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s u m m a r y

Background: Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), affects around 6–7 million 
people in Latin America and hundreds of thousands in the United States and Europe. A main complication of 
chronic Chagas disease is cardiomyopathy, possibly manifesting as arrhythmias, heart failure, or sudden 
cardiac death. Understanding the link between T. cruzi infection and cardiomyopathy is essential for early 
diagnosis and adequate treatment.
Methods: We sequenced small RNAs in serum samples from 228 Chagas patients recruited in Chile, Bolivia 
and Italy. After bioinformatic processing of sequencing data to quantify serum miRNA expression, robust 
logistic regression was applied to identify miRNAs differentially expressed in Chagas patients with ab
normalities in electrocardiography (ECG), bundle-branch block on ECG, and high Kuschnir scores. We also 
investigated the association between genotype-based miRNA expression and the risk of abnormal ECG 
findings.
Findings: As reported, the risk of abnormal ECG findings was higher in male patients and increased with 
age. Three miRNAs showed lower serum expression levels in patients with abnormal ECG: miRNA-101-3p, 
miRNA-576-3p and miRNA-629-5p (p < 0.0002), especially in patients with high Kuschnir scores. The ex
pression of miRNA-629-5p was negatively correlated with the CCL5 expression (p = 3.7×10-8), a chemokine 
frequently reported in Chagas disease. Gene enrichment analyses indicated involvement of cytokine sig
nalling in Chagas cardiomyopathy.
Interpretation: The findings demonstrate the potential of circulating miRNAs as diagnostic biomarkers for 
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Chagas cardiomyopathy. The associations found with disease severity and immune response may help to 
improve our knowledge of complications’ development in Chagas disease.
© 2025 The Authors. Published by Elsevier Ltd on behalf of The British Infection Association. This is an open 

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Around eight to ten million people worldwide are currently af
fected by Chagas disease, which is caused by infection with the 
protozoan Trypanosoma cruzi.1–3 Chagas disease is endemic in 21 
Latin American countries and is on the World Health Organization 
list of neglected tropical diseases.4 The disease is most common in 
South America, but due to migration and travel, its diagnosis and 
treatment of patients have become a worldwide challenge.5 Three 
phases are distinguished in the course of Chagas disease. In the first 
(acute) phase, patients usually have mild, non-specific symptoms, 
hindering swift diagnosis. In the second (indeterminate chronic) 
phase, which lasts from several years to a lifetime, patients are 
usually asymptomatic.3 If the indeterminate chronic phase persists 
for several decades, up to 40% of patients develop serious compli
cations, including Chagas-associated cardiomyopathy and mega
colon; this third phase is referred to as the determinate chronic 
phase.3,6 Chagas cardiomyopathy is the predominant chronic com
plication and represents the leading cause of death in patients with 
Chagas disease.4 While Chagas disease is largely diagnosed by ser
ological methods such as enzyme-linked immunosorbent assay 
(ELISA), Chagas cardiomyopathy is currently detected primarily by 
electrocardiography (ECG), echocardiography and radiological ex
aminations.4

Two drugs are currently authorised for the treatment of Chagas 
disease patients: nifurtimox and benznidazole.7 Both treatment re
gimens are lengthy and can lead to severe side effects such as 
neuropathy, especially in older patients, which contributes to low 
treatment compliance.8 New findings suggest that current treatment 
regimens can be optimised through intermittent dosing, dose re
ductions or combination therapies.9–11 At the same time, new drugs 
are being tested.8,10,12 In the acute phase of the disease, nifurtimox 
and benznidazole have a cure rate of up to 100%, and the antibody 
response to T. cruzi becomes negative relatively soon after treat
ment.7,11,13 However, only about 20% of acutely infected patients 
show symptoms; the majority remain undiagnosed and thus un
treated, and the disease progresses to the indeterminate chronic 
stage.4 In the chronic phase, the titre of anti-T. cruzi antibodies de
creases slowly, and confirmation of cure by conversion to ser
onegativity can take decades after effective treatment, with reported 
rates ranging from 5% after 5 to 10 years, to 45% after more than 20 
years.9,14 With increasing disease duration, the rate of successful 
treatment drops to less than 40%.15,16 Moreover, the older the pa
tients become, the higher the rate of therapy-related side effects.17,18

For these reasons, treatment is controversial in the chronic phase of 
Chagas disease. A randomised controlled trial showed that despite a 
reduction in parasite load, treatment with benznidazoles was unable 
to prevent cardiac progression of the disease in patients with pre- 
existing cardiac involvement.19 In spite of the low success rate of 
treatment, the risk of therapy-related side effects, and the possibility 
of symptomless disease progression, treatment is generally re
commended in the early stages of chronic disease. As there are 
currently no predictive biomarkers for disease progression, early 
intervention remains the only way to prevent severe complications 
such as Chagas cardiomyopathy.19

MicroRNAs (miRNA) appear to be involved in the patho
mechanism of Chagas cardiomyopathy.20–22 These short (approxi
mately 18–25 nucleotides long), non-coding RNAs play an important 
role in gene regulation by binding transcribed messenger RNAs 

(mRNA), inducing their degradation and preventing translation.23 In 
recent years, miRNAs circulating in serum have been increasingly 
described as a new diagnostic tool.24,25 One of the advantages of 
miRNAs as biomarkers is that they are remarkably stable compared 
with other candidates in body fluids.26 In cardiological diseases, 
miRNAs have already been shown to have diagnostic value. For ex
ample, a recent review concluded that several miRNAs are useful for 
the diagnosis of myocardial infarction, and a signature of six dif
ferent miRNAs has been proposed as a diagnostic marker of acute 
myocardial infarction with high sensitivity and specificity.27 Some 
studies have even found earlier changes in miRNA expression pro
files than in those for troponin, so the former have the potential to 
perform better than the standard diagnostic tool used.28

It has been shown that the expression of many miRNAs in car
diomyocytes differs between healthy donors and patients with 
Chagas cardiomyopathy.22 This is particularly true for miRNAs in
volved in signalling pathways that are important for cardiomyo
pathy, such as the IFNγ signalling pathway.22 In addition, a number 
of miRNAs circulating in serum (miR-1, miR-133a-2, miR-133b, miR- 
208a, miR-208b, miR-146a-5p, miR-155-5p, miR-19a-3p, miR-21-5p, 
miR-29b-3p, miR-30a-5p, miR-199b-5p) have been investigated in 
recent years for their suitability as prognostic biomarkers in small 
cohorts of Chagas disease patients.20,21,29–31 These studies focused 
on previously selected miRNA candidates already known from other 
heart diseases, such as dilatative cardiomyopathy, and investigated 
their suitability as markers for the progression of Chagas cardio
myopathy. 20,21,29–31

The goal of the present study was to predict Chagas cardiomyo
pathy based on the expression profiles of circulating miRNAs. We 
performed small-RNA sequencing of serum samples from 228 pa
tients with Chagas disease and investigated the association between 
miRNA expression and ECG status (normal/abnormal), bundle- 
branch block on ECG and Kuschnir score to assess the degree of heart 
dysfunction. The identified miRNAs have the potential to become 
diagnostic biomarkers for Chagas cardiomyopathy and to improve 
our understanding of the link between T. cruzi infection and Chagas 
cardiomyopathy.

Materials and methods

The study protocol conformed to the ethical guidelines of the 
1975 Declaration of Helsinki and was approved by the ethics com
mittees of the Faculty of Medicine, Universidad de Chile, Santiago, 
Chile; Universidad Mayor de San Simón, Cochabamba, Bolivia; the 
Lazzaro Spallanzani National Institute for Infectious Diseases, Rome, 
Italy; and Universidad de Tarapacá and University College London, as 
described in ref.32 All study participants provided written informed 
consent prior to enrolment. Once enrolled, patients were inter
viewed by local study coordinators, who also collected blood sam
ples and clinical information using standardised case report forms 
that included clinical involvement (indeterminate, cardiac, gastro
intestinal, mixed), ECG findings, the cardiothoracic index on chest 
radiography, and treatment information (e.g. type of treatment, 
discontinuation of treatment and adverse events).

Investigated patients and data

The investigated Chagas disease patients were recruited in en
demic and non-endemic countries: Chile (n = 99), Bolivia (n = 74) 
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and Italy (n = 55). They originated from Chile (n = 99), Bolivia (n = 
122) and other countries: Brazil (n = 2), Honduras (n = 2), Venezuela 
(n = 2) and El Salvador (n = 1).

RNA was extracted from serum samples using Qiagen’s miRNeasy 
kit. Small-RNA sequencing was performed using the NEBNext Small 
RNA kit (cat. no. E7300, New England Biolabs, Ipswich, MA, USA) to 
produce RNA sequencing libraries, which were then sequenced on a 
HiSeq 2500 platform (Illumina, San Diego, CA, USA) with an average 
depth of 18M reads per sample. The RNA sequencing protocol used 
has been previously described in detail.33 Briefly, our protocol cov
ered RNA molecules from 17 to 47 nucleotides, allowing us to cap
ture fragments of both miRNA and messenger RNA (mRNA). First, 
reads from the HiSeq 2500 platform were adapter-trimmed (Adap
terRemoval v2.1.7),34 then adapter-trimmed reads were mapped to 
the human genome (hg38) by a Bowtie2 v2.2.9 aligner.35 HTSeq was 
used to count reads mapped to miRNA regions and mRNA exons in 
GENCODE v26 annotations.36,37

Genomic DNA was extracted from peripheral blood or saliva 
using standard commercial kits and following standard laboratory 
procedures. Intraplate and interplate replicates and blinded dupli
cates (5) were included for quality control. Study participants were 
genotyped with Illumina’s OmniExpress or Global Screening arrays. 
Both arrays included more than 700,000 single-nucleotide poly
morphisms (SNPs). Missing genotypes were imputed using the 
TOPMed imputation server.38

We also used data from the Framingham Heart Study (FHS) to 
investigate whether the miRNAs identified were specific to Chagas 
cardiomyopathy or shared with other heart diseases. The miRNAs 
were measured in whole blood samples from FHS participants as a 
part of the Systems Approach to Biomarker Research in 
Cardiovascular Disease initiative (dbGaP accession number: 
phs000363.v19.p13). The dataset analysed included 491 participants 
with both miRNA expression and clinical data.39–41 The FHS study 
design and details of the miRNA expression profiling and quality 
control have been described previously.42 For the present study, we 
focused on information on right and left bundle-branch blocks ob
tained from ECG data as part of the Sleep Heart Health Study con
ducted between 1998 and 2003 within the FHS (dbGaP accession 
code: pht000745.v3.p13).43 The clinical data also included in
formation on the study participants’ gender and age at first ex
amination (dbGaP accession number: pht003099.v7.p13). The data 
used in this study can be accessed through the National Center for 
Biotechnology Information Database of Genotypes and Phenotypes 
(dbGaP accession number: phs000007.v32.p13). All protocols were 
approved by Boston University Medical Center Institutional Review 
Board. All participants had provided written informed consent when 
joining the FHS.

Statistical analysis

Read counts were log2 transformed, and miRNAs with low ex
pression variability (median absolute deviation [MAD] of read 
counts equal to 0) were excluded from further statistical analyses. 
Quantile normalisation was performed first by country and ECG 
status (normal/abnormal), then by country, and finally for the 
complete dataset. Principal component analysis (PCA) was per
formed for an unsupervised examination of global expression and 
identification of potential samples with outlying expression profiles. 
Graphs were plotted using the R package “ggplot2”.44,45

The primary outcome assessed in this study was an abnormal 
ECG, defined as any ECG finding deviating from a normal sinus 
rhythm with a normal axis, e.g. sinus bradycardia < 50 beats per 
minute or right bundle-branch block (RBBB).46 Secondary outcomes 
were bundle-branch block on ECG and the Kuschnir score based on 
clinical symptoms and ECG findings, with higher scores generally 
requiring more intensive monitoring and treatment.68 Univariate 

and multiple robust logistic regression models were fitted to identify 
miRNAs associated with abnormal ECG findings, adjusting for age, 
country and sex47:  

ECG status (normal/abnormal) ∼ log2 miRNA expression + age + 
country + sex                                                                             

Left bundle-branch block (LBBB) is less common than RBBB in 
Chagas cardiomyopathy. To examine whether the identified miRNAs 
are specific to Chagas cardiomyopathy or shared with other cardio
pathies, we also fitted robust logistic regression models adjusted for 
age and gender to investigate the association between miRNA ex
pression and RBBB or LBBB in FHS participants:  

RBBB ∼ log2 miRNA expression + age + gender                             

LBBB ∼ log2 miRNA expression + age + gender                              

Robust logistic regression models were fitted using the R package 
“robustbase”, setting the tuning constant c in Huber’s psi function 
equal to 1.2.

Potential target genes of miRNAs associated with abnormal ECG 
findings were identified using the miRWalk database,48 and linear 
regression models were fitted to our own miRNA and mRNA se
quencing data to investigate the relationship between miRNA and 
mRNA expression:  

log2 miRNA expression ∼ log2 mRNA expression                            

The mRNAs that showed a negative correlation p-value < 0.05 
after Bonferroni correction were declared miRNA targets. We then 
performed pathway analysis for miRNA targets using the ‘enrichr’ 
platform and the ‘PANTHER Pathways’ dataset.49–52

To assess the direction of the identified associations - whether 
miRNA expression levels are the cause or rather the effect of Chagas 
cardiomyopathy, reflected by abnormal ECG findings - we also (1) 
identified SNPs associated with miRNA serum expression in a da
taset that included both genome-wide genotype and serum miRNA 
expression data from 110 participants in two Chilean studies on 
chronic obstructive pulmonary disease (COPD, n = 22) and Chagas 
disease (n = 88), and (2) examined the relationship between geno
type-based miRNA expression and abnormal ECG findings in an in
dependent set of 194 Chagas disease patients with genotype and 
ECG information.

The list of SNPs potentially associated with the expression of 
miRNAs (cis-miRNA-eQTLs) differentially expressed in Chagas pa
tients with normal and abnormal ECG findings was retrieved from 
the ‘miRNA-eQTL’ database: http://ibi.hzau.edu.cn/ncRNA-eQTL/ 
miRNA/.53 We then fitted robust linear regression models adjusting 
for age, sex and the first 10 genetic principal components:  

log2 expression ∼ SNP + age + sex + 10PCs                                   

predicted log2 expression = Σi=1 to k βi Ai                                       

For each SNP, we compared four penetrance models – Additive 
(major allele count), Three genotypes (genotype as a categorical 
variable), Dominant (at least one affect allele vs. the other genotype), 
Recessive (two affect alleles vs. the other genotypes) – and selected 
the best prediction model using a robust version of Akaike’s in
formation criterion (RAIC). Robust linear regression models were 
fitted using the function “rlm” in the R package “MASS”.54 The cor
responding p-values were obtained using the “rob.pvals” function of 
the R package “repmod”.55 The RAIC for each model was calculated 
using the “AIC” function in the R package “AICcmodavg”.56

After identification of cis-miRNA-eQTL in the ‘miRNA-eQTL’ da
tabase, validation of the association between the cis-miRNA-eQTL 
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and miRNA serum expression, and selection of the penetrance 
model, serum miRNA expression was predicted based on individual 
genotypes using the formula:  

predicted log2 expression = Σi=1 to k βi Ai                                       

where k is the number of cis-miRNA-eQTLs, βi are the effect esti
mates from the linear robust regression model, and Ai are the in
dividual genotypes coded according to the selected penetrance 
model.

Finally, we fitted robust logistic regression models to assess the 
association between genotype-based serum miRNA expression and 
abnormal ECG findings, adjusting for age, sex and the first 10 genetic 
principal components:  

ECG status ∼ Predicted log2 serum expression + age + gender + 10PCs                                                                                                  

Results

Table 1 shows the main characteristics of the study participants. 
The median age of the 228 patients with Chagas disease was 47.5 
years; 154 (68%) were female and 122 (54%) were from Bolivia. The 
proportion of patients with abnormal ECG findings was 77% in men 
versus 53% in women (p = 0.0006), and this increased with age (42% 
in patients younger than 38 years versus 75% in patients older than 
58 years, p = 0.005). The proportion of study participants with ab
normal ECG findings was higher among those from Bolivia (73%) 
than in those from Chile (45%) (p = 0.0002).

Small-RNA sequencing of serum samples identified 2609 miRNAs 
in total. Of these, 353 had a MAD greater than 0 and were retained 
for the subsequent data analyses. Fig. 1A shows a PCA plot re
presenting the global expression profiles of the serum samples 
analysed. The first principal component explained 12% of the var
iance in miRNA expression, the second principal component a fur
ther 11.5%. After excluding potential outliers (the 5% of the samples 
with the highest statistical depth based on the first two principal 
components), 212 samples were included. Three separate clusters 
were observed: samples collected in Chile at the top, Bolivian sam
ples at the bottom left, and Italian samples at the bottom right of the 
plot. This indicated specific global expression profiles per country of 
recruitment. However, samples of patients with normal and ab
normal ECG findings within each country were well mixed in the 
plot. Based on these exploratory results, we decided to include 
country of recruitment in the multiple logistic regression analyses as 
a potential confounder for the association between miRNA expres
sion and the investigated cardiac outcomes.

The volcano plot in Fig. 1B shows the results of the univariate 
robust logistic regression for the 353 miRNAs with a MAD greater 
than 0. The association between expression and an abnormal ECG 
was particularly strong for three miRNAs: the association p-value 

exceeded the multiplicity threshold (0.05/353=1.4×10-4) for miR- 
629-5p, and miR-101-3p and miR-576-3p also showed strong asso
ciations (p < 6×10-4). Interestingly, the average expression levels of 
these three miRNAs were lower in serum samples from Chagas 
disease patients with abnormal ECG findings.

Fig. 1C shows more detailed information on the relationship 
between the expression of the three identified miRNAs and the 
cardiac outcomes analysed. In samples from patients with normal 
versus abnormal ECG results, the median log2 expression of miR- 
629-5p decreased from 8.3 to 7.8, that of miR-576-3p from 5.8 to 5.1, 
and that of miR-101-3p from 11.2 to 10.6 (Table 2). Common ECG 
alterations in Chagas cardiomyopathy are block patterns, particularly 
left anterior hemiblock and complete RBBB.4 Bundle-branch block 
on ECG was associated with reductions in median log2 expression 
from 8.8 to 8.2 for miR-629-5p and from 5.8 to 5.7 for miR-576-3p. In 
contrast, bundle-branch block on ECG was associated with an in
crease in median log2 expression from 11.2 to 11.8 for miR-101-3p. 
We also examined the differences in miRNA expression according to 
Kuschnir score as a marker of cardiomyopathy severity, and found 
monotonic decreases in serum expression with increasing Kuschnir 
score for the three identified miRNAs (Fig. 1C; median log2 expres
sion for miR-101-3p: 10.5 [Kuschnir 0], 10.3 [Kuschnir 1], 9.8 
[Kuschnir > 2]; median log2 expression for miR-576-3p: 5.1 
[Kuschnir 0], 4.8 [Kuschnir 1], 4.6 [Kuschnir > 2]; median log2 ex
pression for miR-629-5p: 7.8 [Kuschnir 0], 7.6 [Kuschnir 1], 7.5 
[Kuschnir > 2]). Taken together, these results indicate a negative 
correlation between the expression of the three miRNAs identified 
and the severity of Chagas disease. The differences in serum miRNA 
expression were generally higher in male patients and in patients 
older than 48 years (Table 2, Table S2).

We then tested whether the miRNAs identified are specific to 
Chagas cardiomyopathy or shared with other cardiac diseases. For 
this purpose, we analysed data from the FHS. We fitted robust lo
gistic regression models for RBBB and LBBB as outcomes and the 
expression of miR-576-3p and miR-629-5p in whole blood as pre
dictors (miR-101-3p expression was not available in this dataset). 
We found no association (Table S1), suggesting that the miRNAs 
identified are probably specific to Chagas cardiomyopathy.

We found 50 (SNPs) associated with miR-629-5p expression, 26 
SNPs associated with miR-101-3p and no SNPs associated with miR- 
576-3p in the ‘miRNA-eQTL‘ database (Table S3). Among the list of 76 
potential cis-miRNA-eQTLs in this database, only rs11630316 was 
associated with serum expression of miR-629-5p (Table S4). As 
shown in Fig. 2A, miR-629-5p expression decreased with the 
number of T alleles for this SNP (per T allele change in log2 ex
pression −0.3751, p = 0.01). In agreement with the results based on 
direct quantification of serum miRNA expression based on small- 
RNA sequencing, miR-629-5p expression based on the rs11630316 
SNP was also lower in patients with abnormal ECG findings (Fig. 2B). 
The reduction in rs11630316-based expression of miR-629-5p did 
not reach the statistical significance level of 0.05 (OR for abnormal 
ECG results per log2 expression unit = 0.71, 95% CI = 0.30–1.72, p = 

Table 1 
Main characteristics of the investigated patients with Chagas disease. 

Variable Level Chagas patients n Patients with abnormal ECG n % OR 95% CI p

Gender female 154 81 53% Ref.
male 74 57 77% 3.02 1.60 - 5.69 0.0006

Age under 38 57 24 42% Ref.
(years) 38−47 57 36 63% 2.36 1.11- 5.00 0.005

48−57 57 35 61% 2.19 1.03 - 4.63
over 58 57 43 75% 4.22 1.89 - 9.45

Country Chile 99 45 45% Ref.
Bolivia 122 89 73% 3.24 1.84 - 5.69 0.0002
other 7 4 57% 1.60 0.34 - 7.53

Other countries: Brazil (n = 2), Honduras (n = 2), Venezuela (n = 2) and El Salvador (n = 1), OR: odds ratio for abnormal ECG findings, CI: confidence interval, p: probability value, 
Ref.: Reference category
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0.45), but suggests an unconfounded relationship between serum 
miR-629-5p expression and Chagas cardiomyopathy.

We then investigated which genes and pathways were affected 
by miR-629-5p, miR-101-3p and miR-576-3p. Small-RNA sequencing 
was performed with a cutoff size on the pippin preparation covering 
RNA molecules up to 47 nucleotides, which allowed the capture of 
mRNA fragments. To identify miRNA targets, we selected mRNAs 
with expression levels negatively correlated with the expression of 
the three miRNAs identified. In total, 59 mRNAs showed negative 
correlations with a corresponding p-value < 0.05. Fig. 2C shows the 
potential target genes for each miRNA. No mRNA showed a negative 
expression correlation with all three miRNAs simultaneously. Eight 
genes were potentially targeted by two miRNAs simultaneously: 
NPFFR1 by miR-101-3p and miR-576-3p; SH3BGRL3 and SHROOM4 by 
miR-629-5p and miR-101-3p; and ANKRD13A, ARHGEF39, DNAH2, 
MEGF8 and SMC1A by miR-629-5p and miR-576-3p. A pathway 
analysis using the ‘enrichr’ platform and the ‘PANTHER Pathways’ 
dataset revealed that miR-629-3p affected the “Inflammation 
mediated by chemokine and cytokine signalling” pathway.

Among the genes targeted by miR-629-5p was CCL5, a gene en
coding for the chemokine ligand previously described in the context 
of Chagas cardiomyopathy.57,58 We found a negative correlation 
between miR-629-5p and CCL5 (R = −0.37, p = 3.7×10-8; Fig. 2D). 
Thus, the decreased expression of miR-629-5p observed in Chagas 
disease patients with abnormal ECG findings corresponds to an in
creased expression of CCL5 indicating inflammatory processes.

Discussion

In the present cross-sectional study, serum samples from over 
200 patients with Chagas disease recruited in Chile, Bolivia and Italy 
(54% Bolivian and 43% Chilean) were subjected to small-RNA se
quencing. We investigated for the first time the relationship be
tween abnormal ECG findings as a surrogate marker of Chagas 
disease progression to cardiomyopathy and unselected miRNAs with 
detectable expression variability. We found three miRNAs – miR- 
629-5p, miR-101-3p and miR-576-3p – with reduced expression le
vels in Chagas disease patients with abnormal ECG, whose expres
sion decreased gradually with increasing Kuschnir score, i.e. with 
increasing disease severity. After examining these miRNAs in the 
FHS, we postulate that they are specific diagnostic markers for 
Chagas cardiomyopathy.

Chagas cardiomyopathy is a terminal complication of T. cruzi 
infection with a poor prognosis.3 In recent years, little progress has 
been made in understanding the development and progression of 
Chagas cardiomyopathy or protective factors, and new avenues of 
research are urgently needed. Only then will meaningful stratifica
tion of the patients on the one hand and targeted investigation of 
new therapeutic options on the other be possible. A limitation of this 
study was that practically only Bolivian and Chilean patients were 
investigated. Validation of the present results in independent sam
ples from other patient populations will permit assessment of the 
transferability of our findings. Small-RNA sequencing allowed 

Fig. 1. Principal component analysis plot showing global serum miRNA expression profiles (A), volcano plot for the association between miRNA expression and abnormal ECG 
findings (B), and box plots of serum miRNA expression by ECG status (normal/abnormal), bundle-branch block on ECG and Kuschnir score (C).

M. Mueller, A. Blandino, D. Scherer et al. Journal of Infection 91 (2025) 106613

5



quantification of the expression of types of small RNAs in serum 
other than miRNAs (e.g. hairpins and piwi-interacting RNAs), but the 
sample size was too small to study their association with abnormal 
ECG findings.

To date, few studies have investigated circulating miRNAs as 
biomarkers for Chagas cardiomyopathy. They basically explored the 
hypothesis that biomarkers identified for other cardiac diseases 
might be relevant to Chagas cardiomyopathy, e.g. miR-1, implicated 
in heart failure and arrhythmias; miR-133, involved in cardiac hy
pertrophy and fibrosis; and miR-21, miR-208 and miR-499, each of 
which contributes to hypertrophy, ischemia and fibrosis.20,21,29–31

The three miRNAs identified in this study have not been previously 
described in the context of Chagas cardiomyopathy, but miR-629-5p 
has been investigated as a possible diagnostic marker for dilated 
cardiomyopathy,59 miR-101-3p in the context of endothelial dys
function and calcific aortic valve disease,60,61 and miR-576-3p has 
been shown to be dysregulated in patient with chronic heart 

failure.62 In addition, previous studies found an association between 
CCL5 expression and the risk of cardiac complications developing in 
Chagas disease patients, but CCL5 expression showed no association 
with general cardiovascular disease.63,64

Interestingly, reduced miR-629-5p expression in serum samples 
from Chagas disease patients with abnormal ECG findings, bundle- 
branch block on ECG and elevated Kuschnir score appears to be an 
effect rather than a cause of Chagas cardiomyopathy, although our 
genotype-based miRNA expression results are far from conclusive. 
To date, clinical diagnosis and estimation of disease severity using 
rating systems such as the Kuschnir score rely on cumbersome tests 
such as ECG and X-ray.65,66 As we have shown, the serum expression 
of the three identified miRNAs correlates strongly with disease se
verity, allowing us to propose a new diagnostic tool for Chagas 
cardiomyopathy which our data show to be more accurate than any 
miRNA previously studied for this purpose. This would allow future 
diagnosis of Chagas disease complications and monitoring of disease 

Table 2 
Expression of mi-R-629-5p, miR-576-3p and miR-101-3p stratified by ECG status; unfiltered and filtered for gender, age and country of recruitment. 

Median log2 expr. 1st – 3rd quartile log2 expr. Univariate logistic regression Multiple logistic regression

Population ECG Patients OR 95%-CI p OR 95%-CI p

miR-629-5p
All normal 81 8.3 7.7–9.3 Ref. 0.00008 Ref. 0.00003

abnormal 131 7.8 6.8–8.5 0.584 0.446 - 0.764 0.620 0.459–0.835
Women normal 66 8.3 7.7–9.3 Ref. 0.005 Ref. 0.007

abnormal 77 8.0 7.0–8.7 0.629 0.456 - 0.867 0.645 0.453–0.920
Men normal 15 8.5 7.5–9.4 Ref. 0.016 Ref. 0.080

abnormal 54 7.6 6.6–8.3 0.502 0.286 - 0.880 0.566 0.320–1.002
Less than 48 normal 49 8.5 7.8–9.4 Ref. 0.003 Ref. 0.017
years abnormal 57 7.8 6.9–8.4 0.574 0.398 - 0.827 0.585 0.396–0.863
48 years or normal 32 8.2 7.7–9.2 Ref. 0.013 Ref. 0.012
more abnormal 74 7.9 6.8–8.5 0.591 0.391 - 0.893 0.731 0.461–1.160
Bolivians in normal 27 8.0 7.6–8.7 Ref. 0.407 Ref. 0.652
Italy abnormal 21 8.4 7.7–8.8 1.320 0.685 - 2.545 1.459 0.724–2.939
Bolivians in normal 5 6.1 6.0–7.3 Ref. 0.836 Ref. 0.320
Bolivia abnormal 65 7.0 6.4–8.0 1.109 0.416 - 2.961 0.358 0.086–1.500
Chile normal 49 8.6 8.2–9.4 Ref. 0.040 Ref. 0.067

abnormal 45 8.3 7.7–9.0 0.643 0.422 - 0.980 0.599 0.384–0.932
miR-576-3p
All normal 81 5.8 5.1–6.3 Ref. 0.0002 Ref. 0.0002

abnormal 131 5.1 4.3–5.8 0.593 0.449 - 0.784 0.690 0.501–0.951
Women normal 66 5.8 5.1–6.2 Ref. 0.007 Ref. 0.026

abnormal 77 5.2 4.4–5.8 0.641 0.463 - 0.888 0.714 0.497–1.025
Men normal 15 5.7 5.0–6.5 Ref. 0.032 Ref. 0.157

abnormal 54 4.8 4.2–5.7 0.506 0.272 - 0.942 0.578 0.272–1.229
Less than 48 normal 49 5.9 5.1–6.5 Ref. 0.049 Ref. 0.124
Years abnormal 57 5.3 4.6–6.1 0.694 0.482 - 0.999 0.749 0.497–1.127
48 years or normal 32 5.6 5.0–6.1 Ref. 0.006 Ref. 0.009
more abnormal 74 4.9 4.1–5.6 0.542 0.349 - 0.842 0.625 0.372–1.050
Bolivians in normal 27 5.2 4.7–5.7 Ref. 0.523 Ref. 0.840
Italy abnormal 21 5.3 5.0–6.0 1.257 0.623 – 2.535 1.288 0.621–2.669
Bolivians in normal 5 4.3 4.3–4.5 Ref. 0.787 Ref. 0.596
Bolivia abnormal 65 4.4 3.8–5.1 0.869 0.313 – 2.409 0.830 0.281–2.449
Chile and normal 49 6.1 5.5–6.6 Ref. 0.244 Ref. 0.253
others abnormal 45 5.7 5.3–6.3 0.783 0.518 - 1.182 0.730 0.470–1.136
miR-101-3p
All normal 81 11.2 10.5–12.2 Ref. 0.0002 Ref. 0.0002

abnormal 131 10.6 9.8–11.4 0.612 0.472 - 0.794 0.721 0.519–1.003
Women normal 66 11.2 10.5–12.3 Ref. 0.008 Ref. 0.033

abnormal 77 10.7 10.1–11.6 0.663 0.488 - 0.900 0.727 0.492–1.072
Men normal 15 11.2 10.3–11.7 Ref. 0.123 Ref. 0.168

abnormal 54 10.2 9.6–11.0 0.659 0.388 - 1.12 0.703 0.376 –1.313
Less than 48 normal 49 11.6 10.6–12.3 Ref. 0.015 Ref. 0.098
Years abnormal 57 10.7 10.0–11.9 0.657 0.469 - 0.921 0.689 0.446–1.064
48 years or normal 32 11.0 10.2–11.6 Ref. 0.016 Ref. 0.012
more abnormal 74 10.5 9.8–11.2 0.600 0.396 - 0.909 0.756 0.450–1.270
Bolivians in normal 27 10.5 10.1–11.1 Ref. 0.644 Ref. 0.883
Italy abnormal 21 10.5 10.2–11.2 1.195 0.562 – 2.538 1.205 0.563–2.580
Bolivians in normal 5 10.0 9.5–10.5 Ref. 0.326 Ref. 0.213
Bolivia abnormal 65 9.8 9.3–10.5 0.640 0.262 – 1.561 0.416 0.154–1.122
Chile and normal 49 11.8 11.0–12.6 Ref. 0.406 Ref. 0.449
others abnormal 45 11.4 11.0–12.3 0.826 0.526 - 1.297 0.843 0.533–1.334
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progression from serum samples. Further studies are needed to 
define, for example, cut-off values as well as the clinical feasibility 
and utility of the procedure described here.

In addition to circulating miRNAs, differential miRNA and mRNA 
expression has also been investigated in myocardial biopsies from 
Chagas cardiomyopathy patients and controls, and differences in 
miR-146 and miR-155 expression between the two groups have been 
described.22 We did not find an association between serum ex
pression of the two miRNAs and abnormal ECG results. In the 
aforementioned study, however, decreased expression of miR-101- 
3p was observed. Thus, miRNA-101-3p shows decreased expression 
in both serum and myocardium in the context of Chagas cardio
myopathy, and the association of the expression of miRNA-101-3p in 
serum with disease stage and immune response in Chagas cardio
myopathy underscores its potential as a circulating biomarker. In
terestingly, altered expression of CCL5 in particular and increased 
activity of inflammatory signalling pathways in general has also 
been described in myocardial tissue.22 These independent observa
tions add plausibility to our findings. As CCL5 has been increasingly 
described as a prognostic marker for Chagas cardiomyopathy in 

other recent studies,57,58,63 we hypothesise that this chemokine 
plays a crucial role in disease progression. It is secreted by activated 
T cells, monocytes, epithelial cells, fibroblasts and platelets, and is 
considered a chemokine that leads to the maintenance of in
flammation.67

Overall, this study contributes to the understanding of Chagas 
cardiomyopathy. Three miRNAs were identified in patient sera that 
are associated with disease progression and may be useful as diag
nostic tools. Analysis of their target genes revealed that these 
miRNAs are markers for inflammatory signalling pathways. This 
suggests that inflammation is the key mechanism of disease pro
gression and that the degree of inflammation can be quantified in 
patients’ serum. This immediately opens up new possibilities in di
agnosis, and, in the long term, the results may contribute to the 
development of new therapeutic concepts.
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(normal/abnormal; B), Venn diagram showing the target genes of miR-629-5p, miR-101-3p and miR-576-3p (C), and scatter plot of the relationship between serum log2 ex
pression of miR-629-5p and CCL5 (D).
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