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Type 2 diabetes is associated with a range of non-cardiovascular non-oncolo-
gic comorbidities. To move beyond associations and evaluate causal effects
between type 2 diabetes genetic predisposition and 21 comorbidities, we apply
Mendelian randomization analysis using genome-wide association studies
across multiple genetic ancestries. Additionally, leveraging eight mechanistic
clusters of type 2 diabetes genetic profiles, each representing distinct biolo-
gical pathways, we investigate causal links between cluster-stratified type 2
diabetes genetic predisposition and comorbidity risk. We identify causal
effects of type 2 diabetes genetic predisposition driven by distinct genetic
clusters. For example, the risk-increasing effects of type 2 diabetes genetic
predisposition on cataracts and erectile dysfunction are primarily attributed to
adiposity and glucose regulation mechanisms, respectively. We observe
opposing effect directions across different genetic ancestries for depression,
asthma and chronic obstructive pulmonary disease. Our findings leverage the
heterogeneity underpinning type 2 diabetes genetic predisposition to prior-

itize biological mechanisms underlying causal relationships with

comorbidities.

Worldwide, over 500 million individuals have type 2 diabetes (T2D), a
number expected to exceed 1.27 billion by 2050". In 2022, diabetes-
related healthcare expenditures were estimated to be over $412 billion
in the United States of America alone’. The cumulative economic strain
on healthcare resources is much greater when considering the
comorbidities associated with T2D. For instance, a study looking at
multimorbid T2D patients found that 73% also suffered from hyper-
tension, followed by 69% with a diagnosis of back pain, 67% of
depression, 45% of asthma, and 36% of osteoarthritis®>. While advances
in treatment, such as improved blood sugar monitoring* and glucagon-
like peptide-1 (GLP-1) receptor agonists’, can mitigate some of the

challenges associated with T2D, its rising prevalence and diverse
comorbidities call for a paradigm shift toward prevention strategies.
Despite their prevalence and significant impact on quality of life®, non-
cardiovascular T2D comorbidities remain understudied compared to
cardiovascular conditions. Building on the understanding of shared
genetic etiology, we can identify common biological mechanisms to
develop targeted interventions tailored to an individual's genetic
predisposition for multimorbidity profiles’®,

Genetic and environmental factors are involved in the patho-
physiology of T2D, a biologically heterogeneous disease characterized
by the interplay of different cell-type specific mechanisms’. Efforts to
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identify different T2D genetic profiles have yielded promising
results'®". Recently, the T2D Global Genomics Initiative (T2DGGI)
identified 1289 genetic risk variants in a multi-ancestry genome-wide
association study (GWAS) meta-analysis" and grouped these variants
into eight non-overlapping mechanistic clusters representing distinct
biological pathways. Clustering was performed based on the associa-
tion profile of the T2DGGI genetic risk variants with cardiometabolic
traits, yielding the following clusters: body fat (n =273 variants), obe-
sity (n=233), beta cell associated with increased proinsulin (+PI)
levels (n=91), beta cell associated with decreased proinsulin (-PI)
levels (n=289), metabolic syndrome (n=166), lipodystrophy (n=45),
liver/lipid metabolism (n=3) and residual glycaemic (n=389). Asso-
ciations between the T2DGGI partitioned genetic risk scores (GRS) and
cardiovascular outcomes, including coronary artery disease and dia-
betic retinopathy, have been previously described'*".

To move beyond associations, we evaluate causal relationships
between T2D genetic predisposition and 21 non-cardiovascular non-
oncologic comorbidities by employing bi-directional Mendelian ran-
domization (MR). MR is a causal inference method that uses genetic
variants as instrumental variables (IVs) to estimate the causal effect of
an exposure on an outcome, leveraging the random allocation of
alleles at conception to reduce confounding and reverse causation. For
MR estimates to be valid, three core assumptions must hold: (1) the IVs
are robustly associated with the exposure of interest; (2) the IVs are not
associated with any confounders of the exposure-outcome relation-
ship; and (3) the IVs influence the outcome solely through the expo-
sure, not via alternative pathways (no horizontal pleiotropy). We
acknowledge that violations of these assumptions pose challenges to
causal inference and have implemented sensitivity analyses in accor-
dance to the STROBE guidelines to test the robustness of our findings
(Methods, Supplementary Note 1, Supplementary Note 2).

Previous studies investigating the causal links between genetic
predisposition for T2D and its non-cardiovascular comorbidities have
not considered genetic subtypes of disease heterogeneity'>2°. Cluster-
stratified MR analysis has been previously employed to identify spe-
cific biological mechanisms driving causal relationships and potential
pleiotropic pathways®*. Here, in addition to performing pairwise bi-
directional MR analyses, we investigated cluster-stratified effects of
T2D genetic predisposition on its comorbidities by restricting the IVs
to T2DGGI genetic risk variants assigned to each mechanistic cluster
identified in the latest T2DGGI GWAS meta-analysis. Our biologically
informed cluster-stratified MR approach aims to identify distinct T2D
genetic profiles causally associated with 21 non-cardiovascular dis-
eases, spanning five classes: musculoskeletal, respiratory, reproduc-
tive, neuropsychiatric and ophthalmic conditions. The different T2D
genetic profiles highlight potential biological pathways underlying
specific comorbidity pairs.

Results

Genetic predisposition for T2D is a potential driver of
comorbidities

We investigate causal effects between T2D genetic predisposition and
21 non-cardiovascular comorbidities (Table 1) using pairwise bi-
directional two-sample MR (Fig. 1). The T2D comorbidities were
selected after a comprehensive literature review of observational stu-
dies and the availability of GWAS summary statistics without the
inclusion of proxy cases.

We find statistical evidence (FDR-adjusted p-value (g-value) <0.05)
of a causal link between overall T2D genetic predisposition and
11 comorbidities (Fig. 2, Supplementary Data 1). Our findings show
that genetic predisposition for T2D has risk-increasing effects on
attention-deficit/hyperactivity disorder (ADHD) (IVW odds ratio
(OR) =1.09, p-value = 9.17x107*), carpal tunnel syndrome (CTS) (OR =
1.10, p-value =1.81 x 107°), cataracts (OR =1.04, p-value =1.35x1079),
erectile dysfunction (OR=1.09, p-value=2.54x107), osteoarthritis

(OR=1.01, p-value=7.10x10"3), polycystic ovary syndrome (PCOS)
(OR=112, p-value=7.47x107), primary open-angle glaucoma
(glaucoma) (OR=1.07, p-value=1.81x10"?) and vascular dementia
(OR=1.09, p-value=1.30x107%). For anorexia nervosa (OR=0.96,
p-value=225x1073),  obsessive-compulsive  disorder  (OCD)
(OR=0.90, p-value=216x10"*) and osteoporosis (OR=0.95,
p-value =8.55x107), we find T2D genetic predisposition to have a
protective effect. When comparing our causal estimates with results of
previous MR studies investigating the effect of T2D genetic predis-
position on disease risk, we find mostly consistent directions of effect
(Supplementary Fig. 1, Supplementary Table 1)*"*'5202333_ For anor-
exia nervosa, vascular dementia and OCD, we did not find MR studies
using T2D genetic predisposition as the exposure for comparison.

In the reverse direction, we find statistical evidence of a pro-
tective effect of genetic predisposition for clinically diagnosed
Alzheimer’s disease (OR=0.98, p-value =4.81x107), bipolar dis-
order (OR=0.96, p-value=6.62x10"*) and vascular dementia
(OR=0.95, p-value =3.55x107*) on risk for T2D (Supplementary
Fig. 2, Supplementary Data 2). The identified protective effects of
genetic predisposition for Alzheimer’s disease and vascular
dementia on T2D risk are attenuated after adjustment (multivariate
MR) for high-density lipoprotein (HDL) levels, body mass index
(BMI) and waist-to-hip ratio (WHR) (Fig. 1, Methods, Supplemen-
tary Note 2).

Distinct biological mechanisms contribute to the effect of T2D
genetic predisposition on comorbidities

In addition to the effects of overall genetic predisposition for T2D on
comorbidity risk, we investigated the effects stratified by T2D
mechanistic subtypes using the T2DGGI genetic variants assigned to
each T2DGGI genetic cluster as 1Vs (Fig. 1). All identified causal rela-
tionships between overall genetic predisposition for T2D and its
comorbidities are accompanied by at least one cluster-stratified effect,
suggesting shared underlying biological pathways (Fig. 3, Supple-
mentary Fig. 3).

We also provide evidence of causal effects of certain T2DGGI
genetic clusters without the presence of a causal effect of overall
genetic predisposition for T2D on five further comorbidities: Alzhei-
mer’s disease, asthma, chronic back pain, chronic obstructive pul-
monary disease (COPD) and rheumatoid arthritis (Fig. 3,
Supplementary Data 1). To investigate whether the observed effects
are specific to the respective clusters, we performed leave-one-cluster-
out MR analyses using all T2DGGI genetic risk variants except those
assigned to the potential causal cluster (Methods, Supplementary
Note 1). In the leave-one-cluster-out MR analyses, we find no evidence
of a causal effect of T2D genetic predisposition on any of the five
diseases, indicating specific biological mechanisms, represented by
the causal clusters, that may underlie these relationships (Supple-
mentary Data 3).

The impact of T2D obesity-related pathways on anorexia ner-
vosa, asthma and back pain
We find evidence of causal effects of the obesity cluster on 11 out of the
16 comorbidities (68.75%) causally affected by any genetic predis-
position for T2D. The effects of the obesity cluster are consistently the
largest across all clusters (Fig. 3, Supplementary Data 1). For asthma
(OR=1.12, p-value =6.40x10"*) and chronic back pain (OR=1.09, p-
value=3.69 x10°%), we find a risk-increasing effect of the obesity
cluster but not of any of the other T2DGGI genetic clusters. Similarly,
for anorexia nervosa, we find a protective effect of the obesity cluster
(OR=0.91, p-value=9.37 x107) without a further effect of another
T2DGGI genetic cluster.

To validate the MR findings, we performed a phenome-wide
association study (PheWAS) for each T2DGGI genetic cluster using
data from the All of Us Research Program, an ancestrally and culturally
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Table 1| Overview of non-cardiometabolic type 2 diabetes comorbidities GWAS

Disease Genetic ancestry N Ncases Ncontrols Cases definition Ref.
SR CD
Alzheimer’s disease EUR 63,936 21,982 41,954 X 80
Anorexia nervosa EUR 72,517 16,992 55,525 X X 81
Asthma EUR 1,376,071 121,940 1,254,131 X X 82
EAS 341,204 18,549 322,655 X X 82
AMR 18,173 4069 14,104 X X 82
SAS 27,091 4015 23,076 X X 82
AFR 32,658 5051 27,607 X X 82
ADHD EUR 225,534 38,691 186,843 X 83
Autism EUR 46,350 18,381 27,969 X 84
Back pain EUR 158,025 29,531 128,494 X X 85
Bipolar disorder EUR 413,466 41,917 371,549 X 86
CTS EUR 1,239,680 48,843 1,190,837 X 87
Cataracts EUR 585,243 67,844 517,399 X 88
COPD EUR 995,917 58,559 937358 X X 89
AFR 29,682 1978 27,704 X X 89
AMR 15,086 1503 13,583 X X 89
EAS 329,733 19,044 310,689 X X 89
Depression EUR 404,529 170,756 233,773 X X 90
EAS 382,936 21,980 360,956 X X 91
AMR 377,959 25,013 352,946 X X 91
SAS 31,681 4505 27,176 X X 91
AFR 198,497 36,818 161,679 X X 91
Epilepsy EUR 82,482 29,944 52,538 X 92
Erectile dysfunction EUR 223,805 6175 217,630 X X 93
Glaucoma EUR 379,422 29,211 350,181 X X 94
OCD EUR 9725 2688 7037 X 95
Osteoarthritis EUR 826,690 177,517 649,173 X X 96
Osteoporosis EUR 488,501 8520 479,981 X 97
EAS 178,726 9794 168,932 X 97
PCOS EUR 120,023 5209 114,814 X 98
Rheumatoid arthritis EUR 97,173 22,350 74,823 X 99
EAS 173,633 11,025 162608 X 99
Schizophrenia EUR 130,644 53,386 77,258 X 100
EAS 30,761 14,004 16,757 X 100
AFR 10,070 6152 3918 X 100
AMR 4324 1234 3090 X 100
Vascular dementia EUR 466,606 3892 462,714 X 101

The overview includes genetic ancestry defined based on the continental super populations of the 1000 Genomes Project phase 3°° (AMR = Admixed American; AFR = African; EAS = East Asian;
EUR = European; SAS = South Asia), total sample size (N), number of cases (Ncases), number of controls (Ncontrols), case definition (SR =self-reported; CD = clinically diagnosed) and the corre-
sponding GWAS publication. (ADHD = attention-deficit/hyperactivity disorder; COPD = chronic obstructive pulmonary disease; CTS = Carpal tunnel syndrome; OCD = obsessive-compulsive disorder;

PCOS =polycystic ovary syndrome).

diverse cohort that was not included in the T2DGGI GWAS meta-
analysis nor in any of the T2D comorbidity GWAS** (Methods). Con-
cordantly, we observe an association between the T2DGGI obesity
cluster genetic risk variants and asthma, chronic back pain and eating
disorder (a trait strongly associated with anorexia nervosa) in the All of
Us cohort dataset (asthma: OR =1.04, p-value =1.54x10%; back pain:
OR=1.03, p-value=4.19x107; eating disorder: OR=114, p-
value =2.20x10*). Our findings suggest that obesity is the main bio-
logical mechanism driving the observed causal effect of T2D genetic
predisposition on the risk of these three health conditions.

BMI can act as a confounder of the identified relationships asit is a
shared risk factor of T2D and the 11 comorbidities causally affected by
the obesity cluster (Methods, Fig. 1, Supplementary Fig. 4, Supple-
mentary Data 4). Hence, we adjust the obesity cluster estimates for

genetic predisposition for higher BMI through multivariable MR
(Methods, Supplementary Note 1, Fig. 1, Supplementary Figs. 5-28).
Following adjustment, we no longer observe an effect of T2D genetic
predisposition on any disease except cataracts, CTS, and osteoporosis
(Supplementary Figs. 5-7, Supplementary Data 5, Supplemen-
tary Note 1).

The impact of T2D glucose regulation mechanisms on glau-

coma, COPD, rheumatoid arthritis and erectile dysfunction

Beta cell-related clusters drive the protective effect of T2D genetic
predisposition on COPD (+Pl: OR=0.97, p-value=8.20x10"* and
rheumatoid arthritis (-Pl. OR=0.92, p-value=1.68x10"), adding
genetic evidence to the potential role of beta cell dysfunction in these
diseases™ . In addition to the beta cell clusters, variants in the
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residual glycaemic cluster, which are most strongly associated with
fasting glucose, also drive the risk-increasing effects of genetic pre-
disposition for T2D on erectile dysfunction (residual glycaemic: OR =
112, p-value =4.49x10*; beta cell +PI: OR=1.09, p-value =4.27x107)
and glaucoma (residual glycaemic: OR =1.08, p-value = 7.92x1073; beta
cell +PI: OR =111, p-value =1.75x107%). For erectile dysfunction, sensi-
tivity analyses show statistical evidence of a robust risk-increasing
causal effect of T2D genetic predisposition driven by glucose regula-
tion clusters (Supplementary Note 1).

The impact of T2D non-glucose-related pathways on ADHD,
cataracts, PCOS, Alzheimer’s disease and osteoporosis

Our cluster-stratified MR findings show that the effect of T2D
genetic predisposition for cataracts is driven by the obesity
(OR=1.08, p-value=1.80x107) and body fat clusters (OR=105,
p-value =9.38x107%). Concordantly to the risk-increasing effect of
overall T2D genetic predisposition on cataracts, we observe a positive
association between the T2DGGI genetic risk variants and cataracts in
the All of Us cohort (OR=1.08, p-value =2.13x103). The protective
effect of genetic predisposition for T2D on osteoporosis is driven
by the metabolic syndrome (OR=0.92, p-value=3.36x10"*) and
obesity clusters (OR=0.88, p-value=3.26x107). Similarly, we find
negative associations in the All of Us cohort between T2DGGI
genetic risk variants assigned to the obesity cluster and osteoporosis
(obesity: OR = 0.94, p-value = 7.34x10°°). For PCOS, the risk-increasing
effect of genetic predisposition for T2D is driven by the obesity
(OR=1.36, p-value =1.90x107) and lipodystrophy clusters (OR =1.29,
p-value = 8.89x107%).

For Alzheimer’s disease, our findings indicate a risk-increasing
effect of T2D genetic predisposition only through the body fat cluster
(OR=1.10, p-value = 8.28x107). Adjusting for HDL levels fully attenu-
ates this effect (Supplementary Fig. 24, Supplementary Data 5). For
ADHD, a combination of the obesity (OR=1.24, p-value =1.54x107%),
body fat (OR =1.17, p-value =1.15x10"%) and metabolic syndrome clus-
ters (OR =111, p-value =2.42x107*) drive the risk-increasing effect of
T2D genetic predisposition. These results suggest that non-glucose-
related metabolic and adiposity pathways may contribute to the link
between T2D genetic predisposition and increased ADHD and Alzhei-
mer’s disease risks.

The multifactorial impact of T2D on CTS, OCD vascular
dementia and osteoarthritis

We find evidence of a causal link between all T2DGGI genetic clusters,
except the beta cell clusters, and CTS (Fig. 3, Supplementary Data 1),
demonstrating a multifactorial association mediated by diverse bio-
logical pathways. The strongest effects are observed for the obesity
(OR =1.23, p-value = 7.88x107%) and lipodystrophy clusters (OR =1.20,
p-value =8.67x10%). In line with these findings, T2DGGI genetic risk
variants assigned to these two clusters are positively associated with
CTS in the All of Us data (obesity: OR =1.07, p-value = 7.64x107°, lipo-
dystrophy: OR =1.04, p-value =1.30x10"*) (Supplementary Data 6). The
obesity (OR = 0.77, p-value = 8.57x107) and residual glycaemic clusters
(OR=0.84, p-value=8.58x107) drive the protective effect of T2D
genetic predisposition on OCD. The risk-increasing effect of T2D
genetic predisposition on vascular dementia is driven by the
obesity cluster (OR=L18, p-value=113x103) and by the beta
cell cluster associated with increased proinsulin levels (OR=1.13,
p-value =4.71x107).

Osteoarthritis is the only disease for which we find divergent
patterns of potentially causal effects across the T2DGGI genetic
clusters. The identified risk-increasing effect of genetic predisposition
for T2D on osteoarthritis is driven by the obesity cluster (OR=1.15,
p-value =1.03x10"¥). Supporting our findings, the T2DGGI genetic
risk variants assigned to the obesity cluster are positively
associated with osteoarthritis risk in the All of Us cohort (OR=1.06,
p-value=2.04x10"). In contrast, genetic predisposition for T2D
restricted to the beta cell clusters is associated with reduced
osteoarthritis risk (+PIl: OR=0.97, p-value =1.70x107*, -PIl: OR=0.96,
p-value =7.21x1073). All estimates of T2D genetic predisposition on
osteoarthritis risk are attenuated after adjusting for the effects of BMI,
waist-to-hip ratio, and subcutaneous adipose tissue volume (Supple-
mentary Figs. 11,21,25, Supplementary Data 5).

Potential causal effects of genetic predisposition for T2D vary
across genetic ancestry groups

We examined the MR findings within each genetic ancestry group prior
to meta-analysis. (Supplementary Fig. 29). Although genetic ancestry is
on a continuous scale, here we use the continental super populations
defined by the 1000 Genomes Project phase 3%, i.e. individuals
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Fig. 2 | Forward Mendelian randomization results. Results of two-sample Men-
delian randomization (MR) analysis of genetic predisposition for type 2 diabetes
(T2D) on non-cardiovascular comorbidity risk for the causal relationships (g-
value < 0.05). Causal estimates are expressed as the odds ratios (ORs) for each
comorbidity per doubling (2-fold increase) in genetically determined dichotomous
T2D risk. Points represent MR causal estimates derived from summary statistics
(ORs, measure of center) and error bars denote 95% confidence intervals (CI). Filled
circles mark estimates that passed the sensitivity analyses to assess the validity of
the MR assumptions. Sample size of the T2D GWAS meta-analysis used as exposure
datasets: 2,107,149 controls and 428,452 cases. Sample sizes of the GWAS used as
outcome datasets: CTS (n=48,843 cases, n=1,190,837 controls), osteoarthritis
(n=177,517 cases, n = 649,173 controls), osteoporosis (n =18,314 cases, n= 648,913
controls), ADHD (n=38,691 cases, n=186,843 controls), vascular dementia
(n=3,892 cases, n=462,714 controls), anorexia nervosa (n =16,992 cases,
n=>55,525 controls), OCD (n =2688 cases, n=7037 controls), glaucoma (n =29,241
cases, n =350,181 controls), cataracts (n = 67,844 cases, n = 517,399 controls), PCOS
(n=5209 cases, n =114,814 controls) and erectile dysfunction (n = 6175 cases,
n=217,630 controls). Abbreviations: Cl confidence interval, CTS Carpal tunnel
syndrome, ADHD attention-deficit/hyperactivity disorder, OCD obsessive-
compulsive disorder, PCOS polycystic ovary syndrome.

genetically similar to Africans (AFR), Europeans (EUR), East Asians
(EAS), South Asians (SAS), and Admixed Americans (AMR). We observe
divergent patterns of association between T2D genetic predisposition
and asthma, COPD and depression risk among different genetic
ancestry groups (Fig. 4, Supplementary Data 7). Although no statistical
evidence of a causal effect of T2D genetic predisposition on depres-
sion was found in the meta-analysis across global populations, a pro-
tective effect driven by the obesity cluster was found in EAS. On the
contrary, in EUR we find evidence of a risk-increasing effect of T2D
genetic predisposition on depression linked to the obesity and
body fat clusters (Fig. 4, Supplementary Data 7). All T2DGGI genetic
risk variants and those assigned to the obesity cluster are positively
associated with depression in the All of Us cohort (all: OR=1.03,
p-value =4.23x107, obesity: OR =1.05, p-value =1.54x107).

We find a protective effect of T2D genetic predisposition on COPD
in AMR, contrasting a risk-increasing effect in EUR. For EUR, we find
additional risk-increasing effects from the body fat and obesity clus-
ters and a protective effect from the beta cell +PI cluster (Fig. 4, Sup-
plementary Data 7). In addition to COPD, divergent effects across
T2DGGI genetic clusters are observed in osteoarthritis. For both dis-
eases, the risk-increasing effects of the obesity cluster oppose the
protective effects of beta cell-related clusters. Results in EAS and SAS
show a protective effect of T2D genetic predisposition on asthma. In
EAS, the effect is driven by the beta cell and the residual glycaemic
clusters. Conversely, in EUR, we identify a risk-increasing effect driven
by the obesity cluster.

Discussion

T2D is a leading global health concern that impacts individuals and
healthcare systems. Effective prevention strategies for T2D and its
comorbidities require a deeper understanding of the shared biology
underlying these relationships. Here, we sought to identify non-car-
diovascular, non-oncologic diseases causally affected by T2D genetic
predisposition and investigated the biological mechanisms underlying
the identified causal effects. Our results show that T2D genetic pre-
disposition is a driver of comorbidities, rather than the risk of T2D
being causally affected by genetic predisposition for its comorbidities.
Moreover, T2D genetic predisposition is primarily linked to risk-
increasing effects on its comorbidities, reinforcing the role of genetic
burden to T2D as a risk factor. The obesity cluster drives most of the
observed associations and shows the strongest effects, supporting the
well-known role of obesity as a common risk factor for multiple
chronic diseases*.

Despite potential differences in phenotype definition and selec-
tion of Vs, our genetic findings align with previous MR studies inves-
tigating the causal effect of overall genetic predisposition for T2D on
comorbidity risk'>**2°?*333 (Supplementary Fig. 1). Additionally, our
findings align with observational studies for many of the identified
associations using overall genetic predisposition for T2D, including
cataracts”, glaucoma*>**>, PCOS**** and erectile dysfunction*®™**, For
instance, cohort studies have shown a decreased risk of T2D in anor-
exia nervosa patients*’ and a longitudinal observational study using
the Polish National Health Fund data showed a decreasing trend of
anorexia nervosa prevalence in T2D patients®. The risk of fractures, a
proxy for osteoporosis, is lower in T2D patients than in healthy
controls®, in line with the identified protective effect of T2D genetic
predisposition on osteoporosis.

In our study, we go beyond T2D genetic predisposition as a
homogeneous phenotype by applying cluster-stratified MR and,
hence, prioritize the biological mechanisms underlying the identified
causal relationships. For instance, we show that glucose regulation
mechanisms contribute to the associations between T2D genetic pre-
disposition and erectile dysfunction and glaucoma, which aligns with
previous genetics-based studies using glycaemic traits data™'$*2
Obesity has been positively associated with cataracts in a meta-analysis
of over 1.6 million individuals®. Concordantly, our findings highlight
obesity as one of the mechanisms underlying the causal effect of T2D
genetic predisposition on cataract risk. For osteoarthritis, we find
evidence of diverging cluster-stratified effects of genetic predisposi-
tion for T2D, validating the previously shown opposite association
between both diseases in addition to shared risk-increasing obesity
mechanisms™.

Previous MR studies have not found evidence of a causal link
between T2D genetic predisposition and osteoarthritis®* By lever-
aging the largest and most recent GWAS datasets for both diseases, we
are now able to identify a significant risk-increasing effect of T2D
genetic predisposition on osteoarthritis. This effect is attenuated after
adjusting for adiposity-related traits such as BMI, WHR and sub-
cutaneous adipose tissue volume. This indicates that these shared risk
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Fig. 3 | Cluster-stratified Mendelian randomization results. Results of cluster-
stratified two-sample Mendelian randomization (MR) analysis of genetic predis-
position for type 2 diabetes (T2D) on non-cardiovascular comorbidities risk for the
causal relationships (g-value < 0.05). Causal estimates are expressed as the odds
ratios (ORs) for each comorbidity per doubling (2-fold increase) in genetically
determined dichotomous T2D risk. Points represent MR causal estimates derived
from summary statistics (ORs, measure of center) and error bars denote 95%
confidence intervals (CI). Filled circles mark estimates that passed all sensitivity
analyses to assess the validity of the MR assumptions. Sample size of the T2D GWAS
meta-analysis used as exposure datasets: 2,107,149 controls and 428,452 cases.
Sample sizes of the GWAS used as outcome datasets: CTS (n = 48,843 cases,
n=1,190,837 controls), osteoarthritis (n =177,517 cases, n = 649,173 controls), back
pain (n=29,531 cases, n=128,494 controls), osteoporosis (n =18,314 cases,

n= 648,913 controls), rheumatoid arthritis (n =33,375 cases, n =237,431 controls),
ADHD (n=38,691 cases, n=186,843 controls), vascular dementia (n = 3,892 cases,
n=462,714 controls), Alzheimer’s disease (n=21,982 cases, n =41,954 controls),
anorexia nervosa (n=16,992 cases, n = 55,525 controls), OCD (n =2688 cases,
n=7037 controls), glaucoma (n=29,241 cases, n=350,181 controls), cataracts
(n=67,844 cases, n = 517,399 controls), PCOS (n = 5209 cases, n =114,814 controls),
erectile dysfunction (n = 6175 cases, n =217,630 controls), asthma (n =153,624
cases, n=1,641,573 controls) and COPD (n = 81,084 cases, n=1,289,334 controls).
Abbreviations: T2DGGI Type 2 Diabetes Global Genomics Initiative, CI confidence
interval, PI proinsulin, CTS Carpal tunnel syndrome, ADHD attention-deficit/
hyperactivity disorder, OCD obsessive-compulsive disorder, PCOS polycystic ovary
syndrome, COPD chronic obstructive pulmonary disease.

factors explain at least partially the effect of T2D genetic predisposi-
tion on osteoarthritis risk. We also observe contrasting cluster-specific
effects: genetic variants from the T2DGGI obesity cluster have a risk-
increasing effect on osteoarthritis, while variants assigned to beta cell
function-related T2DGGI clusters show a protective effect on
osteoarthritis risk. These findings align with prior observations of
opposing associations at shared genetic loci between the two
conditions®, and highlight the value of mechanistic decomposition of
polygenic risk.

We identify protective effects of genetic predisposition for Alz-
heimer’s disease and vascular dementia on T2D risk that do not show
evidence of horizontal pleiotropy. For vascular dementia, the reverse
MR analysis was driven primarily by a single genome-wide significant
variant at the APOE locus, a well-established vertical pleiotropy region
with roles in both lipid metabolism and neurodegeneration®. The
protective effect observed may thus reflect APOE-mediated lipid reg-
ulation. This is further supported by the attenuation of the identified
effect after adjustment for genetic predisposition for higher HDL
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Fig. 4 | Single-ancestry Mendelian randomization results. Mendelian randomi-
zation (MR) results for different global genetic ancestry groups using cluster-
stratified genetic predisposition for T2D and risk for T2D non-cardiovascular
comorbidities (EUR=individuals genetically similar to Europeans, EAS=individuals
genetically similar to East Asians) for the causal relationships (g-value < 0.05).
Causal estimates are expressed as the odds ratios (ORs) of each comorbidity per
doubling (2-fold increase) in genetically determined dichotomous T2D risk. Points
represent MR causal estimates derived from summary statistics (ORs, measure of
center), and error bars denote 95% confidence intervals (Cl). Filled circles mark
robust estimates that passed all sensitivity analyses. Sample size of the T2D GWAS
meta-analysis used as exposure datasets: AMR = 29,375 cases, n = 59,368 controls;
EAS = 88,109 cases, n=339,395 controls; EUR =242,283 cases, n=1,569,734 con-
trols; SAS =16,832 cases, n=33,767 controls. Sample sizes of the GWAS used as

outcome datasets: COPD (AMR: n =1503 cases, n =13,583 controls; EUR: n=58,559
cases, n = 937,358 controls; meta-analysis: n = 81,084 cases, n =1,289,334 controls),
osteoporosis (EAS: n=9794 cases, n=168,932 controls; EUR: n=8520 cases,
n=479,981 controls; meta-analysis: n=18,314 cases, n = 648,913 controls), rheu-
matoid arthritis (EAS: n=11,025 cases, n =162,608 controls; meta-analysis:
n=233,375 cases, n=237,431 controls), asthma (EAS: n=18,549 cases, n =322,655
controls; EUR: n=121,940 cases, n =1,254,131 controls; SAS: n =4015 cases,
n=23,076 controls; meta-analysis: n=153,624 cases, n=1,641,573 controls), and
depression (EAS: n=21,980 cases, n=360,956 controls; EUR: n=170,756 cases,
n=233,773 controls). Abbreviations: T2DGGI Type 2 Diabetes Global Genomics
Initiative, CI confidence interval, PI proinsulin, COPD chronic obstructive pul-
monary disease.

levels. The observed attenuation suggests that the effect of genetic
predisposition for both dementia types on T2D risk is at least partially
explained by HDL levels. In addition, we find evidence that genetic
variants associated with increased HDL levels have a protective effect
on clinically diagnosed Alzheimer’s disease and vascular dementia risk,
opposing the previously established risk-increasing effect’>*°. Possible
explanations for the observed opposing effect directions include Alz-
heimer’s disease case definitions of previous reports relying on proxy
cases and non-age-matched controls”. Our findings highlight that lipid
metabolism pathways may influence risk of dementia and T2D in

different directions. Further studies are needed to disentangle the
relationship between HDL levels, T2D and dementia.

We identify evidence of potential causal effects of T2D genetic
predisposition on asthma, depression, and COPD with opposing
directions across global populations. These opposing directions of
effect across different genetic ancestry groups may reflect differences
in environmental factors, such as distinct effects of adiposity on T2D
pathophysiology™*. A further explanation may be the different
strengths of association between the T2DGGI genetic clusters and the
genetic ancestry groups. For example, in the latest T2DGGI work, it was
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shown that variants assigned to the obesity cluster have greater allelic
effects on T2D in EUR than EAS, whereas those assigned to the beta cell
clusters have a greater allelic effect on T2D in EAS compared to EUR".

Modest effect sizes are inherent to MR analyses of complex dis-
eases, reflecting their polygenic basis and the underlying liability
threshold model®. Genetic variants generally have small effects on
complex traits, limiting instrument strength and resulting in modest
causal effect estimates that should not be directly equated with clinical
risk. Nevertheless, these estimates provide valuable insights into
potential causal mechanisms, supported here by comprehensive sen-
sitivity analyses. Given the broad nature of the cardiometabolic traits
used to cluster the T2DGGI genetic risk variants, they are posited to
influence the risk for several diseases, including the comorbidities
investigated here. We addressed the potential of confounding or
mediation relationships by adjusting the MR estimates for the T2D-
related cardiometabolic traits in a multivariable MR approach. If the
adjusted effect of T2D genetic predisposition on comorbidity risk is
attenuated to zero, care should be taken when interpreting the results
given that the unadjusted estimates might be biased. Although derived
from biological associations, one limitation of the eight T2D mechan-
istic clusters is that they reflect cardiometabolic processes, excluding
other potential biological mechanisms involved in T2D. Moreover, the
T2DGGI genetic risk variants were clustered based on a hard-clustering
approach, which assigns all risk variants to exactly one cluster, with no
overlap. The lack of outliers in this approach might decrease the
robustness of each cluster.

The sample size of the T2DGGI GWAS meta-analysis used to
identify T2DGGI genetic risk variants and create the mechanistic
clusters is much larger than some of the non-cardiovascular comor-
bidity GWAS used in this work. This may influence the power to detect
causal effects in the reverse MR analysis. Moreover, some of the GWAS
datasets used in our analyses include phenotypes derived from self-
reported data, which may introduce a degree of misclassification.
While this is a common feature of large biobank studies, we note it as a
potential limitation and encourage cautious interpretation of results
for traits with less precise definitions. We acknowledge that validation
of the findings using sex-specific T2D GWAS data is needed for sex-
specific diseases. A well-known limiting factor in statistical genetics
analyses is the relative paucity of GWAS data from diverse global
populations®. In our work, this bias might lead to T2D genetic IVs
having a different effect in under-represented global populations and,
hence, being less powerful Vs for these populations. Despite the lim-
itations, we identify evidence of a potential causal effect of genetic
predisposition for T2D on rheumatoid arthritis only when meta-
analyzing the causal estimates across global populations, highlighting
the discovery power gain of integrating diverse GWAS data. Our results
underscore the need for the community to continue to pursue efforts
to further increase diversity in genetic studies. Finally, we note that
future work leveraging high-resolution multi-omics data from primary
tissues or experimental models will be important to further validate
and mechanistically interpret the causal relationships proposed here.

In conclusion, we provide evidence of potential causal links
between different mechanistic subtypes of T2D genetic predisposition
and its non-cardiovascular comorbidities. These findings can inform
preventive strategies to mitigate the onset of long-term co-occurring
conditions by stratifying and monitoring patients based on their
genetic burden to T2D mechanistic subtypes. Our work paves the way
for more stratified treatment approaches aligned with the genetic and
multimorbidity profiles of patients.

Methods

This study used only publicly available summary statistics data. No new
data were collected, and no institutional ethics approval was required.
All data access complied with the relevant data use policies and ethical
regulations of the original studies.

Datasets
The T2DGGI consortium considered six genetic ancestry groups,
which refer to the 1000 Genomes Project phase 3**: European, East
Asian, African American, admixed American, South Asian, and South
African (Supplementary Table 2). In the meta-analysis across all global
populations (2,535,601 individuals including 428,452 cases), 1289
index (r*<0.05) T2DGGI genetic risk variants were identified at
genome-wide significance (p-value < 5x107%) (Supplementary Table 2).
Previous efforts from the T2DGGI consortium have clustered the
1289 T2DGGI genetic risk variants based on their association profile
with 37 cardiometabolic traits. The traits used for clustering included
glycaemic traits, anthropometric measures, body fat and adipose tis-
sue volume, blood pressure, circulating plasma lipids levels and liver
function and lipid metabolism biomarkers. A hard clustering approach
was performed in an unsupervised manner. This resulted in eight non-
overlapping mechanistic clusters of T2D risk variants that represent
distinct biological pathways: obesity (n=233), beta-cell associated
with positive proinsulin (n=91), beta-cell associated with negative
proinsulin (n=89), lipodystrophy (n =45), liver and lipid metabolism
(n=3), residual glycaemic (n=389), body fat (n=273) and metabolic
syndrome (n=166). We used the T2DGGI GWAS summary statistics to
perform MR analyses within genetic ancestry groups”. For all other
diseases and quantitative traits employed in this work, an overview of
the sample sizes and underlying populations is found in Table 1 and
Supplementary Data 8. The T2D comorbidities were selected after a
comprehensive literature review of observational studies and the
availability of GWAS data. Despite its observational association with
T2D, we have not included Parkinson’s disease nor all-cause dementia
to our study due to potential bias from proxy-case GWAS.

Approaches to select instrumental variables for T2D

To best maintain the robustness of the T2DGGI genetic risk clusters,
we used all 1289 T2D GWAS index risk variants identified in the T2DGGI
global meta-analysis to derive the main results. Index variants were
defined as genome-wide significant (p-value <5x107%) variants with
r*<0.05 over a 5 Mb window". If any genetic instrumental variable (IV)
was not present in the outcome trait, we replaced it with an LD-based
proxy (r*>0.8) if available using the LDIinkR:Ldproxy() R function
(v1.3.0)%%

Using all T2D index risk variants, our definition of independent IVs
is not as strict as the one employed by the TwoSampleMR R package
(v0.5.7)%°, defined as LD-based clumped genome-wide significant (p-
value <5x1078) variants with »<0.001 over a 10 Mb window. To
address this, we performed sensitivity analyses to select IVs for T2D.
Firstly, we have removed all IVs with evidence of weak instrumental
bias, defined as a per IV F-statistic = (beta®/se?) <10, where beta is the
effect size estimate, and seis its standard error from the T2D GWAS®***,
Secondly, we compared the effect magnitude of our results with
alternative approaches to select T2D IVs. We have employed three
additional approaches to define T2D IVs: selecting one variant per
locus, LD-based clumping all the T2D index risk variants, and per-
forming cluster-wise LD-based clumping (Supplementary Figs. 30-55,
Supplementary Table 3, Supplementary Data 9).

Selection of instrumental variables for other traits

For all other traits employed here (non-cardiovascular comorbidities
and cardiometabolic traits), we defined IVs as LD-based clumped
genome-wide significant (p-value < 5x107%) variants with r> < 0.001 over
a 10 Mb window. Clumping was performed with PLINK (v2)* and LD
was calculated based on the 1000 Genomes Project phase 3 release®
with matching genetic ancestry groups. If any IV was absent in the T2D
matching genetic ancestry group GWAS, we replaced it with a proxy.
We used the output of PLINK, which assigns all variants to a clumped
result, to search for proxies using the ieugwasr::ld matrix() R function
(v1.0.2). We removed variants with an F-statistic<10®.
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Two-sample Mendelian randomization analysis

Following the STROBE-MR guidelines®®, we performed bi-directional
two-sample MR analyses®” between genetic predisposition for T2D
and 21 non-cardiovascular comorbidities. We used the TwoSam-
pleMR R package (v0.5.7), which is curated by MR-Base®. It has been
shown that the estimates of two-sample MR remain unbiased in the
presence of sample overlap between exposure and outcome when
using large sample sizes®’. All analyses were performed within
genetic ancestry groups using the LD panel from the corresponding
genetic ancestry from the 1000 Genomes Project phase 3 release® to
conduct clumping when necessary. Using matching genetic ancestry
group data between exposure and outcome increases the accuracy
of the causal estimate by reducing bias due to heterogeneous
underlying data distributions.

For the main results, we applied the inverse variance weighted
(IVW) method, which performs a random-effects meta-analysis of the
Wald ratio estimate of each IV. If only one IV was available, the Wald
ratio estimate was used. We applied additional MR methods to ensure
consistency of causal effect direction under different methodological
assumptions, namely the weighted median, MR-Egger’®, MR-PRESSO”
and Steiger-filtered IVW methods’. We ran the MR-PRESSO distortion
test with 1000 iterations to compute the null distribution for the
outlier test and increased it to 1500 if it failed. If the distortion test was
significant (p-value <0.05), we considered the effect estimate of the
MR-PRESSO outlier-corrected method. Otherwise, we used the esti-
mate of the raw MR-PRESSO result. To facilitate interpretability when
using binary traits as exposure, we report the MR results as OR for the
outcome per doubling (2-fold change) in genetically determined
dichotomous exposure risk. This unit is calculated by multiplying
the MR effect sizes by In(2) and converting them to OR via
exponentiation”.

Assessment of the Mendelian randomization assumptions

MR relies on three main assumptions: relevance, independence and
the exclusion restriction criteria (Supplementary Note 1, Supple-
mentary Table 5). The relevance assumption states that the IVs need
to be strongly associated with the exposure and can be directly
tested by selecting genome-wide significant and strong (F-statistic >
10) 1Vs. The independence assumption ensures that the IVs are not
associated with any confounder of the exposure-outcome associa-
tion. The exclusion restriction criterion assumes no horizontal
pleiotropy by ensuring that the IVs affect the outcome only through
the exposure and not through any alternative pathways. Both
assumptions cannot be directly tested but can be assessed via sen-
sitivity analyses. We have conducted multivariable MR analyses to
address the independence assumption by adjusting the univariable
MR effect for known biological confounders or mediators of the
exposure and outcome relationship. To test for horizontal pleio-
tropy, we applied the MR-Egger intercept test (TwoSampleMR::mr -
pleiotropy test()) and the MR-PRESSO outlier and distortion test.
Both methods provide causal estimates corrected for the detected
pleiotropy, and we looked for a concordant effect direction across
different MR methods and the [IVW estimate. Moreover, we assessed
heterogeneity using I?, a measure based on Cochran’s Q-statistic
(TwoSampleMR::mr_heterogeneity()) that is more interpretable and
independent of the number of studies’. Evidence for heterogeneity,
defined as I* > 50, implies that some IVs may influence the outcome
through pathways other than the exposure, possibly violating the
exclusion restriction assumption. Finally, we have tested for reverse
causation by applying a bi-directional MR framework and a direc-
tionality test based on the Steiger filter (TwoSampleMR::dir-
ectionality test()) (Supplementary Data 10). Finally, we compared our
results with the MR-Clust method, which groups together IVs with
similar causal effect estimates on the outcome trait into distinct
cluster” (Supplementary Note 3, Supplementary Data 11).

Cluster-stratified two-sample Mendelian randomization analysis
To infer the causal effects of the eight mechanistic clusters of T2D
genetic risk from the T2DGGI GWAS meta-analysis on the analyzed
non-cardiovascular comorbidities, we conducted additional MR ana-
lyses restricting the T2D IVs to risk variants assigned to each cluster.
For these analyses, we followed the same sensitivity analysis proce-
dures described above. In addition, we used the correlated IVW
method implemented in the MendelianRandomization R package
(v0.10)”, which allows for correlated IVs. This method is designed for
less than 500 IVs and, therefore, could not be employed in the MR
analyses using all 1289 T2DGGI genetic risk variants. As a sensitivity
analysis to assess the specificity of the clusters, we performed a leave-
one-out cluster MR analysis using as IVs the T2DGGI genetic risk var-
iants, excluding all variants assigned to one cluster at a time.

Meta-analysis across genetic ancestry groups

In cases of multiple publicly available GWAS summary statistics for a
comorbidity from different genetic ancestry groups, we conducted a
meta-analysis of the MR estimates across these groups. We used the
rma.uni() function of the metafor R package (v4.6)’° to conduct a
random-effects meta-analysis using the IVW estimate. We tested for
heterogeneity using a restricted maximum likelihood estimator
(REML). We considered evidence for heterogeneity if I* > 50.

Definition of significance

We account for multiple testing burden for both tested directions (T2D
genetic predisposition on comorbidity risk and genetic predisposition
for comorbidity on T2D risk) together by correcting the p-values of the
IVW estimate and, if applicable, the correlated IVW estimate across all
analyses (including the meta-analyses) using the FDR method (referred
to as g-values). We defined statistical significance as IVW estimates and,
if applicable, correlated IVW estimates with a g-value < 0.05.

Comparison with previous MR studies

We compare our causal estimates with previous MR studies looking at
the investigated disease pairs (Supplementary Fig. 1, Supplementary
Table 1)235202433 'We considered only results from the IVW method.
To match the scale reported in our study, we multiplied the MR effect
sizes from previous studies by In(2) and converted them to OR via
exponentiation. We have not compared the potentially different
approaches to select IVs nor the criteria to define disease cases
employed in the respective GWAS. For anorexia nervosa, vascular
dementia and OCD, we did not find MR studies using T2D genetic
predisposition as exposure.

Multivariable Mendelian randomization analysis with
cardiometabolic traits

For the cluster-stratified genetic predisposition for T2D MR results
with FDR<5%, we subsequently performed multivariable MR
(MVMR) analyses using the mechanistic clusters of T2D genetic pre-
disposition and several cardiometabolic traits as exposure and
the non-cardiovascular comorbidities as outcome (Supplementary
Figs. 5-28). By adjusting cluster-stratified MR estimates for cardio-
metabolic traits causally associated with the comorbidities, we can
estimate the direct effect of the mechanistic clusters of T2D genetic
predisposition on its comorbidities. To compare the univariable and
multivariable MR results, we first performed univariable MR analyses
using the cardiometabolic traits as exposures and the investigated T2D
comorbidities as outcomes. The results were adjusted for multiple
testing using FDR correction. IVs were selected using the same
approach as for the comorbidities. We then conducted an MVMR
analysis only for the cardiometabolic traits that showed a potential
causal effect on comorbidity at FDR of 5%. We applied the TwoSam-
pleMR::mv multiple() function, which uses the IVW method to perform
the MVMR analysis. We performed sensitivity analyses using the MVMR
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R package (v0.4)”, including testing for heterogeneity (ghet mvmr(),
pleiotropy (pleiotropy mvmr()) and instrumental strength of each
exposure (strength mvmr()).

Phenome-wide association study of cluster-stratified T2D risk
variants

To identify non-cardiovascular phenotypes associated with the
T2DGGI clusters, we performed PheWAS in each cluster of genetic
predisposition for T2D using the National Institutes of Health (NIH) All
of Us cohort*, which was not part of the T2DGGI GWAS meta-analysis
nor any of the comorbidities GWAS. All research was carried out on the
All of Us Researcher Workbench. Quality control (QC) and genetic
ancestry group assignment were performed on 206,000 participants
with EHR and WGS data. We pruned the dataset to a maximal set of
unrelated individuals using a kinship coefficient <0.1 and removed
samples with ambiguous sex (Supplementary Table 4). To reduce the
computational complexity, we used the All of Us ACAF variant set,
which retains those variants with an allele frequency (AF) >1% or allele
count (AC) >100 in any computed genetic ancestry group.

For each genetic ancestry group, we calculated the first 10 prin-
cipal components (PCs) using smartpca (v7.2.1)”* with LD-pruned
genotypes and the fastmode option enabled. To derive the LD-pruned
genotypes, we restricted variants to autosomal variants that were
present in 1000 Genomes Project phase 3 release®, not in the major
histocompatibility complex (MHC) region, minor allele frequency
(MAF) >1%, and Hardy-Weinberg equilibrium (HWE) p-value > 1x107®.
LD pruning was conducted using PLINK (v2)®* with r?=0.05 in a 1000
KB window with an 80b step size. For each genetic ancestry group and
T2DGGI genetic cluster, we calculated a GRS summing the cluster-
stratified risk alleles, weighted by the effect sizes from each genetic
ancestry group. The GRS was adjusted for the 10 first PCs and scaled
within each genetic ancestry group.

For each genetic ancestry group and T2DGGI genetic cluster, we
performed a PheWAS using the PheTK package (v0.2.1rc5)”°. Pheno-
type code (phecode) counts were calculated using the count_phe-
code() function of PheTK, with the following options:
‘phecode_version =“X" and ‘icd_version = “US™. Participants without
any recorded phecodes were excluded to avoid incomplete EHRs.
PheWAS were conducted with the PheWAS function of PheTK using
logistic regression and the model ‘phecode - sex + age at last EHR + PCs
1-10 + cluster GRS". Only phecodes with a minimum case count of 50
were included, and cases were defined as having at least two instances
of the respective phecode. We considered phecodes from the follow-
ing categories: mental, musculoskeletal, neurological, respiratory, and
sense organs. Multiple testing correction was applied for each genetic
ancestry group separately using a g-value <0.05. We meta-analyzed
the cluster-stratified PheWAS across genetic ancestry groups using the
random-effects IVW method and the rma.uni() function of the metafor
R package (v4.6)’°. The meta-analysis results were FDR corrected for
multiple testing separately.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Researchers can apply to access the individual-level data of the All of Us
Research Program (https://researchallofus.org/) used to perform the
PheWAS. The publicly available GWAS summary statistics used in this
work are referenced below and in Supplementary Data 8. Alzheimer’s
disease: GWAS data has been deposited in The National Institute on
Aging Genetics of Alzheimer’s Disease Data Storage Site (NJAGADS)—a
NIA/NIH-sanctioned qualified-access data repository, under accession
NGO0O0075. Anorexia: https://pgc.unc.edu/for-researchers/download-
results/. Asthma: https://www.globalbiobankmeta.org/resources.

ADHD: https://pgc.unc.edu/for-researchers/download-results/. Aust-
ism:  https://pgc.unc.edu/for-researchers/download-results/. Back
pain: the dataset can also be accessed under ‘Chronic back pain’ from
https://gwasarchive.org. Bipolar disorder: https://pgc.unc.edu/for-
researchers/download-results/.  CTS:  https://www.decode.com/

summarydata/. Cataracts: https://www.ebi.ac.uk/gwas/studies/
GCST90014268. COPD: https://www.globalbiobankmeta.org/
resources. Depression EUR: https://pgc.unc.edu/for-researchers/

download-results/. Depression non-EUR: https://pgc.unc.edu/for-
researchers/download-results/. Epilepsy: https://www.ebi.ac.uk/gwas/
studies/GCST90271608. Erectile dysfunction: http://www.
geenivaramu.ee/tools/ED_AJHG_Bovijn_et_al_2018.gz. Glaucoma:
https://xikunhan.github.io/site/publication/. OCD: https://pgc.unc.
edu/for-researchers/download-results/. Osteoarthritis: https://msk.
hugeamp.org/downloads.html. ~ Osteoporosis:  https://pheweb.jp/.
PCOS: https://doi.org/10.17863/CAM.27720. Rheumatoid arthritis:
https://www.ebi.ac.uk/gwas/studies/GCST90132223.  Schizophrenia:
https://pgc.unc.edu/for-researchers/download-results/.

Code availability

The code used to perform all the MR-related and PheWAS analyses is
publicly available and archived on Zenodo: https://doi.org/10.5281/
zenodo.15168490. LDlinkR R package (v1.3.0) https://doi.org/10.32614/
CRAN.package.LDIlinkR. TwoSampleMR R package (v0.5.7) https://
mrcieu.github.io/TwoSampleMR/index.html. PLINK (v2) https://www.
cog-genomics.org/plink/2.0/. MR-PRESSO https://doi.org/10.1038/
$41588-018-0099-7. MendelianRandomization R package (v0.10)
https://doi.org/10.32614/CRAN.package.MendelianRandomization.
metafor R package (v4.6) https://doi.org/10.32614/CRAN.package.
metafor. MVMR R package (v0.4) https://wspiller.github.io/MVMR/.
smartpca (v7.2.1) https://christianhuber.github.io/smartsnp. PheTK
package (v0.2.1rc5) https://pypi.org/project/PheTK/. ieugwasr R func-
tion (v1.0.2) https://doi.org/10.32614/CRAN.package.ieugwasr.
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