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Nucleotide dependency analysis of  
genomic language models detects  
functional elements
 

Pedro Tomaz da Silva    1,2,8, Alexander Karollus1,2,8, Johannes Hingerl    1,2, 
Gihanna Sta. Teresa Galindez1,3, Nils Wagner    1, Xavier Hernandez-Alias    1,4, 
Danny Incarnato    5 & Julien Gagneur    1,6,7 

Deciphering how nucleotides in genomes encode regulatory instructions 
and molecular machines is a long-standing goal. Genomic language models 
(gLMs) implicitly capture functional elements and their organization from 
genomic sequences alone by modeling probabilities of each nucleotide 
given its sequence context. However, discovering functional genomic 
elements from gLMs has been challenging due to the lack of interpretable 
methods. Here we introduce nucleotide dependencies, which quantify how 
nucleotide substitutions at one genomic position affect the probabilities 
of nucleotides at other positions. We demonstrate that nucleotide 
dependencies are more effective at indicating the deleteriousness of genetic 
variants than alignment-based conservation and gLM reconstruction. 
Dependency analysis accurately detects regulatory motifs and highlights 
bases in contact within RNAs, including pseudoknots and tertiary structure 
contacts, revealing new, experimentally validated RNA structures. Finally, 
we leverage dependency maps to reveal critical limitations of several gLM 
architectures and training strategies. Altogether, nucleotide dependency 
analysis opens a new avenue for discovering and studying functional 
elements and their interactions in genomes.

The basic blueprint of every living organism is encoded in its genome. 
While high-throughput sequencing allows us to read this genetic infor-
mation, interpreting its meaning remains a major challenge. A key 
interpretation method is sequence comparison1, which identifies func-
tional elements by leveraging nucleotide-level conservation as well as 
statistical dependencies between nucleotides. Covariation analysis, in 
particular, has been crucial in structural biology2,3, for instance, in iden-
tifying conservation of Watson–Crick base pairing in RNA. However, 

these analyses traditionally relied on sequence alignments, limiting 
their use to highly conserved genomic regions.

Genomic language models (gLMs) have emerged as an 
alignment-free alternative4,5. Trained to predict nucleotides from 
their sequence context, these models learn evolutionary patterns 
directly from vast amounts of genomic data4. Studies have shown 
that gLMs capture biologically relevant information, distinguish-
ing between functional and nonfunctional transcription factor (TF) 
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Fig. 1 | Probing nucleotide dependencies from gLMs. a, gLMs are trained 
on genomes to predict nucleotides given their sequence context, assigning 
a probability to each one of A, C, G or T. b, We probe pairwise nucleotide 
dependencies from gLMs by quantifying how substituting a nucleotide at a 
query position affects predicted probabilities at a target position. c, Correlation 
between the absolute variant effect on gene expression, as measured using a 
saturation mutagenesis assay of 9 human promoters (n = 8,635 variants), and 
the variant influence score, the reconstruction score (log-likelihood ratio of 
substituting the reference to the alternative nucleotide according to the gLM), 
alignment-based conservation scores from PhyloP and PhastCons based on the 
100-way, 447-way and 470-way alignment, the supervised model Borzoi, as well 
as a linear regression on the influence score and Borzoi’s predicted absolute fold 
changes (the latter was fitted and evaluated using fivefold CV on this dataset). 
gLM log ratio quantifies the reconstruction at a specific position (as depicted 
in a), while the variant influence score quantifies how each variant affects the 
predicted probabilities across all target nucleotides in a sequence (this study, 
as depicted in b). The height of each bar corresponds to the average correlation 
across promoters between a score and the measured variant effect. Error bars 

represent ±2 s.d., constructed using 100 bootstrap samples per promoter. 
d, Left: annotated nucleotide dependency map for the S. cerevisiae arginine 
transfer RNA, tR(ACG)O. The gray heatmap (top) shows log-odds ratios for all 
four nucleotides of a target (columns) when substituting the query nucleotide 
to each of the three alternatives (rows). These data are shown for the query being 
nucleotide 1 of the tRNA (T) and target being nucleotide 72 (A). The gLM log-odds 
ratios are consistent with the fact that these two bases encode a Watson–Crick 
contact in the RNA fold. The maximum absolute log-odds ratio, which defines the 
dependency score between those two positions, is realized when substituting 
an A on the query and having a T at the target. The dependency map (blue-
to-red heatmap) shows dependency scores for all queries (rows) and targets 
(columns) in this locus. The colored rectangles in the dependency map highlight 
antiparallel dependencies belonging to each of the tRNA arms, while the red 
square delineates a dependency between two bases in different loops of the 
tRNA contributing to its tertiary structure (red bases in the tertiary structure). 
The track above the dependency map displays the nucleotide reconstruction 
predicted by the gLM. Right: annotated tertiary structure of tR(ACG)O48.  
CV, cross-validation.
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binding motifs and identifying genetic variants with phenotypic 
effects4–6. They have also found use as so-called foundation models 
for predicting molecular phenotypes, sometimes outperforming 
other methods4,7–16. These analyses indicate that gLMs intrinsically 
represent genomic functional elements. However, the foundation 
model paradigm uses gLMs as intermediate black boxes and does 
not reveal these elements.

In this work, we leverage gLMs to provide a measure of dependen-
cies between nucleotide pairs. We systematically study the resulting 
nucleotide dependency maps to determine which genomic elements 
they encode and thus exploit them to characterize functional elements 
and their interactions. This approach also allows us to compare differ-
ent gLMs and identify their limitations.

Results
Nucleotide dependency maps
Genomic language models are trained to reconstruct nucleotides, 
thereby providing nucleotide probabilities given their surrounding 
sequence context (Fig. 1a). In principle, success at reconstructing 
nucleotides requires detecting characteristic genomic features that 
are more likely to be found in the sequence context. For example, the 
probability of a particular nucleotide in the human genome being a 
guanine strongly depends on whether it is intronic (~22% (ref. 17)) or 
located at the third base of a start codon (~100%). To study the rela-
tionship between nucleotides and their context using gLMs, we use 
a technique analogous to in silico mutagenesis (explained in ref. 18). 
Specifically, we mutate a nucleotide in the sequence context (query 
nucleotide) into all three possible alternatives and record the change 
in predicted probabilities at a target nucleotide in terms of odds ratios 
(Fig. 1b and Methods). This procedure, which can be repeated for all 
possible query-target combinations, quantifies the extent to which 
the language model prediction of the target nucleotide depends on 
the query nucleotide, all else equal.

We applied this general procedure to 14 gLMs (Extended 
Data Table 1 and Methods). Unless stated otherwise, we present results 
from our SpeciesLM gLMs that were trained on regions 5′ of start 
codons in fungi and metazoa (SpeciesLM fungi and SpeciesLM meta-
zoa; Methods). On selected biological applications, we turn to other 
gLMs. To assess the biological relevance of these dependencies, we 
sought to verify that single-nucleotide variants (SNVs) of known func-
tional importance have a greater impact on gLM predictions. Given 
an SNV at a query position, we computed for any target position the 
maximum absolute log-odds ratio over all possible four target nucleo-
tide values. Next, we averaged these values across all targets to obtain 
an aggregate score of query variant impact (Methods). We named this 
metric the variant influence score. In the ClinVar database19, the influ-
ence score was significantly higher for noncoding pathogenic variants 
than for benign variants (Extended Data Fig. 1a,b). This is despite using 
a gLM trained only on 2-kb regions 5′ of start codons, which only over-
lap a small fraction of all transcribed bases. Prior studies leveraged 
gLM reconstruction probabilities to prioritize functional variants, 

positing that lower probability indicates greater deleteriousness5,6 
(Methods). Remarkably, this reconstruction-based metric showed 
substantially lower performance than the influence score. However, 
the influence score did not outperform alignment-based scores, 
perhaps because the criteria used by ClinVar to categorize variants as 
pathogenic include bioinformatics predictions that often integrate 
alignment-based conservation.

For a less biased comparison, we focused on a dataset from a 
saturation mutagenesis experiment on nine selected human promot-
ers20 (Fig. 1c). Here the variant influence score correlated with vari-
ant effects on absolute gene expression fold change, outperforming 
reconstruction, as well as alignment-based conservation scores21–24. 
Remarkably, the purely unsupervised influence score was on par with 
the state-of-the-art supervised expression predictor Borzoi25. These 
two approaches appeared to capture complementary predictive sig-
nals, because a simple integrative model further improved perfor-
mance (Fig. 1c; similar observations on noncoding ClinVar variants 
are shown in Extended Data Fig. 1b). The variant influence score also 
outperformed reconstruction and alignment-based conservation at 
distinguishing fine-mapped promoter expression quantitative trait 
loci (eQTLs) single-nucleotide polymorphisms from matched con-
trols, in human, where it did not outperform Borzoi, and in yeast26–29 
(Extended Data Fig. 1c–f).

Having shown that aggregate dependency strengths reflect func-
tional importance, we then studied individual query-target pairs. For 
every query-target pair, we considered the maximum effect a query 
nucleotide change has on the predicted odds of a target, yielding 
two-dimensional (2D) nucleotide dependency maps (Methods). An 
example map is shown for the yeast arginine tRNA (Fig. 1d). The entire 
secondary structure of the tRNA, defined by base pairing within the 
four arms, clearly stands out with high dependencies. The dependency 
map also highlighted a tertiary structure contact. Upon introducing 
single-nucleotide substitutions in these pairs, the gLM adapted its 
predictions according to the Watson–Crick base pairing and, with a 
lesser preference, to wobble base pairing (see Fig. 1d for an example). 
Remarkably, the model recapped structural RNA rules from its recon-
struction objective alone, in an alignment-free manner and without 
focused training on tRNAs.

Nucleotide pairs have two dependencies, depending on which 
nucleotide is the query. Scoring nucleotide pairs by the maximum 
of those two values yielded near-perfect secondary structure con-
tact predictions across 172 tRNAs of Saccharomyces cerevisiae. Alter-
native metrics, including gradient-based dependencies and using 
masking instead of nucleotide substitution on query, showed lower 
predictive signal. This trend was confirmed when further assess-
ing the dependencies on cognate donor and acceptor splice sites 
(Extended Data Fig. 1g,h).

In the following sections, we explore and categorize patterns 
found in nucleotide dependency maps, associate them to biological 
mechanisms and exploit them to detect and characterize functional 
elements in the genome.

Fig. 2 | Blocks along the diagonal of dependency maps highlight instances of 
regulatory sequence motifs. a, SpeciesLM fungi nucleotide reconstructions 
(scaled by information content) and nucleotide dependency map for the SMT3 
promoter (yeast). TF motifs and poly(dA:dT) are reconstructed with similar 
confidence, whereas blocks appear only for TF motifs in the dependency map. 
Ground-truth motifs from YeTFaSCo. b, Examples of dependency blocks from 
human promoters. From top to bottom: Znf652 motif in the LDLR promoter, 
Nfy motif in the promoter of MTO1 and a Spdef motif in the OGA promoter. 
Ground-truth motifs from Hocomoco v12 (ref. 49). c, Top: per nucleotide 
block scores for nucleotides in repeats, as marked by RepeatMasker50 and 
those reported to be in a bound TF motif. The block score is computed as the 
first quartile of dependencies among consecutive spans of six nucleotides. 
Bottom: per nucleotide information content of the gLM reconstruction in 

repeats and reported to be in a bound TF motif. For each boxplot: centerline, 
median; box limits, first and third quartiles; whiskers span all data within 1.5× 
interquartile ranges of the lower and upper quartiles. ***P < 0.0001, two-sided 
Wilcoxon rank-sum test. d, ROC curve comparing the ability of different 
metrics to classify whether a nucleotide is part of a bound TF motif or not 
(92,117 binding nucleotides of 6,538,427 overall). The dependency block score 
performs substantially better than using the gLM nucleotide predictions and is 
comparable to yeast expert PWM scanning. This is despite the fact that PWMs 
were derived from in vitro and in vivo binding assays and were used to define the 
positive class, whereas the language model has never been exposed to binding 
data during training. e, Dependency map for an instance of the yeast Abf1 spaced 
motif, compared to the ground-truth binding preference from YeTFaSCo30. TPR, 
true positive rate; FPR, false positive rate.
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Blocks along the diagonal highlight regulatory sequence  
motif instances
We observed that short sets of contiguous nucleotides frequently 
exhibited strong reciprocal dependencies, manifesting as dense 
blocks along the diagonal. Many dense blocks were observed at TF 
motif instances in promoters (Fig. 2a,b). This was in striking contrast 
to other well-reconstructed locations, including simple repeats such 
as poly(dA:dT) stretches. Intuitively, an individual mutation in the 
poly(dA:dT) stretch will have a mild impact on predicting any other 
element of the stretch and thus dependencies in the repeat tend to be 
less dense. In contrast, all bases in a TF motif are strongly interdepend-
ent, as a mutation at any position can disrupt the entire site’s function 
by reducing binding. Therefore, we reasoned that TF motifs could be 
detected using gLMs by searching for dependency blocks.

To find dependency blocks, we computed the first quartile of 
query-target dependencies among consecutive six nucleotides (Meth-
ods). This quantile-based block score is more robust than the average 
in isolating strong interactions, while privileging dense blocks. To 
assess how block scores facilitate the detection of TF binding sites, 
we leveraged the near-complete TF binding data in S. cerevisiae with 
nucleotide-level preferences (position weight matrices (PWMs)30). 
We considered the 1-kb regions 5′ of start codons and defined PWM 
matches within 10 bp of an experimental binding peak as binding sites 
for 68 TFs31.

While reconstruction varied widely for binding site nucleotides 
and repeat elements, the block score of binding site nucleotides was 
generally higher than for nucleotides in repeats identified by Repeat-
Masker (LTR retrotransposons, telomeric/centromeric repeats, rDNA 
regions, low-complexity DNA, simple repeats; Fig. 2c). Consistent 
with this, the block score discriminated binding site nucleotides sub-
stantially better than reconstruction (Fig. 2d). By comparison, the 
PhastCons conservation inferred from the alignment of seven yeast 
Saccharomyces species21 had no discriminative power at this task, and 
modest discriminative power if overlapping coding sequences were 
removed (Fig. 2d and Extended Data Fig. 2). Extending the alignment 
to 69 species of the Saccharomycetales order using default parameters 
did not improve results (Extended Data Fig. 2 and Methods).

Moreover, the block score discriminated binding site nucleotides 
as effectively as PWM scanning. This result is remarkable because 
the block score was obtained in a completely unsupervised fashion, 
whereas the PWMs were not only derived from experimental data but 
also used to define the positive class. Additionally, if we only bench-
mark on nucleotides forming part of a PWM match, the block score 
will demonstrate an ability to discriminate binding from nonbinding 
PWM matches, thus showing that the gLM considers the context of 
the motif (Extended Data Table 2). In sum, this analysis demonstrates 
the ability of gLMs to detect regulatory elements and the utility of 
dependency maps.

We note that not all motifs appear as complete blocks. S. cerevisiae 
Abf1 motif, for example, is represented as two spaced and interact-
ing blocks, reflecting the dimeric binding preferences of this factor 
(Fig. 2e). Thus, even within motifs, the dependency maps can serve to 
visualize underlying functional relationships.

Off-diagonal blocks indicate sequence element interactions
Blocks in the dependency maps also occurred away from the diagonal, 
revealing distal interactions, such as between key transcription initia-
tion elements (TATA box and INR) in Drosophila melanogaster (Fig. 3a) 
and the primary splicing determinants (donor, branch and acceptor 
sites) in S. cerevisiae (Fig. 3b and Extended Data Fig. 3). The short length 
of yeast introns allowed a genome-wide assessment that showed that 
dependencies between donor and acceptor splice sites were higher 
than dependencies between donor and decoy acceptor-like sequences 
within the intron or background dependencies at matched distances 
(Fig. 3c). These results indicate that distal dependencies capture a 
range of functional relationships among sequence elements, including 
promoter and transcript architecture.

Going a step further, we asked whether the maps could also reflect 
changes in transcript structure due to interindividual variation. To this 
end, we leveraged aberrant splicing events associated with rare variants 
from 946 human individuals (GTEx32) and SpliceBERT, a language model 
trained on vertebrate RNA sequences14. As an example, a rare variant 
in the TRPC6 gene disrupts a canonical donor splice site, leading to the 
use of a cryptic site and the creation of an aberrant, shorter intron. The 
dependency map reflects this by showing a strong interaction between 
the canonical donor and the boundaries of this new intron (Fig. 3d). 
Across 1,811 rare-variant-associated aberrant splicing events, depend-
encies between the variant position and the ends of the correspond-
ing outlier intron exceeded those between nucleotides at matched 
distances (Fig. 3e). These results held for both outlier intron ends and 
all variant location categories (Fig. 3e). We conclude that dependency 
maps capture splicing rules and can reflect variant-induced transcript 
structure alterations.

Nucleotide dependencies reveal RNA secondary and tertiary 
structure contacts
Besides blocks, we observed antiparallel diagonals, that is, distal 
stretches of consecutive nucleotides that depend on each other 
one-to-one in reverse order as in the case of the four arms of the yeast 
arginine tRNA described above (Fig. 1d). Using a convolutional filter, 
we systematically called regions with antiparallel elements across 
diverse fungal genomes (Methods and Extended Data Fig. 4a). Depend-
encies in antiparallel diagonals were typically consistent with Wat-
son–Crick or wobble base pairing (Extended Data Fig. 4b), indicating 
that they captured helical stems, critical to RNA folding. Moreover, 
antiparallel diagonals with the strongest dependencies were found 

Fig. 3 | Off-diagonal blocks highlight sequence element interactions.  
a, Dependency map extracted from the SpeciesLM metazoa in the promoter 
of the D. melanogaster gene GstO2. On top is the reconstruction (scaled by the 
information content) from the gLM, highlighting the TATA box and initiator (INR) 
element motifs. High dependencies can be spotted at their intersection in the 
dependency map, reflecting their functional interaction. b, Dependency map 
for the intron of the yeast gene ATG44 together with exonic flanking regions of 
eight nucleotides. The top track corresponds to the nucleotide reconstruction 
(scaled by the information content) that highlights the donor and branch point 
motifs. Off-diagonal dependencies can be spotted in the intersection between 
these motifs and the acceptor, indicating their interdependence. c, Average 
dependency between donor and acceptor nucleotides; donor and acceptor-like 
decoy nucleotides (AG dinucleotides within the intron not part of an annotated 
3′ intron end); donor and random nucleotide pairs matching donor–acceptor 
distances. ***P < 0.0001, two-sided Wilcoxon rank-sum test. d, Exon elongation 
variant in a human individual on an intron of the gene TRPC6. Top: sashimi 

plots for an individual without the variant (top track) and an individual with 
the variant (bottom track), indicating differential splicing (number of RNA-seq 
reads supporting each splice junction) resulting from a variant-inducing exon 
elongation. Bottom: dependency map obtained from SpliceBERT showing a 
dependency between the canonical and alternative (alt.) donor, indicating that a 
substitution in the canonical donor site induces a change in predicted probability 
for the alt. donor position shown in the sashimi plots. e, For each variant location 
with respect to the splice site, each boxplot shows the average dependency 
between a variant position and its reported outlier junction donor or acceptor, and 
average dependencies for nucleotides at distances matching the spacing between 
the variant and the outlier donor or acceptor. Splice acceptor, n = 45; splice donor, 
n = 69; splice region, n = 147; exon, n = 736; intron, n = 814. All comparisons between 
dependencies for donor and acceptor and dependencies at matched distances 
were significant (one-sided Wilcoxon rank-sum test, all P < 10−12). For each boxplot: 
centerline, median; box limits, first and third quartiles; whiskers span all data 
within 1.5× interquartile ranges of the lower and upper quartiles.
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among highly structured RNAs such as tRNAs and ribosomal RNAs 
(Extended Data Fig. 4c and Methods). Hence, these findings suggest 
that detecting antiparallel diagonals in nucleotide dependency maps 
could be instrumental in inferring RNA structures.

To evaluate the potential of dependency maps for capturing RNA 
structures, we used RiNALMo, a language model trained on 36 million 
noncoding of both annotated and unannotated RNA sequences from 
RNAcentral33, nt34, Rfam35 and Ensembl36, spanning a wide variety of spe-
cies7. Originally, the authors of RiNALMo trained this LM as foundation 
for a supervised predictor of RNA secondary structures. We, instead, 
scored contacts as the largest of the two dependency map entries for 
each pair of nucleotides, computed using RiNALMo’s underlying LM. 
Remarkably, these scores were strongly predictive of secondary struc-
ture contacts, with areas under the receiver operating characteristic 
(ROC) curve typically exceeding 0.9 for most RNA families (Archive 
ll database37; Fig. 4a), although we performed no fine-tuning on sec-
ondary structures. Nonetheless, tools optimized for RNA secondary 
structure analysis, such as RNAalifold and the fine-tuned RiNALMo, out-
performed dependency scores at predicting secondary stucture con-
tacts of experimentally validated structures (Extended Data Fig. 4d).

However, secondary structures are simplified planar representa-
tions of the topology of a single possible 3D folding of an RNA sequence, 
missing important contacts occurring in the 3D fold. We observed that 
some apparent false positive predictions from our dependency-map 
approach corresponded to tertiary structure contacts that were absent 
from predictions by the supervised RiNALMo. For instance, in Archaeo-
globus fulgidus isoleucine tRNA, the dependency maps showed 6 bp 
with dependencies as strong as secondary-structure contact depend-
encies (dependency > 6). These constituted six of the eight known 
contacts found only in the tertiary structure. RiNALMo’s supervised 
secondary structure predictor unsurprisingly missed these tertiary 
structure contacts (Fig. 4b). This ability to detect tertiary interactions is 
important, as they provide useful spatial constraints to help determine 
an RNA’s 3D structure.

To systematically evaluate the added value of dependency maps in 
capturing tertiary structure contacts, we analyzed noncanonical (that 
is, non-Watson–Crick/wobble) contacts in Protein Data Bank (PDB) 
RNA structures in the CompaRNA database38. We found that 50% of 
the pairs with a dependency score larger than 13.5 and not predicted 
to be in secondary structure by RiNALMo’s supervised model were 
annotated as contacts (Fig. 4c). Across the entire database, noncanoni-
cal base pairs were well-captured by the dependency maps (Fig. 4d; 
area under the curve (AUC) = 0.8). In contrast, this information was 
largely lost by the supervised RINALMo and by RNAalifold (Fig. 4d and 
Extended Data Fig. 4d). These results indicate the utility of dependency 
maps for RNA structure inference by providing candidate contacts not 
captured by secondary structure contact predictors.

These findings prompted us to investigate further the potential 
of dependency maps in addressing major challenges of secondary 
structure prediction, such as pseudoknot detection. Pseudoknots 
are important nonsecondary structure elements that form when base 

pairs are not nested, for example, bases in a loop pairing with another 
single-stranded region. We observed high dependencies between bases 
of documented contacts implied by pseudoknots, such as in the 396 
nt-long RNase P RNA (see Fig. 4e and Extended Data Fig. 4e for another 
example in a riboswitch), in which not only the stems but also the 
pseudoknot are reflected with strong antiparallel diagonals. Analyzing 
systematically 2,530 pseudoknot-containing RNA structures with less 
than 90% sequence similarity from the bpRNA-1m(90) dataset39, we 
found that pairs of nucleotides in pseudoknots showed substantially 
higher dependencies than pairs not belonging to structural contacts 
(AUC = 0.92; Extended Data Fig. 4f).

An RNA’s secondary structure represents the topology of a single 
conformation. However, an RNA sequence can adopt alternative func-
tional RNA folds. We found that dependency maps can capture alterna-
tive structures. For instance, the dependency maps of the tryptophan 
leader sequence in the bacterium Escherichia coli (Fig. 4f), a structured 
region for which tryptophan abundance regulates the switch between 
terminator and antiterminator conformations40, captures the two 
alternative folds, with domain 3 being involved in antiparallel diagonals 
with both domain 2 and domain 4 (ref. 40).

To assess the capacity of dependency maps to derive new 
structural predictions, we performed in-cell chemical probing of E. 
coli with DMS, followed by high-throughput mutational profiling 
analysis (DMS-MaPseq), a transcriptome-wide assay probing ade-
nines and cytosines not engaged in Watson–Crick base pairing41. 
Transcriptome-wide, the structural contacts predicted by the antiparal-
lel patterns in dependency maps can efficiently capture experimentally 
derived RNA base-pair contacts (Extended Data Fig. 4g,h).

We then focused on all noncoding regions upstream of the start 
codon spanning 500 nucleotides, as they harbor different transcribed 
regions, including structures with roles in translation and transcrip-
tion regulation42. We selected dependency maps indicating the pres-
ence of at least two stem loops and not belonging to an annotated 
structure, revealing four previously unreported secondary structures 
corroborated by experimental data from DMS-MaPseq and validated 
by covariation analysis (Fig. 4g and Extended Data Fig. 4i). Notably, as 
covariation analysis typically requires a high-quality sequence align-
ment and, optionally, a predicted RNA structure, the ability of nucleo-
tide dependencies to capture—in an alignment-free and unsupervised 
fashion—functionally relevant RNA structural contacts, underscores 
their predictive power.

Collectively, these results show that dependency-map analysis 
can overcome the typical challenges associated with RNA structure 
prediction, capturing both secondary and tertiary structure contacts, 
pseudoknots and alternative structures of functionally relevant RNAs.

gLMs capture forward and inverted duplications without 
memorization
We observed parallel (Fig. 5a and Extended Data Fig. 5a) and antiparallel 
diagonals reflecting duplicated sequences in the forward and reverse 
complement orientations, respectively. Further in silico experiments 

Fig. 4 | Dependency maps reveal known and new RNA structures, and highlight 
tertiary contacts. a, AUROC curve for the classification of RNA structure contact 
pairs from the Archive II dataset spanning nine different RNA families. For 
each boxplot: centerline, median; box limits, first and third quartiles; whiskers 
span all data within 1.5× interquartile ranges of the lower and upper quartiles. 
b, A. fulgidus tRNA(Ile2) (PDB ID: 3AMU) dependency map (left), ground-
truth contacts (middle) and contacts predicted by the fine-tuned RiNALMo 
(right). c, Ratio of correctly retrieved contacts (precision) not predicted by 
the supervised RiNALMo (predicted probability < 0.5) for each dependency 
value threshold. d, ROC curve for the classification of noncanonical structure 
contacts across the CompaRNA dataset showing that dependency maps capture 
non-Watson–Crick and tertiary structure contacts that are lost on the supervised 
RiNALMo (AUC = 0.64, P < 10−4, permutation test). Canonical contacts, n = 3873; 

noncanonical contacts, n = 1762. e, Left: Bacillus subtilis RNAse P secondary 
structure highlighting pseudoknot contacts. Right: corresponding dependency 
map showing antiparallel dependencies belonging to RNA structure stems and 
the annotated pseudoknot contacts. The structure was taken from the RFAM 
database35 (ID: RF00011). f, Tryptophan operon leader dependency map together 
with annotation and representation of the secondary structure stems belonging 
to sequence domains 2, 3 and 4. g, Left: dependency map computed with 
RiNALMo of a region including 200-bp upstream of the gene FkpB. Right: DMS-
MaPseq-derived secondary structure together with reactivities per nucleotide. 
The DMS-MaPseq data are consistent with the dependency map. The main 
structural features are highlighted by boxes. Each stem-loop is identified starting 
with ‘H’, and the pseudoknot with ‘PK’. This structure was undescribed so far. PK, 
putative pseudoknot.

http://www.nature.com/naturegenetics
https://doi.org/10.2210/pdb


Nature Genetics | Volume 57 | October 2025 | 2589–2602 2596

Article https://doi.org/10.1038/s41588-025-02347-3

a b

0 5 10 15

0

0.25

0.50

0.75

1

Dependency

Pr
ec

is
io

n

c

g

e

f

0.5 0.6 0.7 0.8 0.9 1

Telomerase
n = 35

23s
n = 15

16s
n = 67

grp1
n = 74

tmRNA
n = 462

RNaseP
n = 454

srp
n = 918

5s
n = 1283

tRNA
n = 557

AUROC

Dependency map Ground-truth annotation

W-C

Other

Supervised gLM

d

0 0.2 0.4 0.6 0.8 1.0

FPR

0

0.2

0.4

0.6

0.8

1.0

TP
R

Noncanonical base-pair
classi�cation

AUC dependency
maps = 0.793
AUC �ne-tuned
RiNALMo = 0.635

Pseudoknot 

C
U

U
A
A

C
G

U
U

C

G

G
G

U
A

A
U

C

G

C
U

G
C

A
G

A
U

C

UU

G

A
A

U
C

U
G

U
A

G
AG

GA
A

A G
U C

C A U G C
U

C
G

CA
C

G
G

UG
C

U
G

A

G

A
U G

C
C

C
G

U
AG

U
G U

U
C

G
U

G
CCUAGC

G
AA

G

U

C

A
U A

A
G C U A G G

G
CAGUC

U
U

U

A
G A

G G C U G A
C

G
G

C
A

G
G

A
AA

A

A
A

G
C

C

UA
C
G

U
C

U

U

C

G
G

A
U

A U
G

G
C

U
G A

G
U
A U

C
C

U U
G

A A
A G

U

G
C

CA
C

A
G

U

G

A
C

G
A

A
G U

C
U
C
A
C

U
A

G

A A

A

U
G
G
U
G
A
G
A

G
U

G

G

A

A

C
G

CG

G
U
A
A

A
C

C
C

C
U

C
G

A

G
C

G
A

G

A

A

A C
C

C
A A

A
U U

U

U

G
GU

AG
G

G
G

A
A

C C U U C U U A A C G G
A A

U
U

CA
ACGGAGAGAAGG

A C A G A A U
G

CU
UUCUGU

A
G

A
U

A
G

A
U

G
A

U
U

G
C

C

G
C

C
U

G
A G

U
A

C
G

A G
G

U

G
A

U

G
AG

C
C

G

U

U
UG

C

A

G
U

A
C

GA
U

G
G

A
A C A

A
A

A

C
A

U
G
GC

U

U

AC
A

G

A
A

C
G
U
U

A

G
A

C
CA

C

1

10

20

30

4050

60
70

80

90

100
110

120
130

140

150
160

170

180

190

200

210

220

230

240

250

260 270 280

290300

310

320
330

340

350360

370380

390

396

C C C A

G

C

C

C

G

C

C

U
A A

U

G
A

G

C

G

G

G

C

U U U

60

70

80

A A A C

G

G

G

C

A

G

U

G

U

A

U

U
C

A
C
C

A
U

G

C

G

U
A

A

A

G

C

A
A

U

C

A
G

A

U

A

C

C

C

A

G

C

C

C

G C C U A

20

30

40

50

60

70

3 4

2 3

A A A A A U C C U U A A A U A U A A G A G C A A A C C U G C A

180 190

C U G C C A U C U G U G

U

C

G

G
U

G

C

G

G

C A C U G A A A A A A C A A U A A U A A A C C C U G

C

C

G

G

A

U

G

C
GAUGCU

G

A
C G C A U C

U

U

A

U

C

C

G

G

C

C

U

A

C
A
G

A

U

U
G

C
U G C

G

A
A

A

U

C

G

U

A

G

G

C

C

G

G

A

U

A

A
G G C G U

U

U
ACGCC

G

C

A

U

C

C

G

G

C

10

20

70 80

90

100

110

120

130

140

150

160

U

U

G

U

G

C

U

G

G

A

A

G

G

U

U

U
U

U

U

G

C

C

U

U

C

U

A

G

A

G

C

G

A
30

40

50

60

PK

H1

H2

H3

Reactivity

0
0.4
0.7

G/U

H1

H3

PK

H2

http://www.nature.com/naturegenetics


Nature Genetics | Volume 57 | October 2025 | 2589–2602 2597

Article https://doi.org/10.1038/s41588-025-02347-3

demonstrated that gLMs have modeled the duplication operation 
itself, rather than relying on memorizing these sequences (Fig. 5b, 
Extended Data Fig. 5b and Supplementary Note).

Additionally, gLMs will only introduce short stretches of antipar-
allel dependencies in specific contexts, rather than associating any 
pair that could theoretically engage in Watson–Crick base pairing, 
demonstrating that the models have learned determinants of RNA 

structure beyond reverse complementarity (Extended Data Fig. 5c 
and Supplementary Note).

Dependency strength depends on genomic distance
We then investigated pattern-independent, global properties of the 
distribution of dependencies. To this end, we focused on S. cerevisiae 
as a model system. Nucleotide dependencies followed a power–law 
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Fig. 5 | gLMs capture sequence duplications without memorization.  
a, Dependency map from the SpeciesLM fungi in the promoter of YNR064C that 
contains a TATA box motif and duplicated sequences highlighted as red boxes on 
top of the reconstruction. While the TATA box appears as a block-like dependency 

pattern, the repeat shows a parallel dependency linking each duplicated 
nucleotide. b, Average dependency between artificially inserted repeat elements 
against their length for forward and inverted duplicates together (error bars 
represent 95% confidence interval computed across 100 samples).
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relationship with respect to distance to the query nucleotide, decaying 
by about 78% per tenfold distance increase (Fig. 6a). We did not find 
substantial variations in the decay rate across various types of genomic 
regions (Fig. 6b). However, dependencies were generally 1.64× stronger 
in the mitochondrial than in the nuclear genome (Fig. 6b). Browsing 
dependency maps of mitochondria revealed dependency-rich regions 
whose biological interpretation needs further investigations (Fig. 6c). 
Investigating deviations to the general power–law trend revealed higher 
dependencies at 3-nucleotide spacing, perhaps as a consequence of the 
high content of coding sequences in yeast. Nucleosome positioning 
also appeared to influence dependency distributions, with stronger 
dependencies than expected by the power law at distances correspond-
ing to nucleosome position periodicity on both S. cerevisiae (164 bp) 
and Schizosaccharomyces pombe (152 bp)43 (Fig. 6d). We conclude that 
nucleotide dependency maps offer new avenues to study general con-
straints on genomic sequences.

Dependency maps uncover shortcomings in gLM model 
designs and training data selection
Current gLMs differ in both model architecture and the sequence 
data on which they were trained. As of the time of writing, there is no 
consensus on the advantages and disadvantages of these different 
approaches, and comparisons are challenging due to the complexity 

of gLMs. We set out to use nucleotide dependencies, which can be 
computed for any gLM, as a general tool for visualizing and getting 
insights into existing gLMs.

Human tRNAs are suitable loci for comparative analysis both 
because several models have been trained on human genomes only 
and because tRNAs entail well-established and highly conserved distal 
functional dependencies. We observed that some modeling choices 
introduce artifacts in the dependency maps. For example, models 
belonging to the Nucleotide Transformer family9 do not reconstruct 
at the single base level but instead predict nonoverlapping spans of 
six nucleotides. This produces artificial dependency blocks along the 
diagonal, which do not represent motif instances but arise because 
nucleotides of the same span are generally more dependent (Fig. 7a). 
Nevertheless, these models are capable of learning dependencies at the 
single base level, for example, some tRNA stem contacts in the human 
tRNA-Arg-TCT-4-1 (Fig. 7a).

Equally, autoregressive models, for example, Evo8, do not con-
sider bidirectional context when making predictions; instead, they 
are designed to predict the next nucleotide given its 5′ context. This 
creates an artifact at the beginning of genomic elements such as the 
tRNA, which likely arises because the model cannot deduce the ele-
ment until it has seen sufficiently many tokens inside of it (Fig. 7a). This 
problem can be mitigated by running the model both on the forward 
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and reverse strand and taking the maximum dependency within a pair 
of nucleotides. Nevertheless, more appropriate measures of nucleotide 
dependencies for autoregressive models may need to be developed.

Comparing models trained on different types of sequences 
revealed starker differences. Specifically, models trained only on 

the human genome, regardless of architecture, parameter count or 
whether within-species variation was included, did not learn the human 
tRNA structure to any meaningful degree (Fig. 7b). By contrast, mod-
els trained on multiple species succeeded in at least learning aspects 
of human tRNA structure, regardless of architecture and whether 
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Fig. 7 | Dependency maps to compare gLMs and diagnose their shortcomings. 
a, The top-left map shows the ground-truth tRNA secondary structure contacts 
taken from GtRNAdb (tRNA-Arg-TCT-4-1). Red indicates contact, and blue 
indicates no contact. The remaining maps show the dependency maps for 
different gLMs, revealing modeling artifacts and performance differences. 
For instance, Nucleotide Transformer version 2 (ref. 9) captures only a few 
of the structural interactions. The 6 × 6 blocks around the diagonal reveal an 
artifact of NTv2 nonoverlapping 6-mer tokenization. Evo8 shows artifacts when 
encountering the start of genomic elements (see the top-left and bottom-
right corners). Computing the maximum across the top and bottom diagonal 
can mitigate the artifact. b, Comparing the AUROC curve achieved when 
dependency maps, as computed using different models, are used to predict 
secondary structure contacts of 266 human tRNAs without fine-tuning. Models 

differ in terms of architecture and training data. Multispecies models strongly 
outperform those trained only on the human genome, even if the multispecies 
models have never seen human (or even metazoan) DNA. For each boxplot: 
centerline, median; box limits, first and third quartiles; whiskers span all data 
within 1.5× interquartile ranges of the lower and upper quartiles. c, Comparing the 
correlation of the variant influence score, calculated using different Nucleotide 
Transformer models, with the measured absolute log fold change variant 
effect (Fig. 1c). Multispecies models perform substantially better than those 
trained only on human sequences, even for models of the 1000G type that were 
exclusively trained across 3,202 diverse human genomes. The height of each bar 
corresponds to the average correlation across promoters between a score and 
the measured variant effect. Error bars represent ±2 s.d., constructed using 100 
bootstrap samples per promoter.
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the training data included any human genomes. Similar results were 
observed when evaluating the performance of gLMs from the Nucleo-
tide Transformer family, which all show very similar architectures, 
on the human promoter saturation mutagenesis assay20 (Fig. 7c) and 
ClinVar19 (Extended Data Fig. 6). We conclude that infrequent genomic 
elements, even if they are highly conserved, generally require a multi-
species approach to be learned.

Discussion
In conclusion, we introduced nucleotide dependencies that quantify 
how nucleotide substitutions at one genomic position affect the likeli-
hood of nucleotides at another position. This new metric appears as 
a general and effective approach to identifying functionally related 
nucleotides using gLMs. Nucleotide dependency maps reveal func-
tional elements across various biological processes, including tran-
scriptional, post-transcriptional regulatory elements, their interactions 
and RNA folding. Therefore, this new metric has implications across 
multiple areas of computational and genome biology.

Traditionally, comparative genomics has helped identify func-
tional sequences by leveraging the concept of sequence conservation, a 
major indicator of functional importance based on purifying selection 
among homologous sequences, that is, sequences descended from a 
common ancestor. Algorithmically, sequence alignment is first used to 
identify homologous sequences; conservation is then estimated from 
the aligned nucleotide frequencies adjusted for phylogenetic drift and 
mutational biases. This approach limits the scope to alignable homolo-
gous sequences. In contrast, gLMs can more flexibly borrow informa-
tion across sequences with similar contexts, allowing them to capture 
recurrent patterns such as TF binding site motifs and their functional 
arrangements that can have arisen independently on nonhomologous 
sequences. In principle, this also allows gLMs to capture instances of 
positive selection, for example, where a sequence element has been 
acquired only recently in a specific species, although this ability is cur-
rently unexplored. Nonetheless, there may be specific new evolutionary 
features that exceed the current reach of genomic language modeling.

The nucleotides predicted by gLMs are not only shaped by func-
tional elements but also include mutational biases and easy-to-predict 
low-complexity regions that follow simple rules such as repeats. We 
provide preliminary evidence that analyzing nucleotide dependencies 
helps disentangle some of these factors, such as highly reconstructed 
regulatory elements compared to highly reconstructed repeats. How-
ever, development of gLM training strategies explicitly accounting for 
repeats5 and mutational processes may help to further focus these 
models on functional elements.

So far, gLM-derived variant effect metrics leverage reconstruction 
probability5,6, presuming that unlikely sequences are more deleterious. 
We showed that the influence of a nucleotide on predicting others is 
a more effective indicator of deleteriousness and could outperform 
alignment-based conservation. However, accounting for genetic 
drift and mutational biases will require research at the intersection of 
genomic language modeling and population genetics.

We have shown that dependency maps provide a promising new 
entry point to unravel the regulatory code. Regulatory elements, such 
as TF binding sites, manifest as dense blocks in dependency maps. We 
showed in yeast that applying simple image processing techniques 
on dependency maps identified these sites with an accuracy com-
parable to models trained on experimental binding data. Thus, this 
method is valuable for discovering regulatory elements, particularly 
where experimental data are limited (for example, nonmodel species, 
post-transcriptional regulation). Future improvements could involve 
modeling motifs with variable-sized blocks and accounting for all 
base-level dependencies. Moreover, dependencies also highlighted 
interactions between sequence elements in splicing and promoters, 
a property that future work could leverage to explore how sequence 
context governs the activity of regulatory elements.

Dependency maps accurately reflect bases in contacts within 
RNA folds, a substantial finding given the limited ground-truth data 
in RNA structural biology. Our entirely unsupervised approach, which 
relates to techniques recently proposed for unraveling amino acid 
contacts from protein language models44–47, overcomes limitations of 
secondary structure inference, yielding information on both canoni-
cal and noncanonical contacts, pseudoknots and alternative folding. 
Analyzing nucleotide dependencies within RNA structure sequences 
is related to covariation analysis, which identifies compensating sub-
stitutions between pairs of positions in an alignment as evidence for 
evolutionarily conserved contacts. In contrast to covariation analysis, 
our approach does not require alignments, which are rarely unique and 
for which even a single-nucleotide shift can introduce ambiguities, 
affecting the covariation statistics. We note, however, that nucleotide 
dependency analysis and sequence-alignment-based approaches are 
complementary. Notably, sequence alignment often provides direct 
evidence of a common ancestor sequence. In contrast, gLM dependen-
cies provide more flexibility for detecting functional interactions such 
as noncanonical contacts and in regimes with low alignable sequences. 
Furthermore, using nucleotide dependencies to infer structural con-
tacts relies on the gLM to have been trained on enough sequences 
to have captured relevant evolutionary footprints. In this respect, 
future work could investigate the influence on the choice of species, 
sequences and model design.

The gLM evaluations are often based on high-level aggregate 
statistics, such as the area under the ROC (AUROC) curve and R2, which 
assess the performance of downstream tasks that further models 
build upon. These evaluations conflate the contributions of gLMs as 
foundational models with those of the downstream supervised models 
and thus provide narrow, unidimensional assessments. Nucleotide 
dependencies instead enable benchmarking the gLMs themselves. 
We revealed critical limitations in current model architectures and 
single-species training practices, paving the way for more effective 
and generalizable gLMs.

Across various scientific fields, visualization tools also enable 
researchers to generate new observations and hypotheses. A nonquan-
tifiable contribution of dependency maps, but perhaps not the least, 
is to allow visualizing selective constraints on sequence in a new way.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-025-02347-3.
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Methods
SpeciesLM training
For SpeciesLM metazoa, we obtained metazoan genomes compris-
ing 494 different species from the Ensembl 110 database36. For each 
annotated protein-coding gene, we extracted 2,000 bases 5′ to the 
start codon and trained a species-aware masked language model on 
this region. We followed the training and tokenization procedure out-
lined in Species-aware gLMs4, but kept the batch size at 2,304, despite 
increasing the input sequence length, resulting in approximately twice 
as many tokens seen during training as in SpeciesLM fungi 5′. We used 
rotary positional encoding to inject positional information into the 
Transformer blocks.

For SpeciesLM fungi, we deviated from the above recipe by 
tokenizing each base of the sequences discussed in ref. 4 separately 
(single nucleotide, 1-mer tokenization) and using learned absolute 
positional encodings. To stabilize training, we increased dropout in 
the multilayer perceptron layers of the transformer to 0.2 and set it to 
0.1 for attention dropout.

Overall, we improved the training efficiency by fusing biases of 
the linear layers, the multilayer perceptron in the transformer and 
the optimizer using Nvidia Apex. We used FlashAttention2 (ref. 51) to 
train all models.

Nucleotide dependencies and variant influence score
We define the dependency between a variant nucleotide kalt at position 
i and a target position j as

ei,j,kalt = max {
||||
log2 (

od̂ds (nj = k|n1,… ,ni = kalt,… ,nN)
od̂ds (nj = k|n1,… ,ni = kref,… ,nN)

)
||||
}
k∈{A,C,G,T}

where k is one of the four possible nucleotides A, C, G or T; ni and nj are 
the nucleotides at position i and j, respectively; kref is the nucleotide 
in the reference, nonaltered input sequence, and kalt is the nucleotide 
in the alternative sequence. The odds estimates are computed from 
the predictions of a gLM under consideration. For this computation, 
none of the nucleotides (including the target nucleotide) is masked.

The variant influence score ei,kalt, for a sequence of N nucleotides, 
is defined by averaging the dependencies on a variant nucleotide at 
position i across all positions j = 1, …, N such that j ≠ i.

A nucleotide dependency ei,j between a query position i and a 
target position j on a sequence of N nucleotides is given by:

ei,j = max {
||||
log2 (

od̂ds (nj = k|n1,… ,ni≠kref,… ,nN)
od̂ds (nj = k|n1,… ,ni = kref,… ,nN)

)
||||
}
k∈{A,C,G,T}

We compute dependencies for all i,j pairs such that i ≠ j, that is we do 
not consider self-dependencies.

In autoregressive models, a query variant cannot directly affect the 
prediction of a target position located 5′ of the query. Thus, to obtain 
the lower triangular matrix of the dependency map, we also run the 
model on the reverse strand.

In the SpeciesLM metazoa, which predicts nucleotides as overlap-
ping 6-mers, the procedure needs to be adapted to yield one predic-
tion for each target nucleotide. This is achieved by first computing 
for each of the six 6-mers that overlap the target nucleotide of inter-
est, which probability it implies for this target nucleotide, as previ-
ously described4. We then average these six probabilities to obtain a 
single probability.

For the Nucleotide Transformer models, which predict only nono-
verlapping 6-mers, we use a similar approach. Consider the case of 
predicting the probability of observing nucleotide n at position i of 
the sequence. In the tokenized sequence, this nucleotide has position 
p in the kth 6-mer where:

k = ⌊ i6 ⌋

p = i mod6

The model predicts a distribution over all 46 possible 6-mers at position 
k. We first discard all predictions corresponding to 6-mers that contain 
a nucleotide that differs from the reference sequence at any location 
other than p—which leaves only four 6-mers. We renormalize so that 
the predicted probability of these remaining 6-mers sums to one. We 
then record the (renormalized) probability of the 6-mer that has the 
desired nucleotide n at position p.

Apart from extracting nucleotide-level probabilities with the 
above-mentioned method, we have also experimented with comput-
ing the probability for a nucleotide at position i as the sum of all k-mers 
containing that nucleotide at that position. Evaluation of nucleotide 
dependencies within tRNAs revealed a worse performance with 
this method.

Variant impact benchmarks
As our metric of variant impact, we used the variant influence score. 
This average is computed over the full receptive field of the model for 
the SpeciesLM. For Nucleotide Transformer models, we only aver-
age over the central 2 kb, so as to facilitate comparisons. Neverthe-
less, we provide the full sequence context for which this model has 
been trained.

For comparison, we also calculated a variant effect score based on 
the gLM reconstruction at the query variant. Specifically, this score is 
the log ratio between the predicted probability of the variant nucleo-
tide and the predicted probability of the reference nucleotide5,6.

Finally, we downloaded conservation scores (PhyloP and Phast-
Cons) for human and S. cerevisiae from the University of Califor-
nia, Santa Cruz genome browser database21–24,52. For humans, these 
include the conservation scores based on the 100-way, 447-way and 
470-way alignment.

Promoter saturation mutagenesis. Promoter saturation mutagenesis 
(ref. 20) data mapped to hg38 were provided by V. Agarwal (mRNA 
Center of Excellence, Sanofi, Waltham, MA, USA). As discussed in ref. 29,  
we excluded the FOXE1 promoter due to the low replicability of the 
measurements, leaving nine promoters and comprising 8,635 variants. 
Variants were then intersected with the human gene 5′ regions (that 
is, the regions 2-kb 5′ of annotated start codons). Then, the variant 
influence score was calculated for each variant measured in the assay 
from the LM dependencies for these regions. The variant influence 
score was then correlated with the absolute value of the measured log2 
fold change in expression. This correlation was computed for each 
promoter and then averaged across promoters.

To determine confidence intervals, we performed 100 bootstrap 
samples per promoter and recomputed the correlation for each boot-
strap sample. The confidence interval was defined by adding/subtract-
ing two standard deviations of the average correlation.

eQTL variants. For human eQTL, we downloaded SUSIE26 fine-mapped 
GTEx eQTL data from EBI. We then intersected these data with the 
human gene 5′ regions. This procedure, by design, enriches for pro-
moter eQTL. Similar to the details in ref. 29, we considered every 
eQTL variant with a posterior inclusion probability higher than 0.9 
as putative causal and we considered any eQTL variant with posterior 
inclusion probability lower than 0.01 as putative noncausal. We only 
considered putative noncausal eQTL intersecting regions, which also 
include at least one causal eQTL. This procedure gave 2,958 eQTL 
variants, of which 1,631 were classified as putative causal. Then, the 
influence score for each variant was computed based on the nucleo-
tide dependencies in these regions. We ranked variants according 
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to the influence score. Confidence intervals were computed using 
bootstrapping as before.

For yeast eQTL, we downloaded the results of an MPRA study 
assessing candidate cis-eQTL variants27. After this study, we classify 
any eQTL variant with false discovery rate < 0.05 in the MPRA assay as 
causal and we classify any eQTL with (unadjusted) P value of >0.2 as non-
causal. This yielded 3,056 eQTL variants, of which 379 were classified 
as causal. These eQTL variants were then intersected with yeast gene 
5′ regions and influence scores were computed from the SpeciesLM 
fungi dependency maps. Confidence intervals were computed using 
bootstrapping as before.

Clinvar. We used ClinVar version 2023_07_17 (ref. 19), previously down-
loaded from https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/.  
We considered noncoding any variant in the categories ‘intron_vari-
ant’, ‘5_prime_UTR_variant’, ‘splice_acceptor_variant’, ‘splice_donor_
variant’, ‘3_prime_UTR_variant’, ‘non_coding_transcript_variant’, 
‘genic_upstream_transcript_variant’ and ‘genic_downstream_tran-
script_variant’. As discussed in ref. 53, we considered as pathogenic any 
variant classified as pathogenic or likely pathogenic and as benign any 
variant classified as benign or likely benign. We excluded variants with 
fewer than one review star. This resulted in 385,572 variants, of which 
22,313 were classified as pathogenic.

As most ClinVar variants fall outside the 5′ regions of genes, we 
chose not to intersect with these regions. Instead, we computed the 
dependency map centered on the variant of interest. Confidence inter-
vals were computed using bootstrapping as before.

Borzoi. We ran Borzoi in mixed precision to reduce computational 
overhead using the PyTorch Borzoi package. Replicate zero of Borzoi 
was used for all analyses. For the eQTL analysis, we computed the 
L2 score as discussed in ref. 25. We used the tissues of borzoi pre-
dictions matching the eQTLs. If several Borzoi tracks matched the 
tissue, we averaged the scores across these tracks. For ClinVar, we 
followed a similar approach, except that we collected Borzoi predic-
tions for all tissues and assays. We then computed the L2 score across 
tracks to give a tissue-agnostic and mechanism-agnostic variant- 
effect score.

For the Kircher saturation mutagenesis dataset, we computed the 
logSED score as discussed in ref. 25. We mapped the cell types used in 
the assay to Borzoi tracks as follows: for the GP1BB, HBB, NHBG1 and 
PKLR promoters, we used ‘RNA:K562’; for the F9 and LDLR promoters, 
we used ‘RNA:HepG2’; for HNF4A and MSMB, we used ‘RNA:kidney’ (as 
HEK293 is originally a kidney cell) and for TERT, we used ‘RNA:astrocyte’ 
(as glioblastoma are cancerous astrocytes).

Integrative model using Borzoi and the influence score
We integrated Borzoi and the influence score using logistic regres-
sion—for the eQTL and ClinVar predicitions—and using linear regres-
sion for the mutagenesis data using fivefold cross-validation scheme 
for all benchmarks. Notably, for the Kircher saturation mutagenesis 
task, model fitting and cross-validation were performed separately 
for each promoter, and performance was then averaged across folds 
and promoters.

Alternative dependency metrics
All benchmarks on alternative dependency metrics were performed 
on the SpeciesLM fungi.

Gradient-based. We computed the gradient of the prediction for each 
nucleotide at position i with respect to each nucleotide at position j 
yielding a 4 × 4 matrix. To achieve this, we first replaced the tokeniza-
tion layer with a one-hot encoding and a linear layer, which map the 
one-hot encoded nucleotides to their respective token embeddings. 
We then propagated gradients from each target nucleotide prediction 

to each one-hot encoded input nucleotide. As a metric of nucleotide 
dependency, we then used the maximum absolute value across the 
4 × 4 matrix of each i,j position.

Mask-based. Masked-based dependencies are computed as:

ei,j = max {
||||
log2 (

od̂ds (nj = k|n1,… ,ni = [MASK] ,… ,nN)
od̂ds (nj = k|n1,… ,ni = kref,… ,nN)

)
||||
}
k∈{A,C,G,T}

where ‘[MASK]’ stands for the mask token, k belongs to one of the four 
possible nucleotides A, C, G or T; ni and nj are the nucleotides at position 
i and j, respectively; kref is the nucleotide in the reference, nonaltered 
input sequence.

S. cerevisiae tRNA structure benchmark
S. cerevisiae genome assembly version R64-1-1 and annotation version 
R64-1-1.53 were downloaded from EnsemblFungi36. The S. cerevisiae 
tRNA secondary structures were downloaded from GtRNAdb54. We 
considered only the tRNAs overlapping the 1 kb 5′ regions to any yeast 
start codon, yielding 172 tRNA sequences. Subsequently, dependency 
maps on tRNAs were processed by taking the maximum between ei,j and 
ej,i. This symmetrizes the dependency map and achieves one unique 
score per pair of positions in the tRNA sequence. We then used this 
score to predict whether a pair of nucleotides belonged to a secondary 
structure contact.

Assessment of donor–acceptor dependencies in S. cerevisiae
We extracted intron sequences by selecting the regions within anno-
tated gene intervals that lie between exon annotations. This resulted 
in 380 sequences. We then retained only introns bounded by canoni-
cal splice site dinucleotides GT and AG, yielding 272 sequences. We 
then computed the average dependency between every donor and 
acceptor nucleotide within the intron as a measure of dependency 
between the donor and acceptor sites. We designed two negative sets 
for a given intron. For the negative set ‘Decoy acceptor’, we compute 
the average dependency between donor nucleotides and each AG 
dinucleotide within the intron that does not include the acceptor 
site. For the negative set ‘Matched distance’, we sampled four random 
dependencies between nucleotides that were as distant from each 
other as the donor was from the acceptor, without including the donor 
or acceptor themselves.

TF motif mapping
We downloaded FIMO PWM scan results from http://www.yeastss.org  
(ref. 55) and Chip-Exo TF binding peaks from http://www.yeastepig 
enome.org (ref. 31). We then extracted all Chip-Exo peaks for the avail-
able PWMs. We excluded PWM matches for which no Chip-Exo data 
were available for the corresponding factor. This procedure yielded 
data for 68 TFs. We annotated every nucleotide within 1 kb 5′ of a start 
codon as part of a binding TF motif if it is (1) part of a PWM match with P 
value of <0.01 and (2) this PWM match is within ten bases of a Chip-Exo 
peak of the corresponding TF. We defined the positive class in this 
way to ensure that we capture nucleotides relevant for determining 
binding (that is, motif) rather than all nucleotides close to a Chip-Exo 
peak, regardless of their role in binding. This resulted in 92,117 binding 
nucleotides out of a total of 6,538,427. We designated a nucleotide as 
repeat if it was masked by RepeatMasker. We extracted this information 
from the soft-masked GTF provided by Ensembl36.

The 69-way alignment
We used progressive cactus56 to align 69 budding yeast species using 
default parameters and specifying S. cerevisiae as reference quality 
genome. We then extracted fourfold degenerate sites and used phyloFit 
with the EM algorithm to estimate a neutral model. Using this neutral 
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model and the alignment, we ran phastCons with the parameters --rho 
0.3 --estimate-rho --target-coverage 0.4 --expected-length 23, which 
correspond to the parameters used in the seven-way alignment21. We 
also ran phyloP22, with --method LRT --mode CONACC.

Dependencies in rare-variant-associated aberrant splicing
We computed dependency maps for all rare SNVs associated with 
splicing outliers in GTEx28 as described earlier32. Because the input 
length of SpliceBert14 is limited to 1,024 bp, the complete set of variant 
outlier pairs (n = 18,371) was filtered such that the variant and associ-
ated outlier junction were located within an 800-bp window (n = 1,811) 
and 100 bp of sequence was added from the maximum and minimum 
positions of the variant and outlier junction splice sites. For each vari-
ant location, we extracted the average value of the dependency map 
at the intersection of either variant and outlier donor dinucleotide or 
variant and outlier acceptor dinucleotide. This variant effect score 
was compared against a background score. This background score 
was computed as the mean over all dependencies that were as distant 
from each other as the variant was from the outlier donor (matched 
distance) or the outlier acceptor. The scores were filtered for a mini-
mum distance of 5 bp between the variant and splicing dinucleotide 
to filter values near the diagonal corresponding to self-interactions. 
Variant categories were annotated with the Ensembl variant effect 
predictor (VEP)57. For each variant, the most severe VEP annotation 
was considered. For the ‘exon’ category, the following VEP catego-
ries were grouped together: synonymous_variant, missense_variant, 
stop_lost, stop_gained.

Genome-wide search for parallel and antiparallel 
dependencies
We scanned dependency maps for parallel and antiparallel dependen-
cies using 5 × 5 convolutional filters. We constructed the antiparallel 
filter by populating the antidiagonal of a zero-filled 5 × 5 matrix with 
ones, and for the parallel filter, by populating the diagonal with ones. 
We then centered each filter by subtracting the mean value from each 
position to ensure that a convolution on a uniform 5 × 5 region yields 
a result of zero. We applied these filters to dependency maps from 
SpeciesLM fungi (both filters) and RiNALMo (antiparallel filter only)4,7.

Search for parallel and antiparallel dependencies in fungi using 
the SpeciesLM fungi
For the SpeciesLM fungi, we have computed dependency maps span-
ning 1 kb 5′ of each annotated start codon on a set of representative 
fungi species, including Agaricus bisporus, Candida albicans, Debaryo-
myces hansenii, Kluyveromyces lactis, Neurospora crassa, S. cerevisiae, 
S. pombe and Yarrowia lipolytica. The genomes and annotation files 
for each species were downloaded from EnsemblFungi release 53 with 
accessions GCA_000300555.1, GCA000182965v3, GCA_000006445.2, 
GCA000002515.1, GCA_000182925.2, GCA_003046715.1, GCA_ 
000002945.2 and GCA_000002525.1, respectively.

All regions annotated as ‘five_prime_utr’, ‘three_prime_utr’, ‘intron’, 
‘CDS’, ‘pseudogene_with_CDS’ and other regions (for example, nonan-
notated introns) inside an annotated gene interval were categorized as 
protein-coding gene. All regions annotated as ‘tRNA’, ‘tRNA_pseudo-
gene’, ‘rRNA’, ‘snRNA’, ‘ribozyme’, ‘SRP_RNA’, ‘snoRNA’, ‘RNase_P_RNA’ 
and ‘RNase_MRP_RNA’ were categorized as structured RNA. Finally, all 
regions annotated as ‘transposable_element’, ‘pseudogene’ and regions 
without any annotation were considered as intergenic.

Search for antiparallel dependencies and RNA structure  
in E. coli using RiNALMo
For RiNALMo, we computed dependency maps for regions 100, 200 
and 500 bp before each annotated start codon in E. coli str. K-12 substr. 
MG1655, whose genome and annotation were downloaded from Gen-
Bank58 with accession U00096.3.

As candidates for a new RNA structure, we first filtered posi-
tions whose convolution value is greater or equal to 25 to select only 
high-value antiparallel dependencies, resulting in a filtered convolved 
dependency map. Next, we counted the unique number of antidiago-
nals potentially belonging to one stem by extracting the unique i + j 
nonzero positions supported by at least three nonzero values.

As candidates for a new structure, we selected maps suggesting 
the existence of at least two potential stems.

RNA secondary structure benchmarking
We downloaded the database of secondary structures Archive II37, 
which includes 3,865 curated RNA structures across nine families (5S 
rRNA, SRP RNA, tRNA, tmRNA, RNase P RNA, group I intron, 16S rRNA, 
telomerase RNA and 23S rRNA). For each structure, we generated the 
dependency map with the pretrained RiNALMo and retained the largest 
of the two dependency map entries for each pair of nucleotides (maxi-
mum of i,j and j,i). The AUROC curve was computed for each structure 
against the Archive II secondary structure annotations.

Benchmarking of canonical and noncanonical RNA contacts
We downloaded the database of RNA structures CompaRNA38, which is 
a compilation of RNA contacts based on 201 available RNA structures 
in the Protein Data Bank by RNAView59. Contacts are classified either 
as ‘standard’ or as ‘extended’. While the first includes only canonical 
AU, GC and wobble GU pairs in the cis-Watson–Crick/Watson–Crick 
conformation60, the latter calls all interacting bases regardless of their 
conformation, including noncanonical or tertiary contacts. Of the 
201 structures, 196 had a length below the maximum input length of 
RiNALMo (1,022 nt). For each structure, we generated the dependency 
map using the pretrained RiNALMo and retained the largest entry from 
the two dependency maps for each pair of nucleotides. Similarly, the 
same structures were also evaluated with the fine-tuned RiNALMo 
model version rinalmo_giga_ss_bprna_ft, resulting in a predicted value 
for each pair of nucleotides. To evaluate their performance in pre-
dicting noncanonical contacts, we excluded all canonical contacts 
and computed the AUROC curve for all remaining positions across 
all structures. Significance between ROC AUCs was determined by 
bootstrapping over 10,000 permutations.

Comparison with RNAalifold
We evaluated the performance of the dependency maps against 
RNAalifold61, a standard alignment-based method for predicting a 
consensus RNA structure by incorporating sequence covariation from 
a set of aligned RNA sequences as input. For this, we use the 201 PDB 
entries in CompaRNA that had at least one Rfam match and consider 
two subsets. The first subset consisted of the 33 PDB sequences that 
contained an exact sequence match between the PDB entry and at 
least one Rfam seed alignment. In case of multiple matching Rfam 
seed alignments (for example, ribosomal RNA), we considered an 
arbitrarily chosen single Rfam seed alignment to avoid confounding 
the evaluations by duplicates. The second subset consisted of the 
remaining 168 sequences. For this, we used nhmmer (v3.1b2)62 to 
find homologous sequences within a database of 220,478 bacterial 
and archaeal genomes and plasmids downloaded from NCBI. After 
removing sequences longer than 1,022 nt (the maximum context 
length for which the gLM RiNALMo has been trained), this resulted in 
67 sequences with hits in the database.

On the first subset, we use the Rfam seed alignments as input 
to RNAalifold. To assess the robustness of the analyses to the align-
ment procedure, we additionally realigned the sequences in the seed 
alignments using Clustal-Omega (v1.2.4)63 and MAFFT (v7.525)64. For 
the second subset, we performed sequence alignments using both 
Clustal-Omega and MAFFT, limiting the alignments to a maximum of 
1,000 sequences (by aligning the PDB sequence to the top 999 nhm-
mer hits) to reduce computation time. On both subsets and from each 
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alignment, a base-pair probability matrix corresponding to the pre-
dicted RNA structure was generated using RNAalifold available through 
the ViennaRNA (v2.6.4) package65. RNAalifold was run in the following 
two modes: using the default energy model (command: RNAalifold -p) 
and with RIBOSUM scoring (command: RNAalifold -p -r).

Pseudoknot benchmark
We downloaded the compendium dataset bpRNA-1m(90) that contains 
28,370 annotated RNA structures with less than 90% sequence similar-
ity obtained from the databases CRW, tmRNA, SRP, tRNAdb2009, RNP, 
RFAM and PDB39. From these, we extracted all structures that contain 
pseudoknot contacts and are no longer than 1,022 nt (the maximum 
context length for which the gLM RiNALMo has been trained). These 
resulted in 2,530 structures of varying lengths and sources. We then 
extracted the pseudoknot contacts from the dot-bracket notation pro-
vided by bpRNA that takes into account non-nested pairs39. Finally, we 
computed the dependency maps for each one of these structures and 
evaluated their ability to predict whether a pair of nucleotides belongs 
to a pseudoknot contact (positive set) or does not belong to a structure 
contact (pseudoknot or canonical structure contact—negative set).

DMS-MaPseq analysis of E. coli cells
E. coli TOP10 cells were grown in LB broth at 37 °C with shaking until 
OD600 = 0.5, after which dimethyl sulfate (DMS; Sigma-Aldrich, 
D186309), prediluted 1:4 in ethanol, was added to a final concentra-
tion of 200 mM. Bacteria were incubated for 2 min at 37 °C, and reaction 
was quenched by addition of 0.5 M final DTT. Bacteria were pelleted by 
centrifugation at 17,000g for 1 min at 4 °C, after which they were resus-
pended in cell pellets in 12.5-μl resuspension buffer (20 mM Tris–HCl pH 
8.0; 80 mM NaCl; 10 mM EDTA pH 8.0), supplemented with 100 μg ml−1 
final lysozyme (L6876, Merck) and 20 U SUPERase·In RNase Inhibitor 
(Thermo Fisher Scientific, A2696), by vortexing. After 1 min, 12.5-μl 
lysis buffer (0.5% Tween-20; 0.4% sodium deoxycholate; 2 M NaCl; 
10 mM EDTA) were added, and samples were incubated at room tem-
perature for 2 additional min. Then 1 ml TRIzol Reagent (Thermo Fisher 
Scientific, 15596018) was added, and RNA extracted as per the manu-
facturer’s instructions. rRNA depletion was performed on 1 μg total 
RNA using the RiboCop for Bacteria kit (Lexogen, 126). DMS-MaPseq 
library preparation was performed as previously described41. After 
sequencing, reads were aligned to the E. coli str. K-12 substr. MG1655 
genome (GenBank, U00096.3), using the rf-map module of the RNA 
framework66 and Bowtie2 (ref. 67). Count of DMS-induced mutations 
and coverage and reactivity normalization were performed using the 
rf-count-genome and rf-norm modules of the RNA framework. Experi-
mentally informed structure modeling was performed using the rf-fold 
module of the RNA framework and ViennaRNA (v2.5.1)67.

RNA structure covariation analysis
Covariation analysis was performed using the cm-builder pipeline 
(https://github.com/dincarnato/labtools) and a nonredundant data-
base of 7,598 representative archaeal and bacterial genomes (and 
associated plasmids, when present) from RefSeq68.

Evaluation of artificial forward and inverted duplications
We generated random sequences of 100 nucleotides by sampling 
from regions 1 kb 5′ of the start codon in S. cerevisiae to ensure a 
representative GC content and shuffling the sequences to destroy 
potential functional elements. Additionally, we created 100 unique 
duplicated sequences, ranging from 2 to 20 nucleotides in length, 
by randomly sampling each nucleotide with equal probability. Each 
duplicated sequence was then inserted into a uniquely generated 
100-nucleotide sequence at a random distance from each other, 
ensuring no overlaps occurred. We used the SpeciesLM fungi to gen-
erate dependency maps for each sequence. We then computed aver-
age dependencies by taking the mean of the dependencies between 

nucleotides and their duplicates. This involved averaging across a 
parallel diagonal for forward duplications and an antiparallel diagonal 
for inverted duplications.

For tRNA-sized sequences, we followed a similar method but gen-
erated each sequence by shuffling each unique tRNA sequence in S. 
cerevisiae once. We computed the average number of inverted duplica-
tions by averaging the occurrences of duplicated sequences of specific 
lengths across 10,000 shuffled versions of each tRNA sequence.

Genome-wide analysis of dependency distribution
Using the SpeciesLM fungi, we computed dependency maps across the 
genomes of S. cerevisiae and S. pombe. Because the SpeciesLM fungi 
was pretrained on sequences of 1,003 nucleotides, including the start 
codon at the end, we discarded dependencies involving the last three 
nucleotides of each sequence, yielding dependencies for 1,000 nucleo-
tides. Genome-wide dependency maps of 1-kb span were obtained with 
a tiling approach. Along each chromosome, we computed 1-kb square 
dependency maps every 500 bp and averaged overlapping entries.

To ensure that the same number of targets is computed before and 
after a specific query nucleotide, we considered dependencies involv-
ing nucleotides at most 500 positions away from each other. For each 
map, we sampled 1,000 dependencies and averaged dependencies 
mapping to the same genomic positions but computed from differ-
ent overlapping maps. Due to limitations in numerical precision, we 
considered only dependencies larger than 0.001.

To compute the power–law coefficients, a linear regression was fit-
ted to predict the logarithm of the dependency from the logarithm of its 
corresponding distance in nucleotides. The scaling coefficient was then 
obtained by exponentiating the fitted intercept of the linear regression, 
and the decay rate was obtained directly from the fitted slope. The 
scaling coefficient and decay rate were computed for different regions 
in the genome which are as follows: (1) nuclear—involving all depend-
encies belonging to nuclear DNA; (2) mitochondria—involving all 
dependencies within mitochondrial DNA; (3) structured RNA—belong-
ing to the annotations ‘tRNA’, ‘tRNA_pseudogene’, ‘rRNA’, ‘snRNA’, 
‘ribozyme’, ‘SRP_RNA’, ‘snoRNA’, ‘RNase_P_RNA’ or ‘RNase_MRP_RNA’; 
(4) protein-coding gene—belonging to the annotations ‘five_prime_utr’, 
‘three_prime_utr’, ‘CDS’ or ‘pseudogene_with_CDS’; (5) intron—belong-
ing to the regions inside an annotated gene interval but not to exons 
and (6) intergenic—belonging to all regions annotated as ‘transpos-
able_element’, ‘pseudogene’, as well as regions without any annotation.

Model comparison
All other models used were downloaded from Huggingface or from 
their publicly available repositories. Human tRNA sequences were 
downloaded from GtRNAdb54. Exact duplicate sequences were 
removed, leaving 266 tRNAs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data to reproduce the analysis, together with the 69-Saccharomycetales 
genome alignment and conservation score, as well as the bacterial and 
archaeal genomes and the plasmid sequences used for the bench-
mark against RNAalifold, are provided in ref. 69. The SpeciesLM 
models are available at https://huggingface.co/collections/johahi/ 
specieslms-678a39261cfff01c1fa3ae41. Raw DMS-MaPseq data have 
been deposited to the Gene Expression Omnibus database under 
accession GSE271937.

Code availability
The code required to reproduce the results in the paper is available at 
https://github.com/gagneurlab/dependencies_DNALM or in ref. 69.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Nucleotide dependencies capture functional 
interactions and variant effects in ClinVar and eQTLs. a, Variant influence score 
against pathogenic and benign variants classified from ClinVar. P-value obtained 
from double-sided Wilcoxon rank-sum test <10−6. b, Performance (AUROC) for 
the classification of ClinVar variants into pathogenic or benign comparing the 
variant influence score, gLM log ratio between predicted probability of the 
reference nucleotide and variant nucleotide, alignment-based conservation 
scores from PhyloP and PhastCons, the supervised model Borzoi, as well as a 
logistic regression on the influence-score and Borzoi (the latter was fitted and 
evaluated using 5-fold cross-validation on this dataset). Pathogenic N = 22313; 
benign N = 363259. c, Variant influence score for putative causal and putative 
non-causal variants as obtained from fine-mapped human eQTL26,70. P-value 
obtained from double-sided Wilcoxon rank-sum test <10−6. d, Area under the 
receiver operating characteristic curve (AUROC) for the classification of putative 
causal versus putative non-causal variants from the fine-mapped human eQTL. 

Ensemble model fitted as in b. Non-fine-mapped N = 1327; fine-mapped N = 1631. 
e, Variant influence score for putative causal and putative non-causal variants 
obtained from yeast eQTL27. P-value obtained from double-sided Wilcoxon 
rank-sum test <10−6. f, Performance in AUROC for the classification of yeast 
putative causal vs putative non-causal eQTL variants. Putative non-causal 
N = 2677; putative causal N = 379. g, Performance (AUROC) for the prediction 
of tRNA secondary structure contacts using different nucleotide dependency 
metrics: gradient-based, mask-based and substitution-based. h, Precision-recall 
curves for the prediction of splice site interactions using different nucleotide 
dependency metrics as before. Donor-acceptor interactions N = 238; non-donor-
acceptor interactions at matched distances N = 476. For all boxplots: center line, 
median; box limits, first and third quartiles; whiskers span all data within 1.5× 
interquartile ranges of the lower and upper quartiles. All error bars represent ±2 
standard deviations, constructed using 100 bootstrap samples. The height of 
each bar corresponds to the AUROC using the different variant scores.
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Extended Data Fig. 2 | The block-score also outperforms other metrics 
in identifying transcription factor (TF) binding sites when restricted to 
non-coding regions. Receiver operating characteristic (ROC) curve comparing 
the ability of different metrics to classify whether a nucleotide is part of a bound 
TF motif or not (92,117 binding nucleotides out of 3,334,202 overall). As in Fig. 2d, 

but overlap with coding sequences was removed. This improves the performance 
of alignment-based conservation somewhat, but the block-score still performs 
much better. Computing conservation scores on a 69-way alignment of budding 
yeast species did not improve discrimination.
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Extended Data Fig. 3 | Dependency map highlights an alternative branch-
point of the yeast gene LSM2. Dependency map for an intron of the yeast gene 
LSM2 not only highlighting the canonical donor, acceptor and branch point 
but also an alternative non-canonical branch point. While the canonical branch 
point appears as an on-diagonal block, another parallel off-diagonal block is 

visible, suggesting that if mutations altered the canonical branch point then 
compensatory mutations on the alternative branch points would be favored. 
The target nucleotides of this block belong to a branch-point-like sequence, 
indicating a role as an alternative branch-point, which has also been previously 
found experimentally71.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Nucleotide dependencies systematically highlight  
RNA secondary structure, pseudoknot and non-Watson-Crick contacts.  
a, Example of a convolution of a 5 × 5 anti-parallel diagonal filter on the dependency 
map of yeast tR(ACG)O tRNA. The dependency map is shown on the left, while 
the resulting convolution is shown on the right. The maximum convolution 
values highlight the anti-parallel dependencies within the tRNA. b, Fraction of 
nucleotides that show Watson-Crick or wobble correspondence within the 5 
base-pair region defined by the convolution filter location with the maximum hit 
for different convolution values in a region of 1 kb 5′ of a start codon. c, Maximum 
anti-parallel dependencies within a 1-kb region 5′ of each start codon across 
fungi species and its location in the genome categorized in one of structured 
RNA, protein coding (spanning the whole interval of a protein-coding gene), and 
intergenic (spanning mostly non-annotated regions between genes). d, ROC 
curve for classifying experimentally obtained canonical (left) and non-canonical 
(right) contacts from the compaRNA database. The performance of RNAalifold 
base-pair probabilities, the fine-tuned RiNALMo and nucleotide dependencies is 
shown for two regimes: (1) high-quality manually curated seed alignments from 
the Rfam database together with realignment of the same sequences using MAFT 
and ClustlO (top) (2) alignments constructed from a database search of 220,478 
bacterial and archaeal genomes and plasmids downloaded from NCBI (bottom). 
e, E. coli cobalamin riboswitch dependency map together with the highlighted 
pseudoknot contacts and nucleotide reconstruction on top. f, Distribution of 

dependencies for pairs of nucleotides belonging to an annotated pseudoknot 
contact (right, N = 21,051) or not belonging to a structure contact (left, 
N = 175,016,129). Dependencies discriminate between these two categories (area 
under the ROC curve 0.92, double-sided Wilcoxon Rank-sum test P < 10−16). All 
dependencies were computed for RNAs with pseudoknot contacts across 2,530 
structures in bpRNA spanning multiple species and database sources (Methods). 
g, Distribution of DMS mutation frequencies for all A and C nucleotides (the 
nucleotides probed by DMS) in E. coli non-coding regions in antiparallel 
dependencies against all remaining non-coding nucleotides. Nucleotides part 
of dependency-map antiparallel stretches have significantly lower mutation 
rates (P < 10−16, double-sided Wilcoxon rank-sum test, nucleotides in anti-parallel 
dependencies N = 5,008, other N = 103,867), which indicates they were more 
protected from DMS and therefore more likely to be in Watson-Crick base 
pairing. h, Ground-truth base-pairing probabilities derived from DMS-MaPseq 
experimentally-constrained RNA secondary structure prediction for nucleotide 
pairs in anti-parallel dependencies against all pairs (P < 10−16, double-sided 
Wilcoxon rank-sum test, all pairs N = 1,133,018, pairs in anti-parallel dependencies 
N = 2,743). i, Covariation analysis of four novel structures validated by DMS-
MaPseq 5′ of genes FkpB (b0028), glnS (b0680), mtlD (b3600) and rlmB (b4180). 
For all boxplots: center line, median; box limits, first and third quartiles; whiskers 
span all data within 1.5× interquartile ranges of the lower and upper quartiles.  
P values were computed using the paired two-sided Wilcoxon test.
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Extended Data Fig. 5 | gLMs capture repeated sequences genome-wide 
but distinguish between inverted repeats within and outside structural 
contacts. a, Fraction of equal nucleotides within the 5 base-pair region defined 
by the parallel diagonal convolution filter location with the maximum hit for 
different convolution values. The strongest parallel diagonal dependencies 
belong to repeated sequences, indicating that repeats are highlighted genome-
wide in parallel dependency patterns. b, Dependency map and nucleotide 
reconstruction for a 1 kb random sequence containing an inserted artificially 

generated random duplicated sequence of 100b. Despite the repeated 
nucleotides being spaced 800 bp apart, the gLM highlights the parallel 
dependency linking each nucleotide. c, Top, average dependency against 
inverted repeat length for tRNA length sequences (black colored dots). The red 
colored dots indicate the average dependency within anti-parallel dependencies 
in tRNA stems. Error bars indicate 95% confidence intervals across 100 simulated 
sequences (black) or all tRNAs with specific stem lengths (red). Bottom, average 
number of inverted repeats expected to get by chance for each repeat length.
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Extended Data Fig. 6 | Performance of the nucleotide transformer models 
on ClinVar variant pathogenicity prediction. Area under the ROC curve for 
absolute variant effect prediction on the same dataset as Extended Data Fig. 1a 
using variant influence scores computed from Nucleotide Transformer models. 

Error bars represent ±2 standard deviations, constructed using 100 bootstrap 
samples. The height of each bar corresponds to the AUROC using the different 
model scores.
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Extended Data Table 1 | All gLMs assessed in this study together with their input sequence specifications, training data, 
architecture, and figure panels where they are used

* Because many fungal genomes are compact, taking the region 1 kb 5′ of gene starts already covers a significant amount of the genome, including diverse features such as non-coding RNA, 
coding sequences, regulatory elements, long-terminal repeats and others. ** Several versions trained for different lengths exist.
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Extended Data Table 2 | The block-score discriminates between binding and non-binding sites within sequences with a 
PWM match

Area under the ROC curve achieved with the block-score for classifying whether a nucleotide is part of a bound TF motif or not. In difference to Fig. 2d, we restrict only to nucleotides which 
are part of a PWM match, as selected using different cut-offs of maximum PWM P-value.
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