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 i  g  h  l  i  g  h  t  s

Acute overexposure  to the  metalloid  selenium  is certainly  neurotoxic  in the  human.
Chronic  selenium  overexposure  appears  to  be neurotoxic,  on  the  basis  of  epidemiologic  studies  on  the general  population  or  occupationally  exposed
workers,  but  it  needs  to be better  characterized.
Consequences  of  chronic  selenium  overexposure  might  be  lethargy,  paresthesias,  an  excess  risk  of  amyotrophic  lateral  sclerosis.
The  various  selenium  species  have  different  neurotoxic  effects,  and  more  generally  strongly  different  toxicological  and nutritional  properties.
Assessment  of human  exposure  to selenium  species  with  reference  to neurotoxic  effects  is  very  difficult  for methodological  reasons.

 r  t i  c  l  e  i  n  f  o

rticle history:
vailable online xxx

eywords:
elenium
oisoning
oxicity

a  b  s  t  r  a  c  t

Selenium  is  a metalloid  of considerable  interest  in  the  human  from  both  a  toxicological  and  a nutri-
tional  perspective,  with  a very  narrow  safe  range of  intake.  Acute  selenium  intoxication  is followed  by
adverse  effects  on  the  nervous  system  with  special  clinical  relevance,  while  the  neurotoxicity  of  long-term
overexposure  is  less  characterized  and  recognized.  We  aimed  to address  this  issue  from  a public  health
perspective,  focusing  on  both  laboratory  studies  and  the  few  epidemiologic  human  studies  available,
with  emphasis  on  their  methodological  strengths  and  limitations.  The  frequently  overlooked  differences
eurotoxicity
eurological disorders
myotrophic lateral sclerosis
pidemiologic studies
nvironment
isk assessment

in  toxicity  and  biological  activity  of selenium  compounds  are  also  outlined.  In  addition  to lethargy,  dizzi-
ness,  motor  weakness  and  paresthesias,  an  excess  risk  of  amyotrophic  lateral  sclerosis  is the  effect  on the
nervous  system  which  has  been  more  consistently  associated  with  chronic  low-level  selenium  overexpo-
sure,  particularly  to its inorganic  compounds.  Additional  research  efforts  are needed  to better  elucidate
the neurotoxic  effects  exerted  by selenium  overexposure.

© 2013 The Authors. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The intense debate on the role of the metalloid selenium (Se) in
human health encompasses cancer etiology (Dennert et al., 2011;
Vinceti et al., 2013b), diabetes mellitus (Stranges et al., 2010;
Koyama et al., 2013), amyotrophic lateral sclerosis (ALS) (Vinceti
et al., 2012), and ‘Keshan’ cardiomyopathy (Lei et al., 2011, 2012),
y in humans: Bridging laboratory and epidemiologic studies. Toxicol.

alongside infectious and non-communicable diseases. Se effects on
human health may  be both beneficial (Rayman, 2000) and detri-
mental (Vinceti et al., 2001), and the safe range of daily dietary Se
intake is still uncertain and controversial, as shown by the most
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ecent epidemiologic evidence and by the various standards issued
y different agencies (Vinceti et al., 2009; Fairweather-Tait et al.,
011; Hurst et al., 2013; Vinceti et al., 2013a). Recent field and labo-
atory studies have added to this ambiguity, thus further hampering
he risk assessment of this metalloid and the definition of permit-
ed limits of environmental exposure, and preventing consensus on
ublic health policy (Vinceti et al., 2013a, 2013b).

Among the intriguing aspects are the role of Se in the etiol-
gy of neurological disease (Vinceti et al., 2001, 2009), also taking
nto account the complex peculiarities of Se physiopathology and

etabolism in the brain (Buckman et al., 1993; Pullen et al., 1995;
hanger, 2001; Bou-Resli et al., 2002; Schweizer et al., 2004;

charpf et al., 2007; Benner et al., 2013). Unfortunately, the relation
etween Se exposure and neurological diseases has been addressed

n few human studies, in some cases affected by relevant method-
logical limitations, and therefore it necessitates further validation
nd extension. A number of studies also suggested or evidenced the
ey importance of additional factors of interest when assessing Se
iological activity and toxicity, such as the chemical form of Se, and
he concurrent exposure to other toxic chemicals (i.e. mixed expo-
ures) (Gammelgaard et al., 2011; Michalke and Berthele, 2011;
wolak and Zaporowska, 2012; Solovyev et al., 2013; Vinceti et al.,
013c; Weekley and Harris, 2013).

In this review, we have briefly analyzed Se neurotoxicity on the
asis of the scarce epidemiologic evidence available, also consid-
ring the biological plausibility of findings from laboratory and
eterinary medicine studies and the recent interest in Se neurotox-
city in risk assessments of metals and metalloids (Fresquez et al.,
013). For the selection of the literature eligible for this review,
e examined in detail PubMed-indexed papers using as MeSH

earch terms “Nervous System Diseases” associated with “sele-
ium/toxicity”. Moreover, we systematically scanned PubMed to
etrieve the human and laboratory studies on selenium investigat-
ng its neurotoxicity. Some caveats need however to be outlined.
irst of all, a relation between Se and neurological disease calls into
uestion not only its toxicity but also its nutritional role. In fact,
oth an increase and a decrease in the amount of bioavailable Se
ight theoretically enhance the risk of neurological disease and its

rogression. The hypothesis that specifically increased Se intake
ay  reduce the risk of diseases such as Alzheimer’s disease or

myotrophic lateral sclerosis (ALS) or counteract their clinical pro-
ression has been evaluated in laboratory studies (Scharpf et al.,
007; Bellinger et al., 2012; Raman et al., 2012), some of which

ndicated beneficial effects of organic and inorganic Se compounds
n experimental models of neurodegenerative diseases (Schweizer
t al., 2004; van Eersel et al., 2010; Wirth et al., 2010; Zhang et al.,
010; Caito et al., 2011; Dasuri et al., 2013). However, no such
ffects have been confirmed by human investigations. Moreover,
ur review did not analyze the possible inverse relation between
e status and psychiatric disorders, a currently controversial issue
Berr et al., 2012; Gao et al., 2012; Hurst et al., 2013; Miller et al.,
013).

. Laboratory studies on Se neurotoxicity

The neurotoxic effects of Se have long been investigated in
aboratory studies (Kasuya, 1976; Ammar  and Couri, 1981; Rasekh
t al., 1997, 1998) and several recent studies on this issue have
een published (Xiao et al., 2006; Ayaz et al., 2008; Morgan et al.,
010; Souza et al., 2010; Maraldi et al., 2011; Estevez et al., 2012).
ne of the pioneering studies on Se neurotoxicity showed the
bility of both inorganic and organic Se compounds to induce
Please cite this article in press as: Vinceti, M., et al., Selenium neurotoxicit
Lett.  (2013), http://dx.doi.org/10.1016/j.toxlet.2013.11.016

ehavioral and neurological manifestations in mice, with selenite
eing much more powerful than selenomethionine (Ammar  and
ouri, 1981). In this investigation, Se species induced a decrease

n locomotion followed by ataxia and hind limbs paralysis and
 PRESS
tters xxx (2013) xxx– xxx

dysfunction, generalized muscular flaccidity and catalepsy-like
state; respiratory and heart rates also markedly decreased, and
were followed by death due to respiratory and cardiac arrest.

The neurotoxic effects inducible by Se compounds include
among others an increase of CNS dopamine levels (Rasekh et al.,
1997) and metabolites (Tsunoda et al., 2000), alteration of cholin-
ergic signaling and degeneration of cholinergic neurons (Estevez
et al., 2012), inhibition of glutamate uptake (Nogueira et al., 2003;
Ardais et al., 2010; Souza et al., 2010) and prostaglandin D syn-
thase (Islam et al., 1991; Matsumura et al., 1991; Akarsu et al.,
1998; Ardais et al., 2010), decrease of total antioxidant status,
gangliosides and sulphydryl groups (Islam et al., 2004; Medeiros
et al., 2012), of activity of adenosine deaminase (Bitencourt et al.,
2013), succinic dehydrogenase and acetylcholine esterase (Nehru
and Iyer, 1994), and finally increase of thiobarbituric acid reac-
tive substances and lipid peroxidation (El-Demerdash, 2001; Islam
et al., 2004; Glaser et al., 2010; Medeiros et al., 2012). Addi-
tional Se-induced CNS alterations are hypothermic and nociceptive
responses as well as CNS arousal (Mallory Boylan et al., 1990;
Rasekh et al., 1998), and reduction of locomotor activity (Rasekh
et al., 1997, 1998; Morgan et al., 2010). Finally, inorganic Se has
also been shown to induce apoptosis in cultured mouse cortical
neurons even at very low concentrations (Xiao et al., 2006). Some
of these effects are differentially exerted in various CNS regions,
even with opposite mechanisms (Zia and Islam, 2000; Islam et al.,
2004; Glaser et al., 2010; Medeiros et al., 2012). Se-induced neuro-
muscular blockade, tetanic spasm, alteration of nerve-fiber action
potentials and nerve membrane depolarization (Liu et al., 1989;
Lin-Shiau et al., 1990; Ayaz et al., 2008), and inhibition of human
squalene monooxygenase, which may  in turn lead to periph-
eral demyelinating neuropathy (Gupta and Porter, 2002), are all
additional findings from experimental studies of potential clinical
implications.

The neurotoxicity of Se compounds is also manifested by its
ability to induce degeneration of motor neurons. In the study by
Maraldi et al. (2011), human neuroblastoma SKNBE cells were
shown to be more prone than other human cell lines to the neuro-
toxicity of inorganic and organic Se compounds: the lowest effects
on viability was  observed at levels as low as 8 �g/l. Moreover, Se
induced a broad range of intracellular effects including increased
intracellular levels of reactive oxygen species, inducible nitric oxide
synthase and 3-nitrotyrosine, and superoxide-dismutase type-1
translocation from the cytosol to the mitochondria, the latter phe-
nomenon characterizing the neurodegerative process in the ALS
form associated with SOD1 mutation. In another study, inorganic
tetravalent Se, selenite, induced degeneration of cholinergic neu-
rons and depletion of glutathione, impairing locomotor activity in
Caenorhabditis elegans model (Morgan et al., 2010; Estevez et al.,
2012). The cholinergic motor neurons in the ventral cords exhib-
ited several neurodegenerative signs following Se exposure: axonal
beading, cellular swelling and nuclear cytoplasmatic boundary loss
and fragmentation. Se disrupted the orderly array of presynaptic
densities in this region, as previously observed at the neuromus-
cular junction in a superoxide-dismutase type-1 mouse model
(Fischer et al., 2004). Moreover, veterinary research on inorganic
and organic Se poisoning in swine showed acute neuromuscular
signs with progressive posterior paralysis and in some cases fore-
limb involvement, progressing to lateral recumbence and death
(Harrison et al., 1983; Wilson et al., 1983; Anonymous, 2010;
Nathues et al., 2010; Raber et al., 2010). These findings were
obtained both in observational studies following accidental acute
and chronic Se intoxication, and experimentally by administer-
y in humans: Bridging laboratory and epidemiologic studies. Toxicol.

ing Se-accumulator plants and various Se forms (Hartley et al.,
1984; Panter et al., 1996). Pathological findings were selective
degeneration of the ventral horns in the spinal cord, bilateral
poliomyelomalacia in the cervical and lumbar/sacral spinal cord
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ntumescences, loss of neurons with reactive vascular prolifera-
ion and glial phagocytic cell response, alongside the degeneration
f brain stem motor nuclei (Harrison et al., 1983; Wilson et al.,
983). Such Se-induced neurotoxic effects have not been reported

n other animal species, with the exception of a study in cattle that
videnced a similar effect (Maag et al., 1960), thus corroborating
he observation in farm animals and wildlife of seleniferous areas
f the so-called ‘alkali disease’ and ‘blind staggers’ (Rosenfeld and
eath, 1964). The experimental studies in swine showed that the

norganic Se species selenite and selenate were more neurotoxic
han organic Se compounds at equivalent levels of Se exposure
Panter et al., 1996), regardless of the higher Se levels in tissues fol-
owing exposure to organic Se compounds. Remarkably, Se is the
nly element and more generally the only chemical, as far as we
now, which may  be selectively toxic to the motor neurons, sug-
esting biological plausibility for its potential role in the etiology
f ALS, though such effect might strongly differ in different living
rganisms.

Overall, experimental studies have shown different toxic effects
f various inorganic and organic Se compounds (Borella et al., 1996;
oefig et al., 2011; Nogueira and Rocha, 2011; Bitencourt et al.,
013; Boehler et al., 2013; Hazane-Puch et al., 2013), as suggested
y epidemiologic studies (Ashton et al., 2009; Vinceti et al., 2013a,
013b, 2013c). The neurotoxicity of inorganic Se may  exceed the
eurotoxicity of organic Se (Ammar  and Couri, 1981) by more than
0-fold. The differential toxicity and metabolism of various organic
nd inorganic Se forms makes it strongly improper to generalize the
erm ‘Se neurotoxicity’, whereas each neurotoxic effect should be
eferred to as a specific poisoning by a specific Se compound. An
xtensive effort should be made in the future to address the issue
f Se neurotoxicity in humans by assessing the specific effects of
ertain Se species.

An issue of interest is the ability of Se to counteract the toxic
ffects, mainly the neurotoxicity, of other elements. A large body
f evidence suggested an inhibitory effect exerted by Se against
eavy metal neurotoxicity, e.g. mercury (Wang et al., 2013), lead
Nehru and Iyer, 1994; Liu et al., 2013), cadmium, and aluminum
eurotoxicity. However, not all the results were consistent, and
ometimes Se served as an agonist in cases of mixed poisoning
Kasuya, 1976; Glaser et al., 2010). The ability of Se to form com-
lexes with other toxic elements in various organs including the
NS might also induce a longer persistence of the elements, which

s of some concern as it possibly leads to long-term release of Se
nd of heavy metals (Bjorkman et al., 1995) in the brain.

In conclusion, these above-mentioned experimental studies
oint to several and divergent mechanisms of Se neurotoxicity,
hich however may  not necessarily be relevant to humans, consid-

ring species-related susceptibility and the differences between
cute, subacute or chronic exposures in laboratory studies and
ong-term low-level exposures in human lifetime.

. Relevance of selenium speciation for CNS and exposure
ssessment methods

It is now clear that the impact of Se on the organism is strongly
ependent on its chemical species, as shown by a large number
f studies concerning the nutritional and toxicological proper-
ies of the metalloid in cell cultures and living organisms (Borella
t al., 1996; Michalke et al., 2009; Vinceti et al., 2009; Hazane-
uch et al., 2013; Weekley and Harris, 2013). The impact of the
arious Se species on neuronal health, however, is still largely
Please cite this article in press as: Vinceti, M., et al., Selenium neurotoxicit
Lett.  (2013), http://dx.doi.org/10.1016/j.toxlet.2013.11.016

nknown and very controversial, since in contrast with toxicologic
tudies most molecular biological investigations using knock-
ut mice or cell culture experiments revealed neuroprotective
ction of Se compounds such as selenoprotein P-bound Se (SePP),

303
 PRESS
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glutathioneperoxidase-bound Se (GPx), and thioredoxinreductase-
boud Se (TrxR) (Wirth et al., 2010; Schweizer et al., 2011; Dasuri
et al., 2013). The studies suggested an important role of seleno-
proteins in the maintenance of optimal brain functions via redox
regulation, showing among other effects neuronal and axonal
degeneration after SePP depletion, the restoration of dopaminer-
gic neurotransmission by selenite, and mitigation of tau pathology
by selenate (Khan, 2010; van Eersel et al., 2010; Zhang et al., 2010;
Caito et al., 2011; Raman et al., 2012). Only a few Se species were
however investigated in these investigations, typically in an on/off
approach and rarely in a concentration-dependent manner.

This puzzled picture drawn from the literature about Se-caused
neuroprotection versus neurodegeneration triggered probably
(mainly) from elevated inorganic Se species, further highlights the
needs for Se speciation studies including species identification and
quantification when assessing Se neurotoxicity and more gener-
ally Se effects on CNS (Michalke et al., 2009; Solovyev et al., 2013;
Vinceti et al., 2013c). Moreover, such studies should advisably be
conducted in samples relevant to brain-Se metabolism, in order to
avoid inappropriate conclusions about the impact of Se on neu-
ronal health or disease without reference to its species-specific
concentration in the CNS.

Terms related to chemical speciation has been ruled out from
IUPAC and published by Templeton et al. (2000). In these guide-
lines, elemental speciation is linked to a quality-controlled clear
species identification and quantification of all species of an ele-
ment present in a representative sample. A literature survey on Se
speciation in neuronal relevant tissue or body fluids revealed that
today such papers are scarce. Michalke and Berthele (2011) pub-
lished a first snapshot of Se speciation in human cerebrospinal fluid
(CSF) after a preceding study of this group had demonstrated the
independence of CSF-Se from serum-Se, hence pointing to a strict
Se-species regulation in the brain and/or regulated transport across
neural barriers (Dasuri et al., 2013). Six Se species were quantified
of which SePP, TrxR, human serum albumin-bound Se and selenate
could be identified, while two  more Se-peaks remained unidenti-
fied. A follow-up study investigated paired serum/CSF samples to
enlighten the possible transport of Se-species across neural bar-
riers (Solovyev et al., 2013). Se-species were quantified in both
sample types (as �g/l for serum # CSF) as selenoprotein P (5.19 #
0.47), Se-methionine (0.23 # < LoD) GPx (4.2 # 0.036), TrxR (1.64 #
0.035), selenite (12.25 # 0.046) and human serum albumin-bound
Se (18.03 # 0.068). In comparison to other papers on Se species in
serum or plasma (Zhang et al., 2010) in that reference serum SePP
was found at somewhat lower, while GPx was  at similar concen-
tration. However, the results from paired samples demonstrated
strong differences not only between total selenium concentrations
and serum, but more importantly between individual Se-species
concentrations from CSF and serum. Strikingly, strong correlations
between the two paired sample types were found only for GPx
(r2 = 0.6636) and TrxR (r2 = 0.8031), resulting in calculated Q-values
(conc-CSF vs. conc-serum) of 8.3 × 10−3 for GPx or 21.3 × 10−3 for
TrxR. Both values were considerably increased compared to the
albumin value of 5.25 × 10−3 being in the normal range for healthy
neural barriers of this age group. This increase of Q-values was
explained by their facilitated diffusion or transport across NB or
their independent expression in the brain. Interestingly, no corre-
lation was  found between serum and CSF content of the inorganic
Se species selenite and selenate, of the organic form SePP, and of
overall Se (Solovyev et al., 2013; Vinceti et al., 2013c), indicating
the inability of peripheral indicators such as blood (or nails, urine
and hair) to assess Se exposure in specific compartments such as the
CNS. This may  indicate the inadequacy of commonly used biomark-
y in humans: Bridging laboratory and epidemiologic studies. Toxicol.

ers to assess Se exposure, and the potential role of individual factors
related to Se metabolism, possibly under genetic control, in deter-
mining Se CNS content.
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. Human studies: acute Se intoxication

Reports about acute Se intoxication include suicide attempts,
onsumption of Se-containing dietary supplements, intake of food
ources with very high Se content like Brazil nuts, occupational
xposures and rarer etiologies (Vinceti et al., 2001; Nuttall, 2006;
orris and Crane, 2013). In one of the first studies on acute Se expo-

ure, 5 workers out of 25 were noted as affected by progressive
izziness and severe lassitude after adding Se to the ink which they
sed (Buchan, 1947). In another report, a 22 year old female biol-
gy student died after the suicidal ingestion of a sodium selenate
olution (Lech, 2002): post-mortem examination showed cerebral
dema. Localized or generalized tremor (Ransone et al., 1961; Sioris
t al., 1980) and convulsions (Carter, 1966; Civil and McDonald,
978) were also shown to be prominent symptoms of acute Se

ntoxication.
A high occurrence of fatigue, irritability, and peripheral neu-

opathy followed the ingestion of over-the-counter tablets (in
he US) that contained 27,300 �g of Se, 182-fold higher than
abeled (Helzlsouer et al., 1985). Fatigue and paresthesias were also
eported following the consumption of a misformulated Se supple-
ent, hypothesized to contain high amount of organic Se (Clark

t al., 1996).
A recent detailed study on acute Se intoxication enrolled 97 sub-

ects accidentally exposed to misformulated dietary supplements
ontaining over 40,000 �g of Se as selenate, 200-fold the intended
ose (Morris and Crane, 2013), a preparation which caused the
everest Se toxicity outbreak ever occurred in the US, involving
01 cases (MacFarquhar et al., 2010). The biomarkers of acute expo-
ure to this inorganic hexavalent Se species were monitored, along
ith the long-term health effects of this exposure during a 2.5 year-

ollow-up in 73 subjects (Morris and Crane, 2013). Toenail Se levels
ere first determined 4 months approx. after consuming misfor-
ulated Se supplements, showing much higher values than the

estored-baseline concentrations, and also strongly correlated with
otal Se intake during the exposure period. Analyses performed
erially in subjects’ toenail specimens showed an increase of Se
ontent over time, with a peak median lapsed time of 237 days
fter the last exposure and a median time to restored-baseline con-
entrations of 411 days. The overall Se consumption by subjects
anged between 669,570 and 965,520 �g in 30 days, a dose exceed-
ng more than 400 times the recommended dietary allowance in the
S (55–70 �g/day). Questionnaire data indicated a high occurrence
f dermatological lesions that usually follow Se overexposure, and
bout half as many of the subjects manifested long-term neuropsy-
hological signs and symptoms: fatigue, confusion, memory loss,
nxiety, fingertip tingling, depression, anger, irritability, insomnia,
izziness and imbalance, eye and vision problems and headaches.
remors also occurred but in a lower number of subjects (20%
pproximately). The occurrence of ataxia was not investigated in
his study, but this sign had been observed in 13% of 201 patients
xposed to such Se-containing misformulated supplement in a pre-
ious report (MacFarquhar et al., 2010). The natural history of this
cute Se toxicity is peculiar: in most cases (57.1%), an improvement
f symptoms was reported after 2.5 years, whereas 33.3% of the
tudy group reported no improvement and 9.5% reported worsen-
ng, thus contradicting previous reports on shorter recovery periods
Morris and Crane, 2013). This different natural history might be
scribed specifically to the ability of selenate to induce persistent
eurotoxic sequelae after acute intoxication. Some limitations of
his study must also be highlighted and were acknowledged by the
uthors. The investigation was undertaken in response to a Se tox-
Please cite this article in press as: Vinceti, M., et al., Selenium neurotoxicit
Lett.  (2013), http://dx.doi.org/10.1016/j.toxlet.2013.11.016

city outbreak, had limited statistical power, and lacked a control
roup. There was no independent validation of health symptoms
hat had been self-reported: however, the exceedingly high preva-
ence of symptoms supports their authenticity. Moreover, in the
 PRESS
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27 study subjects for whom both peak toenail selenium concentra-
tions and self-reported symptoms were available, some evidence
of a direct correlation, though statistically imprecise, emerged
(r = 0.256; p = 0.2 – courtesy of John Steven Morris, University of
Missouri, unpublished data). A longer-term follow-up of this popu-
lation would be of considerable interest to assess the risk of chronic
diseases, including the neurological ones.

In summary, neurotoxicity in humans is highly prevalent, long
lasting and probably irreversible after acute Se poisoning, par-
ticularly for some Se species. However, most studies have not
systematically analyzed the neurological effects, and in some stud-
ies no such effects were noted. Therefore, the relations between
acute Se poisoning and neurological diseases, as well as the pos-
sible effects of chronic poisoning by low-level exposures, require
further epidemiologic investigation, as is needed for the differ-
ential neurotoxic effects of various Se compounds. An additional
issue is the possibility to identify common underlying toxicologi-
cal mechanisms of Se acute adverse effects on the nervous, dermal
and endocrine systems.

5. Human studies: chronic exposures to environmental Se

Neurotoxicity following chronic Se overexposure, considerably
more common than acute exposure, has been investigated by very
few epidemiologic studies, significantly differing from each other
by their design and population characteristics, and the overall pic-
ture emerging from these investigations is incomplete and not
entirely inconsistent. Unfortunately, most studies carried out in
populations overexposed to environmental Se have not investi-
gated Se-induced long-term neurological effects.

One of the first and pioneering studies on health effects of Se
overexposure was  carried out in China and specifically in Hubei
Province, characterized by a very high soil Se content particularly
in its Enshi district (Yang et al., 1983; Zheng et al., 1992). The local
residents consumed locally-grown food, and largely used locally-
produced coal. Unusual signs and symptoms of Se poisoning were
observed in this population (Yang et al., 1983; Zheng et al., 1992;
Yang and Zhou, 1994; Li et al., 2012). Neurological signs were found
in 18 out of 22 rural residents affected by severe selenosis: the clin-
ical picture included acroparesthesia and dysesthesia (“pins and
needles”), hyperreflexia, convulsions, motor weakness and hemi-
plegia, abnormalities which were ascribed to ‘polyneuritis’ caused
by Se intoxication. However, this diagnosis does not appear to be
adequate to explain all symptoms detected, such as hyperreflexia
and convulsions, which are at least in part due to CNS involve-
ment. Moreover, there was unfortunately no direct information on
the chemical forms of Se implicated in this excess environmen-
tal exposure investigated in this study, though the main source of
exposure was  diet, which is expected to contain almost entirely
organic Se. However, emissions from coal combustion and con-
sumption of contaminated drinking water may have contributed
to the Se exposure in that area, providing inorganic Se in such case
(Finkelman et al., 1999; Guijian et al., 2007; Vinceti et al., 2013a).

During a subsequent survey carried out in the Enshi district by
the geologist Fiona Fordyce of the British Geological Survey, clinical
data on Se poisoning among rural residents made available by local
public health officials were collected and reported, in addition to a
large body of environmental data about the features of Se contam-
ination (Fordyce, 1996, 2007). A variety of neurological signs and
symptoms defined as ‘no strength in limbs’, ‘tingling limbs’ and
‘paralysis’ were found in a variable range of 1–5% among 180 sub-
y in humans: Bridging laboratory and epidemiologic studies. Toxicol.

jects from villages in which Se toxicity occurred (Fordyce, 1996).
However, relevant methodological details were not reported, such
as the sampling methodology, the extent of Se exposure in affected
individuals, the Se species responsible of such intoxication, and the
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xact rates of neurological signs and symptoms among the indi-
iduals investigated. Moreover, potential confounding from age,
ender, behavioral and environmental factors was not assessed,
nd no control group was provided. Despite these limitations, the
tudy provided evidence supporting a relation between chronic Se
verexposure and neurotoxic effects.

In a study carried out in the United States by Valentine et al.,
ealth status was assessed among 50 residents in three communi-
ies with unusually high Se content (mean = 494, 194 and 327 �g/l)
n their tap water (Valentine et al., 1987; Valentine, 1997). The con-
rol group included 99 residents in two communities with drinking
ater containing 2–3 �g Se/l. The exact nature of Se compounds
as not reported, but it seems reasonable to assume that Se was

norganic, probably selenate (Hu et al., 2009; Kuisi and Abdel-
attah, 2010). Blood and hair selenium levels were moderately
levated, and urinary Se was considerably elevated in the highly
xposed residents. The prevalence of neurological diseases (“dis-
ases of the nerves, paralysis or numbness”), examined only in
he age group 18–55 and for participants who were users of tap
ater, was limited but it tended to be higher in the exposed group

3/50, 6%) compared with the reference group (1/99, 0.5%), and this
as also true when subjects with higher Se status (defined as urine

e > 70 �g/day or blood Se > 120 �g/l) were investigated and com-
ared with residents with the lower exposure (5.4% vs. 1.7% using
rine Se as an indicator, 4.9% vs. 1.8 using blood Se) (Valentine et al.,
987). A broad spectrum of neurological symptoms (depression,
izziness, musculoskeletal pain and headache) was more frequent

n residents in the exposed communities compared with unexposed
opulations, and this was confirmed in the subgroup with higher
e exposure according to biomarkers. However, the evaluation of
hese comparisons was difficult due to the small sample size of the
roups investigated.

The risk of neurological symptoms was estimated in 142 inha-
itants of areas with endemic Se overexposure from South Dakota
nd Wyoming (Longnecker et al., 1991), having a median Se daily
ntake of around 200 �g. No effect of Se exposure on the risk of
aresthesias was found (it actually decreased). By contrast, an

ncreased risk of lethargy emerged since the odds ratio (OR) of
aving this sign more frequently than the median for an increase
f 1 standard deviation of whole blood, toenails, or dietary Se
as equal to 1.41 (95% confidence interval (CI) 1.01–1.96), 1.41

1.02–1.95), and 1.43 (0.98–2.09), respectively, and a slight excess
isk of muscle twitches (OR: 1.17 (0.84–1.64), 1.10 (0.80–1.51),
nd 1.28 (0.87–1.88)) and dizziness (OR: 1.20 (0.88–1.64), 1.29
0.94–1.76), and 1.17 (0.82–1.66)) was also noted. The authors also
tated that the ‘statistical significance’ of the association between
elenium exposure and lethargy decreased after excluding one
nfluential observation from the analysis, or adjusting for rancher-
onrancher status, but they did not report in detail the relevant ORs
ith their 95% CIs.

A unique situation of chronic exposure (1974–1988) to drinking
ater with a high content (around 8 �g/l) of selenate of geologic

rigin was studied in the Rivalta neighborhood in Reggio Emilia,
taly. Drinking water in the rest of municipal neighborhoods con-
ained Se levels far below 1 �g/l, as is usually in underground water
n Italy and elsewhere (Vinceti et al., 1998, 2000, 2010). After fix-
ng the local problem of such high Se level too close to the upper
tandard of 10 �g/l (Vinceti et al., 2013a), Se water levels in Rivalta
ecreased to less than 1 �g/l. The analysis of educational attain-
ent level and occupation in the cohorts consuming the high- and

ow-Se tap water showed a comparable profile (Vinceti et al., 1995),
n observation that along with the very similar chemical compo-
Please cite this article in press as: Vinceti, M., et al., Selenium neurotoxicit
Lett.  (2013), http://dx.doi.org/10.1016/j.toxlet.2013.11.016

ition of their tap waters apart from Se made it possible to define
he study setting as a natural experiment, usually of strong interest
n environmental epidemiology (Rothman et al., 2008). This setting
hus allowed to investigate a potentially toxic exposure, inorganic
 PRESS
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Se (nearly absent in foodstuffs (Combs, 2001)), also minimizing
the risk of bias from confounding. The occurrence of neurologi-
cal diseases was  investigated in the cohorts of Rivalta residents,
using mortality and, where possible, incidence, as end-points of
interest during 9–12 years of follow-up. Two  neurodegenerative
disorders, Parkinson’s disease and ALS, showed an excess mortality
(Vinceti et al., 1995, 2000) based on three deaths for each disease:
the inclusion of these two  diseases was first done non-specifically,
considering only the causes of death for which excessive mortal-
ity emerged. Further validation of ALS risk was done through two
incidence studies (Vinceti et al., 1996, 2010), whose design and
implementation was  prompted not only by the original results of
the Rivalta mortality studies but also by the original description of
a cluster of the disease associated with excess Se exposure in the
US. Such investigation was the report of a cluster of ALS, includ-
ing four cases of the disease, in a seleniferous region of South
Dakota (Kilness and Hochberg, 1977). Additional evidence sup-
porting the Se-ALS association was provided by laboratory and
veterinary medicine studies which showed a selective motor neu-
ron toxicity of some Se compounds in swine (Vinceti et al., 2012,
2013c). The indication of an excess risk for ALS (and Parkinson’s
disease) from the Rivalta studies suggested therefore a major con-
cern, to be further evaluated in populations exposed to high levels
of inorganic Se (Vinceti et al., 2013a). Despite the low statistical pre-
cision of the estimates due to the small numbers of observed cases,
this study also contributed to the suggestion of a precautionary re-
assessment of the current safe upper limit of Se level in drinking
water (Vinceti et al., 2013a). Interestingly, early-onset alopecia has
been recently associated to a higher risk of subsequent onset of
ALS (Fondell et al., 2013), an observation is of interest since alope-
cia is a typical effect of Se overexposure even at low doses (Vinceti
et al., 2001; Nuttall, 2006; Lippman et al., 2009), although alopecia
clearly has many possible causes including a single nucleotide poly-
morphism variant in the region of gene TAR DNA-binding protein
43, also suggested to be implicated in ALS pathogenesis (Fondell
et al., 2013)

A study on 448 residents aged 15–87 years in 12 communities
in the Brazilian Amazon tested the hypothesis that Se exposure,
as assessed through several biomarkers of exposure, could affect
motor functions (Lemire et al., 2011). High-level exposure to Se and
mercury (Hg) in these populations derived from the consumption of
a Se-rich diet of Brazil nuts, fish species, meat and eggs (Lemire et al.,
2012), and the median Se plasma Se level resulted to be 135 �g/l.
The study results showed a direct association between Se plasma
levels and motor performance, while simultaneously controlling
Hg and lead (Pb) blood levels. These results appear to disprove
the detrimental effect of Se exposure on motor functions, but may
also be due to confounding, such as unmeasured heavy metals
(other than Hg and Pb) and other chemicals. Moreover, the study
did not address exposure to specific Se compounds, although they
were most likely organic because of their dietary origin. Finally,
the results may  be irrelevant to ALS, a rapidly progressive and
extremely severe disease which cannot be directly compared to
mild to moderate declines in motor functions.

The peculiar sensitivity of children to adverse neurotoxic effects
of Se was addressed in 102 Canadian Inuit children aged 5–6 years.
Umbilical cord levels of several contaminants were measured at
their birth. The high consumption of fish and marine mammals
by this population was associated to an unusually high intake of
polychlorinated biphenyls, methyl-Hg, Se and other potentially
neurotoxic substances (Saint-Amour et al., 2006), with Se umbil-
ical blood level being 429 �g/l on the average. Measurements of
y in humans: Bridging laboratory and epidemiologic studies. Toxicol.

pattern-reversal visual evoked potentials (VEP) N75, P100 and
N150 were conducted to assess developmental neurotoxicity. VEP
exhibited longer latencies, suggesting optic nerve demyelination
as a consequence of elevated Se blood levels on the visual system,
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ven after adjusting for potential confounders such as methylmer-
ury in multivariate analysis. Thus, high Se intake during childhood
ight have a negative impact on the visual system and not be pro-

ective against methylmercury toxicity, suggesting the occurrence
f subclinical effects at high Se blood levels. Clearly, these effects at
oung age may  be different from what can be observed at older age,
nd the possibility of confounding or effect modification by other
ontaminants should also be considered (Saint-Amour et al., 2006;
ang et al., 2013).

Another study performed neurobehavioral assessment in a
ohort of 927 3-day old Chinese neonates using a Neonatal Behav-
oral Neurological Assessment score for functional abilities based
n 6 indexes: behavior, passive tone, active tone, primary reflexes
nd general assessment (Yang et al., 2013). Both a direct corre-
ation of the score with Se cord levels <100 �g/l and an inverse
ssociation for higher Se levels were found, suggesting the occur-
ence of an inverse U-shaped relation between this behavioral and
eurological assessment and Se exposure. These results indicate
n extremely narrow margins of safety of Se exposure in neonates,
ossibly suggesting higher susceptibility to Se neurotoxicity in the
arly developmental period (Yang et al., 2013).

Other environmental Se overexposures have been described, but
eurological issues do not unfortunately appear to have been inves-
igated in the seleniferous areas spread throughout the world such
s in Venezuela, Mexico, and India (Brätter et al., 1991; Brätter
nd Negretti de Brätter, 1996; Vinceti et al., 2001; Hira et al.,
004; Hurtado-Jimenez and Gardea-Torresdey, 2007; Dhillon and
hillon, 2009).

The investigation of chronic occupational exposures is another
otential approach to investigate health effects of chronic Se expo-
ure, but such exposures in workers appear to be uncommon, and
oreover neurotoxicity following Se exposure in occupational sett-

ngs has been rarely investigated. Such analyses of health effects of
e exposure in occupational settings may  also be of considerable
nterest since it may  involve ‘rare’ exposure to inorganic volatile
e compounds, specifically released in such environments. We  are
ware of two investigations which evaluated the consequence of
hronic exposure. Holness et al. (1989) assessed health status in 40
e-exposed copper refinery workers and 150 controls: a few neuro-
ogical symptoms were more prevalent in the exposed individuals,
ncluding dizziness, sleep disturbances and particularly paresthe-
ias. The latter symptom was reported by 29%, 35% and 45% of the
1, 23 and 29 Se-exposed workers examined in three consecutive
isits, respectively, compared with a rate of 3% in a control group
ncluding 150 individuals. Stiffness, fatigue and muscle-joint pain

ere also found as strongly increased in the Se-exposed workers.
n another occupational study, weakness and fatigue were found to
e considerably more prevalent in 19 workers who were exposed
o Se during the manufacture and maintenance work of drums used
n photocopy machines, compared with a control group of 15 non
e-exposed workers (Srivastava et al., 1997).

An alternative approach to assess the risk of neurological dis-
ases associated with Se exposure has been the implementation of
ase–control and cross-sectional studies. Se blood and tissue lev-
ls in neurological patients and controls were measured in several
tudies, even though some of them were of limited size and did not
heck for potential confounding factors. These studies addressed
lzheimer’s disease (Ceballos-Picot et al., 1996; Loef et al., 2011),
arkinson’s disease (Qureshi et al., 2006; Younes-Mhenni et al.,
013) and ALS (Mitchell et al., 1991; Ince et al., 1994; Markesbery
t al., 1995; Vinceti et al., 1997; Bergomi et al., 2002; Vinceti et al.,
013c). Major methodological limitations, however, affected these
Please cite this article in press as: Vinceti, M., et al., Selenium neurotoxicit
Lett.  (2013), http://dx.doi.org/10.1016/j.toxlet.2013.11.016

nvestigations. First, exposure assessment of Se was based on indi-
ators such as toenails or blood Se levels, which may  be unreliable
n assessing Se burden in the CNS and possibly other target organs
Solovyev et al., 2013; Vinceti et al., 2013c). Moreover, these studies
 PRESS
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investigated the overall Se content in biological fluids, disregard-
ing the specific exposures to the different Se compounds and the
complex patterns which may  arise from Se speciation studies. For
example, in a recent investigation in newly diagnosed ALS patients
(thus minimizing a disease-induced effect on Se biomarkers) and
matched hospital controls, in which the CSF content of the vari-
ous Se compounds was measured, levels of organic Se species were
lower but concentrations of selenite and human serum albumin-
bound Se levels were higher in ALS patients (Vinceti et al., 2013c).
In general, most of the case–control and cross-sectional studies
assessing overall Se exposure in patients with neurological diseases
suffered from severe risk of biases such as selection bias, inadequate
exposure assessment, confounding, and reverse causality. To yield
reliable information of etiologic importance, studies using organ-
specific indicators of exposure to single Se compounds should be
used, though the complexity of such studies limits their feasibility.

6. Moving forward: research priorities and precautionary
risk assessment for selenium neurotoxicity

Current epidemiologic evidence in the human unambiguously
shows the neurotoxicity of acute Se exposure and also appears to
support such effects following low-level chronic Se overexposure,
although the latter relation is still inadequately characterized. The
biological plausibility of Se neurotoxicity is also clearly supported
by laboratory and veterinary medicine evidence. The results of the
few human studies conducted on this issue as well as their lim-
itations, as described above, call for further investigation of Se
neurotoxicity, focusing on the effects of long-term low-level Se
exposure as well as the specific activity of the various Se species.
Additional evidence regarding these issues is needed also to better
assess the safe range of Se exposure, which is still controversial.
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