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Diffusion-weighted MRI is critical for diagnosing and managing ischemic
stroke, but variability in images and disease presentation limits the general-
izability of Al algorithms. We present DeepISLES, a robust ensemble algorithm
developed from top submissions to the 2022 Ischemic Stroke Lesion Seg-
mentation challenge we organized. By combining the strengths of best-
performing methods from leading research groups, DeepISLES achieves
superior accuracy in detecting and segmenting ischemic lesions, generalizing
well across diverse axes. Validation on a large external dataset (N =1685)
confirms its robustness, outperforming previous state-of-the-art models by
7.4% in Dice score and 12.6% in F1 score. It also excels at extracting clinical
biomarkers and correlates strongly with clinical stroke scores, closely match-
ing expert performance. Neuroradiologists prefer DeeplSLES’ segmentations
over manual annotations in a Turing-like test. Our work demonstrates Dee-
PISLES’ clinical relevance and highlights the value of biomedical challenges in
developing real-world, generalizable Al tools. DeepISLES is freely available at

https://github.com/ezequieldlrosa/Deeplsles.

Brain imaging is crucial to evaluate tissue viability and fate in ischemic
stroke. Magnetic resonance imaging (MRI) supports physicians
through various stages of the disease. It helps define the optimal
reperfusion treatment, unveils the stroke etiology, and sheds light on
prognostic clinical outcomes'. Diffusion-weighted imaging (DWI) is
considered the current gold standard for imaging the ischemic core*.
Although imperfect, DWI is the only imaging technique reliably
demonstrating parenchymal injury within minutes to hours from the
stroke onset®. Currently, deep learning algorithms are revolutionizing
medical imaging, demonstrating unprecedented performance across
multiple radiological tasks. Segmentation of ischemic stroke tissue
using deep learning has been proposed in different works®’. The
complexity of the task lies in multiple sources of variability thatinvolve
image- (e.g., driven by center- and scanner-specific MRI acquisition
differences, artifacts mimicking ischemic lesions'®, time-dependent
DWI signaling*”, etc.), patient- (e.g., age®) and disease-specific char-
acteristics (such as the subtype of stroke and its etiology®). Little is
known, however, about the real-world transferability potential of deep

learning algorithms for ischemic stroke segmentation, their general-
ization towards diverse cohorts and image characteristics, and their
ultimate clinical utility.

Biomedical challenges are international competitions aiming to
benchmark task-specific algorithms under controlled settings'. The
organization of medical image challenges has rapidly grown, enabling
to tackle problems related to diverse organs, tasks (e.g., lesion detec-
tion or anatomy segmentation), and image modalities (such as MRI,
CT, among others)* ™. Challenges are now considered a de facto gold
standard for algorithm comparison by the research community*® and
have also been adopted by the Radiological Society of North America
(RSNA) (https://www.rsna.org/rsnai/ai-image-challenge). Segmenta-
tion of stroke lesions from MRI has not been an exception, and the
number of methods devised targeting this task considerably increased
following the 2015 Ischemic Stroke Lesion Segmentation (ISLES)
challenge”. ISLES'15 is considered a reference evaluation tool for the
segmentation of brain ischemia. In the past few years, studies high-
lighting the strengths and weaknesses of challenge organization
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emerged, providing good implementation practices'**>*. Such initia-
tives considerably improved the quality of current challenges
regarding execution, interpretation, fairness, transparency, and
reproducibility.

Biomedical challenges, when properly designed, are powerful.
They operate as international problem-solving sprints that involve
leading researchers worldwide. Therefore, we take advantage of such
an event to rapidly prototype and identify candidate ischemic stroke
segmentation algorithms. We hypothesized that (1) a challenge might
yield an algorithm or a strategy that reliably detects and segments
brain ischemia under real-world, heterogeneous data scenarios, and
(2) such an algorithm may generalize beyond the challenge context to
real-world data, thus becoming relevant to downstream clinical ana-
lysis. We organized the ISLES22 challenge during the 2022 Interna-
tional Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI)*** to test these hypotheses. ISLES'22
builds on top of the experience gained from the earlier ISLES’15,
overcoming some of its drawbacks by adhering to current challenge
standards®*, by using a standardized platform** for the fair assess-
ment of software solutions, and by including more than six times the
number of patients than ISLES’15.

In this paper, we introduce DeepiSLES, a robust and ready-to-use
deep learning algorithm for ischemic stroke segmentation developed
from algorithmically diverse submissions to the ISLES22 challenge.
DeeplSLES exhibits strong generalization capabilities across various
data variability dimensions and achieves performance levels compar-
able to expert radiologists on a large external real-world dataset. Fur-
thermore, our study underscores the potential of biomedical
challenges to produce models that extend beyond the challenge
dataset itself, emphasizing their real-world clinical relevance and
bridging the gap between biomedical research and clinical practice. To
promote wider use, validation, and adoption, DeeplSLES is publicly
available in multiple formats including a standalone application with a
graphical user interface, a web-based service, a Docker image, and its
source Git repository. All versions can be accessed from https://github.
com/ezequieldlrosa/Deeplsles.

Results

DeeplSLES: a robust algorithm derived from leading ISLES'22
submissions

During the ISLES22 challenge (May-August 2022), a total of 476 par-
ticipants registered, and 325 dataset downloads were recorded by the
closing date. Twenty teams validated their algorithms on the remote
servers during the sanity-check phase, leading to 15 deep learning
submissions in the final test-phase, of which 12 met the participation
criteria®”. Details about these solutions are available in supplementary
material section 1. Figure 1(A) provides an overview of the challenge
structure and its phases. In the model development (a.k.a. train) phase,
teams leveraged labeled datasets to develop algorithmic solutions,
which were subsequently assessed on undisclosed data during the
model testing phase. The challenge datasets were intentionally left raw
and unprocessed to simulate real-world scenarios, compelling parti-
cipants to design end-to-end algorithmic methods. The external
dataset utilized for evaluating the performance of our proposed
algorithm in a post-challenge, “real-world” setting is also summarized
in Fig. 1(A).

The ISLES22 challenge represented a pivotal opportunity to fos-
ter a wide array of technical methods and learning strategies, achieving
a level of heterogeneity that would be difficult for an individual
researcher to accomplish independently. A fingerprint of the partici-
pating algorithms is presented in Fig. 1(B). The most prevalent archi-
tectures included nnU-Net” and U-Net-like”* neural networks,
though other approaches were also submitted. Similarly, various loss
functions were employed, with Dice combined with categorical cross-
entropy being the most commonly chosen. Figure 1(C) provides a

visual ranking of the submitted methods. Notably, the top three teams
employed diverse algorithmic strategies, differing in deep learning
architectures, loss functions, and even model inputs. The winner of the
ISLES’22 challenge, algorithm SEALS, led the leaderboard in detection
metrics, specifically the lesion-wise F1 score and absolute lesion count
difference (Table S2.1 and Fig. S2.1 in supplementary material). The
lesion-wise F1 score quantifies detection performance at the individual
lesion level, reflecting the model’s ability to correctly localize and
identify each distinct lesion. In contrast, the Dice coefficient measures
spatial overlap at the voxel level and is therefore biased toward larger
lesions; as a result, failure to detect small lesions has limited effect on
the Dice score but leads to a marked decrease in the lesion-wise
F1 score. Assessing both, therefore, helps to paint a clearer picture of
model performance. The second-ranked method, NVAUTO, excelled in
segmentation-derived metrics, leading in both Dice coefficient and
absolute volume difference. The third position was jointly held by two
algorithms (SWAN and PAT-see section 3 in the supplementary
material); however, post-challenge analyses exploring variations in
ranking methodologies ultimately favored the algorithm SWAN (sup-
plementary material section 4).

Inspired by the diversity of the submitted methods, we sought to
leverage these varied approaches to develop a comprehensive
ensemble solution for ischemic stroke segmentation, aiming to com-
bine the strengths while simultaneously addressing the limitations of
individual algorithms. Therefore, in a post-challenge scenario and in
collaboration with participants from the three top-ranked teams, we
developed DeepISLES, a comprehensive algorithm for stroke lesion
segmentation. DeeplSLES facilitates end-to-end processing of scans,
starting from native image series obtained in clinical settings (possibly
even in DICOM format). When compared with the other methods
submitted to the challenge, DeepISLES achieved the highest position
on the (post-challenge) leaderboard (supplementary material sec-
tion 5), demonstrating exceptional performance across all evaluated
metrics. The leaderboard is presented in Table S2.1 and Fig. S2.1
(supplementary material section 2). Additional statistics regarding the
challenge rankings, derived from a thousand bootstrap experiments,
are detailed in the sections 3-5 in the supplementary material. These
include analyses of DeepISLES’ performance, ranking stability, robust-
ness to ranking methodologies, and inter-algorithmic comparisons.

From a MICCAI challenge to a real-world solution

We aim to test the hypothesis that a method derived from a challenge
might indeed be relevant for real-world, downstream clinical tasks. The
hypothesis is tested in two steps. First, we evaluate DeepISLES over
diverse clinical and imaging scenarios of the challenge test set to
expose potential suboptimal or biased performance toward specific
data subgroups. Disease and imaging confounders such as the imaging
center, ischemic lesion size, stroke phase, type of stroke pattern/
configuration, and vascular territory affected are considered. Second,
DeeplSLES is evaluated on a large, external stroke dataset to assess its
lesion segmentation performance and clinical relevance in real-world
settings, and is compared with a state-of-the-art model trained and
validated on the same dataset. In the following subsections, we focus
on each of these aspects.

Can DeeplSLES identify ischemic lesions in scans from an unseen
imaging center? Algorithmic robustness to out-of-domain data
(unseen during the model’s development phase) is crucial for evalu-
ating the algorithm’s transferability to real-world centers. Figure 2(A)
shows how DeepISLES performs over test-phase data from seen (cen-
ters #1 and #2) and unseen (center #3) centers during the development
of the algorithm. The distribution of the metrics obtained over the
unseen center #3 is similar to the metric’s distribution obtained over
the seen center #1, suggesting an overall good generalization to new
center data (Dice p-value = 0.73, F1 score p-value = 0.60, ALD p-
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Fig. 1| Overview of the ISLES’22 challenge and post-challenge experimental
design, including the developed algorithmic solutions. A Challenge and post-
challenge phases and datasets. B Summary of algorithmic solutions stratified by

network architecture, loss function, and input modalities. C Challenge leaderboard
stratified by network architecture, loss function, and input modalities. CE Cross-
entropy.

value =0.42, AVD p-value = 0.08, Wilcoxon rank-sum tests). The per-
formance obtained over the seen center #2 is lower in terms of Dice
score compared to the center #1 (p-value < 0.001, Wilcoxon rank-sum
test). The F1score, AVD and ALD metrics are similar between centers #1
and #2 (F1 score p-value = 0.60, ALD p-value = 0.26, AVD p-value = 0.28,
Wilcoxon rank-sum tests). The lower Dice scores in center #2 can be
explained by two cohort confounders. Firstly, the scans from center #2
include smaller lesion volumes than scans from the other two centers®®
(p-value = 0.039 for center #1 vs center #2, p-value = 0.001 for center
#2 vs center #3, p-value = 0.56 for center #1 vs center #3, Wilcoxon
rank-sum tests). Figure S2.1 (supplementary material section 2) shows

the non-linear, monotonic correlation between lesion size and Dice
scores for the test set data. The fact that larger objects (i.e., brain
lesions) benefit from higher Dice scores is well known and, therefore, is
associated with the found results®*% Secondly, unlike the train phase
data, which considers scans acquired in the sub-acute stroke phase
after reperfusion treatment, the test set scans from center #2 are
acquired in the acute stroke phase, before the patient’s reperfusion
treatment, which is known to be a harder task for the algorithms®. The
following sections analyze both of the aforementioned confounding
factors. It is worth noting a potential third confounder related to the
imbalance in training data (4:1 for centers #1:#2, as shown in Table 3).
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Fig. 2 | Test set performance metrics obtained by DeepISLES. A Performance by
imaging center. Data is grouped by the center where the images come from (#1, #2,
or #3) and by a seen or unseen label indicating if images from the same center were
used for training the models. B Performance by lesion size. C Performance by
stroke phase (acute or sub-acute). D Performance by the stroke phase (acute or sub-
acute) grouped by lesion size. E Performance by stroke pattern subgroups,
including single vessel infarcts, scattered infarcts based on micro-occlusions, and
single vessel infarcts with accompanying scattered infarcts. All boxplots are based
on a sample size of N=150. Boxes show the interquartile range (IQR; 25th-75th

percentiles), the center line marks the median, whiskers span values within

1.5 xIQR, and points beyond are displayed as outliers. 5th, 50th, and 95th inter-rater
variability percentiles are plotted in dashed lines for Dice and F1 score. SVI: single
vessel infarct; SI: scattered infarcts based on micro-occlusions; SVI with SI: single
vessel infarct with accompanying scattered infarcts. DSC Dice Similarity Coeffi-
cient; F1 score lesion-wise F1 score; AVD absolute volume difference; ALD absolute
lesion count difference. y-axes are displayed using a non-linear scale to enhance
data visibility. Source data are provided as a Source Data file.

However, we chose to disregard this factor because the model
demonstrated strong generalization abilities to scans from an entirely
new center.

Can DeeplSLES identify stroke lesions of variable size? We test
DeeplSLES performance over lesions smaller than 5 ml, lesions larger

than or equal to 5 ml but smaller than 20 ml, and lesions larger than or
equal to 20 ml. The performance metrics over these groups are shown
in Fig. 2(B). The relationship between lesion size and metrics like Dice,
AVD, and ALD is anticipated; larger lesions typically yield higher Dice
values, while AVD and ALD tend to increase with lesion size. Despite
this, DeepISLES demonstrates strong generalization performance
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Table 1| Algorithmic classification performance of stroke patterns (above) and vascular territories (below)

Stroke pattern

SVI (N=62) S| based on micro-occlusions (N = 48) SVI with accompanying Sl (N = 38) All stroke (N=148)

Team F1score Balanced Accuracy
SEALS 87.6 75.6 68.8 781
NVAUTO 88.1 78.6 68.1 78.9
SWAN 85.0 75.9 68.2 76.2
DeeplISLES 87.6 91.8 81.6 86.9

Vascular territory

MCA (N=97) PCA (N=23) ACA (N=4) Pons/Medula (N =4) Cerebellum (N=20) All stroke (N=148)
Team F1 score Balanced Accuracy
SEALS 97.9 93.3 88.9 80.0 97.6 97.4
NVAUTO 97.9 95.7 80.0 88.9 97.4 97.3
SWAN 96.8 93.3 66.7 100.0 97.6 92.2
DeeplISLES 98.4 93.3 100.0 88.9 97.6 97.6

DeepISLES is notably superior to any individual solution in identifying the stroke pattern and the vascular territory. All metrics are reported in percentage values. The best results are highlighted in

bold. Source data are provided as a Source Data file.

SVI single vessel infarct, Sl scattered infarcts, MCA middle cerebral artery, ACA anterior cerebral artery, PCA posterior cerebral artery.

across varying ischemic lesion sizes, achieving comparable ischemia
detectability as measured by F1 scores. Furthermore, there is a high
volumetric agreement between the algorithm and ground truth masks
for all lesion sizes, with Pearson r=0.98 for the entire test set, r=0.87
for lesions smaller than 5 ml, r=0.90 for lesions equal to or larger than
5ml but smaller than 20 ml, and r = 0.96 for lesions larger than or equal
to 20 ml. DeepISLES demonstrated robustness towards diverse stroke
lesion sizes. Figure S3 (supplementary material section 2) shows the
volumetric agreement between the ground truth and DeepISLES pre-
dictions for different lesion sizes.

Can DeeplSLES identify ischemia in acute and sub-acute scans? In
order to assess the generalizability of the algorithm to diverse stroke
phases, we split the challenge test set scans into two subgroups: acute
(i.e., scans that were acquired as part of the acute stroke diagnostics,
within a few hours of stroke onset and before thrombectomy treat-
ment) and sub-acute (i.e., scans acquired within days after stroke onset
and after thrombectomy treatment). In Fig. 2(C), the performance
metrics for the two subgroups are shown. It can be observed that the
algorithm predicts acute scans with similar lesion-wise F1 scores (p-
value = 0.45, Wilcoxon rank-sum test) but with lower Dice scores (p-
value < 0.001, Wilcoxon rank-sum test) than the sub-acute group. On
the contrary, the performance in terms of absolute volume difference
and lesion count difference is better for the acute stroke group than
for the sub-acute stroke group. These trends are partially due, as ear-
lier introduced, to the lower overall lesion size of the acute group
compared to the sub-acute one. However, it remains unclear if the
lesion size is the sole responsible for this behavior and what the role of
the stroke phase is, especially considering that the training dataset
exclusively comprises sub-acute scans. To get insights about it, the test
set is grouped considering both the variables: lesion size and the
stroke phase. Figure 2(D) shows the corresponding performance
metrics. It can be seen that even when splitting the scans using mat-
ched lesion-size groups, the lower Dice and AVD performance persists.
This indicates that the decline in performance may be attributed to the
earlier acute phase of the disease, which was not included in the
models’ development phase. Moreover, in Figure S2.3 (supplementary
material section 2), volumetric scatter plots and Bland-Altman plots
are shown. There is an excellent agreement between the ground truth
and DeeplISLES-predicted lesion volumes for both groups (Pearson
r=0.99 and r=0.98 for the acute and sub-acute groups, respectively).

Can DeeplSLES predict different stroke clinical patterns? We eval-
uate whether DeepISLES performs reliably under diverse stroke lesion

patterns. With this aim, the test-phase scans are classified into three
stroke sub-groups: single vessel infarcts (SVI), scattered infarcts based
on micro-occlusions, and SVI with accompanying scattered infarcts.
First, looking for a potential bias towards a specific stroke subgroup,
the algorithm performance is evaluated in a subgroup-stratified
approach. Second, we frame the problem into a clinically relevant
question: Can DeeplSLES identify the stroke subgroup? In Fig. 2(E), the
lesion segmentation performance of the algorithm is shown for each
metric and for each type of stroke pattern. A similar performance in
terms of Dice score and F1 score for the different stroke subgroups can
be appreciated. The lower AVD seen in the group scattered infarcts
based on micro-occlusions is due to the fact that emboli are typically
smaller lesions than SVI and, therefore, this group includes scans with
smaller lesion volumes (percentiles [5th, 50th, 95th] of [0.9, 4.4, 36.9]
ml) compared to SVI lesions (percentiles [5th, 50th, 95th] of [1.5, 24.9,
137.9] ml) and SVI with scattered infarcts (percentiles [5th, 50th, 95th]
of [6.4, 24.5, 134.5] ml). Moreover, the SVI group exhibits lower ALD
since their scans have, by definition (see Section “Methods”), less dis-
connected ischemic lesions. Next, the algorithm’s capability to predict
each scan’s stroke subgroup is evaluated. Prediction of the stroke
subgroup is generated by applying a heuristic rule defined by radi-
ologists to the stroke masks (details of the classification criteria are
available in the Methods section). Results for each of the top-3 ranked
methods, as well as for DeepISLES, are summarized in Table 1. The most
challenging scans to identify are the ones exhibiting an SVI with
accompanying scattered infarcts. It is also worth noting that the solu-
tion submitted by the team NVAUTO (which ranked second in the
challenge) yields a better stroke pattern classification performance
than the other challenge submissions. The best overall performance is
obtained by DeeplSLES, which remarkably outperforms any single
challenge solution (balanced accuracy of 86.9% for the ensemble
method compared to the 78.9% achieved by the team ‘NVAUTO’), thus
demonstrating a strong capability to classify stroke sub-groups.

Can DeeplSLES identify the ischemic vascular territory? In this
experiment, we evaluate whether the algorithms can identify the
affected vascular territory among the middle, anterior, and posterior
cerebral arteries, the vasculature of the cerebellum, and the vascu-
lature of the pons/medulla. To this end, we quantify through the pre-
dicted lesion masks the lesion load per vascular territory from a
reference atlas of vascular territories. Then, the territory with the
absolute largest lesion volume is considered the most affected terri-
tory and is compared with the vascular territory affected in the ground
truth masks. In Table 1, the results from this experiment are shown.
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from the ISLES"22 test set. Note that we selected the scans with median Dice

scores (and not the best performing scans) to paint a realistic picture. Model out-
puts closely align with expert annotations across various types of stroke patterns
and configurations. Results are grouped by healthcare center, imaging time, lesion

Overall, the challenge algorithms accurately predict most vascular
territories. The solution submitted by the winner of the challenge
(team SEALS) obtains the best performance in this task when com-
pared to the other teams. The best overall performance is obtained,
again, with DeeplSLES, yielding a remarkable 97.6% of balanced accu-
racy and F1 score > 88% for each considered vascular territory. These
results show that the proposed algorithm can accurately identify the
impacted vascular territory.
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size, stroke pattern, and vascular territory affected. MT mechanical thrombectomy;
SVIsingle vessel infarct; Sl scattered infarcts based on micro-occlusions. SVI with SI
single vessel infarct with accompanying scattered infarcts. MCA middle cerebral
artery; ACA anterior cerebral artery; PCA posterior cerebral artery.

Inter-rater performance and qualitative analysis in a Turing-
like test

Two expert neuroradiologists annotated ten randomly sampled scans
from the ISLES22 training set®’. When comparing their delineations
against the ground truth masks, they achieved a median + interquartile
range Dice score of 0.92 + 0.16 and a lesion-wise F1 score of
0.82 +0.30. Over the entire test set, DeeplSLES yielded a Dice score of
0.82 +0.12 and an F1 score of 0.86 + 0.21. Besides, Fig. 3 shows model
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Fig. 4 | Qualitative lesion segmentation results obtained in a Turing-like test.
Neuroradiologists prefer lesions delineated by DeepISLES over manual expert
delineations (sample size N=150). Score values range between 1 and 6 (worst and
best quality scenarios, respectively). Boxes show the interquartile range (IQR; 25th-
75th percentiles), the center line marks the median, whiskers span values within
1.5 x IQR, and points beyond are displayed as outliers.

predictions for scans with median Dice score (to avoid “cherry-pick-
ing") for diverse stroke scenarios. The visual results of the predicted
ischemic masks suggest that the algorithmic predictions (green deli-
neations) closely follow the manually segmented lesions (red deli-
neations), highlighting DeepISLES’ capability to generalize to diverse
types of stroke patterns and configurations. The quantitative and
qualitative results suggest robustness towards heterogeneous clinical
and imaging scenarios.

In a Turing-like test, nine experienced radiologists rated the
stroke segmentation quality of the ISLES22 test data. Radiologists
received forty or forty-one randomized images, with each image being
delineated either by an expert or by the ensemble algorithm, and were
asked to rate the completeness and correctness of the lesion masks in a
1-to-6 (worst-to-best) scale. Boxplots of this experiment are shown in
Fig. 4. Interestingly, the ensemble algorithm exhibits statistically sig-
nificantly higher ratings than the experts (p-value =0.02 when con-
sidering the segmentation completeness and p-value <0.001 when
considering the segmentation correctness, Wilcoxon signed-rank
tests). The observation that experts find deep learning segmenta-
tions to be qualitatively superior to manually traced ones is unsur-
prising, given that similar findings were reported in prior research®.

External validation and clinical relevance
We tested DeeplSLES in the largest available acute and early sub-acute
ischemic stroke cohort (N=1685), retrieved from the Johns Hopkins
Comprehensive Stroke Center*’. The data were collected over ten
years utilizing eleven magnetic resonance scanners operating at either
1.5T or 3T, sourced from four different vendors and comprising diverse
MRI acquisition protocols and machine technologies, leading to strong
variations in image quality such as resolution, signal-to-noise ratio, and
contrast-to-noise ratio. This makes this dataset uniquely suited to
evaluate the generalizability of algorithms. Ischemic lesion masks were
annotated by the dataset authors through manual delineation. Patient
age was 62.5 *13.3 years. 907 patients (53.8%) were male. Reported
race or ethnicity included 753 (44.7%) Black or African American, 490
(29.1%) White, and 40 (2.4%) Asian. 876 (52.0%) MRI scans were
acquired after thrombolysis treatment with intravenous tissue-type
plasminogen activator.

Table 2 summarizes the algorithmic results in this external data-
set. The performance of the individual algorithms well reflects the
patterns observed in the ISLES22 test set (Table S2.1, supplementary

material section 2): while the team SEALS leads the lesion-wise detec-
tion in terms of F1 score, the team NVAUTO leads the segmentation
performance in terms of Dice scores. DeepISLES, however, outper-
forms all individual algorithms, exhibiting statistical significance
across all metrics and comparisons, showing enhanced robustness and
combining the strengths while mitigating the weaknesses observed in
the individual algorithms: DeepISLES retains the strong lesion seg-
mentation from the NVAUTO algorithm and the superior lesion
detection of the SEALS algorithm. Consequently, it achieves 7% and 1%
higher 5th and 50th Dice percentiles, respectively, than the SEALS
algorithm, while outperforming both NVAUTO and SEALS in lesion-
wise detection with a 6% and 2% higher 50th percentile F1 score,
respectively. Of note, this improved performance is further underlined
by a reduced amount of false positive detections (an important issue
with DWI, where imaging artifacts are common): the false positive
volumetric error is lesser for DeepISLES (2.7 + 5.3 ml) compared to the
individual algorithmic solutions (2.9 + 5.9 ml for NVAUTO, 2.8 +5.8 ml
for SEALS, and 2.9 * 6.1 ml for SWAN). Figure 5 illustrates example
cases where DeeplSLES rectifies suboptimal segmentations produced
by underperforming individual algorithms, effectively reducing false
positive (or false negative) lesions and delivering more accurate
results. Moreover, there is a very high agreement between the lesion
volumes estimated through DeepISLES and those manually obtained by
experts (Pearson’s r=0.97). It is noteworthy that the performance
achieved on the external Johns Hopkins dataset closely mirrors the
results obtained on the ISLES22 test set, with Dice and F1 scores
aligning closely with those reported in the challenge dataset: there are
no statistically significant differences in performance between the
Johns Hopkins dataset results and ISLES22 (Dice coefficient p-value =
0.46, F1 score p-value =0.66, Wilcoxon rank-sum tests). Despite its
robust overall performance, DeepISLES still exhibits limitations in
specific scenarios. Examples of suboptimal segmentations are shown
in the supplementary material section 7, with common failure modes
including small infarcts in areas prone to DWI artifacts (e.g., cere-
bellum and cortical sulci) or in patients with chronic lesions, such as
old (post-ischemic) lesions, which introduce complex imaging pat-
terns that may challenge model generalization.

To further evaluate the performance of the proposed solution, we
conducted a direct comparison between DeepISLES and DAGMNet, a
state-of-the-art deep learning algorithm specifically devised and
trained on the Johns Hopkins dataset’. The evaluation was conducted
on a subset (N =417) of scans from the same dataset, which were also
part of DAGMNet test set’. Figure 6 presents the performance results
of both methods. DeepISLES consistently outperformed DAGMNet
across all evaluated metrics, achieving superior mean (median) Dice
scores of 7.4% (3.6%) and lesion-wise F1 scores of 12.6% (16.7%). Fur-
thermore, DeeplSLES reduced the mean absolute volume difference by
6.7 ml and the mean absolute lesion count difference by 2.5 lesions
compared to DAGMnet. In correlation terms with ground-truth lesion
volumes, DeepISLES achieved a Pearson’s r of 0.98, compared to
r=0.74 for DAGMNet.

Lastly, we evaluated the association between the lesion volumes
estimated by DeepISLES with the National Institutes of Health Stroke
Scale (NIHSS) at patient admission (NV=999) and with the modified
ranking scales (mRS) at 90-day follow-up (N =782). We observe com-
parable correlations between lesion volumes and clinical scores when
using DeeplSLES-predicted masks (NIHSS: r=0.55; 90-day mRS:
r=0.41; Pearson correlation coefficients) and manually delineated
lesions (NIHSS: r=0.54; 90-day mRS: r=0.39). These findings show
that the proposed algorithm can derive downstream clinical scores at a
level comparable to those derived by radiologists.

DeeplSLES is readily available to use
We have made DeeplISLES publicly accessible to support its adoption by
physicians and researchers alike. The tool is available as a Docker
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Table 2 | Algorithm performance in the Johns Hopkins Comprehensive Stroke Center dataset

Algorithm DSC 1 p-value F11 p-value AVD (ml) ¥ p-value ALD ¥ p-value

DeeplISLES 0.82 +0.15 - 0.86 +0.33 - 0.84 +3.96 - 1.00 +2.00 -
[0.45, 0.94] [0.4,1.00] [0.03, 18.36] [0.00, 9.00]

SEALS 0.81 £ 0.16 22x107 0.84 +0.33 45x107 0.91 +3.95 0.0008 1.00 +2.00 0.0026
[0.38, 0.94] [0.4,1.00] [0.03, 18.62] [0.00, 9.00]

NVAUTO 0.82 +0.15 1.4 %10 0.80 +0.33 22x107M 0.84 +3.87 0.0072 1.00 +3.00 2.2x10™
[0.47, 0.94] [0.4,1.00] [0.03, 18.50] [0.00, 10.00]

SWAN 0.79 +0.20 2.2x10™ 0.80 +0.33 22x107 1.01 £4.1 3.0x107° 1.00 +3.00 2.5x107
[0.10, 0.92] [0.29, 1.00] [0.03, 20.65] [0.00, 11.00]

DeeplSLES significantly outperforms all individual methods and effectively combines their strengths. Values are median +interquartile range and [5th, 95th percentile]. Best median values in bold.

Wilcoxon signed-rank tests used for comparisons. Source data are provided as a Source Data file.

DSC dice similarity coefficient, F1 lesion-wise F1score, AVD absolute volume difference, ALD absolute lesion count difference.

image, a web service, a standalone software with a graphical user
interface, and through its Git repository in source form. DeeplISLES
supports native MR series in both DICOM and NIfTI formats, directly
exportable from clinical healthcare imaging centers. It enables end-to-
end processing, including image skull-stripping and registration to
MNI atlas. Detailed information about the tool, its features, and access
instructions can be found at https://github.com/ezequieldlrosa/
Deeplsles?.

Discussion

Accurate segmentation of ischemic stroke lesions from brain MRI is
crucial for timely diagnosis, treatment planning, and patient follow-up.
Deep learning offers a promising avenue to support radiologists by
enabling faster, more objective, and potentially more accurate MRI
analysis. This study addresses this challenge by proposing a clinically
meaningful and generalizable deep learning algorithm for ischemia
segmentation. To foster development and rigorously assess candidate
solutions, we organized the international ISLES’22 medical segmenta-
tion challenge. ISLES’22 served as a powerful platform for rapid algo-
rithm benchmarking and identification of promising approaches,
including the one presented here.

The following discussion focuses on two critical aspects. First, we
examine how ISLES'22 served as a platform for identifying strong deep
learning algorithms, culminating in the development of a single robust
solution: DeepISLES. Second, we evaluate the real-world applicability of
the algorithm, emphasizing its robustness, generalization to unseen
data domains, and potential impact in clinical and research settings.

DeeplSLES: an outcome from the ISLES’22 challenge

The ISLES’22 challenge yielded fascinating insights into the landscape
of stroke segmentation algorithms. Interestingly, the challenge lea-
derboard revealed that even algorithms based on similar CNN archi-
tectures and optimization strategies can exhibit variable performance.
This reinforces the notion that factors beyond architecture, like hyper-
parameter tuning, stochastic optimization, and training data sub-
splitting (as in cross-validation), all contribute to model variability,
even with a consistent dataset like ISLES’22*. However, the challenge
also showcased the effectiveness of diverse algorithmic approaches.
While achieving similar performance on most metrics, the top three
ranked solutions employed different methodologies. The leading two
teams utilized distinct CNN architectures (nnU-Net?” and SegResNet*)
and loss functions (Dice with binary cross-entropy vs. Dice with focal
loss). Notably, the third-ranked solution adopted a completely differ-
ent approach based on non-negative matrix factorization operations®.
This solution also leveraged the FLAIR modality (discarded by the top
two teams), necessitating additional FLAIR-to-DWI co-registration.
Some submissions also demonstrated innovative transfer learning
strategies -for example, the PAT team fine-tuned models pre-trained
on brain tumor segmentation tasks for ischemic stroke and

subsequently validated them on private external datasets, as detailed
in their post-challenge work?®.

This remarkable diversity in algorithmic solutions also highlights
the power of the ISLES'22 challenge in fostering innovation and crea-
tivity among participants: for a single research team, coming up with
such a variety of methods is hardly possible. However, this variety is
the basis for the strong ensemble built into DeepISLES. Our findings,
therefore, highlight the unique potential of biomedical challenges to
create (ensemble) solutions whose clinical utility extends beyond the
challenge setting. To enable this, ISLES22 offered significant
advancements over prior iterations by incorporating a large, multi-
centric dataset with over 6 times more scans than in a similar previous
edition (ISLES’15%). This data reflects the real-world heterogeneity of
stroke lesions, promoting generalizability. Notably, minimal data pre-
processing was applied, focusing solely on patient de-identification.
This challenged participants to develop end-to-end solutions encom-
passing all necessary processing steps (e.g., modality selection, regis-
tration, normalization), mimicking real-world clinical workflows. This,
in turn, discouraged the convergence towards a single, potentially
overfitted solution, as can occur with highly curated datasets. Fur-
thermore, the challenge fostered robust evaluation by employing
hidden data for testing. Participant models were presented with
unseen MRI scans, preventing both model overfitting and intentional
calibration towards specific images. Furthermore, the proper selection
of evaluation metrics seems crucial. ISLES’22 addressed this by incor-
porating expert recommendation guidelines®*? and by balancing
technical metrics commonly found in the computer vision community
(e.g., Dice scores) with clinically relevant and task-specific ones (e.g.,
number and volume of predicted ischemic lesions). This comprehen-
sive approach allowed for a broader assessment of solutions’ perfor-
mance and their readiness for real-world clinical applications, thus
helping to bring artificial intelligence methods closer to clinical
settings.

A key output of this work is DeepISLES. It was devised in a post-
challenge scenario in collaboration with the top-ranked teams identi-
fied in the challenge. DeeplISLES integrates the strengths of the indi-
vidual solutions through consensus voting, thus providing a
comprehensive solution to ischemic stroke segmentation robust in
challenging scenarios. Besides, with the aim of turning Deep/SLES into a
really usable software tool for the clinical and research communities, it
is fully standalone so that it can handle real-world scans directly after
image acquisition and without requiring prior data processing.

Beyond ISLES’22: towards automatic ischemic stroke segmen-
tation in the clinical setting

In order to ensure the development of truly reliable Al solutions, a
deeper understanding of the algorithms’ strengths and limitations is
paramount. We addressed this need by extending our analysis beyond
the challenge benchmarking and beyond the initial challenge dataset.
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Fig. 5 | Segmentation outcomes on the external Johns Hopkins dataset. DeeplSLES improves upon suboptimal segmentations generated by individual algorithmic
approaches. Yellow arrows indicate false positives, while red circles highlight false negatives.

A detailed evaluation of DeepISLES across various axes of general-
ization was conducted, including imaging center, ischemic lesion size,
stroke phase, type of stroke pattern/configuration, and anatomical
location of the ischemia.

DeepISLES demonstrates robust performance in handling a wide
range of image and disease variations. This is evident from the suc-
cessful generalization to unseen (ISLES’22) data from a new center,
which achieved results similar to those of the trained center.

Interestingly, while centers #1 and #3 (seen and unseen, respectively)
showed similar metric distributions, a significant difference in Dice
scores arose between centers #1 and #2 (both seen during training).
This discrepancy can be attributed to two key factors. First, scans from
center #2 had considerably smaller stroke lesions. Second, these scans
were acquired during the acute stroke phase. This observation high-
lights the fact that the timing of brain imaging relative to stroke onset
could significantly impact model performance. Despite the observed
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Fig. 6 | Algorithmic comparison on a subset of the Johns Hopkins dataset
(sample size N = 417). DeepISLES demonstrates exceptional generalizability out-
performing DAGMNet, despite DAGMNet being specifically trained on the Johns
Hopkins dataset. The inter-rater Dice line indicates the Dice coefficient obtained
between manual delineations by two experts on a subset of scans (N=220), as

reported by Liu et al.>* AVD Absolute Volume Difference, ALD Absolute Lesion
Count Difference. Boxes show the interquartile range (IQR; 25th-75th percentiles),
the center line marks the median, whiskers span values within 1.5 x IQR, and points
beyond are displayed as outliers. Source data are provided as a Source Data file.

difference in Dice scores between the acute and sub-acute stroke
groups, the observed volumetric lesion agreement was exceptionally
high for both groups (Pearson’s r=0.99 and 0.98 for acute and sub-
acute, respectively). Ischemia detectability, as measured by lesion-wise
F1 scores, also remained statistically similar between groups. Dee-
PISLES also demonstrates robustness across varying lesion sizes, pro-
viding reliable volume estimates in strong agreement with ground-
truth data. It also maintains high detectability for both small emboli
and large infarcts, ensuring consistent performance across hetero-
genous brain ischemia. These results derived from the ISLES'22 chal-
lenge lead to some key conclusions: i) The model demonstrates
remarkable generalizability across different stroke phases (acute and
sub-acute), lesion sizes, and imaging centers. Thus suggesting the
successful capture of stroke lesion variability, avoiding reliance on
center-specific MRI features. ii) The stroke phase at scan acquisition
influences performance. This is understandable as early (acute) scans
exhibit different MR characteristics compared to later ones (sub-acute)
due to evolving tissue changes. This aligns with established knowledge
about how DWI and ADC values fluctuate with stroke progression’.
Similarly, DWI sensitivity (specificity) ranges between 73% (92%)
3 hours from the stroke event to 92% (97%) 12h from the stroke
event*", Furthermore, false negatives may also increase with early DWI
acquisition**,

DeeplSLES also sheds light on stroke etiology. Traditionally, stroke
type and affected vascular territories are crucial for determining the
underlying cause, impacting treatment decisions and prevention
strategies (e.g., Merino et al.*, Kim et al.*°). Existing research estab-
lishes associations between DWI lesion patterns and stroke causes (e.g.
Kang et al.”®). For instance, scattered infarcts across multiple terri-
tories, single cortico-subcortical lesions, or multiple lesions in the
anterior and posterior circulation often indicate
cardioembolism***%*!, Conversely, large artery atherosclerosis typi-
cally presents with lesions in a single vascular territory**. In this con-
text, our deep learning algorithm stands out by accurately
characterizing DWI images from a multi-faceted perspective. The
model effectively segments ischemia in different stroke sub-groups
(SVI, scattered infarcts, and mixed SVl/scattered) with consistent
performance. Importantly, the model tackles even small ischemic
volumes (e.g., embolic showers) with high detectability (lesion-wise
F1 scores comparable to larger lesions). Furthermore, it accurately
identifies stroke subgroups and affected vascular territories using
predicted lesion masks (multi-class balanced accuracies of -87% and
~98%, respectively, Table 1). These findings suggest that the algo-
rithm’s outputs extend beyond lesion volume, providing valuable
clinical insights into stroke type and underlying cause, ultimately aid-
ing downstream clinical assessments.

The strength of DeeplISLES lies in its competitiveness, robustness,
and clinical utility. Validation in the Johns Hopkins stroke dataset—a
large, unseen, and highly heterogeneous patient cohort - demon-
strates that our approach overcomes the limitations of individual
algorithms, resulting in more reliable stroke lesion detection and
segmentation. DeeplSLES effectively combines the segmentation
accuracy of NVAUTO-reflected in high Dice scores and low absolute
volume differences—with the lesion-wise detection capabilities reflec-
ted in SEALS F1 scores and lesion counts difference. Moreover, the
segmentation results closely mirror those from the ISLES'22 challenge
hidden test set, further validating DeepISLES and the effectiveness of
the challenge design. Importantly, when comparing our solution
against DAGMNet, an algorithm specifically designed and trained on
the unseen Johns Hopkins dataset, our solution outperforms DAGM-
Net by a significant margin (7.4% higher mean Dice and 12.6% higher
F1 scores), underscoring its generalizability and exceptional perfor-
mance on new scans. When assessing lesion volumes predicted by the
proposed algorithm over the Johns Hopkins dataset, a high agreement
with the expert’s delineations was obtained. The algorithm-derived
lesion volumes explain clinical stroke scores (admission NIHSS and 90-
day mRS) at least as effectively, and potentially even better, than those
obtained through manual expert delineation, thus showcasing the
downstream clinical utility of such a tool. Qualitative analysis per-
formed in a Turing-like test showcased that experienced neuror-
adiologists preferred DeepISLES outputs over manual lesion tracing in
terms of segmentation completeness and correctness, thus suggesting
that the proposed algorithm can match or even surpass human experts
in identifying brain infarcts on MRI scans.

DeeplSLES has the potential to significantly transform clinical
stroke research and practice. It distinguishes itself from existing
tools™**42%¢ through its broad implementation across multiple for-
mats, creating unprecedented accessibility for diverse user groups—
from research scientists to clinicians. This flexibility enables various
deployment pathways while fully embracing FAIR principles. More-
over, DeeplSLES establishes itself as the leading stroke segmentation
solution through rigorous validation on the largest public stroke
dataset available to date. It consistently surpasses state-of-the-art
methods in both ischemia identification and segmentation, achieving
statistically significant and clinically meaningful performance advan-
tages with substantial margins across all evaluation metrics. Notably,
DeeplISLES exhibits robust generalization capabilities when applied to
out-of-domain data, further validating its reliability and highlighting its
practical utility in real-world clinical environments.

Our study presents two significant findings. First, we introduce
DeeplISLES, an innovative algorithm designed to detect and segment
ischemic stroke lesions across a variety of scenarios, achieving
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Table 3 | Data summary

Dataset Phase # Scans #Scansbycenter(1/2/3) RT # Scans pre-RT # Scans post-RT Stroke phase
ISLES'22%° Train 250 200/50/0 MT 0 250 Sub-acute

Test 150 50/50/50 MT 50 100 Acute and sub-acute
JHCsc* Test 1685 - iVtPA 810 876 Acute and sub-acute

The ISLES'22 dataset was used in the challenge competition, while the JHCSC was used as an external testing dataset in a post-challenge setting. Further details about the datasets are available in the

corresponding data descriptors®*,

JHCSC Johns Hopkins Comprehensive Stroke Center, RT reperfusion treatment, MT mechanical thrombectomy, ivtPA intravenous tissue plasminogen activator.

performance levels comparable to those of expert (neuro)radiologists.
Second, we illustrate the potential of biomedical challenges to foster
the development of models that extend beyond the confines of the
challenge itself, underscoring their real-world clinical applicability and
bridging the gap between biomedical research and clinical practice.
DeeplISLES is accessible in multiple formats at https://github.com/
ezequieldlrosa/Deeplsles®.

Limitations and outlook

Despite encouraging results in the Johns Hopkins dataset, further
validation on additional external datasets is required to comprehen-
sively assess the generalizability of our model. We systematically
introduced variability to the data to assess the algorithm’s perfor-
mance across different patient populations and stroke scenarios.
While we focused on major sources of variation, limitations remain.
First, the external testing dataset lacked multi-center representation.
Second, the ISLES’22 dataset consisted solely of European cohorts,
while the external dataset, although offering more patient race varia-
bility, was limited to the US population. In addition, users should be
aware that sub-optimal performance may occur in cases with small
infarcts located in artifact-prone regions (such as posterior circulation
territories, and cortical sulci) or in the presence of chronic brain
lesions, which can confound model predictions. Addressing these
limitations, we believe the ensemble algorithm would significantly
benefit from validation on external cohorts collected from diverse
medical centers worldwide. Moreover, the inclusion of under-
represented patient groups is crucial. We encourage clinical research
groups to participate in validating and refining our model to enhance
its generalizability and clinical impact.

Methods

In order to devise a robust algorithm that can identify brain ischemia
under heterogeneous real-world imaging scenarios, we organized the
ISLES'22 challenge to collect diverse solutions from leading research
teams. The challenge enables a fast and extended benchmarking of
algorithmic strategies for tackling the task. This section is organized in
two parts. The first section explains how the challenge is structured.
The BIAS (Biomedical Image Analysis ChallengeS)* guideline is fol-
lowed. The second section details how the identified algorithms are
evaluated and integrated into DeepISLES, a robust and clinically useful
solution.

The ISLES’22 challenge

The ISLES challenge (https://www.isles-challenge.org/) is a collabora-
tive, multi-institutional, non-profit initiative uniting leading neu-
rointerventionalists, radiologists, and researchers in clinical and
medical imaging with the aim of enhancing the accuracy, fairness, and
reproducibility of ischemic stroke algorithms. In the ISLES’22 edition,
participants were tasked with developing fully automated algorithmic
solutions for segmenting ischemic lesions across hyperacute, acute,
and early subacute stroke stages using MRI modalities, including DWI,
ADC, and FLAIR. The algorithms produce a binary stroke segmentation
mask as their output.

Challenge organization. The aims, structure, and organization of the
challenge are available for the teams several weeks before the dataset
is released. A detailed description of the challenge organization is
available in de la Rosa et al.. The challenge is organized in three
phases: a train, a sanity-check, and a test phase. In the train phase,
participating teams have six weeks to develop a solution to the task
using a labeled MRI dataset. All teams have access to the data at the
same time. There are no technical constraints on the employed
algorithmic solution. In the sanity-check phase, participants can test
their devised Docker solutions over a few train set scans in order to
ensure that their algorithms properly work in the challenge organi-
zers’ servers. In the test phase, participating teams are requested to
submit a Docker containing their final algorithmic solution. Teams
can submit just a single time to this phase. The algorithm is later run
by the challenge organizers over the hidden test set. Algorithmic
performance is measured by computing relevant metrics (below
detailed) using the predicted segmentations and the ground truth
masks. Later, teams are ranked based on their yield performance
metrics.

Dataset. The dataset used in this study is customarily devised for the
purposes of the challenge. It contains multi-center and multi-scanner
data, and it consists of MRI scans (n =400) acquired during the early/
late acute and the early sub-acute stroke phase of patients across three
European health centers. The train (N=250) and test (n=150) sets
include scans from two and three healthcare centers, respectively.
Most of the datasets have been acquired in the subacute post-stroke
stage, mainly three days after treatment (#post-RT). Furthermore, as a
proof of concept, we aim to test the generalization capability of the
devised algorithms over a small, single-center subset of hyper-acute/
early acute stroke scans (12.5%, N =50) before intervention (#pre-RT),
which represents a third part of the test set. Table 3 provides a sum-
mary of the ISLES22 dataset. All cases include DWI (b-value =1000 s/
mm?), FLAIR, and apparent diffusion coefficient (ADC) MRI. The
ischemic stroke segmentation ground truths are obtained using an
algorithm-human hybrid iterative method and are later revised and
refined by one out of three experienced neuroradiologists with more
than 10 years of experience (RW, JSK, and BW, who reviewed 150, 125,
and 125 scans, respectively). The MRI images are released in their
native acquisition space (ground truth masks are released in the DWI/
ADC space) after minimal pre-processing. Thus, pre-processing is
solely performed with the purpose of patient de-identification and
therefore consists of MRI skull-stripping. The reason for releasing the
dataset ‘as raw as possible’ is to encourage the development of algo-
rithms that could deal with real-world raw imaging data, which suffers
from a large variability (signal-to-noise, resolutions, variable parameter
settings, etc.) and therefore has its own technical limitations (e.g.,
different MR modalities, as FLAIR and DWI, are not co-registered). In
this sense, participants are also challenged to devise end-to-end
algorithms that can deal with the pre-processing and curation of the
images. For more detailed information about this dataset, including
the ground-truth annotation process, please refer to the correspond-
ing data descriptor.
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Algorithms’ evaluation: metrics and ranking. The algorithmic results
are evaluated by comparing the predicted lesions masks with the
(manually traced) ground truth masks. Metrics are chosen following
current recommendation guidelines®*?. Metrics that are well known
in the literature for both the (medical imaging) research and radi-
ological communities were included: Dice score*” (DSC), the absolute
volume difference (AVD = |Volumepredicteda — VOlUMEground truthl),
lesion-wise F1 score (defined as in Section Statistical analysis by
considering instance lesions), and the absolute lesion count differ-
ence (ALD = |#LesionSpredicted — # L€SiONSgroundtruthl). Lesion-wise
metrics were computed after isolating disconnected ischemias in the
binary masks through connected-component analysis. Note that
including complementary segmentation and detection metrics is
beneficial and helps evaluate models in a robust, subject, and lesion-
wise unbiased scheme*®. Implementation details of the four metrics
can be found in the challenge Python notebooks***°,

The final competition ranking is obtained from the test phase,
whichis blind (there is no access for the teams to the MRI images to be
predicted) and single-shoot (one submission per team is solely
allowed), thus completely precluding participants from any sort of
overfitting strategy. As done in previous ISLES editions®*"%, the
ranking is performed in a ‘rank then aggregate’ fashion'. A thousand
bootstraps are conducted by repeatedly drawing samples with repla-
cements and recalculating the rankings in each iteration. Furthermore,
as a complementary analysis, we calculated the challenge ranking
through a thousand bootstraps ‘aggregate then rank’ scheme.

DeeplSLES: a collaboratively developed solution

DeeplSLES is a comprehensive, end-to-end software solution designed
to handle real-world datasets immediately after image acquisition. It
integrates advanced preprocessing capabilities, enabling it to process
images in their native space, perform skull-stripping, and register
scans to the MNI-152 atlas. The framework supports standard medical
imaging formats, including DICOM and NIfTI (.nii, .nii.gz, .mha).
On a system with an 8-core CPU, the Docker image takes on average
2 min on a GeForce RTX 3090 (24GB) and 5 minutes on a GeForce GTX
1080 Ti (12GB), while the web service execution time is approximately
10 minutes. When run directly via the source Git repository in Python
on a GPU-enabled machine, the model generates segmentation out-
puts in approximately 1.5 minutes.

The development of DeepISLES leveraged insights from the top
three methods on the ISLES22 challenge leaderboard. DeepISLES
integrates the solutions from the teams SEALS, NVAUTO, and SWAN
using an ensembling, majority voting strategy. For each voxel in an MRI
scan, the predicted output (lesion or no lesion) is determined by the
consensus of at least two of the three methods. This ensemble
approach ensures resilience to challenging cases, allowing accurate
lesion detection even when an individual algorithm fails. The individual
methodologies employed by each team are described below.

Algorithm SEALS. The participants utilized DWI and ADC images as
input for their algorithm. Image pre-processing involved the resam-
pling of the scans to a 1 x 1 x 1 mm? voxel resolution, followed by a
z-score image normalization. The nnU-Net pipeline*” was employed for
training a 3D full-resolution U-Net. A 1/7 subset of the training dataset
was held out to evaluate the performance of the model. The remaining
6/7 parts of the dataset were used to train models through 5-fold cross-
validation. A combined Dice loss with categorical cross-entropy was
used. Data augmentation transforms were used, including image flip-
ping and Gaussian noise addition. The final submission to the chal-
lenge was an ensemble of the five trained models.

Algorithm NVAUTO. The team proposed an automated 3D
semantic segmentation solution implemented with Auto3DSeg™. The
algorithm automated most deep learning steps and decision choices.
DWI and ADC images were used as input to the model after voxel
resampling to 1x1x1mm?® and z-score normalization. SegResNet*

models were trained through 5-fold cross-validation. Several aug-
mentation transforms were used, including flipping, rotation, scaling,
smoothing, intensity-scaling and -shifting. Random cropped patches
of dimensions 192 x 192 x 128 were adopted. The models were trained
on an 8-GPU NVIDIA V100 machine with an AdamW optimizer and
unitary batch size. Dice loss with focal loss using deep supervision was
used as a loss function. The model was first pre-trained on the BRATS
2021 dataset™. The final algorithm was an ensemble of 15 models
obtained through a 3-time 5-fold cross-validation.

Algorithm SWAN. The participants used the Factorizer” algorithm
to construct an end-to-end, linearly scalable model for stroke lesion
segmentation. Factorizer is a family of models that leverage the power
of Non-negative Matrix Factorization (NMF) to extract discriminative
and meaningful feature maps. The algorithm uses a differentiable NMF
layer that can be back-propagated during the training of deep learning
models. A Factorizer block is constructed by replacing the self-
attention layer of a vision transformer block® with an NMF-based
module and then integrating them into a U-shaped architecture with
skip connections. The participants used a Swin Factorizer, which
combines NMF with the shifted-window idea inspired by Liu et al.*® to
effectively exploit local context. Preprocessing involves FLAIR-to-DWI
image registration using Elastix*’ and z-score normalization. Various
data augmentation techniques were performed, including random
affine transforms, flips, and random intensity scalings. Deep super-
vision was used at the three highest decoder resolution levels for
training the models. The final challenge submission was an ensemble
of Swin Factorizers and UNet models with residual blocks*® (a.k.a ResU-
Net) obtained through 5-fold cross-validation.

Towards real-world clinical performance

Stress-testing the model: Which (and how) real-world variables
impact it? With the aim of understanding the potential clinical utility
of the deep learning solution, we evaluate whether Deep/SLES can
detect ischemia under diverse disease and imaging scenarios, thus
providing insights about its robustness and generalization capability
when dealing with diverse ischemic stroke events. With this aim, the
test-phase predictions of the ensemble algorithm are evaluated over i)
scans coming from an external healthcare center, unseen during
model development, ii) scans with diverse ischemic lesion size, iii)
scans with ischemia located in diverse vascular territories of the brain,
iv) scans with diverse lesion configurations and patterns, and v) scans
with heterogenous image contrast due to different stroke phases.

Multi-center data. We test DeeplSLES performance over scans
acquired in an external imaging center unseen during the develop-
ment (train phase) of the models. To this end, 50 test-phase scans from
center #3 (University Medical Center Hamburg-Eppendorf), a center
not included in the train phase, are evaluated and compared to 100
unseen test-phase scans from centers #1 (University Hospital of the
Technical University Munich) and #2 (University Hospital of Bern).
While all test-phase scans are unseen, centers #1 and #2 were part of
the training phase, making their data distribution familiar to
the model.

MRI acquisition time. DeeplISLES is evaluated over two sub-groups of
the test set data clustered based on the stroke phase. The first group
considers scans (N =100) acquired during the late acute or early sub-
acute course of the disease. In these cases, MRI is acquired after
treating the patient with mechanical thrombectomy. The second
group considers patients (N =50) imaged during the early acute phase
of the disease and, therefore, MRI is acquired before treating the
patient with mechanical thrombectomy.

Lesion size. Ischemic stroke spans from minor brain lesions of a few
milliliters to large-vessel occlusions involving over a hundred milliliters
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of brain tissue. Therefore, to understand the algorithm performance
when dealing with different ischemic lesion sizes, the test-phase data is
split into three stroke sub-groups: lesions smaller than 5ml, lesions
bigger or equal to 5 ml but smaller than 20 ml, and lesions greater than
or equal to 20 ml.

Vascular brain territory. In this experiment, we evaluate if DeepISLES
can identify the affected brain vascular territory in the MRI scans. For
doing so, the test-phase scans are linearly registered to a FLAIR MNI
template with vascular territory annotations®® using NiftyReg®. Later,
the lesion load over each vascular territory is quantified using the
ground truth annotations and each scan receives a label of the vascular
territory that yields the largest lesion load. The considered vascular
territories are the ones covered by the middle cerebral artery, the
anterior cerebral artery, the posterior cerebral artery, the arteries
perfusing the cerebellum, and the ones perfusing the pons and
medulla. The deep learning predictions of the vascular territories are
generated by finding the vascular territory with the largest (predicted)
lesion volume. Then, we assess through classification metrics how well
the algorithms identify the stroke vascular territory.

Stroke pattern. The test-phase scans are assigned to one of the
four following clinical sub-groups depending on the type of lesion and
stroke pattern:

* No ischemia
Scans with no ischemic lesions (lesion volume of O ml, N=2).
Single vessel infarct
Scans with the largest lesion accounting for >95% of the total
lesion volume (N = 62).
Scattered infarcts based on micro-occlusions
Scans with > three single lesions where either the largest lesion
represents < 60% of the total lesion volume or the total lesion
volume is < 5ml (N=48).
Single vessel infarct with accompanying scattered infarcts
All remaining scans (N= 38).

To label the scans, we perform an iterative computer-human
approach. First, using prior knowledge from experienced neuror-
adiologists (BW and JSK) we define heuristic classification rules that
assign each scan to one of the subgroups. Later, the same neuror-
adiologists evaluated the labels assigned to the scans and updated the
heuristic rule, improving its labeling performance. After some itera-
tions, the heuristic rule that suffix the stroke pattern grouping are the
ones mentioned above. In order to evaluate if the algorithms can
predict the stroke lesion subgroup, these heuristic rules are applied to
each (predicted) stroke mask. Then, the stroke subgroup predictions
are compared against the “real” labels obtained through the ground
truth stroke masks. Conventional classification metrics are used to
evaluate the algorithm’s performance.

DeeplISLES versus experts in a Turing-like test. Nine radiologists
from three healthcare centers (University Hospital of the Technical
University Munich, University Medical Center Hamburg-Eppendorf,
and University Hospital of Bern) blindly rated the quality of the
ischemic stroke masks generated either by experts or by the devised
algorithm. Forty or forty-one scans with three annotated slices each
(two axial, one sagittal) were provided to each radiologist. All images
were randomized, and no information about the annotator (human or
algorithm) was provided. Radiologists were asked to rate the com-
pleteness of the segmented lesion and the correctness of their con-
tours on a 1-6 scale as similarly done in Kofler et al** (see
supplementary material section 6 for the criteria used).

Validating DeeplSLES in external data. The algorithm is tested over
a public, external, ischemic stroke cohort (N =1685)** including raw

MRI (such as DWI, ADC, FLAIR, etc.), patient (e.g., age, sex, race) and
clinical data (e.g., treatment, NIHSS and mRS scores, etc.). Table 3
summarises the dataset characteristics. Images were acquired over
ten years using eleven 1.5T or 3T scanners from the four major
machine vendors (Siemens, GE, Toshiba, and Philips). NIHSS and
mRS scores were respectively performed at patient admission and at
90-day follow-up. Moreover, the time from symptom onset to MRI
acquisition was recorded when the patient or the caregiver was
confident about symptom onset. MRI was mostly performed six or
more hours from symptom onset, before or after administration of
intravenous tissue plasminogen activator. To predict ischemic
lesions with the ensemble algorithm, all scans were priorly skull-
stripped using HD-BET®.

Statistical analysis. Data are compared using two-sided non-para-
metric, Wilcoxon unpaired rank-sum, or paired signed-rank tests after
observing that data is heteroscedastic and does not follow a Gaussian
distribution. The significance level is set at a = 0.05. Bland-Altman®
analysis is used to evaluate the volumetric bias between the manually-
traced and the algorithm-predicted lesion volumes. Classification
metrics used to evaluate the algorithms are per-class F1 scores

_ 2*TP,
(F1score, = yp_3ppspy;) and the balanced accuracy computed as
the  macro-average of the per
— C . _ TP
(Balanced Accuracy = ¢ " _; Recall., with Recall. = 5=y, TP are

true positives, FP the false positives, FN the false negatives and C the
number of classes). The scikit-learn Python library®® is used to compute
the classification metrics.

recall  scores class

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Images The ISLES’22 dataset used for the challenge is open and freely
available under the Creative Commons CC BY 4.0 license. The train
dataset is available in www.zenodo.org/®*. The external stroke dataset
used for validating the ensemble algorithm is available through
ICPSR**%%, Source data are provided with this paper. Challenge results
Performance metrics are available in Table S2.1 and Figure S2.1 (sup-
plementary material section 2) and also through https://grand-
challenge.org/**. Note that this challenge continues accepting sub-
missions and, therefore, the online leaderboard is constantly getting
updated. In this study, only the solutions received for the MICCAI'2022
challenge are evaluated. Source data are provided with this paper.

Code availability

The devised algorithm DeepISLES is freely available in four versions:
stand-alone software tool with integrated GUI, web-service, Docker
image, and through the main GitHub repository. For details, check
https://github.com/ezequieldlrosa/Deeplsles®. To help participants
get familiar with the data and with the challenge performance metrics
a Python notebook* was made available in advance. Moreover, in
order to facilitate the teams during the algorithms’ submission pro-
cess, a Docker template and a Docker creation tutorial were shared
with the teams®®. Challenge rankings were obtained using challengeR
v1.0.5° Figures of this work were generated in R (v.4.4.3)*® using the
ggplot2®® and the patchwork’ software packages. Figure 3 was gen-
erated with 3D Slicer (v4.8.0) (https://www.slicer.org/)".
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