovascular mortality
are not fully understood, particularly concerning the modulatory effect
of medications and hydration status. The cardiovascular effects of desert
dust storms and wildfire smoke, which have unique chemical properties,
are underexplored, especially in terms of the toxicity of air-assimilated con-
stituents from sources that are anthropogenic in origin. Artificial light at
night and circadian disruption have been linked to hypertension and meta-
bolic syndrome, but the biological pathways remain unclear. Research on
chemical pollutants, including endocrine disruptors and heavy metals, is
limited, particularly regarding chronic exposure at low levels.

Urban planning interventions, such as compact cities and green spaces,
hold promise but require evaluation for direct cardiovascular benefits.
Many mitigation strategies lack long-term assessments. Addressing these
knowledge gaps through interdisciplinary research is essential to mitigate
the cardiovascular burden of environmental risk factors.

Significant uncertainties surround the contribution of manufactured
chemicals to CVD incidence and mortality. A major shortcoming that limits
the assessment of the disease burden due to manufactured chemicals is
that most of the many thousands of manufactured chemicals in commerce

have never been tested for toxicity. Without even the most basic informa-
tion on the potential toxicity of these widely used materials, it is impossible
to estimate the magnitude of their harms to health. A fundamental revision
of chemical safety legislation to require toxicity testing of all chemicals in
commerce will be required to rectify this situation and improve health. It
has been proposed that chemicals that result in human exposure should
be subjected to the same degree of regulatory scrutiny as pharmaceutical
chemicals.*¥*

Despite growing concern over micro- and nanoplastics (MNPs), there is
a striking absence of epidemiological evidence linking them to CVD. While
preclinical studies show that MNPs can trigger oxidative stress, inflamma-
tion, and endothelial dysfunction—mechanisms central to CVD—no
population-based studies have yet assessed these effects in humans. This
lack of data is concerning given the widespread presence of MNPs in air,
water, food, and even human blood. The epidemiological silence on
MNPs represents a critical knowledge gap and highlights the urgent need
for well-designed studies to evaluate their potential role in cardiovascular
morbidity and mortality.

11. Major conclusions and resulting
political/societal needs for action

This comprehensive review of environmental risk factors underscores the
reality that environmental risk factors are major but insufficiently appre-
ciated risk factors for CVD. The findings we present here make it clear
that selected environmental exposures need to be added to the list of clin-
ical and behavioural risk factors that physicians routinely consider in evalu-
ating CVD risk in their patients. The evidence underscores the urgent need
for targeted public health interventions and policy actions. Individual inter-
ventions and behavioural change are not sufficient to address these risks.
These factors contribute to a substantial global disease burden, necessitat-
ing immediate and coordinated action at a societal level across disciplines
and policy sectors.

A key conclusion from this review is the necessity of stringent regulatory
measures to mitigate exposure to these environmental hazards. Stricter air
quality standards should be implemented to limit PM, s and nitrogen oxi-
des, by formulating roadmaps to implement the WHO guidelines.
Innovative methods are needed to measure UFPs and volatile organic com-
pounds at scale, particularly in urban areas where population exposure is
highest, and design guideline levels in line with improved data on their tox-
icity. The adoption of ultra-low emission zones, expansion of public trans-
portation, and electrification of vehicle fleets can significantly reduce
pollution-related cardiovascular risks. While electric vehicles will still pro-
duce PM from brakes, tires and road wear, and more research is needed to
determine the exposure and toxicity of these PM, eliminating the known
harm of vehicle tailpipe emissions would assuredly improve health. Noise
pollution remains an underappreciated yet critical contributor to CVD.
Stronger policies are required to regulate transportation noise, including
nighttime aircraft restrictions, improved urban planning to minimize resi-
dential exposure, and the implementation of noise barriers. Additionally,
environmental noise, and other environmental risk factors, should be inte-
grated into cardiovascular risk assessments to better inform medical and
public health recommendations. The increasing recognition of artificial light
at night as a cardiovascular risk factor necessitates policy changes to reduce
light pollution. This includes curfews on excessive outdoor lighting, modi-
fying streetlights to minimize blue light emissions, and restricting advertising
billboards that contribute to light exposure in urban settings.

Climate change is an escalating public health crisis that exacerbates en-
vironmental risks for CVD. Policies to combat climate-related health
threats should prioritize urban cooling strategies, such as increasing green
spaces, implementing reflective roofing, and strengthening early warning
systems for extreme heat events. Wildfire smoke, desert dust storms,
and extreme temperature events must be integrated into national health
policies with adaptive strategies to protect vulnerable and susceptible po-
pulations, including individuals with preexisting CVD.
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Public health campaigns should increase awareness of the cardiovascular
risks of environmental stressors, advocating for lifestyle modifications such
as physical activity, improved diet, and stress management to mitigate ex-
posure effects. Additionally, interdisciplinary research should be expanded
to close existing knowledge gaps, particularly concerning the long-term im-
pact of combined exposures and individual susceptibility. To reduce the
cardiovascular burden of environmental risk factors, governments must
adopt proactive and enforceable policies that prioritize public health, envir-
onmental sustainability, and equitable access to protective measures.
Integrating environmental determinants into CVD prevention strategies
is essential to reducing morbidity and mortality on a global scale.
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