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Cellular interactions are of fundamental importance, orchestrating
organismal development, tissue homeostasis and immunity. Recently,
powerful methods that use single-cell genomic technologies to dissect
physically interacting cells have been developed. However, these
approaches are characterized by low cellular throughput, long processing
times and high costs and are typically restricted to predefined cell types.
Here we introduce Interact-omics, a cytometry-based framework to
accurately map cellular landscapes and cellular interactions across all

immune cell types at ultra-high resolution and scale. We demonstrate the
utility of our approach to study kinetics, mode of action and personalized
response prediction ofimmunotherapies, and organism-wide shiftsin
cellular composition and cellular interaction dynamics following infection
invivo. Our scalable framework can be applied a posteriori to existing
cytometry datasets or incorporated into newly designed cytometry-based
studies to map cellular interactions with abroad range of applications from

fundamental biology to applied biomedicine.

Many fundamental processes in life are shaped by physical interactions
between cells, including the orchestration of organismal development,
tissue homeostasis and immunity'*. Notably, the immune systemis one
ofthe most dynamic biological systemsin mammals, operating through
anexceptionally complex network of intercellular signaling mediators
and cell-cellinteractions. Duringimmune responses, a highly ordered
sequence of antigen-dependent and antigen-independent interactions
among variousimmune cells collectively orchestrates acomprehensive
response of the immune system?®. In this process, transient cellular

interactions act as central hubs for information processing and deci-
sion making, collectively driving the outcome of immune responses
indiverse physiological and pathological states.

While single-cell genomic technologies have substantially
advanced our understanding of cellular ecosystems in health and
disease, the spatial context of cells in tissues is lost. To overcome this
limitation, spatial transcriptomic and high-plex imaging technologies
have been developed®™. Although these approaches are powerful in
mapping global structures in static tissues, studying transient and
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dynamically changing cellular interactions amongsingle cells remains
challenging. In particular, transient cellular interactions among
immune cells in semisolid or liquid organs such as the blood, or in
body fluids suchaslymph, urine, cerebrospinal, synovial fluid or saliva,
cannotbe studied using spatial technologies. Inrecent years, special-
ized technologies to study cellular interactions through single-cell
transcriptomic profiling of physically interacting cells (PICs) have
been developed® . However, these technologies are limited by
their cellular throughput and costs. In parallel, elegant approaches
using murine reporter mouse lines have been developed that track
past interactions on transient cellular engagement® %, While these
technologies are powerful, they are dependent on complex mouse
models and are not applicable to study human samples. Therefore, to
systematically unravel the dynamic cellular crosstalk of cells across
entire organs, organisms and patient cohorts, approaches capable
of quantitatively mapping millions of cellular interactions among all
celltypes of agivenbiological systemat low cost and rapid turnaround
times—without the need of complex model systems—are required.
Here we introduce a cytometry-based framework to accurately
map both cellular landscapes and physical cellular interactions across
all immune cell types at low costs, high speed, high precision and
ultra-high scale. We demonstrate the utility of our approach to deci-
pher the kinetics and mode of action of immunotherapies, to derive
insights on mechanisms governing therapy response and to disentan-
gle complex, organism-wideimmuneinteraction networks in vivo. Our
approach canbereadilyimplemented into any cytometry-based assay
with abroad spectrum of applications, ranging from basic biology to
advanced immunology, cancer research and applied biomedicine.

Results

Cytometry-based quantification of cellular interactions

To develop a universal and flexible cytometry-based framework for
mapping physical interactions among immune cells, we first focused
on identifying strategies to accurately discriminate between single
cells and PICs in cytometry data. For this purpose, we induced a
defined set of cellular interactions among human peripheral blood
mononuclear cells (PBMCs) using abispecific antibody-based reagent
(CytoStim) that binds both T cell receptors (TCRs) and major histo-
compatibility complex molecules, thereby physically engaging T cells
withantigen-presenting cells (Fig. 1aand Methods). Subsequently, we
used animaging flow cytometer prototype® to generate ground-truth
data on cellular interactions and concurrently measured cytometry
parameters. These comprised five surface markers broadly indicative
for distinctimmune cell populations, along with arange of image-based
and cytometric parameters, such as light scatter profiles (see Sup-
plementary Table 1for all parameters). Following data acquisition,
we manually classified 1,000 randomly selected cellular events based
onimaginginformationacross four replicates into singlets, doublets,
triplets or higher-plex cell-cell interactions. To extract cytometric
features capable of discriminating between single cells and PICs, we
performed a feature importance analysis considering the manually
classifiedimages as ground-truth data (Fig. 1a,b). This analysis revealed
theratiobetween signalintensities of forward scatter area and height
(termed the forward scatter channel (FSC) ratio), alongside other scat-
ter properties, as highly indicative for singlet to multiplet discrimina-
tion, inline witha common gating-based strategy to exclude multiplets
from cytometric analyses (Fig. 1b,c). Indeed, by relying solely on the
FSCratio to distinguish singlets from multiplets, an F1score between
0.50 and 0.84 was achieved, depending on the thresholding method
used (Extended Data Fig. 1a and Methods). Notably, we identified
Otsu*-based thresholding of the FSC ratio as a robust, reproducible and
data-drivenapproach for scatter-based multipletidentification, while
alternative thresholding methods produced similar results (Fig. 1d and
Extended Data Fig. 1a). However, a portion of cells remained misclassi-
fied when using scattering parameters only, particularly affecting cell

types of the myeloid lineage with distinct scatter properties (Fig. 1d
and Extended Data Fig. 1b).

To furtherimprove classification and identification of interacting
cells, we explored clustering-based approaches for simultaneous multi-
pletdiscrimination and annotation. First, we used Louvain® clustering
using the features identified in the feature importance analysis for the
singlet to multiplet discrimination, including image-based parameters
(Fig. 1c). This revealed individual clusters single-positive for distinct
lineage-defining markers, largely comprising ground-truth single
cells of distinct PBMC cell types with low FSC ratio, as well as sepa-
rate clusters characterized by the coexpression of mutually exclusive
lineage-defining markers and a high FSCratio, largely comprising PICs
(Extended DataFig.1c-g). Classifying clusters based on FSCratio into
singlets versus multiplets considerably outperformed the approach
using scatter properties only (Fig. 1e), and enabled annotation of inter-
acting cell partners based on the coexpression of mutually exclusive
lineage-defining markers.

To explore whether such an approach could also be applied to
conventional cytometry without image-based information, we per-
formed Louvain clustering on cell type markers only, followed by FSC
ratio-based classification into singlet and multiplet clusters (Extended
DataFig.1h-k). While thisapproach outperformed FSC ratio only clas-
sification, it remained inferior to using allimportant features (Fig. 1e).
In contrast, incorporating both cell type markers and scatter proper-
ties—including the FSC ratio—into the clustering, followed by FSC
ratio-based classification into singlet and multiplet clusters, yielded
results comparable to those achieved when all important features
includingimage-based features were used (Fig.le-h and Extended Data
Fig. 11-n). This result was reproducible across various cluster resolu-
tions (Fig. 1i). Acomparison between different clustering methods sug-
gested Louvain clustering, alongside others, asan accurate approach
(Extended DataFig.10).

Based onthese findings, we established the flow cytometry-based
Interact-omics framework, which also comprises the computational
workflow for the quantification of cellular compositions and physical
interactions of cells (PICtR, section ‘PIC toolkit for R’ in Methods).
Briefly, recorded flow cytometry datasets are preprocessed using
standard pipelines without multiplet exclusion and are nonuniformly
sampled to preserve rare cell types and cellular multiplets (sketch-
ing®?), followed by clustering based on surface marker expression,
scatter properties and FSC ratio (Methods). PIC-containing clusters,
characterized by predominantly containing events with a high FSC
ratio and combinations of mutually exclusive cell-type-specific mark-
ers, are selected and used for further downstream analysis, in-depth
annotation and quantification. Notably, while Otsu thresholding of
the FSC ratio and Louvain clustering are provided as default settings,
alternative approaches can be selected (see Extended Data Fig. 1a,0
for benchmarking).

Throughout the paper, we present cellular interaction frequencies
using any of the following three normalization approaches. First, we
report the relative frequencies of cellular interactions among all live,
high-quality events, which indicates how prevalent certain interac-
tions are in relation to all cells and other interactions. Second, we
present the relative frequencies of a given type of interaction among
allinteractions, providing insight into how the relative composition of
cellularinteractions changes across conditions. Third, in scenarios with
unbalanced or rapidly changing frequencies of interacting partners,
the harmonic mean can be used to calculate the expected interaction
frequency based onsinglet frequencies, which can then be compared
tothe observedinteractionsto assess relative enrichment (Methods).
Since these normalization methods address different biological ques-
tions, we apply them separately or in combination as appropriate
throughout the paper.

Comparedtosingle-cell genomics-based workflows, the ultra-high
cellular throughput, rapid processing time and low costs associated
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Fig.1| A cytometry-based framework for the accurate identification of
physical cellular interactions. a, Schematic overview of the experimental
approachand exemplary ground-truth image data. PBMCs were incubated with
the T cell crosslinker CytoStim, followed by manual classification 0of 1,000 living
cellsinto singlets or multiples across 4 technical replicates. b, Importance of
features obtained from a decision tree model to classify the datainto singlets
and multiplets. Features fromimaging flow cytometry are writteninitalic.
n=4,horizontal bars indicate the median. ¢, Heatmap of mostimportant
features, colored by mean z-score of features across replicates grouped into
singlets, doublets, triplets and multiplets. d, FSC ratio histogram, colored by

the ground-truth annotation. The classification into singlets and multiplets by
Otsu’’ thresholding is shown. e, Performance of different classification methods
as measured by the F1score. In all methods displayed, cells were categorized by
Otsu thresholding of the FSC ratio. The first method (dark blue) relies on Otsu
thresholding of the FSC ratio only, and all others (light blue) involve Louvain®
clustering based on different feature sets as indicated below the x axis, followed
by assertion of clusters to either singlets or multiplets based on the proportion of
cells exceeding the FSC ratio threshold. The third bar represents the Interact-

omics workflow. Louvain clustering was performed for n =100 iterations, and
the results for each technical replicate (n = 4) are shown in the point plot. Bars
indicate the mean F1score. X* shows only the most important scatter parameters
were used (c). f, Left: UMAP* embedding of classified cells (n = 3,865) based on
conventional flow cytometry parameters, including cell type markers, scatter
parameters and the FSC ratio. Right: UMAP embeddings with cells exceeding

the Otsu threshold of the FSC ratio highlighted in blue (top) or cells colored by
their ground-truth annotation (bottom). g, Relative frequency of cells classified
accordingto the FSCratio. n =4, error bars indicate the standard deviation.

h, Relative frequency of singlets and interacting cells based on the ground-truth
annotation. n =4, error bars indicate the standard deviation. i, Adjusted rand
index (ARI) of consensus clustering solutions obtained for (1) the important
features shownin c and cell type markers versus (2) only conventional cytometry
features as used in ffor different resolutions in Louvain clustering. Clustering
was performed for n =100 iterations at each resolution. A, area; H, height; max.,
maximum; min., minimum; my., myeloid; SSC, side scatter; W, width. Interactions
between cell types are encoded by a red asterisk between the two cell type labels.
Panel acreated with BioRender.com.
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with the presented cytometry-based approach enable the seamless
analysis of millions of cellular events within short time periods. Note
that the Interact-omics framework is designed to specifically dissect
heterotypic PICs and relies on carefully chosen case-control settings
with stable experimental conditions to determine an enrichment of
true PICs above baseline interactions. A detailed description about
thetechnical aspects affecting the formation of PICs is provided in the
‘Limitations and guidelines’ section.

Cellular interaction mapping of complex immune landscapes
To simultaneously map cellular composition and cellular interactions
in complex immune landscapes at high resolution, we established
ultra-high parametric, data-informed flow cytometry assays for mouse
and human. To optimize cell type resolution across allcommon blood
andimmune cell populations, we leveraged single-cell proteo-genomic
datasets®?* to identify optimally discriminating cell type- and cell
state-specific markers. Moreover, to enable the simultaneous detec-
tion of mutually exclusive cell type markers in multiplets, we assigned
cell-type-specific markers to fluorophores with low spectral overlap to
reduce spreadingerrors. While our approach canbe applied to standard
flow cytometry-based assays, we used full-spectrum flow cytometry*
due to its superior capacity to disentangle high-plex marker panels.
Applyingthe Interact-omics framework with such an optimized 24-plex
panel to human PBMCs revealed an accurate representation of the
CytoStim-induced changesin cellular compositionand cellular interac-
tions at cell type and cell state resolution (Fig. 2a-e and Extended Data
Fig. 2a-f). As expected, interactions between various T cell subsets
and antigen-presenting cell populations significantly increased upon
CytoStim treatment, whereas other cellular interactions remained
unaffected or decreased (Fig. 2d,e). Notably, the results were highly
reproducible across replicates and interactions among rare popula-
tions could be accurately quantified, including multiple T cell subset
and dendritic cell interactions.

Next, to investigate whether the Interact-omics framework is
capable of resolving antigen-dependent immune cell interactions,
weisolated CD4 T cells carrying a transgenic TCR specific for chicken
ovalbumin (OVA) from OT-lIImice and cocultured theminthe presence
or absence of its cognate antigen with a complex cellular mixture
of murine splenocytes (Fig. 2f). As expected, cellular interactions
between OVA-specific CD4 T cells and a range of antigen-presenting
cellswere specificallyinducedinthe presence of the respective antigen,
whereas cellular interactions of bystander cells remained unaffected or
changed only mildly (Fig. 2g-jand Extended DataFig. 3a-i). Together,
these results demonstrate the utility of our approach in resolving
antigen-dependent and-independent cellular interactions across com-
pleximmune landscapes with abroad range of potential applications.

To evaluate the effects of various experimental conditions on the
nonspecific formation of cellular interactions, we conducted a series of
exvivobenchmarking experiments (Supplementary Note 1and Supple-
mentary Fig.1). The results demonstrated that ex vivo-induced cellular
interactions arerelatively stable but highlighted the criticalimportance
of maintaining consistent experimental parameters, including cell
concentrations, processing times and cytometer settings, to ensure
reliable and reproducible outcomes while limiting technical artifacts.

Dissecting the mechanism and kinetics ofimmunotherapies

The molecular mode of action of most cancer immunotherapies is
based on the redirection of cancer-immune cell interactions. For
example, bispecific antibodies engage cancer cells with immune
cells, whereas chimeric antigen receptor (CAR)-T cells are engineered
T cells that specifically target epitopes present on cancer cells.
To investigate whether the Interact-omics framework is capable of
resolving CAR-T-cell-mediated cellular interactions, we used engi-
neered green fluorescent protein (GFP)-tagged murine CAR-T cells
targeting CD19-expressing cells in cocultures with murine splenocytes

(Fig. 3a). As expected, our analyses revealed that both CD4 and CD8
CAR-T cell subsets rapidly engaged in specific interactions with
CD19-expressingtarget B cells (Fig. 3b—d and Extended Data Fig. 4a-h).
As a consequence, CAR-T cell interactions with B cells were highly
enriched when compared to interactions between B cells and endo-
genous T cells (Fig. 3e), reaching amaximum at 1 hour post-treatment,
followed by a gradual decline (Extended Data Fig. 4i-I).

Bispecific antibodies engage T cells with tumor cells. Blina-
tumomab, which engages CD3-positive T cells with CD19-positive
(malignant) B cellsis aclinically approved immunotherapy®*”. Toinves-
tigate whether the Interact-omics framework is capable of resolving
blinatumomab-induced cellular interactions, we treated human PBMCs
with blinatumomab ex vivo (Fig. 3f). As expected, blinatumomab
induced a strong increase in cellular interactions among a range of B
and T cell populations, peaking 1 hour post-treatment followed by a
gradual decline of interactions over time (Fig. 3g-k and Extended Data
Fig.5a-j). Asexpected, the transientincreasein cellular interactions of
B cells was mirrored by a transient decrease of free single Bcellsand a
time-delayed decrease in overall B cell-containing events, suggesting
arapidengagementofBandT cells, likely followed by a mild cytotoxic
effectinduced by blinatumomab (Fig. 3j and Extended Data Fig. 5k). In
contrast to blinatumomab-induced B cell-T cell interactions, interac-
tionsamong other cell types remained unaffected, demonstrating the
specificity of the interactions (Fig. 3k).

Notably, following chemical fixation, the quantification of
cellularinteractionsinduced by blinatumomab remained unaffected by
freeze-thawing associated cryogenic preservation (cryopreservation),
enabling a broad range of applications with primary patient material
(Supplementary Fig. 1j). Together, these analyses demonstrate the
broad utility of the Interact-omics framework to characterize cellular
interactionsinduced by immunotherapies.

Interact-omics reveals immunotherapy response features
Blinatumomab has been approved for the treatment of B cell acute
lymphobilastic leukemia (B-ALL), the most common type of cancer in
children, at relapsed or refractory stages®. Although blinatumomab
is progressing toward becoming the standard of care for relapsed and
refractory pediatric ALL, the response rates remain heterogeneous®*.
While few clinical and molecular parameters have been associated with
outcome to blinatumomab therapy, the underlying mechanisms remain
poorly understood and a robust test predicting therapy response is
lacking®**. To evaluate whether the Interact-omics framework can
be used to extract parameters associated with therapy response, we
acquired bone marrow (BM) aspirates from 42 pediatric patients with
relapsed B-ALL before blinatumomab treatment. Subsequently, we
applied the Interact-omics framework using an adjusted panel on the
samples in the presence or absence of ex vivo blinatumomab treat-
ment (Fig. 4a—-c). We extracted a range of parameters from the data,
including cellular frequencies of singlet populations in the absence of
treatment and the induction of cellular interactions on ex vivo blina-
tumomab treatment (Fig. 4b,c). To explore mechanisms underlying
therapy response among patients with residual disease, we compared
patients who could unequivocally be categorized into good responders
(n=18) and nonresponders (n =4) (Fig. 4d).

Inline with previous studies***, high frequencies of various T cell
subsets, particularly central and effector memory subsets, were associ-
atedwithgood responseto blinatumomab (Fig.4d,e). However, alsothe
frequencies of cellular interactions before treatment or uponblinatu-
momab were associated with therapy response (Fig. 4d). Forinstance,
blinatumomab induced interactions of B and T cells, and B, T and
myeloid cells more efficiently in good responders compared to non-
responders (fold change good versus nonresponders B-T(-myeloid);
Fig.4d,e). Blinatumomab failed toinduce effective B-T cell interactions
in patient samples withunbalanced T cell to B cell ratios (Fig. 4f). Simi-
larly, in patient samples with high T-myeloid interactions at baseline,
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Fig. 2| Ultra-high-scale cellular interaction mapping across compleximmune
landscapes. a, UMAP display of a 25-plex cytometry dataset of PBMCs cultured
inthe presence or absence of the crosslinking agent CytoStim, n = 4 replicates
from asingle donor. Recorded cells were processed with PICtR; out 0f 226,301
cells, 50,000 sketched cells are displayed. Interacting cells are depicted in
orange. b, UMAP of interacting cells (n = 9,988). ¢, Heatmap colored by marker
enrichment modeling’® score of cell type defining markers across the clusters of
cellular interactions. d, Circos plot displaying the relative enrichment between T
and antigen-presenting cells. Colors of the contributing singlets (highlighted on
the circumference) are analogous to a. e, Point plots depicting log, fold changes
(FC) of normalized interactions between the CytoStim treated and untreated
conditions. Interaction frequencies were adjusted for the singlet frequencies

of the contributing cells (harmonic mean; Methods). P values were determined
with a two-sided Wilcoxon rank sum test and adjusted for multiple testing
according to Benjamini-Hochberg. Error bars indicate mean and standard

deviation. n =4 replicates from asingle donor. f, Schematic overview of the
experimental setup of cocultures of chicken OVA-specific OT-11CD4 T cells with
murine splenocytes. g, UMAP of the overall cellular landscape; n = 125,554 events.
h, UMAP of the interacting cell landscape; n = 6,399. 1, Point density UMAP of H
splitinto the treatment conditions. j, The log,FC of frequencies of interacting
cellsinthe presence versus absence of OVA. OVA_CD4'T*CD8'T interactions are
notdepicted, as they appeared exclusively upon OVA treatment. The Pvalues
were calculated using least squared means® (two-sided) and were Bonferroni
corrected. Error bars indicate mean and standard deviation. n = 3 technical
replicates. class., classical; DCs, dendritic cells; EoBaso, eosinophils and
basophils; granulo., granulocytes; MEM, marker enrichment modeling; mono.,
monocytes; nonclass., nonclassical; pDCs, plasmacytoid dendritic cells; prog.,
progenitors. Red asterisks in cell type labels indicate interactions between the
respective cell types. Panel f created with BioRender.com.
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Fig. 3| Cellularinteraction mapping reveals mechanisms and kinetics
ofimmunotherapies. a, Schematic overview of the experimental setup of
cultures from murine splenocytes and anti-CD19 CAR-T cells. b, UMAP of the
overall cellular landscape. Recorded cells were processed with PICtR; out of
849,845 cells, 96,988 sketched cells are displayed. c, UMAP of the interacting
celllandscape, n =9,974.d, Point density UMAP of cin the absence of CAR-T cells
(top) and 1 h after adding CAR-T cells (bottom). e, Paired analysis of interactions
between B cells and CAR-T cells or B cellsand endogenous T cells. Interaction
frequencies were normalized by the harmonic mean of the singlet frequencies of
the contributing cells (Methods). Paired two-sided Welch’s t-test, n = 4 technical
replicates, error barsindicate the mean and standard deviation. f, Schematic
overview of the experimental setup for investigating cellular interactions upon

treatment with blinatumomab. n = 4 replicates from a single donor. g, UMAP of
the overall cellular landscape. Recorded cells were processed with PICtR; out of
985,735 cells, 49,210 sketched cells are displayed. h, UMAP of the interacting cell
landscape, n=34,362.1, Point density UMAP of h, in the absence of blinatumomab
(left) and 1 h after blinatumomab treatment (right). j, Comparison of the B cell
frequencies and frequencies of cellular interactions involving B cells over time.
n=4technical replicates, error barsindicate the standard deviation.

k, Time-resolved log,FC of distinct cellular interaction frequencies. Interaction
frequencies were normalized by the harmonic mean of the singlet frequencies of
the contributing cells (Methods). n = 4 technical replicates, the shaded area shows
the standard deviation. gdT, gamma-delta T cells; macro-like, macrophage-like;
T, regulatory T cells. Panels a and f created with BioRender.com.

Nature Methods | Volume 22 | September 2025 | 1887-1899

1892


http://www.nature.com/naturemethods
https://www.biorender.com/

Article

https://doi.org/10.1038/s41592-025-02744-w

a . ) ) c Rl . Blinatumomab-induced
Patients with Blinatumomab Blinatumomab +Blinatumomab cellular interactions
relapsed ALL treatment 1.84x10™

a7
T*My. 0.37
(,,,@ Y 438x10°
. =
Clinical FERN .
5] .
response I .,
B*T*My. 5 s
N=42 =-cemmmmmeaaa. Y £ 3 )
= .
* O
A o & do. b g g
Ex vivo cultures: o~ S hd ]
+blinatumomab < 2, .
Day O % =, .
BM | Density o .
- nteract- ) 9
aspirates omics UMAP1 Min. I Max. BT BT'My. T'My.
b d e 0.039
it [ —
Leukemic B cells _ ~ 20 °
i )
H |
Intermediate (] : I : O Enriched in GR 't_, 15 °
+ mono. * |
CD4" CM T cells 6 T*My. | : | @ Enriched in NR Eﬁ o .
Naive CD4" i | I | O Not enriched g °
Tcells } S
I ! I S 5
. cDCs | | | ©
Naive CD8" ! % o| 8 L aad
Tcells CD8 CM | } I S
T cells 4 | | |
pDCs o | | | GR NR
; e ! cD8' CMm
. o o) I I I o 0.0029
CD3'DN - o i S
D3 DN ¢ HSCs 3 | i \ 2 30
cells CD8" EMT cells | | | OCD87 T % o
NKT-like cps’ , | - °
cells TEMRA 2 2 | | cD3 Tl 9) i CD8'EM o o
- cps erythroids ,@ | | | CD4 CM X 20
cD16 D8- ! FC B*T(*My.) )
NK cells TEMRA  Leukemic B cells” pro g cells L ! oL ,@ ,,,,, o oo
® ook * il * | oO (@) re-proB °
N CD56'NK  cells 4 5 ! ° e) ) g
o cells Class-switched —:- v Pre-pro B cells @) W %’_ Sle °
> B cells . Immature B cells 0 ! o 4 o P 3
> IgD" B cells w
-2 -1 [0] 1 2 3 GR NR
UMAP1 log,FC (GR versus NR)
f h Pearson correlation
-0.4 0 1.0
L .
(2} [22]
2 20 © QO GR 2 20 o O R CD3" T cells
2 @ NR 5 @ NR CD4' T cells
o o o CD8' TEMRA
2 15 2 15 © CDE" T cells
- = CD8"EM T cells
> > +

z 5 Gor oM T el

E 10 6] E 10 o Pro B cell

o) m ro b cells

%5 @ % (@) T*My. interact.

[O) ) Pre-pro B cells

2 s 2 s T cell/B cell ratio

_(cr: o _(ctj ¢ . FC B*T(*My.) interact.

g % ® ® ) © é)o . . FC T*My. interact.

% QS) L) Q| 2 Q o o % o LOLD D OO D 5B O

w0 ° ® - 0j® © STETTTTT 8T o 8

o O O O 0O 0O 0 = 0 = = o
0 10 20 30 40 0 0.1 0.2 0.3 0.4 FrEFErEro 2oz 28
. « . . MY w=E=E= Q2520 ==
T cell/B cell ratio Frequency of T*My. interactions OQ0RQUN00L 2803 S
COO0CRRy Z¢=5=
838 ~&8Lk
[5)e) FEo
o
[

Fig. 4 |Interact-omics reveals features underlying therapy response to
blinatumomab. a, Schematic overview of the experimental setup of ex vivo treated
B-ALL BM aspirates with blinatumomab. b, UMAP of the overall cellular landscape.
Recorded cells were processed with PICtR; out 0f 4,292,770 cells, 70,000 sketched
cells are displayed. Patient-specific leukemic clusters were merged into acommon
meta-cluster. c, UMAP of interacting cells (n =29,232). Point density UMAP of
interacting cells splitinto the treatment conditions (middle). Bar graphillustrating
the log, mean fold change of cellular interactions (interact.) (blinatumomab-
treated versus control) (right). Error bars indicate the standard deviation. B

and T cellinteractions (B*T), n=10; B-T-myeloid (B*T*My.) interactions, n =42;
T*My., n =41biological replicates (patients). P values were determined with a
two-sided Welch’s t-test. Bonferroni-adjusted Pvalues are displayed. d, Volcano
plotrepresenting enrichment and depletion for good responders versus
nonresponders for both singlets and cellular interactions. A two-sample ¢-test
(two-sided) was applied. e, Top: point plot showing the comparison of the fold

change of B*T(*My.) interactions after ex vivo blinatumomab treatmentin GR and
NR. Interaction frequencies (freq.) were adjusted for singlet frequencies of the
contributing cells (harmonic mean; Methods). Bottom: point plot showing the
frequency of singlet CD8' T cells in GR and NR. Pvalues were determined with a
t-test (two-sided). Error bars indicate the mean and standard deviation. GR, n =18;
NR, n=4biological replicates (patients). f, Scatter plots displaying the fold change
of B*T(*My.) interactions on blinatumomab treatment against the singlet T/B cell
ratio at baseline. g, Scatter plot displaying the fold change of B*T(*My.) interactions
against the frequency of T*My. interactions at baseline. h, Heatmap of Pearson
correlation coefficients between various features, including frequencies of singlets
and cellular interactions as well as fold change induction of cellular interactions
after blinatumomab treatment. GR, good responder; NR, nonresponder; TEMRA,
terminally differentiated effector memory T cells. Red asterisks in cell type labels
indicate interactions between the respective cell types. Panel a created with
BioRender.com.

Nature Methods | Volume 22 | September 2025 | 1887-1899

1893


http://www.nature.com/naturemethods
https://www.biorender.com/

Article

https://doi.org/10.1038/s41592-025-02744-w

blinatumomab treatment failed to effectively induce B-T cell interac-
tions, suggesting that T-myeloid interactions may inhibit or com-
pete with B-T cell interactions (Fig. 4g). Accordingly, high T-myeloid
interactions at baseline were associated with therapy failure (Fig. 4d).
A correlation analysis of selected parameters associated with therapy
response revealed that singlet frequencies of T cell subsets were highly
correlated among each other, whereas cellular interactions provided
independent and additive information on therapy response (Fig. 4h
and Extended DataFig. 6).Jointly, these analyses provide new insights
into the cellular mechanisms mediating response to blinatumomab and
may lay the foundation for personalized therapy response prediction.

Downstream signaling as a consequence of cellular
interactions
To evaluate whether Interact-omics can be used to study intracellular
signalinginresponseto cellularinteractions, we established a high-plex
cytometry panel thatincludes anantibody detecting phosphorylation
(pY142) of intracellular CD3 zeta (CD247), a transmembrane signal-
ing adapter protein phosphorylated upon TCR signaling and T cell
activation (Extended Data Fig. 7a). Using this panel, we investigated
intracellular TCR signaling in cellular interactions induced in human
PBMCs following CytoStim (crosslinks antigen-presenting cells with
T cells) and blinatumomab (crosslinks B cells with T cells) treatment.
Consistent with our previous results and the molecular mecha-
nisms of the inducers used, we observed few background interactions
at homeostasis but noted specific induction of B-T cell interactions
in response to blinatumomab treatment and broader myeloid and B
cellinteractions with T cells after CytoStim treatment (Extended Data
Fig.7b-d). Asexpected, CytoStim-induced interactions caused strong
phosphorylation of the intracellular CD3 zeta domain in both T-B and
T-myeloid interactions, as well asin T-B-myeloid triplets, demonstrat-
ing functional TCR engagementintheinteracting T cells (Extended Data
Fig. 7e,f). In line with its more specific crosslinking activities, blinatu-
momab caused aspecificincreasein phosphorylation of theintracellular
CD3 zetadomainin T cells involved in interactions with B cells, but to
amuch lower degree in interactions not involving B cells. Collectively,
these findings demonstrate that our approach can be used to study
intracellular signaling in response to cellular interactions.

Organism-wide interaction mapping of viral infections
Infectious agents and pathogens induce complex cascades of organ-
specificimmune reactions in vivo, comprising cell-cell interactions,
cell expansion and cellular trafficking, jointly establishing first line
defense, long-lasting adaptive immunity and hematopoietic recov-
ery after pathogen insult. However, our comprehension of such
pathogen-induced cellular immune dynamics remains limited due
to current technological restrictions. In particular, there is a lack of
quantitative insightsinto organotypic differencesin the composition,
order and kinetics of cellular interactions induced following pathogen
exposureinvivo.

The lymphocytic choriomeningitis virus (LCMV) serves as a
well-established murine model pathogen to study key questions in
immunology, including the induction of innate and adaptive immu-
nity, pathologic consequences of virus infections, immune evasion
mechanisms and virus-induced suppression of hematopoiesis***°.
To systematically unravel LCMV-induced alterations in the immune
cell and cellular interaction networks across distinct organ systems,
we applied the Interact-omics workflow to mesenteric lymph nodes
(LNs), spleens and BM of mice at days O (naive), 3 and 7 after intraperi-
toneal LCMV infection (Fig. 5a). To discriminate cellular interactions
mediated by antigen-dependent and -independent mechanisms, we
transferred congenic, LCMV-specific CD4 and CD8 T cells recognizing
epitopes of the LCMV glycoprotein into mice 5 days before infection
(Fig.5a) andincluded congenic markers (SMARTA:CD90.1; P14:CD45.1)
in our cytometry panel (Methods). In total, we quantified more than

34 million single cells from 21 cell types, and around 415,000 cellular
interactions from 52 cell type pairs, across 36 samples (Fig. 5b,c and
Extended DataFig. 8). Notably, LCMV infection caused awide range of
alterationsin cellular compositionand cellular interactions. Principal
component analysis (PCA) of cellular abundances and interactions
revealed organ- and time-specific changes that were highly reproduc-
ibleacross replicates, demonstrating the robustness of our approach
(Fig.5d,e). To assess thereliability of interactions derived frominvivo
settings, we performed extensive benchmarking using imaging flow
cytometry and colabeling experiments (Supplementary Note 2 and
Supplementary Figs. 2 and 3). The findings revealed that, although
extrainteractions may be acquired during sample preparation, these
interactions are nonrandom, reflect underlying biological effects and
probably provide a reliable proxy for cellular interactions occurring
invivo.

Clustering cellular interactions according to their virus-induced
alterations over time revealed groups with distinct patterns of inter-
action dynamics (Fig. 6a and Extended Data Fig. 9). For example,
cellular interactions in cluster 4 were rapidly inducible at day 3 and
partially normalized toward day 7 post-infection. Cellular interac-
tions in this cluster comprised mainly cell types of the innate arm of
theimmune system (for example, natural killer (NK) cells, monocytes,
macrophages), inline with their rapid response and key role infirstline
defense, as well as few nonantigen-specific adaptive immune cells. In
contrast, clusters 3and 5 contained a variety of interactions compris-
ing LCMV-specific T cells, which displayed a delayed but pronounced
induction of cellular abundances and interactions at day 7, in line
with their well-documented response pattern (Fig. 6a,b). Notably,
LCMV-specific T cell interactions were more pronounced in spleen
when compared to mesenteric LNs (Fig. 6¢), likely reflecting a more
rapid uptake of LCMVinto the spleen after intraperitoneal administra-
tion, as previously described*. LCMV-specific T cells were also detected
inthe BM (Fig. 6b), inline with the notion that BM may serve as primary
immune organ*®, However, LCMV-specificBM T cells were less likely to
engage in cellular interactions compared to their non-LCMV-specific
T cell counterparts, as indicated by a negative odds ratio, taking their
singlet frequencies into account (Fig. 6d). In contrast, LCMV-specific
Tcellsin LN and spleen were more likely to engage in cellular interac-
tions when compared to their non-LCMV-specific counterparts, inline
with the key role of LNs and spleen in the orchestration of adaptive
immune responses (Fig. 6d).

InLCMVinfections, BM myelosuppressionis associated withatran-
sientactivation of NK cells, peaking at day 3 post-infection, followed by
arapidrecovery*.Inline with this, we observed amassive increasein
NK cellinteractions with cells of the myeloid lineage, including myeloid
progenitors, peaking at day 3 post-infection in BM samples (Fig. 6e).
Subsequently, NK cell-myeloid interactions decreased, followed by
an expansion of hematopoietic stem and progenitor cells (HSPCs) and
BM monocytes at day 7 (Fig. 6e), suggesting a switch from myelosup-
pression to active emergency hematopoiesis, in line with previously
reported kinetics of LCMV-induced myelopoiesis®.

Notably, on infection, a rapid infiltration of monocytes into LNs
and spleens was observed (Fig. 6f). Recruited monocytes readily
engaged with LN and spleen B cells at day 3, partially normalizing at
day 7 (Fig. 6g). Such extensive monocyte-B cell interactions have
recently been described to serve as an LCMV-specificimmune eva-
sion mechanism, hindering early B cell responses in a chronic model
of LCMV infection®. In line with this, increased interactions between
plasmablasts and LCMV-specific CD4 T cellsin LN and spleen samples,
as well as an expansion of plasma cells coincided with the disappear-
ance of suppressive monocyte-B cell interactions at day 7 (Fig. 6h,i).

Together, these results demonstrate the utility of the Interact-
omics approach for dissecting compleximmune interaction networks
in vivo. Our data accurately recapitulate previous findings and pro-
vide a quantitative framework for a systems-level understanding of
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virus-induced alterations of the cellularimmune interaction networks
and how they cooperate across organsystems to elicitintricateimmune
responses. However, limitations outlined in Supplementary Note 2
and the ‘Limitations and guidelines’ section should be considered.

Application to existing cytometry data

Toassess the applicability of our approach for analyzing cellularinterac-
tionsinexisting datasets, we applied the PICtR workflow to two publicly
available cytometry datasets*>** (Supplementary Note 3). Inajuvenile
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Fig. 6 | Cellular interaction dynamics underlying immune response to LCMV
infection. a, Line plots depicting the frequency of cell types across time points
and organs; obtained from k-means clustering (k = 7). Clusters with no change in
dynamics are not shown. Horizontal bar plots at the top indicate the percentage
ofinteractions contributing to each organ and LCMV-specific cells for each
cluster (clst.). n = 4 biological replicates. b, Alluvial plots showing the fraction
of LCMV-specific CD4*and CD8" T cells. ¢, Alluvial plots showing the fraction

of cellular interactions comprising LCMV-specific CD4*and CD8" T cells.

d, Point plots displaying the log,OR enrichment or depletion of LCMV-specific
T cellinteraction against nonantigen-specific T cell interactions relative to
corresponding singlet population on day seven across the organs. Pvalues were
calculated using Fisher’s exact test (two-sided) on the sums of the interacting
and single cells, aggregated across replicates per condition (n = 4), for antigen-

specific and nonantigen-specific cells. Error bars indicate mean and standard
deviation. Pvalues: BM, 6.88 x 10™’; LN, 0; spleen, 0. e, Line plots showing the
scaled fraction of HSPCs and of NK-myeloid cellular interactions in the BM.
Error bars depict the standard error of the mean. f, Point plots depicting the
log,FC of monocytes on each day versus naive. g, Point plots showing the log,FC
monocyte-B cellinteractions monocytes on each day versus naive. h, Point
plot showing the frequency of single plasma cells. i, Point plot showing the
interacting cell frequency (adjusted for the respective single-cell frequencies)
between plasmablasts and LCMV-specific CD4" T cells. In f-i, Pvalues were
calculated using a two-sided least squared means test and corrected according
to Benjamini-Hochberg. Error bars indicate mean and standard deviation and
n=4biological replicates. Red asterisks in cell type labels indicate interactions
between the respective cell types.
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idiopathicarthritis dataset™, we identified cellular interactions linked
to disease activity and tissue localization (Supplementary Note 3 and
Supplementary Fig.4). Applying our framework to a dataset® from the
murine proximal intestine demonstrated its utility for mappinginterac-
tions withnonimmune cells (Supplementary Note 3 and Supplementary
Fig.5). These analyses demonstrate that our approachis adaptable to
existing datasets, provided the data acquisition followed the guidelines
outlined in this paper (section on ‘Limitations and guidelines’).

Discussion

Here we introduce Interact-omics, a highly flexible and scalable
cytometry-based framework for the joint mapping of cellular land-
scapes, such as the immune system, and their physical interactions.
We demonstrate its utility in deciphering the kinetics, mode of action
and response mechanisms of immunotherapies, and for the quanti-
tative dissection of complex, organism-wide immune interactions
networksin vivo.

In contrast to current methods for mapping physical interactions
of cells, Interact-omics excels in throughput, cost effectiveness, pro-
cessing times, required technical prerequisites and ease ofimplementa-
tion. Infact, the Interact-omics framework can be used in conjunction
with any multicolor fluorescence flow cytometer and our analytical
PICtR pipeline can be applied to mine cellular interactions both in
newly acquired and pre-existing cytometry datasets. In contrast to
recently developed technologies that map past cellular encounters
using transgenically engineered mouse models* %%, Interact-omics
canbereadily applied to any cellular suspension that is compatible with
flow cytometry analysis, and does not rely onreporter mouse lines. We
have demonstrated that physical interactions of cells are detected on
freeze-thawing and can be stabilized by chemical fixation, enabling
the implementation of the Interact-omics framework for the study of
biobanked patient material. Notably, the costs for cellular interaction
mapping using the Interact-omics framework are orders of magnitudes
lower when compared to single-cell genomics-based technologies,
while its throughput is orders of magnitudes higher. This enables
the study of cellular interactions in currently unexplored settings,
suchas high-throughput screens, extensive time course experiments,
organism-wide studies and large patient cohorts. While the approach
presented here is optimized for analyzing cellular interactionsamong
immune cells, the Interact-omics framework canalso be used for study-
inginteractionsacross other cell types, assuming careful panel design
and the adaptation of sample processing strategies to minimize tech-
nical interactions. Jointly, the aforementioned features render the
Interact-omics framework broadly applicable to any research field
where alterations in cellular frequencies and interactions may place
decisiveroles. These encompass, but are not limited to, basicimmunol-
ogy, autoimmune diseases, cancer research, infectious diseases, drug
development and personalized medicine.

While the Interact-omics framework focuses on quantifying
cellular interactions at ultra-high scale, consequences of cellular
interactions can be derived by including flow-based readouts, such
as activation and exhaustion markers, phosphorylation status of
signal transducers, or by complementing it with lower throughput
single-cell genomics-based methods for cellularinteraction mapping,
such PIC-seq”* or others' >,

Furthermore, we have demonstrated the utility of the
Interact-omics workflow for the characterization of cellular states
andinteractionsinduced by immunotherapies, including CAR-T cells
and bispecific antibodies. Our data illustrate how kinetics and mode
ofaction ofimmunetherapies can be quantified at ultra-high precision
and cellular resolution. Owing to its high scalability and low costs,
the Interact-omics workflow can be readily implemented into large-
scalescreens toidentify or prioritize candidate immunotherapy drugs.
Using blinatumomab as amodel, we demonstrated how Interact-omics
enables systematic identification of cellular mechanisms underlying

therapy response, validating known biomarkers and revealing novel
interaction-based parameters. With its scalability, rapid turnaround
and low costs, Interact-omics provides an ideal foundation for devel-
oping companion diagnostics and advancing personalized immuno-
therapy approaches.

The extremely high throughput of the Interact-omics framework
enables the quantitative dissection of complex interaction networks
across entire organ systems and organisms. In this context, we have
mapped cellular interaction networks in response to virus infection
inmice acrossdistinct time points and immune organs. Thisapproach
revealed organ-specific shifts in single-cell landscapes and cellular
interaction networks underlying antiviral immune responses and
identified fundamental differences in cellular interaction dynamics
between primary and secondary lymphoid organs. Our data confirmed
previously known andidentified new cellular interaction patterns and
provides aquantitative framework for asystems-level understanding of
how complex cellular interaction networks cooperate acrossimmune
organs to jointly orchestrate immune responses. In the future, the
Interact-omics framework could be of great utility to decipher funda-
mental principles of multilayered immune cell crosstalks underlying
complex (patho-) physiological processes, such as age-related decline
of theimmune system or cancer immunity.

Collectively, the Interact-omics approach represents a highly
versatile and scalable cytometry-based framework that can be readily
implemented for the joint mapping of cellularimmune landscapes and
their physical interactions with a wide range of applications across a
variety of research fields.

Limitations and guidelines

The presented approach uses flow cytometry to measure both single-cell
and PIC landscapes. As physical interactions can be of biological and
technical nature, experimental conditions that affect the formation
of cellular interactions need to be carefully chosen and controlled.
Thisincludes sample preparation and processing, but also cytometric
parameters (Supplementary Fig.1). Particular attention should be paid
to maintaining consistent cell concentrations during sample handling
and ensuring stable flow rates across experimental groups. Lower cell
concentrations and slower flow rates can help minimize technical inter-
actions. Early fixation can be used to stabilize interactions.

Giventheimpact of experimental conditions, we strongly recom-
mend using case-control studies where samples from all experimen-
tal groups are treated uniformly. Reporting relative enrichments of
cellular interactions compared to controls is essential for accurate
interpretation.

For in vivo experiments, we have demonstrated that cells with a
strong affinity tointeract canartificially interactifthey are brought into
proximity during sample preparation, evenif they were physically sepa-
rated in vivo. Therefore, while these interactions may be biologically
meaningful, this should be taken into consideration wheninterpreting
the results, and pooling of organs or samples should be avoided to
prevent artificial interactions. For novel in vivo settings, users of our
framework may consider colabeling strategies (Supplementary Notes
2and 3) to assess interactions that may form ex vivo.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of dataand code avail-
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Methods

Animals

Unless otherwise stated, animal experiments were conducted under
Germanlawand approved by RegierungsprasidiumKarlsruhe (approval
numbers DKFZ299, G-55/20, G-56/20) or the Landesamt fiir Gesundheit
und Soziales in Berlin (LAGeSo, G0016/20). Mice were maintained in
individually ventilated cages under specific pathogen free conditionsin
the animal facility of the DKFZ (Heidelberg, Germany) or at the Charité
animal facility (FEM, Berlin, Germany) with ad libitum access to water
andfood (22 + 2 °C, 45-65% humidity, 12 hlight-dark cycle). Mice used
inLCMV experiments were 7 weeks old; all other mice were between 6
and 20 weeks old. CD45.1 mice were obtained fromin house breeding
at DKFZ (Z110102, B6.SJL-Ptprca Pepcb/BoyJ) or from Charles Rivers
(B6.SJL-PtprcaPepcb/BoyCrl). For experiments with antigen-specific
T cells, cellswereisolated from B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II) or
LCMV-TCRtg P14 (ref. 58) and SMARTA*’ mice expressing the congenic
markers CD45.1or CD90.1. All mice were female.

Human samples

All analyses were conducted according to the Declaration of Helsinki
andinaccordance withlocal ethical guidelines; writteninformed con-
sent of patients was obtained. Usage of samples from patients treated
withblinatumomab in this study was approved by the ethics committee
of Charité Universitdtsmedizin Berlin (reference number EA2/147/23).
PBMC samples from healthy blood donors were obtained as buffy coats
from the blood donation center IKTZ Heidelberg or ZTB Berlin. Mono-
nuclear cells were isolated by Ficoll (GE Healthcare) density gradient
centrifugation and stored infetal calf serum (FCS) 10% DMSO in liquid
nitrogen until usage. For the blinatumomab response analysis (below),
BMsamples from 42 patients with a B-ALL relapse were assessed. Sam-
ples were directly collected before the start of the blinatumomab
course and processed as part of routine diagnostics by Ficoll density
gradient centrifugation and minimal residual disease quantification.
Remaining cells were stored in FCS 10% DMSO in liquid nitrogen for
research purposes. Good response to blinatumomab (n =18) is defined
as minimal residual disease negativity directly after a blinatumomab
course (28 days) and all subsequent time points. Nonresponse to bli-
natumomab (n =4) is defined as leukemic cell persistence (based on
morphological or minimal residual disease evaluation) without any
reduction after a blinatumomab course. The remaining 20 patient
samples could not be unequivocally assigned to these response states
(goodresponse versus nonresponse) or had no residual disease at the
start of the blinatumomab course. The median age of patients in the
study was 9.5 years. Data on sex were collected from patients of the
B-ALL cohort. However, given that the patient cohort analyzed here
was not part of a clinical trial, sex-specific considerations were not
explicitly integrated into the study design. The distribution of male
to female participants was, however, balanced (57% male, 43% female).

Isolation of murine immune cells

For isolation of antigen-specific T cells, the spleen and various LNs
(including inguinal, axial, submandibular and mesenteric) were care-
fully extracted. Tissues were homogenized using a40-um filter (Falcon)
and a syringe plunger in cold Roswell Park Memorial Institute (RPMI)
medium (Sigma Aldrich) with 2% FCS (Gibco by Life Technologies).
Subsequently, single-cell suspensions from spleens were treated with
erythrocytelysis solution (ACK buffer, containing 0.15 MNH,Cl, 1 mM
KHCO; and 0.1 mM Na,EDTA in water from Lonza) for a duration of
5 min. For some readouts, these suspensions were combined with
the LN samples or maintained separately. CD4 and CD8 T cells were
purified using either the Dynabeads Untouched Mouse CD4 Cells
Kit (Invitrogen) or the murine CD4 T cell isolation kit and the murine
CDS8 T cell isolation kit (Miltenyi) according to the manufacturer’s
instructions. Purified fractions were stained for further purification
using fluorescence-activated cell sorting (FACS) (below). For in vivo

experiments, femurs, spleen and various LNs were dissected and
kept separate on ice. LNs and spleens were individually processed as
described above. Femurs were flushed using FACS buffer and homog-
enized using a 40-um filter (Falcon) and a syringe plunger.

Ex vivo murine cocultures
Cultures containing OT-11 CD4 T cells were incubated at 37 °C with
5% CO, in U-bottom plates in 200 pl of Dulbecco’s Modified Eagle’s
Medium GlutaMAX (DMEM GlutaMAX, Gibco), supplemented with
10% heat-inactivated FCS (Gibco), sodium pyruvate (1.5 mM, Gibco),
L-glutamine (2 mM, Gibco), L-arginine (1x, Sigma), L-asparagine (1x,
Sigma), penicillin-streptomycin (100 U ml™, Sigma), folic acid (14 pM,
Sigma), minimum essential medium, nonessential amino acids
(1x, ThermoFisher), MEM vitamin solution (1%, ThermoFisher) and
B-mercaptoethanol (57.2 uM, Sigma). Next 5 x 10* OT-ll cells were incu-
bated with1 x 10°splenocytes containing various antigen-presenting cell
populationsin presence or absence of OVA peptide (323-339, InvivoGen).
For murine CAR-T in vitro assays, GFP-expressing CD19 specific
CAR-T cells were generated as previously described®, thawed and
washed with PBS. Next, cells were transferred to 10% FCS RPMI1640
containing 0.05 pg ml™IL-15 (Peprotech) and 0.1% 3-mercaptoethanol.
To recover from freezing procedures, cells were incubated under the
same conditions as described above before the coculture assay. Fro-
zen murine splenocytes were thawed and incubated together with
CAR-T cells at a ratio of 1/2 target/effector ratio (CAR-T cells/spleno-
cytes) for 0.5 to 3 h. Subsequently, cells were collected, washed with
FACS buffer, stained with surface markers and analyzed.

Ex vivo human cocultures

Cryopreserved PBMCs were thawed inawater bath at 37 °C, transferred
t010% FCSRPMI1640 and washed twice. After each washing step, cells
were centrifuged at 350g for 5 min. Next, 2 x 10° cells were plated in
10% FCS RPM11640 and cultured short term for up to 5h in 200 pl of
RPMI10% FCS. CytoStim (Miltenyi) was used in concentrations recom-
mended by the manufacturer at 37 °C for 2 h before collection.

For experiments using ablinatumomab analog (InvivoGen), a con-
centration of 50 ng ml was used. The incubation period ranged from
0.25to 5hat 37 °Cand 5% CO, in 96-well U-bottom plates. For experi-
ments assessing the stability of blinatumomab-induced interactions
on cryopreservation, cells were either incubated for 2 h in presence
of the compound and stained with surface antibodies and fixed with
4% paraformaldehyde (PFA) (ThermoFisher) or frozen in Bambanker
freezing medium (Nippon Genetics), thawed after 18 h and treated in
the same way as the nonfrozen cells.

For in vitro benchmarking experiments, human PBMCs were
treated with CytoStim as described above; control groups were left
untreated. Then, cells were splitinto two groups each and stained with
CD45-APC-Fire810 or CD45-PE-Fire640, respectively. After mixing the
labeled groups, cellswereincubated for 0-4 hat4 °C (200,000 cells per
well in 50 pl during staining and acquisition) or processed at seeding
densities 0f 25,000t0 250,000 cells per wellin 96-well plates (in 50 pl
during staining and acquisition). Subsequently, cells were gathered,
washed with FACS buffer, stained with surface markers, fixed with 2%
PFA (except the nonfixed control) and analyzed.

For measuring phosphorylated CD247, human PBMCs were seeded
at 100,000 cells per well in 200 pl and treated for 1 h with blinatu-
momab (160 ng mI™?) or CytoStim as described above. Following the
stimulation period, cells were fixed immediately by adding CytoFix
buffer (15 min, 4 °C). Cells were washed and resuspended in 200 pl
of 2.5x Perm/Wash buffer, incubated for 30 min at 37 °C and stained
overnight at4 °C before analysis.

Invivo mouse experiments
Five days before infection, 1 x 10* LCMV-specific T cells (SMARTA;
expressing congenic marker CD90.1) and CD8" T cells (P14; expressing
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congenic marker CD45.1) were administered intravenously into
C57BL/6) in 300 pl of balanced salt solution, resulting in an approxi-
mate seeding of 1 x 10° cells per mouse®’. The viral infection wasinduced
intraperitoneally using 200 PFU of the LCMV Armstrong strain®’. Mice
were euthanized on day 3 and/or day 7 post-infection, and various tis-
sues including the spleen, mesenteric LNs and bones were dissected
and processed for spectral flow cytometry analysis.

For the in vivo benchmarking experiment, LCMV-specific CD4
T cells were transferred into C57BL6 (CD45.2) hosts 5 days before
infection as described above. CD45.1 (B6.SJL-PtprcaPepcb/BoyCrl)
and CD45.2 hosts were infected intraperitoneally as described above,
and spleens were harvested on day 7 post-infection. Spleens were
split into four equal pieces and mixed across CD45.1/CD45.2 hosts
for joint tissue homogenization. Mixed samples were processed for
spectral flow cytometry analysis.

Flow cytometry, cell sorting and image-enabled flow
cytometry

Unless otherwise stated, cell suspensions were resuspended in 2%
FSC PBS (FACS buffer, 0.5 mM EDTA optionally) for performing flow
cytometric stainings (Supplementary Tables 2-13). For ex vivo read-
outs with bispecific engagers and antigen-specific T cells, cells were
gathered, centrifuged 5 min at 350g and stained with surface marker
panel master mixes using FACS buffer and addition of Brilliant Stain
buffer (BD) according to the manufacturer’s recommendation. Cells
were stained for 30 min onicein 96-well V-bottom plates, followed by
washing with FACS buffer, centrifugation for 5 min at 350g and resus-
pension in 200 pl of FACS buffer. For more time-consuming in vivo
experiments, cells were labeled with fixable dead cell exclusion dyes fol-
lowed by fixation of obtained single-cell suspensions with cold 2% PFA
PBS for 15 min at room temperature. Cells were washed, centrifuged
for 5 minat350g and then stained overnight at 4 °C. After washing and
centrifugation for 5 min at 350g, cells were filtered through a 35-pm
cell strainer and kept on ice until flow cytometric analysis. For flow
cytometricanalysis, a Cytek Aurora (Cytek Biosciences) or LSR Fortessa
(BD) equipped with five lasers was used. For sorting of naive T cells
in ex vivo setups, FACSAria Fusion or FACSAria Il sorters equipped
with 70-umnozzles were used. Forimaging cytometry, image-enabled
cell sorting using the BD CellViewTM Imaging Technology” or
an ImageStream (Cytek) was used. For image-enabled cell sorting,
PBMCs were incubated for 2 h with CytoStim, stained with surface
markers followed by fixation with 2% PFA PBS as described above
and operated using a1l00-pmsort nozzle, with the piezoelectric trans-
ducerdrivenat 34 kHz and automated stream setup by BD FACSChorus
Software, and a system pressure of 20 psi. For the ImageStream
experiment, datawere acquired using the Cytek INSPIRE software.

Image-enabled flow cytometry analysis

For image-enabled flow cytometric analysis, radiofrequency images
underwent processing as previously described”. The raw image TIFF
files were imported into ImageJ and processed with the BD CellView
plugin. The corresponding FCSfiles were loaded into Flowjo (BD), and
cells were gated as living CD45" cells. Using the flowCore®, CytoML**
and flowWorkspace® packages, the generated FlowJo workspace was
loaded into R (>v4.3.0) for further processing. Subsequently, images
were converted toJPG format, and channels containing the light-loss,
FSC and side scatter parameters were kept for downstream analysis.
Four replicates, each comprising 1,000 images, were manually cat-
egorized as singlet, doublet, triplet or higher-plex multiplets, and the
categories were used to train adecision tree-based classification model
using Rpart®® and caret®. As features for the model, the image-based
features, the conventional flow cytometry parameters and the FSC
ratio, defined by the quotient of FSC-A and FSC-H, were used. Feature
importanceinthe model was determined to identify relative contribu-
tions of each variable in making accurate predictions.

Otsu® thresholding, which minimizes intragroup variance, was
applied toahistogram of the FSC ratio divided into atleast 1,000 bins,
effectively separating the data into two categories based on whether
their FSCratio is above or below the threshold.

Louvain clustering was performed for n =100 iterations (resolu-
tion1) onall orasubset of the following features: image-based param-
eters, conventional flow parameters and the FSC ratio. Consensus
clustering solutions were calculated using soft least squares Euclidean
consensus partitions asimplemented in the clue®® package. Data were
visualized in uniform manifold approximation and projection (UMAP)*
embeddings using the same input features as used for clustering. UMAP
embeddings were computed across 15 nearest neighbors and a mini-
mum Euclidean distance of 0.1, and populations were annotated based
on cell-type-specific markers and their combinations. Furthermore,
Louvain clustering was performed for n =100 iterations with different
resolution parameters and variation in cluster labels between impor-
tant featuresincludingimage-based parameters and conventional flow
parameters was assessed using the adjusted rand index.

For ImageStream-based analyses, ImageStream fluorescence
intensity values (based on the sum of the pixel intensities in the mask
as selected by ImageStream, background subtracted) were compen-
sated and transformed using FlowJo (v.10.10) and IDEAS (v.6.2). Data
were processed using PICtR (below). Interacting populations were
solely annotated based on mutually exclusive marker expression,
since forward scatter properties are not acquired by ImageStream. For
conventional gating, gates were selected in FlowJo.

For cell segmentation from brightfield images, the cyto2 model
from the Python package CellPose® was used with a cell pixel diameter
of 20. To remove cellular debris, events that met any of the following
criteria were excluded: major axis length <15 pixels or >40 pixels,
circularity <0.7, area <100 pixels or >1,000 pixels. Area and major
axis length were computed using the Python package scikit-image’.
Circularity was calculated using the formula %, with perimeter

values also obtained from scikit-image. This filtering process excluded
approximately 4% of the detected objects.

Identification and analysis of PICs with PICtR

Benchmarking. Benchmarking was performed ontheimaged-enabled
flow cytometry data with n = 3,865 manually classified events across
n=4replicates. Several thresholding methods based on the FSC ratio
were used to define a cutoff of events with a high or low FSC ratio (Sup-
plementary Table14). Otsu®, IsoData”, Intermodes’?, RenyiEntropy’?,
Li”*, Shanbhag”, Huang’ and Mean’” algorithms were used as imple-
mented in the R package autothresholdr’®, and the Triangle” algo-
rithm was ported from the Image) implementation in Java. k-means
clustering was used with k = 2 for thresholding and Gaussian mixture
models were computed as implemented in the R package mclust®.
Performance of the methods was evaluated based on the annotation
of the image-enabled flow cytometry data and reported as F1scores,
where 1indicates a perfectly accurate reproduction of the manual
ground-truth classification.

Next, different clustering algorithms (Supplementary Table 15)
were evaluated regarding their ability to discriminate single and inter-
acting cells considering conventional flow cytometry features (forward
scatter, side scatter, cell type markers CD45, CD3, CD19, HLA-DR and
CD33, and the FSC ratio). Candidates were selected based on their
popularity in the single-cell and flow cytometry fields or based on
their performance on high-dimensional single-cell flow and mass
cytometry data as evaluated by Weber and Robinson®'. Louvain® and
Leiden® clustering (implemented through igraph) were used on a
shared nearest neighborhood graph with k =5 nearest neighbors,
HDBSCAN®** (hierarchical density-based spatial clustering of applica-
tions with noise) was used on a UMAP embedding with k=15 nearest
neighbors and Phenograph® was used with Louvain or Leiden cluster-
ing. FlowSOM® (Spectreimplementation), FlowMeans®, Rclusterpp®**’
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and Immunoclust’ were used directly on the features. Each method

was run for n =100 iterations and the performance was reported as
F1scoresbased onthe ground-truth classification.

Flow cytometric data preprocessing. For full-spectrum flow cyto-
metry data, raw FCS files were spectrally unmixed using the inbuilt
unmixing function of the SpectroFlo (Cytek Biosciences) software. FCS
fileswereimported into Flowjo (BD) to assess unmixing by visualizing
N x N plots. Axes were adjusted wherever needed and parameters for
logicle’ or generalized bi-exponential transformation of data were
defined for every surface marker individually. PeacoQC®* was used as
an automatic quality control mechanism for cytometry data where
needed. The populations of interest were exported using channel
values defined by the inbuilt export function of FlowJo. Raw and pro-
cessed cytometry data for key experiments are provided at https://doi.
org/10.5281/zenodo.10637096 (ref. 93).

PICs toolkit in R (PICtR). Usage and processing of reduced exemplary
dataare provided inavignette.

The workflow starts by importing compensated and transformed
cytometry data (CSV files) into R (2v.4.3.0). BPCells** is used for
bit-packing compression on a high-performance computing cluster
to manage extensive data. For each measured event, the FSC ratio,
defined by the ratio of FSC-A and FSC-H, is calculated and scaled to
transform the datainto a similar range as recorded marker expression
values. For the downstream analysis, the measured marker expression
values, forward scatter, side scatter and the determined FSC ratio
parameter are used as features. Next, the data are sampled using an
atomic sketching approach asimplementedin Seurat v.5 (ref. 32). This
approachis particularly effective in preserving rare events, including
cellularinteractions.

Sampled dataare further processed with the Seurat workflow. For
the datasetsin this paper, n —1principal components were chosen for
dimensionality reduction, however, the number of components canbe
adjusted. Theresulting principal component space is used to construct
ashared nearest-neighbor graphacross the 20 nearest neighbors and to
determine the UMAP embeddings using 30 neighbors and aminimum
cosine distance of 0.3 for the manifold approximation. Furthermore,
the shared nearest-neighbor graph is used as input for Louvain clus-
tering. Other clustering methods are provided as alternatives. For
cells not included in the initial sketching process, cluster labels are
determined using linear discriminant analysis as implemented in the
R package MASS®.

Clusters that contain interacting cells are selected based on
the FSC ratio distribution. By default, a discriminating threshold is
obtained using the Otsumethod, but alternative thresholding methods
are also available. Next, the fraction of cells above and below the FSC
ratio threshold is determined per cluster. Finally, based on the pre-
dicted cluster labels from linear discriminant analysis, interacting cells
within the entire dataset are identified. Interacting cells are subjected
to PCA, shared nearest-neighbor graph construction, clustering and
UMAP analysis to obtain arefined characterization.

Annotation of PICs. Clusters of single cells are annotated based on
known cellidentity markers and expert knowledge. Similarly, clusters
identified as interacting cell populations are annotated based on the
combination of mutually exclusive surface markers (for example,
evaluated through marker enrichment modeling®®). For example,
coexpression of the B cell marker CD19 and the T cell markers CD3
and CD4 within an interacting cluster indicates an interaction of a B
and CD4" T cell.

Of note, interacting cell clusters that express markers from only
one cellidentity might represent homotypic cellular interactions (for
example, interactions between two B cells). Since alternative expla-
nations, such as preceding cytokinesis, cannot be ruled out, clusters

such as these should be excluded from downstream analysis to avoid
low-confidence annotations.

Adjustment of counts of PICs. Frequencies of interactions are
reported as the frequency among all live, high-quality events or the
frequency among all interacting cells. Alternatively, interaction fre-
quencies are normalized by taking the frequency of the respective
interaction partnersinto account:f, denotes the fraction or rate of cell
type A, and analogously, f; denotes the fraction or rate of cell type B.
Furthermore, let f,; denote the fraction or rate of interacting cells
of types A and B. To assess the number of such interacting cells, we
introduce the enrichment term e,z = % where O,; =f,; denotes
the observed and E,; denotes the expected rate of interacting cells.
The expected rate is given by the harmonic mean H(f, f;) of the
two singlet rates:

H(x,y) = 1i1 = % We thus get for the enrichment e,:
x 'y
fAB
ers = 1
o (i ()
Satfs

Of note, the harmonic mean of alist of numbers tends strongly toward
theleastelement of thelist. Inour case with two entries, in case f, > f3,
we get:

2fufs
Fap = H(fy, ==—""" =" =2 )
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The frequency of expected interactions between two cell types
with strongly different abundance is thus given by the less abundant
cell type. Still, even for the more abundant cell type A, E,; increases
withincreasingf,:
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Blinatumomab response analysis

BM aspirates obtained from 42 relapsed B-ALL patients were thawed
inawaterbathat37 °C, transferred to 10% FCS RPMI1640 and washed
twice. After thawing, each sample was split into two. One half of the
sample was cultured in200 pl of RPMI1640 (10% FCS) supplemented
with 50 ng mI blinatumomab analog (InvivoGen) for1 hat37 °Cand
5% CO, in a 96-well U-bottom plate. The other half of the sample was
culturedin RPMI1640 (10% FCS) without blinatumomab supplementa-
tionfor1hatthe same conditions. After the incubation, cells were col-
lected, washed with FACS buffer, stained with the surface marker panel
and analyzed. Raw FCS files and CSV files were processed as described
above. To analyze whether certain features are associated with the two
response groups (good responders and nonresponders) the mean
value for eachfeatureinthe dataset (singlet frequency, interacting cell
frequencies and fold changes of interacting cells after blinatumomab
treatment), was calculated for both groups. Subsequently, the fold
change for each feature was computed as the ratio of the mean value
inthe good responder group to that in the nonresponder group. Fur-
thermore, a two-sided t-test was performed for each feature to test
for significance between groups. Before performing the correlation
analysis, a feature selection was conducted to refine the dataset for
more targeted analysis. This selection was based on the results of
a univariate analysis, by which features were selected based on an
abs(t-value) threshold greater than 1.5. For these selected features,
acorrelation matrix was computed using the function cor() from the
stats package. Afterward, the distance matrices were created, and a
hierarchical clustering was performed on the rows and columns of
the correlation matrix separately.
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Statistics and reproducibility

Numerical data were processed with R (=v.4.3.0) or Python v.3.12.5;
see Supplementary Table 16 for details. Two sample groups were com-
pared by parametric tests (two-tailed Welch t-tests), or nonparamet-
ric tests (two-sided Wilcoxon rank sum tests or estimated marginal
means”) depending on the distribution of the underlying data points as
evaluated by Shapiro-Wilk tests. Analysis of variance was used for
multiple groups after evaluation of the distribution of the underlying
data points by Shapiro-Wilk tests. Details about adjustments for
multiple comparisons can be found in the respective figure legends.
No statistical method was used to predetermine sample size.

Where applicable, PeacoQC or FlowAI’® were used to exclude
low-quality flow cytometry events and cells were gated according to
the provided gating strategies. Furthermore, cells were removed when
high autofluorescence or signal anomalies suggested a low-quality
event. Forthe B-ALL cohort (n =42), we compared patients who could
unequivocally be categorized into good responders (n =18) and non-
responders (n = 4) to explore mechanisms underlying therapy response
among patients with residual disease. The remaining 20 patient sam-
ples were therefore excluded from the downstream analysis. Data
points were excluded from the downstream analysis if a population of
cellswas not detectable across all conditions and the excluded popula-
tionsarenotedin therespective figurelegends. Clusters of PICs without
acell type exclusive marker combination might represent homotypic
interactions and were excluded from the downstream analysis.

The investigators were not blinded to allocation during experi-
ments and outcome assessment. Mice, murine samples and PBMC
samples from healthy blood donors were randomly allocated to groups.
The B-ALL experiments were not randomized since all patient samples
were measured in the presence and absence of blinatumomab.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Rawand processed cytometry datafor key experiments are available on
Zenodo at https://doi.org/10.5281/zenod0.10637096 (ref. 93). Source
data are provided with this paper.

Code availability

PICtR is available as an open-source R package available on GitHub
atgithub.com/agSHaas/PICtR. Code to reproduce key analysis results
is available on GitHub at github.com/agSHaas/ultra-high-scale-
cytometry-based-cellular-interaction-mapping/.
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Extended Data Fig. 1| Technical aspects of cytometry-based cellular
interaction mapping. a. Performance of different classification methods based
ontheFSCratio as measured by the F1score. Manual image annotation served as
the ground truth; see Methods for details. n = 4 technical replicates are shownin
the scatter plot; barsindicate the mean F1score. Error bars indicate the standard
deviation. b. Dot plot displaying the forward scatter area (FSC-A) and forward
scatter height (FSC-H) properties of ground truth singlets; the Otsu threshold
ofthe FSCratio is shown as a diagonal line. The bar plots show all ground truth
singlets splitinto correctly classified and misclassified events according to

the FSCratio threshold and are colored by marker expression. n =4 technical
replicates; error barsindicate the standard deviation. c. Gating strategy to select
Lymphocytes and live cells using scatter properties and a live-dead (LD) marker.
This gating strategy was employed throughout the manuscript. d-g. Louvain
clustering performed on the top important features from the feature importance
analysis (see Fig. 1c) and cell type markers. d. Annotated UMAP representation.
e. UMAP embedding from panel d with cells exceeding the Otsu threshold of

the FSCratio highlighted in blue (top) or cells colored by their ground truth
annotation (bottom). f. Relative frequency of singlets and interacting cellsin
each population classified according to the FSC-ratio. Error bars indicate the
standard deviation. g. Relative frequency of cells in each population based
ontheground truth annotation. Error barsindicate the standard deviation.

h-k. Louvain clustering performed on cell type markers only. h. Annotated
UMAP representation. i. UMAP embedding from panel h with cells exceeding
the Otsu threshold of the FSC ratio highlighted in blue (top) or cells colored

by their ground truth annotation (bottom).j. Relative frequency of singlets

and interacting cells in each population classified according to the FSC-ratio.
Error barsindicate the standard deviation. k. Relative frequency of cellsin

each population based on the ground truth annotation. Error bars indicate the
standard deviation. I. Feature plots showcasing cell type marker expression in the
UMAP embedding from Fig. 1f. m. Heatmap depicting normalized mean feature
expression (rows) within merged clusters derived from Louvain clustering
(columns, on conventional flow parameters) across replicates. Populations are
the same asin Fig. 1f. n. Histogram colored by the ground truth annotation and
split by the identified singlet and multiplet clusters in Fig. 1f. The Otsu threshold
is shown. o. Performance of different clustering methods evaluated regarding
their ability to resolve singlet and interacting populations. All algorithms were
used for n=100 iterations on conventional flow parameters including forward
scatter parameters, side scatter parameters, cell type markers and the FSC ratio,
see Methods for details. n = 4 technical replicates are shown in the point plot;
barsindicate the mean Flscore. Error bars indicate the standard deviation.
Abbreviations: UMAP: uniform manifold approximation and projection, CD33:
myeloid marker, CD19: B cell marker, CD3: T cell marker.
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Extended Data Fig. 4 | Interact-omics maps cellular interaction dynamics

of CAR-T cells. a. UMAP of the overall cellular landscape, corresponding to

the UMAP in Fig. 3b; labels correspond to panel d. Decimal points indicate
subclustered populations. b. Histogram of the FSC ratio. Cells exceeding Otsu’s
threshold are highlighted in orange. c. UMAP of the overall cellular landscape
with cells above Otsu’s threshold highlighted in orange. d. Proportions for
singlets and doublets in each cluster. Clusters 8.1,11,13, 18, and 19 were selected
asinteracting cell clusters. e. Selected feature plots for the overall cellular
landscape. f. Marker Enrichment Modelling (MEM) heatmap for the overall
cellularlandscape. g. Overall point density UMAPs for the control condition
and CAR-T cell-treated samples at each timepoint. h. Interacting cell landscape
corresponding to the UMAP of Fig. 3¢, highlighting selected features. i. Marker

Enrichment Modelling (MEM) heatmap for the interacting cell landscape.
j.Paired analysis of interactions between B cells and CD4* CAR-T cells or

B cellsand endogenous CD4" T cells. Interaction frequencies were adjusted for
the singlet frequencies of the contributing cells at each timepoint (harmonic
mean, see Methods), n = 4 technical replicates, error barsindicate the mean

and standard deviation. Paired two-sided Welch'’s ¢-test. k. Paired analysis of
interactions between B cells and CD8* CAR-T cells or B cells and endogenous
CD8'T cells. Interaction frequencies were adjusted for the singlet frequencies
of the contributing cells at each timepoint (harmonic mean, see Methods), n=4
technical replicates, error bars indicate the mean and standard deviation. Paired
two-sided Welch’s t-test. I. Interacting cell point density UMAPs of the control
condition and after adding CAR-T cells for the indicated time points.
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Extended Data Fig. 5| Cellular interaction dynamics upon blinatumomab
treatment. a. UMAP of the overall cellular landscape, corresponding to

the UMAP in Fig. 3g; labels correspond to panel d. Decimal points indicate
subclustered populations. b. Histogram of the FSC ratio. Cells exceeding Otsu’s
threshold are highlighted in orange. c. UMAP of the overall cellular landscape
with cells exceeding Otsu’s threshold highlighted in orange. d. Proportions

for singlets and interacting cells for each cluster. Clusters 9,15,16,19, and

20 were selected as interacting cell clusters. e. Selected feature plots for the
overall cellular landscape. f. Marker Enrichment Modelling (MEM) heatmap for
the overall cellular landscape. g. Overall point density UMAPs for the control

condition and blinatumomab-treated samples at each timepoint. h. Point
density UMAPs of the cellular interaction landscape for the control condition
and blinatumomab-treated samples at each timepoint, corresponding to
Fig.3h.i.UMAP corresponding to Fig. 3h, displaying selected features of the
interacting cell landscape. j. Marker Enrichment Modelling (MEM) heatmap
for the interacting cell landscape. k. Composition of all B cell events across
time, including single B cells and cellular interactions that involve B cells. n =4
replicates fromasingle donor, error bars indicate the mean and standard
deviation.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection For the acquisition of flow cytometry data, SpectroFlo® (Cytek Biosciences, v.3.2.1) or FACSDiva™ (BD, v.8) softwares were used. For imaging
cytometry, FacsChorus (v1.3.82) or Cytek® INSPIRE® software (v201.1.0.826) were used.

Data analysis Flow cytometry data was analyzed using FlowJo v10.10.0, PeacoQC for FlowJo v1.5.0 and R 4.3.0. The following packages were used: Seurat
v5.0.0, ComplexHeatmap v2.16.0, cytoMEM v1.4.2, MASS v7.3-60, ggplot2 v3.4.4, RColorBrewer v1.1-3, pals v1.8, dplyr v1.1.3, purrrv1.0.2,
readr v2.1.4, tibble v3.2.1, tidyr v1.3.0, tidyverse v2.0.0, data.table v1.14.8, rstatix v0.7.2, viridis v0.6.4, khroma v1.11.0, ggpointdensity v0.1.0,
clustree v0.5.0,circlize v0.4.15, ggraph v2.1.0, viridisLite v0.4.2, pbapply v1.7-2, ggsci v3.0.0, ggpubr v0.6.0, BPCells v0.1.0, kableExtra v1.3.4,
lubridate v1.9.3, forcats v1.0.0, stringr v1.5.0, sp v2.1-1, Spectre v1.0.0, GGally v2.2.0, SeuratObject v5.0.0, R v4.3.0, rpart v4.1.19, mclust
6.1.1, igraph (R) 2.0.3, CellPose 2.2.3, IDEAS 6.2, scikit 0.19.3, Python 3.12.5, caret 6.0-94, pROC 1.18.5, autothresholdr 1.4.2, bluster
1.15.0,flowCore 2.17.0, CytoML 2.17.0, flowWorkspace 4.17.0, dbscan 1.2-0, flowSOM 2.10.0, flowMeans 1.65.0, Rclusterpp 0.2.6,
immunoClust 1.37.111, clue 0.3-65, numpy 2.1.0, pandas 2.2.2, phenograph 1.5.7, leidenalg 0.10.2, matplotlib 3.9.2, seaborn 0.13.2, scipy
1.14.1, ggrepel 0.9.5, igraph (Python) 0.11.6, ggalluvial 0.12.5, PerformanceAnalytics 2.0.4, Hmisc 5.1.-3, corrplot 0.92, cola 2.11.0, e1071
1.7-14, tree 1.0-43, randomForest 4.7-1.1, Bioconductor 3.20, IDEAS® 6.2.189.0, PICtR 0.1.0/0.2.1, writex| 1.5.1, FACSDiva v8, SpectroFlo
v.3.2.1
A detailed description of the data analysis is provided in the Methods.

PICtR is available as an open-source R package at github.com/agSHaas/PICtR. Code to reproduce key analysis results can be found at
github.com/agSHaas/ultra-high-scale-cytometry-based-cellular-interaction-mapping/.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw and processed cytometry data for key experiments are provided at doi.org/10.5281/zenodo.10637096. Source data are provided with this paper and can be
used to reproduce the analyses and figures in this manuscript.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Data on sex was collected from patients of the B-ALL cohort. However, given that the patient cohort analyzed here was not
part of a clinical trial, sex-specific considerations were not explicitly integrated into the study design. Furthermore, due to
the limited sample size of patients with residual disease, a sex-based analysis would undermine the statistical power and
reliability of such subgroup analysis and was therefore not performed. Consequently, we do not provide disaggregated sex
data but the distribution of male to female participants was balanced (57% male, 43% female).

Population characteristics The median age of patients in the B-ALL study was 9.5 years. Based on the Immuno-phenotype, patients were classified into
distinct subgroups: pro B-ALL, pre B-ALL, common B-ALL. or MPAL The majority of patients had a unique karyotype
characterized by very specific genetic alterations which included translocations, mutations, deletions, diploidy or haploidy.
Due to this extensive heterogeneity, the genetic alterations were not used as covariates in the analysis.

Recruitment Patients received Blinatumomab based on the decision of the treating physicians and recommendations of the national ALL-
REZ BFM study center at Charité. This was not part of a clinical trial. Patients were selected for this study according to

availability of sample material in the biobank and an informed consent

Ethics oversight Ethics committee of Charité Universitatsmedizin Berlin (reference number: EA2/147/23).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size a) No statistical methods were used to pre-determine the sample size. For mouse experiments, sample sizes were chosen based on the 3R
principle, aiming to keep the number of animals to a minimum while obtaining at least 3 biological replicates. For human in-vitro data,
experiments were performed with at least three technical replicates.

b) Experience suggests that 50 cells are sufficient to robustly identify a cell type and that a given dataset contains roughly 1-5 % of physically
interacting cells. The number of cells acquired was sufficient for the analysis.

Data exclusions  a) Where applicable, PeacoQC or FlowAl were used to exclude low quality flow cytometry events based on inconsistencies in signal acquisition
and speed. Cells were gated accoring to the gating strategy described in the "Flow Cytometry" section. Additionally, cells were removed when
high autofluoresence or signal anomalies suggested a low quality event.

b) For the B-ALL cohort (n = 42), we compared patients that could unequivocally be categorized into good responders (n = 18) and non-
responders (n = 4) in order to explore mechanisms underlying therapy response among patients with residual disease. The remaining 20
patient samples were therefore excluded from the downstream analysis.

c) Data points were excluded from the downstream analysis if a population of cells was not detectable across all time points. The excluded
populations are noted in the respective figure legends.

d) Clusters of physically interacting cells without a cell type exclusive marker combination might represent homotypic interactions and were
excluded from the downstream analysis.

Replication All mouse and in-vitro human experiments were performed with at least n = 3 independent or technical replicates and findings could be
replicated successfully.
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Randomization  Mice, murine samples, and PBMC samples from healthy blood donors were randomly allocated to groups. Randomization is not applicable to
the B-ALL cohort, since all patient samples were measured in the presence and absence of Blinatumomab.

Blinding Blinding was not feasible due to the necessity of knowing the treatment/control group allocations for accurate data interpretation and
analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
|:| |Z Antibodies |Z |:| ChlIP-seq
|Z |:| Eukaryotic cell lines |:| Flow cytometry
|Z |:| Palaeontology and archaeology |:| MRI-based neuroimaging
|:| Animals and other organisms
X|[] clinical data
|Z |:| Dual use research of concern
Antibodies
Antibodies used Antibodies (Epitope, Fluorochrome, Vendor, Identifier (RRID), Clone):

Imaging Flow Cytometry:

Anti-CD33 BV421 Biolegend Cat# 303416 WM53

Anti CD19 BV60S5 Biolegend Cat# 363023 SJ25C1

Anti-HLA-DR BB515 BD Biosciences Cat# 564516 G46-6
Anti-CD3 PE-Cy7 Biolegend Cat# 300419 UCHT1

Anti-CD45 APC Thermo Fisher Scientific Cat# 17-0459-42 HI30
Zombie NIR Biolegend Cat# 423105

CytoStim Experiment:

Anti-CD16 BUV395 BD Biosciences Cat# 563785 3G8
Anti-CD8 BUV496 BD Biosciences Cat# 741199 SK1

Anti-CD33 BUV563 BD Biosciences Cat# 741369 WM33
Anti-CD27 BUV661 BD Biosciences Cat# 741609 M-T271
Anti-CD4 BUV737 BD Biosciences Cat# 612748 SK4

Anti-CD14 BUV805 BD Biosciences Cat# 612902 M5E2
Anti-CD141 BV421 BD Biosciences Cat# 565321 1A4
Anti-CD197 Pacific Blue BioLegend Cat# 353210 G043H7
Anti-CD20 BV480 BD Biosciences Cat# 566132 2H7

Fixable viability dye efluor506 Thermo Fisher Scientific Cat# 65-0866-14
Anti-CD11b BUV605 BD Biosciences Cat# 563015 M1/70
Anti-CD3 CD650 BD Biosciences Cat# 563851 UCHT1
Anti-CD56 BV711 BD Biosciences Cat# 563169 NCAM16.2
Anti-TCRab BV750 BD Biosciences Cat# 747180 IP26
Anti-CD45RA BV785 BD Biosciences Cat# 564552 HI100
Anti-CD45R0 FITC Biolegend Cat# 304242 UCHL1

Anti-CD123 PerCP-Cy5.5 Biolegend Cat# 306016 6H6
Anti-CD19 BB700 BD Biosciences Cat# 566396 SJ25C1
Anti-HLA-DR PE Thermo Fisher Scientific Cat# 12-9956-42 LN3
Anti-CD1c PE-Dazzle 594 Biolegend Cat# 331532 L161
Anti-CD154 PE-Cy5 Thermo Fisher Scientific Cat# 16-1541-82 MR1
Anti-CD11c PE-Cy7 BD Biosciences Cat# 561356 B-ly6
Anti-CD45 APC Thermo Fisher Scientific Cat# 17-0459-42 HI30
Anti-CD34 Alexa Fluor700 BD Biosciences Cat#f 659123 8G12
Anti-CD69 APC-Cy7 BD Biosciences Cat# 560912 FN50

OT-Il Experiment:

Anti-CD19 BUV395 BD Biosciences Cat# 563557 1D3
Anti-CD69 BUV737 BD Biosciences Cat# 612793 H1.2F3
Anti-CD11b BUV80S BD Biosciences Cat# 568345 M1/70
Anti-CD11c BV421 BD Biolegend Cat# 117343 N418
Anti-CD45.1 BV605 Biolegend Cat# 110737 A20
Anti-TCRb BV711 BD Cat# 743002 H57-597
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Anti-MHC-II BV786 BioLegend Cat# 107645 2G9
Anti-CD44 FITC eBioscience Cat# 11-0441-82 IM7
Anti-CD86 PE Biolegend Cat# 105105 PO3

Anti-CD4 RY586 BD Biosciences Cat# 568161 GK1.5
Anti-CD14 PE-Cy7 Biolegend Cat# 123316 Sal4-2
Anti-CD25 APC Biolegend Cat #102053 PC61

Anti-CD8a AF700 eBioscience Cat# 56-0081-82 53-6.7
Anti-CD45.2 APC efluor780 eBioscience Cat# 47-0454 104

CAR-T Experiment:

Anti-CD11c BUV395 BD Biosciences Cat# 564080 HL3
Anti-CD4 BUV496 BD Biosciences Cat# 612952 GK1.5
Anti-CD115 BUV563 BD Biosciences Cat# 748478 CDS-1R
Anti-CD43 BUV615 BD Biosciences Cat# 752307 S7
Anti-CD16/32 BUV737 BD Biosciences Cat# 612783 2.4G2
Anti-MHCII BUV805 BD Biosciences Cat# 748844 M5/114.15.2
Anti-F4/80 SB436 Thermo Fisher Scientific Cat# 562606 BM8
Anti-Ly6G BV480 BD Biosciences Cat# 746448 A18

Fixable viability dye efluor506 Thermo Fisher Scientific Cat# 65-0866-14
Anti-CD3 BV570 Biolegend Cat#f 100225 17A2

Anti-CD11b BV605 Biolegend Cat# 101237 M1/70
Anti-CD23 BV650 BD Biosciences Cat# 740456 B3B4
Anti-CD117 BV711 Biolegend Cat# 105835 2B8

Anti-CD150 BV785 Biolegend Cat# 115937 TC15-12F12.2
Anti-CAR GFP

Anti-NK1.1 PerCP Biolegend Cat# 108725 PK136

Anti-CD93 BB700 BD Biosciences Cat# 742187 AA4.1
Anti-SiglecH PerCP efluor710 Thermo Fisher Scientific Cat# 46-0333-82 eBio440c
Anti-CD69 PE Dazzle Biolegend Cat# 104535 H1.2F3
Anti-IlgM PE-Cy5 Biolegend Cat# 406544 RMM-1

Anti-CD8a PE-Fire700 Biolegend Cat# 100792 53-6.7
Anti-Ly6C PE-Cy7 Biolegend Cat# 128018 HK1.4

Anti-B220 PE-Fire 810 Biolegend Cat# 103287 RA3-6B2
Anti-CD41 APC Biolegend Cat# 133914 MWReg30
Anti-TCRab AF647 Biolegend Cat# 109218 H57-597
Anti-CD19 SPARK-NIR Biolegend Cat# 115568 6D5
Anti-TCRgd R718 BD Biosciences Cat# 751919 GL3
Anti-CD45 APC-Fire810 Biolegend Cat# 103174 30-F11
Blinatumomab Time Course:

AANti-CD16 BUV395 BD Biosciences Cat# 563785 3G8
Anti-CD19 BUV496 BD Biosciences Cat# 612938 SJ25C1
Anti-CD33 BUV563 BD Biosciences Cat# 741369 WM53
Anti-CD24 BUV615 BD Biosciences Cat# 751122 ML5
Anti-CD27 BUV661 BD Biosciences Cat# 741609 M-T271
Anti-CD8 BUV737 BD Biosciences Cat# 612754 SK1
Anti-CD45R0 BUV805 BD Biosciences Cat# 748367 UCHL1
Anti-CD28 BV421 BD Biosciences Cat# 742525 1293
Anti-CD39 BV480 BD Biosciences Cat# 746454 TU66
Anti-CD71 BV510 BD Biosciences Cat# 743305 M-A712
Anti-CD11c BV605 Biolegend Cat# 301636 3-Sept.
Anti-CD279 BV650 BD Biosciences Cat# 564104 EH12.1
Anti-CD94 BV711 BD Biosciences Cat# 743952 HP-3D9
Anti-TCRab BV750 BD Biosciences Cat# 747180 IP26
Anti-CD45RA BV786 BD Biosciences Cat# 563870 HI100
Anti-Caspase 3/7 probe Thermo Fisher Scientific Cat# C10423
Anti-CD3 Spark Blue Biolegend Cat# 344852 SK7

Anti-CD38 PerCP Biolegend Cat# 303520 HIT2

Anti-CD10 PerCPVio700 Miltenyi Cat# 130-114-5067 REA877
Anti-CD197 PE BD Biosciences Cat# 561008 3D12

Anti-CD56 PE-CF594 BD Biosciences Cat# 564963 R19-760
Anti-CD7 PE-Cy5 Biolegend Cat# 343110 CD7-6B7

Anti-CD25 PE-Fire700 Biolegend Cat# 356145 M-A251
Anti-TCRgd PE-Cy7 BD Biosciences Cat# 655410 11F2
Anti-CD4 PE-Fire810 Biolegend Cat# 344677 SK4

Anti-CD20 APC Biolegend Cat# 302309 2H7

Anti-CD34 APC-R700 BD Biosciences Cat# 659123 8G12
Anti-HLA-DR APC-Cy7 Biolegend Cat# 307618 L243
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T Cell Sort:

Anti-CD44 FITC Thermo Fisher Scientific Cat# 11-0441-82 IM7
Anti-CD62L PE-Cy7 BioLegend Cat# 104418 MEL-14

Anti-CD4 APC-Cy7 BiolLegend Cat# 100414 GK1.5

Anti-CD8 BUV395 BD Biosciences Cat# 563786 53-6.7

Blinatumomab Treatment:
Anti-CD16 BUV395 BD Biosciences Cat# 563785 3G8




Anti-CD19 BUV496 BD Biosciences Cat# 612938 SJ25C1
Anti-CD33 BUV563 BD Biosciences Cat#f 741369 WM53
Anti-CD24 BUV615 BD Biosciences Cat# 751122 ML5
Anti-CD27 BUV661 BD Biosciences Cat# 741609 M-T271
Anti-CD8 BUV737 BD Biosciences Cat# 612754 SK1
Anti-CD45 BUV805 BD Biosciences Cat# 612891 HI30
Anti-CD10 BV421 BD Biosciences Cat# 312218 HI10a
Anti-lgD Pacific Blue Biolegend Cat# 348223 |A6-2
Anti-CD39 BV480 BD Biosciences Cat# 746454 TU66
Anti-CD71 BV510 BD Biosciences Cat#f 743305 M-A712
Anti-CD20 PacOrange, BV570 Biolegend Cat# 302331 2H7
Anti-CD11c BV605 Biolegend Cat# 301636 3.9
Anti-CD123 BV650 BD Biosciences Cat# 563405 7G3
Anti-CD56 BV711 Biolegend Cat# 318336 HCD56
Anti-TCRab BV750 BD Biosciences Cat# 747180 IP26
Anti-CD45RA BV786 BD Biosciences Cat# 563870 HI100
Anti-CD57 BB515 BD Biosciences Cat# 565945 NK-1
Anti-CD11b FITC Biolegend Cat# 101206 M1/70
Anti-CD3 SparkBlue Biolegend Cat# 344852 SK7
Anti-CD38 PerCP Biolegend Cat# 303520 HIT2
Anti-CD94 BB700 BD Biosciences Cat# 566534 HP-3D9
Anti-TCRgd PerCP eF710 Invitrogen Cat# 46-9959-42 B1.1
Anti-CD30L PE R&D systems Cat# FAB1028P 116614
Anti-CD279 RY586 BD Biosciences Cat# 568119 EH12.1
Anti-CD1c PE Dazzle Biolegend Cat# 331532 L161
Anti-Tigit PE-Fire 640 Biolegend Cat# 372743 A15153G
Anti-CD25 PE-Fire700 Biolegend Cat# 356145 M-A251
Anti-CD14 PE Cy7 Tonbo Cat# 60-0149-T100 61D3
Anti-CD4 PE-Fire810 Biolegend Cat# 344677 SK4
Anti-CD197 APC BD Biosciences Cat# 566762 2-L1-A
Anti-CD160 AF647 Biolegend Cat# 341203 BY55
Anti-CD69 SPARK-NIR Biolegend Cat# 310957 FN50
Anti-CD127 APC R700 BD Biosciences Cat# 565185 HIL-7R-M21
Anti-CD34 APC-Cy7 Biolegend Cat# 343514 581
Anti-HLA-DR APC-Fire810 Biolegend Cat# 307674 1243

LCMV Experiment:

Anti-MHC-1I BUV395 BD Biosciences Cat# 743876 2G9
Anti-Live Dead blue Thermo Fisher Scientific Cat# L34961
Anti-CD24 BUV563 BD Biosciences Cat# 749336 M1/69
Anti-CD11c BUV615 BD Biosciences Cat# 751222 N418
Anti-ICOS BUV737 BD Biosciences Cat# 567919 C398.4A
Anti-CD11b BUV80S BD Biosciences Cat# 568345 M1/70
Anti-CD45.1 BV421 Biolegend Cat# 110732 A20
Anti-CD19 BV480 BD Biosciences Cat# 566167 1D3
Anti-CD117 BV510 Biolegend Cat#t 105839 2B8
Anti-Ly6G BV570 Biolegend Cat# 127629 1A8
Anti-CD138 BV605 Biolegend Cat# 142515 281-2
Anti-Ly6C BV650 Biolegend Cat# 128049 HK1.4
Anti-CD90.1 BV711 Biolegend Cat# 202539 OX-7
Anti-CD25 BV785 Biolegend Cat# 102051 PC61
Anti-CD45.2 FITC Biolegend Cat# 109806 104
Anti-CD317 PerCP-efluor710 Biolegend Cat# 127021 927
Anti-CD8 RB780 BD Biosciences Cat# 568692 53-6.7
Anti-CD68 PE Biolegend Cat# 137013 FA-11

Anti-CD4 RY586 BD Biosciences Cat# 568161 GK1.5
Anti-CD172 PE-Dazzle594 Biolegend Cat# 144015 P84
Anti-F480 PE-CyS Biolegend Cat# 123111 BM8
Anti-CD357 PE-Cy7 Biolegend Cat# 126309 DTA-1
Anti-TCRb APC Biolegend Cat# 109212 H57-597

Anti-lgD SparkNIR 685 Biolegend Cat# 405749 11-26c¢.2a
Anti-TCRgd R718 BD Biosciences Cat# 751919 GL3
Anti-CD3 APC-Cy7 BD Biosciences Cat# 561042 145-2C11
Anti-NK1.1 APC-Fire810 Biolegend Cat# 156519 S17016D

Intracellular signaling (revision):

Anti-CD4 Spark UV387 Biolegend Cat# 344686 SK3
Anti-CD3 BUV395 BD Biosciences Cat# 563548 SK7
Anti-CD8 BUV496 BD Biosciences Cat# 741199 SK1
Anti-CD45R0O BUV805 BD Biosciences Cat# 748367 UCHL1
Anti-CD19 BV421 Biolegend Cat# 302233 SJ25C1
Anti-CD14 violetFluor 450 Tonbo Cat# 75-0149-T100 61D3
Anti-CD20 BV570 Biolegend Cat# 302331 2H7

Anti-CD56 BV711 Biolegend Cat# 318336 HCD56
Anti-CD45RA BV786 BD Biosciences Cat# 563870 HI100
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Anti-CD27 RB705 BD Biosciences Cat# 757295 L128
Anti-Ki67 RB744 BD Biosciences Cat# 570503 B56
Anti-PLCy1 PE Miltenyi Cat# 130-104-969 REA341
Anti-CD94 RY586 BD Biosciences Cat# 753479 HP-3D9
Anti-CD33 PE-Dazzle594 Biolegend Cat# 303431 WM53
Anti-CD197 PE-Fire640 Biolegend Cat# 353261 GO43H7
Anti-CD25 PE-Fire700 Biolegend Cat# 356145 M-A251
Anti-TCRgd PE-Cy7 BD Biosciences Cat# 655410 11F2
Anti-pCD247 AF647 BD Biosciences Cat# 558489 K25-407.69
Anti-CD16 cFluor R720 Cytek Biosciences Cat# R7-20006 3G8
Live Dead Zombie NIR Biolegend Cat# 423105

Anti-HLA-DR APC-Cy7 Biolegend Cat# 307618 L243
Anti-CD45 APC-Fire810 Biolegend Cat# 304076 HI30

Imaging flow cytometry (revision):

Anti-CD45.2 RB545 BD Biosciences Cat# 756290 104
Anti-CD8 PE BiolLegend Cat# 100707 53-6.7

Anti-CD4 Pe-Fire640 BioLegend Cat# 100481 GK1.5
Anti-CD90.1 Pe-Cy7 BiolLegend Cat# 202518 OX-7

Anti CD45.1 BV421 BiolLegend Cat# 110732 A20
Anti-CD3 BV510 BioLegend Cat# 100234 17A2
Anti-CD19 SPARK-NIR 587 BioLegend Cat# 115568 6D5
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LCMV experiment (revision):

Anti-CD19 Spark UV 387 Biolegend Cat# 115585 6D5
Anti-CD48 BUV395 BD Biosciences Cat# 740236 HM48-1
Anti-CD4 BUV496 BD Biosciences Cat# 612952 GK1.5
Anti-CD44 BUV563 BD Biosciences Cat# 741227 IM7
Anti-CD43 BUV615 BD Biosciences Cat# 752307 S7
Anti-CD71 BUV661 BD Biosciences Cat# 741481 C2
Anti-CD24 BV737 BD Biosciences Cat# 612832 M1/69
Anti-CD62L BUV805 BD Biosciences Cat# 741924 MEL-14
Anti-CD45.1 BV421 Biolegend Cat# 110732 A20
Anti-SiglecF SB436 Thermo Fisher Scientific Cat# 62-1702-82 1RNM44N
Anti-CD105 Pacific Blue Biolegend Cat# 120411 MJ7/18
Anti-Ly6G BV480 BD Biosciences Cat# 746448 A18
Anti-CD3 BV510 Biolegend Cat# 100234 17A2

Anti-NK1.1 BV570 Biolegend Cat# 108733 PK136
Anti-CD172a BV605 BD Biosciences Cat# 740390 P84
Anti-CD23 BV650 BD Biosciences Cat# 740456 B3B4
Anti-CD117 BV711 Biolegend Cat# 105835 2B8
Anti-CD138 BV785 Biolegend Cat# 142534 281-2
Anti-CD45.2 RB545 BD Biosciences Cat#f 756290 104
Anti-CD21/35 APC BD Biosciences Cat# 123412 7E9
Anti-Ly6C PerCP Biolegend Cat# 128028 HK1.4
Anti-CD317 BB700 BD Biosciences Cat# 747601 927
Anti-lgM PerCP-efluor710 Thermo Fisher Scientific Cat# 46-5790-80 11/41
Anti-CD11b RB744 BD Biosciences Cat# 570513 M1/70
Anti-MHCII PE Tonbo Cat# 50-5321-U100 M5/114.15.2
Anti-F4/80 Spark YG 593 Biolegend Cat# 157311 QA17A29
Anti-CD64 PE-Dazzle594 Biolegend Cat# 164412 W18349C
Anti-CD25 PE-Fire640 Biolegend Cat# 102071 PC61
Anti-CD11c PE-Cy5 Biolegend Cat# 117316 N418
Anti-CD8a PE-Fire700 Biolegend Cat# 100792 53-6.7
Anti-CD90.1 PE-Cy7 Biolegend Cat#f 202518 OX-7
Anti-B220 PE-Fire810 Biolegend Cat# 103287 RA3-6B2
Anti-CD41 APC Biolegend Cat#f 133914 MWReg30
Anti-TCRab AF647 Biolegend Cat# 109218 H57-597
Anti-TCRgd R718 BD Biosciences Cat# 751919 GL3

Live Dead Zombie NIR Biolegend Cat# 423105

Anti-Scal APC-Cy7 BD Biosciences Cat# 560654 D7

Validation All antibodies used in this study are commercially available, broadly established, and validated by the respective manufacturers for
the indicated species and applications, as detailed on their websites (see RRIDs above for each antibody). Validation information for
each primary antibody includes species reactivity, specificity, and application data provided by the manufacturers.

In addition, all primary antibodies have been routinely used in our laboratory with reproducible and consistent results across multiple
experiments and independent batches. This includes verification of expected staining patterns in positive control tissues/cells and the
absence of non-specific staining in negative controls




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Mice were maintained in individually ventilated cages under SPF conditions in the animal facility of the DKFZ (Heidelberg, Germany)
or at the Charité animal facility (FEM, Berlin, Germany) with ad libitum access to water and food (22 + 2 °C, 45-65 % humidity, 12h
light-dark cycle). Mice used in LCMV experiments were 7 weeks old; all other mice were between 6-20 weeks old. CD45.1 mice were
obtained from in house breeding at DKFZ (2110102, B6.SJL- Ptprca Pepcb/Boyl) or from Charles Rivers (B6.SJL-PtprcaPepcb/BoyCrl).
For experiments with antigen-specific T cells, cells were isolated from B6.Cg-Tg(TcraTcrb)425Chn/J (OT-I1) or LCMV-TCRtg P1454 and
Smarta55 mice expressing the congenic markers CD45.1 or CD90.1. All other mice were C57BL6/J.

Wild animals The study did not involve wild animals.

Reporting on sex All mice were female.
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Field-collected samples  No samples were collected from the field.

Ethics oversight Unless otherwise stated, animal experiments were conducted under German law and approved by Regierungsprasidium Karlsruhe
(approval number DKFZ299, G-55/20, G-56/20) or the Landesamt fuir Gesundheit und Soziales in Berlin (LAGeSo, G0016/20).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
X, All plots are contour plots with outliers or pseudocolor plots.

X, A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation a) PBMC samples from healthy blood donors were obtained as buffy coats from the blood donation center IKTZ Heidelberg.
Mononuclear cells were isolated by Ficoll (GE Healthcare) density gradient centrifugation and stored in FCS 10% DMSO in
liquid nitrogen until usage. Cryopreserved PBMCs were thawed in a water bath at 37°C, transferred to 10% FCS RPMI-1640
and washed twice. After each washing step, cells were centrifuged at 350g for 5 min. 2 x 105 cells were plated in 10% FCS
RPMI-1640 and cultured short term for up to 5h in 200 pl RPMI 10% FCS. CytoStim (Miltenyi) was used in concentrations
recommended by the manufacturer at 37°C for 2 hours before harvest. For experiments using a Blinatumomab analog
(Invivogen), a concentration of 50 ng/ml was used. The incubation period ranged from 0.25 to 5 hours at 37°C and 5% CO2 in
96-well U-bottom plates. For experiments assessing the stability of Blinatumomab-induced interactions upon
cryopreservation, cells were either incubated for 2h in presence of the compound and stained with surface antibodies and
fixed with 4% PFA (ThermoFisher) or frozen in Bambanker freezing medium (Nippon Genetics), thawed after 18h and treated
in the same way as the non-frozen cells.

b) Blinatumomab response analysis: Bone marrow aspirates obtained from 42 relapsed B-ALL patients were thawed in a
water bath at 37°C, transferred to 10% FCS RPMI-1640 and washed twice. After thawing, each sample was split into two. One
half of the sample was cultured in 200 pl RPMI 1640 (10% FCS) supplemented with 50ng/ml Blinatumomab analog
(Invivogen) for 1 hour at 37°C and 5% CO2 in a 96 well U-bottom plate. The other half of the sample was cultured in RPMI
1640 (10% FCS) without Blinatumomab supplementation for 1h at the same conditions. After the incubation, cells were
harvested, washed with FACS buffer, stained with the surface marker panel and analyzed.

c) For in vitro benchmarking experiments, human PBMCs were treated with CytoStimTM as described above; control groups
were left untreated. Subsequently, cells were split into two groups each and stained with CD45-APC-Fire810 or CD45-PE-
Fire640, respectively. After mixing the labelled groups, cells were incubated for 0-4h at 4 °C (200 000 cells/well in 50 uL
during staining/acquisition) or processed at seeding densities of 25,000 to 250,000 cells per well in 96-well plates (50 pL
during staining/acquisition). Subsequently, cells were harvested, washed with FACS-buffer, stained with surface markers,
fixed with 2 % PFA (except the non-fixed control) and analyzed.

d) For measuring phosphorylated CD247, human PBMCs were seeded at 100,000 cells/well in 200 pL and treated for 1h with
Blinatumomab (160 ng/mL) or CytoStimTM as described above. Following the stimulation period, cells were fixed
immediately by adding CytoFix buffer (15 min, 4°C). Cells were washed and resuspended in 200 uL 2.5x Perm/Wash buffer,
incubated for 30 min at 37°C, and stained overnight at 4°C before analysis.

e) Mice were euthanized through cervical dislocation. For isolation of antigen-specific T cells, the spleen and various lymph
nodes (including inguinal, axial, submandibular, and mesenteric) were carefully extracted. Tissues were homogenized using a
40um filter (Falcon) and a syringe plunger in cold RPMI (Sigma Aldrich) with 2% FCS (Gibco by Lifetechnologies).




Instrument

Software

Cell population abundance

Gating strategy

Subsequently, single-cell suspensions from spleens were treated with erythrocyte lysis solution (ACK buffer, containing 0.15
M NH4Cl, 1 mM KHCO3, and 0.1 mM Na2EDTA in water from Lonza) for a duration of 5 minutes. For some readouts, these
suspensions were combined with the lymph node samples or maintained separated. CD4+ and CD8+ T cells were purified
using either the Dynabeads Untouched Mouse CD4 Cells Kit (Invitrogen) or the murine CD4+ T cell isolation kit and the
murine CD8+ T cell isolation kit (Miltenyi) according to the manufacturer’s instructions. Purified fractions were stained for
further purification using FACS (see section Flow cytometry, cell sorting and image cytometry). For in vivo experiments,
femurs, spleen and various lymph nodes were dissected and kept separate on ice. Lymph nodes and spleens were individually
processed as described above. Femurs were flushed using FACS buffer and homogenized using a 40um filter (Falcon) and a
syringe plunger.

f) For the in vivo benchmarking experiment, LCMV-specific CD4+ T cells were transferred into C57BL6 (CD45.2) hosts 5 days
prior to infection as described above. CD45.1 (B6.SJL-PtprcaPepcb/BoyCrl) and CD45.2 hosts were infected intraperitoneally
as described above, and spleens were harvested on day 7 post-infection. Spleens were split into 4 equal pieces and mixed
across CD45.1/CD45.2 hosts for joint tissue homogenization (see Supplementary Figure 11A). Mixed samples were processed
for spectral flow cytometry analysis.

Unless otherwise stated, cell suspensions were resuspended in 2% FSC 0,5 mM EDTA PBS (FACS buffer) for performing flow
cytometric stainings. For ex vivo readouts with bi-specific engagers and antigen specific T cells, cells were harvested,
centrifuged 5 min at 350 g and stained with surface marker panel master mixes using FACS buffer and addition of Brilliant
Stain buffer (BD) according to the manufacturer’s recommendation. Cells were stained for 30 min on ice in 96-well V-bottom
plates, followed by washing with FACS buffer, centrifugation for 5 min at 350g and resuspension in 200 ul FACS buffer. For
more time-consuming in vivo experiments, cells were labeled with fixable dead cell exclusion dyes followed by fixation of
obtained single-cell suspensions with cold 2% PFA PBS for 15 min at room temperature. Cells were washed, centrifuged for 5
min at 350 g and then stained for 12h at 4°C. After washing and centrifugation for 5 min at 350g, cells were filtered through a
35-um cell strainer and kept on ice until flow cytometric analysis.

For image-enabled cell sorting, PBMCs were incubated for 2h with CytoStim, stained with surface markers followed by
fixation with 2% PFA PBS as described above and operated using a 100 um sort nozzle, with the piezoelectric transducer
driven at 34 kHz and automated stream setup by BD FACSChorusTM Software, and a system pressure of 20 psi.

For the ImageStream®X experiment, data was acquired using the Cytek® INSPIRE™ software. ImageStream®X fluorescence
intensity values (based on the sum of the pixel intensities in the mask as selected by ImageStream®X, background subtracted)
were compensated and transformed using FlowJo (v10.10) and IDEAS (v6.2). Data was processed using PICtR (see below).
Interacting populations were solely annotated based on mutually exclusive marker expression, since forward scatter
properties are not acquired by ImageStream®X. For conventional gating, gates were selected in FlowJo according to the
strategy shown in Supplementary Figure 10G.

For flow cytometric analysis, a Cytek Aurora (Cytek Biosciences) or LSR Fortessa (BD) equipped with 5 lasers were used. For
sorting of naive T cells in ex vivo setups, FACSAria Fusion or FACSAria |l sorters equipped with 70 um nozzles were used. For
imaging cytometry, image-enabled cell sorting using the BD CellViewTM Imaging Technology was used. For the
ImageStream®X experiment, data was acquired using the ImageStream®X (Cytek) and the Cytek® INSPIRE™ software.

Software used for the acquisition and analysis of flow cytometry and image cytometry data is described above in the
"Software and Code" section.

Purity in post sort fractions was not directly determined. Post sort cytometry data gave detailed insights into the biology of
sorted cell populations.

FSC-SSC gates were set so that FSC-low and SSC-high events were excluded (cell gate). If applicable, dead cells were removed
by gating on cells low in viability dyes (Anti-Live Dead blue, efluor506, or Zombie NIR).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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