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De novo annotation reveals transcriptomic
complexity across the hexaploid wheat pan-
genome
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Wheat is the most widely cultivated crop in the world, with over 215 million
hectares grown annually. The 10+Wheat Genomes Project recently sequenced
and assembled to chromosome-level the genomes of nine wheat cultivars,
uncovering genetic diversity and selection within the pan-genome of wheat.
Here, we provide a wheat pan-transcriptome with de novo annotation and
differential expression analysis for these wheat cultivars across multiple tis-
sues. Using the de novo annotations we identify cultivar-specific genes and
define the core and dispensable genomes. Expression analysis across cultivars
and tissues reveals conservation in expression between a large core set of
homeologous genes, in addition to widespread changes in subgenome
homeolog expression bias between cultivars and cultivar-specific expression
profiles. We utilise both the newly constructed gene-basedwheat pan-genome
and pan-transcriptome, demonstrating variation in the prolamin superfamily
and immune-reactive proteins across cultivars.

Wheat (Triticum aestivum) is the most widely grown crop and is cul-
tivated in 12 mega-environments across the world1, with 777.7 metric
tonnes harvested globally in 2021/22 (www.fao.org). Pressures of cli-
mate change, political instability, a move to more sustainable farming
and a reduction in agricultural land are putting increasing demand on
international wheat harvests2. Efforts to overcome these pressures can

be accelerated by understanding the genetic diversity of global wheat
cultivars and their pan-transcriptional variation.

Wheat has a large (15 Gb) allohexaploid (BBAADD) genome,
derived from a series of relatively recent hybridisation events3. Its
size, evolutionary history, and high repeat content, despite hinder-
ing genome assembly, make wheat an interesting model for the

Received: 8 April 2025

Accepted: 5 September 2025

Check for updates

A full list of affiliations appears at the end of the paper. *A list of authors and their affiliations appears at the end of the paper.
e-mail: manuel.spannagl@helmholtz-muenchen.de; anthony.hall@earlham.ac.uk

Nature Communications |         (2025) 16:8538 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4391-3945
http://orcid.org/0000-0003-4391-3945
http://orcid.org/0000-0003-4391-3945
http://orcid.org/0000-0003-4391-3945
http://orcid.org/0000-0003-4391-3945
http://orcid.org/0000-0002-5543-1911
http://orcid.org/0000-0002-5543-1911
http://orcid.org/0000-0002-5543-1911
http://orcid.org/0000-0002-5543-1911
http://orcid.org/0000-0002-5543-1911
http://orcid.org/0000-0003-0000-0038
http://orcid.org/0000-0003-0000-0038
http://orcid.org/0000-0003-0000-0038
http://orcid.org/0000-0003-0000-0038
http://orcid.org/0000-0003-0000-0038
http://orcid.org/0000-0002-4317-2027
http://orcid.org/0000-0002-4317-2027
http://orcid.org/0000-0002-4317-2027
http://orcid.org/0000-0002-4317-2027
http://orcid.org/0000-0002-4317-2027
http://orcid.org/0000-0003-1360-7808
http://orcid.org/0000-0003-1360-7808
http://orcid.org/0000-0003-1360-7808
http://orcid.org/0000-0003-1360-7808
http://orcid.org/0000-0003-1360-7808
http://orcid.org/0000-0001-9581-1145
http://orcid.org/0000-0001-9581-1145
http://orcid.org/0000-0001-9581-1145
http://orcid.org/0000-0001-9581-1145
http://orcid.org/0000-0001-9581-1145
http://orcid.org/0000-0003-4936-1694
http://orcid.org/0000-0003-4936-1694
http://orcid.org/0000-0003-4936-1694
http://orcid.org/0000-0003-4936-1694
http://orcid.org/0000-0003-4936-1694
http://orcid.org/0000-0001-6471-8749
http://orcid.org/0000-0001-6471-8749
http://orcid.org/0000-0001-6471-8749
http://orcid.org/0000-0001-6471-8749
http://orcid.org/0000-0001-6471-8749
http://orcid.org/0000-0003-4956-1055
http://orcid.org/0000-0003-4956-1055
http://orcid.org/0000-0003-4956-1055
http://orcid.org/0000-0003-4956-1055
http://orcid.org/0000-0003-4956-1055
http://orcid.org/0000-0003-1092-4488
http://orcid.org/0000-0003-1092-4488
http://orcid.org/0000-0003-1092-4488
http://orcid.org/0000-0003-1092-4488
http://orcid.org/0000-0003-1092-4488
http://orcid.org/0000-0002-4398-5917
http://orcid.org/0000-0002-4398-5917
http://orcid.org/0000-0002-4398-5917
http://orcid.org/0000-0002-4398-5917
http://orcid.org/0000-0002-4398-5917
http://orcid.org/0000-0003-2985-2883
http://orcid.org/0000-0003-2985-2883
http://orcid.org/0000-0003-2985-2883
http://orcid.org/0000-0003-2985-2883
http://orcid.org/0000-0003-2985-2883
http://orcid.org/0000-0002-6483-1781
http://orcid.org/0000-0002-6483-1781
http://orcid.org/0000-0002-6483-1781
http://orcid.org/0000-0002-6483-1781
http://orcid.org/0000-0002-6483-1781
http://orcid.org/0000-0002-6757-0943
http://orcid.org/0000-0002-6757-0943
http://orcid.org/0000-0002-6757-0943
http://orcid.org/0000-0002-6757-0943
http://orcid.org/0000-0002-6757-0943
http://orcid.org/0000-0002-2166-0716
http://orcid.org/0000-0002-2166-0716
http://orcid.org/0000-0002-2166-0716
http://orcid.org/0000-0002-2166-0716
http://orcid.org/0000-0002-2166-0716
http://orcid.org/0000-0001-8463-805X
http://orcid.org/0000-0001-8463-805X
http://orcid.org/0000-0001-8463-805X
http://orcid.org/0000-0001-8463-805X
http://orcid.org/0000-0001-8463-805X
http://orcid.org/0000-0003-0111-191X
http://orcid.org/0000-0003-0111-191X
http://orcid.org/0000-0003-0111-191X
http://orcid.org/0000-0003-0111-191X
http://orcid.org/0000-0003-0111-191X
http://orcid.org/0000-0002-9814-1770
http://orcid.org/0000-0002-9814-1770
http://orcid.org/0000-0002-9814-1770
http://orcid.org/0000-0002-9814-1770
http://orcid.org/0000-0002-9814-1770
http://orcid.org/0000-0002-5453-1013
http://orcid.org/0000-0002-5453-1013
http://orcid.org/0000-0002-5453-1013
http://orcid.org/0000-0002-5453-1013
http://orcid.org/0000-0002-5453-1013
http://orcid.org/0000-0002-7623-8256
http://orcid.org/0000-0002-7623-8256
http://orcid.org/0000-0002-7623-8256
http://orcid.org/0000-0002-7623-8256
http://orcid.org/0000-0002-7623-8256
http://orcid.org/0000-0002-7856-1399
http://orcid.org/0000-0002-7856-1399
http://orcid.org/0000-0002-7856-1399
http://orcid.org/0000-0002-7856-1399
http://orcid.org/0000-0002-7856-1399
http://orcid.org/0000-0001-6912-7411
http://orcid.org/0000-0001-6912-7411
http://orcid.org/0000-0001-6912-7411
http://orcid.org/0000-0001-6912-7411
http://orcid.org/0000-0001-6912-7411
http://orcid.org/0000-0003-3011-8731
http://orcid.org/0000-0003-3011-8731
http://orcid.org/0000-0003-3011-8731
http://orcid.org/0000-0003-3011-8731
http://orcid.org/0000-0003-3011-8731
http://orcid.org/0000-0001-6484-1077
http://orcid.org/0000-0001-6484-1077
http://orcid.org/0000-0001-6484-1077
http://orcid.org/0000-0001-6484-1077
http://orcid.org/0000-0001-6484-1077
http://orcid.org/0000-0002-7536-3856
http://orcid.org/0000-0002-7536-3856
http://orcid.org/0000-0002-7536-3856
http://orcid.org/0000-0002-7536-3856
http://orcid.org/0000-0002-7536-3856
http://orcid.org/0000-0002-1806-020X
http://orcid.org/0000-0002-1806-020X
http://orcid.org/0000-0002-1806-020X
http://orcid.org/0000-0002-1806-020X
http://orcid.org/0000-0002-1806-020X
http://www.fao.org
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64046-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64046-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64046-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-64046-1&domain=pdf
mailto:manuel.spannagl@helmholtz-muenchen.de
mailto:anthony.hall@earlham.ac.uk
www.nature.com/naturecommunications


evolution of large polyploid genomes. Step changes in technology
have enabled the chromosome-level assembly of nine high-quality
wheat genomes by a global consortium. These genomes revealed
evidence of widespread structural rearrangements, introgression
from wild relatives and the impacts of parallel international breed-
ing programmes4,5. To date, these genomes have been annotated
only by projecting Chinese Spring gene models across the new
assemblies. The generation of de novo annotations for these gen-
omes provides a key insight into gene gain and loss, reveals novel
genemodels across wheat cultivars and facilitates comparative gene
expression analysis between cultivars.

Previous analyses of the wheat transcriptional landscape
described tissue-specific changes in gene expression in two culti-
vars, using a common Chinese Spring reference genome6. Poly-
ploidy leads to complex effects on gene expression resulting from
structural variation, gene duplication, deletion and neofunctionali-
zation, ultimately increasing variation in gene expression and the
plasticity of the species. The allotetraploid pan-transcriptomes of
Brassica napus7 and cotton8 identified asymmetry in gene expres-
sion between subgenomes and differential gene expression between
introgressed regions.

Here, we generate de novo gene annotations, incorporating long
reads for the nine assembled wheat cultivars, providing a valuable
resource for wheat researchers and breeders. The construction of a
reference-agnostic, gene-based wheat pan-genome yields evidence of
widespread gene duplication and deletion, revealing the impact of
international breeding programmes on genome architecture. We
define the hexaploid wheat core and dispensable transcriptome and
our analysis of gene expression and gene networks across different
tissues and between cultivars reveals conservation and divergence in
expression balance across homoeologous subgenomes. We exemplify
the value of these analyses through in-depth investigation of the pan-
genome variability of prolamin gene content and expression; a key
trait for quality and health aspects in wheat.

Results
De novo gene annotations of cultivars define the core and
accessory gene sets
To precisely assess the gene content and differences in gene expres-
sion, copy number and the presence/absence of genes between the
wheat cultivars, we generated a de novo gene annotation for each of
the nine cultivars. A detailed description of origin, biological char-
acteristics and diversity coverage of these cultivars was provided
previously4. We used an established automated annotation pipeline
which built evidence-based gene model predictions using a compre-
hensive transcriptomic dataset. This dataset was made up of Iso-Seq
data from roots and shoots (390–700K reads per sample), and RNA-
seq data (150 bp paired-end read, 56–85M pairs of reads per sample)
obtained for each cultivar from five distinct tissue types and whole
aerial organs sampled at dawnanddusk (Fig. 1A, see ‘Methods’ for a full
description and Supplementary Fig. 1 for details of quality control). In
addition to the transcriptomic dataset, the gene annotation pipeline
also used protein homology and ab initio prediction. Finally, a gene
consolidation procedure (Supplementary Fig. 2A) was developed to
identify and correct for missed gene models in each specific cultivar.
This step ensures the best possible comparability between the wheat
genomes and gene repertoire9.

The number of high-confidence (HC; definition provided in
‘Methods’) gene models identified ranges from 140,178 for CDC
Landmark to 145,065 for Norin 61 (Fig. 1B). Low-confidence genes,
primarily representing gene fragments, pseudogenes and genemodels
with only weak support, are in the range of 315,390 (Mace) to 405,664
(SY Mattis). With a maximal difference of 3.5%, the number of high-
confidence genes appears to be similar across cultivars, whereas most
of the differences in gene number observed can be attributed to the

low-confidence gene set. For around 70%of theHCgenes, weobtained
evidence for transcription in at least one condition.

We benchmarked the quality of the de novo gene predictions
against BUSCO v5.1.2 with the poales_odb10 lineage dataset, repre-
senting 4896 Poales near-universal single-copy orthologs. On average,
we foundmore than 99.8% of the BUSCO genes represented as at least
one complete copy and 86% by three complete copies (Fig. 1B). This is
an improvement in complete BUSCO genes over the gene projections
from Chinese Spring used in the first 10+ wheat genomes study4 and
can be explained by the de novo gene annotation strategy applied
here, which included comparable RNA-seq and Iso-Seq datasets and ab
initio prediction, as well as the final consolidation step. Completeness
and consistency of the gene sets were measured using OMArk with an
average of 97.1% of high-confidence genes corresponding to gene
families in the Pooideae clade and only 4.5%missing, likely classified as
low-confidence (Supplementary Fig. 2C). The de novo annotations are
available in Ensembl Plants release 52.

The wheat pan-genome identifies gene duplications and
introgressions
Genes and gene families exclusive or amplified in a specific cultivar are
ofmajor interest in a pan-genomic context10. While genes present in all
compared cultivars are referred to as the core genome, cloud and shell
genes are found only in one (cloud) or shared in a subset of cultivars
(shell). In our study we follow terminology for the definition of pan-
genome and pan-transcriptome established for other crops11,12,
although use of nomenclature is not always consistent in other plant
pan-genome studies. The improved gene annotation enabled the
construction of a fully reference-agnostic, gene-based pan-genome for
bread wheat. It is noteworthy that our pan-genome differs in many
ways from those constructed for natural populations13, as we are
investigating a hexaploid species of approximately 8000years old that
has experienced population bottlenecks, and includes cultivated
material originating mainly from breeding efforts rather than natural
selection and/or drift. Consequently, genes and genomic regions
identified in the core, cloud and shell portions of our pan-genome
mostly represent the result of targeted selection and could become
important targets for wheat improvement and breeding. GENESPACE14

was used to derive syntenic relationships between all chromosomes
and subgenomes, allowing in-detail investigation ofmacro- andmicro-
synteny (Fig. 1C) and gene copy number variations. While previously
identified rearrangements, such as the chromosome 5B/7B transloca-
tion in SY Mattis and ArinaLrFor, were confirmed, additional frequent
small-scale structural variations cannowbe examined in the context of
their gene content. We found a 16Mb inversion, split into three seg-
ments of around 5Mb each, on chromosome 3D between Canadian
cultivars CDC Stanley and CDC Landmark which coincides with the
locations of QTLs related to biomass and grain weight15.

We identified groups of orthologous genes (referred to as
orthogroups) among the wheat high-confidence gene models of all
cultivars. A total of 55,478 orthogroups contained 99.8% of all genes,
with 112 orthogroups identified as cultivar-specific and 2784 genes not
clustered in any orthogroup - defining the cloud genome. Cloud and
shell genes have previously been found to be associated with disease
resistance16, adaptation to new environments17, or important agri-
cultural traits18. Within the shell genome, our analysis identified
orthogroups that are shared only between specific cultivars. Examples
include CDC Stanley and CDC Landmark from Canada, Mace and
LongReach Lancer from Australia or ArinaLrFor, SY Mattis and Julius
from Europe (highlighted in yellow in Fig. 2A) which all share exclusive
sets of genes. These observed patterns likely reflect the complex
breeding history of the selected cultivars which represent wheat lines
from different regions, growth habits and breeding programmes.
Inspection of the chromosomal location of these gene groups identi-
fied multiple clusters (Fig. 2B and Supplementary Fig. 3) that are likely
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associated with crosses to distinct material or hybridisations with wild
or domesticated relatives; events common in wheat19.

Proportions of core (genes present in all cultivars), shell (genes
present in 2–8 cultivars) and cloud (genes found in only one cultivar
and unclustered genes) genes were found to be similar across cultivars
(Fig. 2C). On average, 62.52% of genes were classified as core, 36.61% as
shell and 0.86% as cloud (Supplementary Fig. 2B). These findings are
consistent with proportions of conserved and variable genes reported
by the first wheat pan-genome study20 and a recent pan-genome
constructed from mainly Chinese wheat cultivars21. Amongst the core
gene set, we find biological functions associated with basic metabolic,
catabolic and DNA repair/replication processes enriched (Supple-
mentary Data 1), while stress response and regulation of gene
expression were overrepresented in the shell genes (Supplementary

Data 2). In the set of cloud genes, functions related to chromatin
organisation and reproductive processes were found to be enriched
(Supplementary Data 3). These findings concur with gene functions
predicted for the core-, shell- and cloud- gene sets in other crop
plants20,22. Expression patterns of core, shell and cloud genes revealed
pronounced differences globally, but notbetween the subgenomes.As
observed in other pan-genomes23, core genes tend to be more highly
expressed in all subgenomes and tissues, as compared to both shell
and cloud genes (Fig. 2D).

In order to further analyse the characteristics of cultivar-
specific genes we extracted 592 genes that are unique to the Japa-
nese cultivar Norin 61 based on our new de novo annotation (Sup-
plementary Data 4). The genomic positions of those genes are
significantly enriched (p = 1.30E-27, Fisher’s exact test,

Fig. 1 | Study design, de novo gene annotations and orthologous framework.
AOverview of transcriptome data generated for this study of wheat cultivars. 1 and
2: whole aerial organs sampled at dawn and dusk, 3: root, 4: complete spike at
heading (GS59), 5: flag leaf 7 days post anthesis (GS71), 6: whole grains 15 days post
anthesis (GS77). B De novo gene prediction results for each cultivar (left side,
‘genes’, separated for A, B and D subgenome) as well as summary of the BUSCO

completeness assessment of gene models (right side, ‘BUSCO’). BUSCO genes
found in two copies/duplicates are referred to as ‘exact_dupl’ and BUSCO genes
found in more than three copies as ‘above_3’. C GENESPACE construction and
visualisation of orthologous genes within the wheat cultivars, using de novo pre-
dicted gene models. Source data are provided as a Source Data file.
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Supplementary Data 5) in 176 Norin 61 unique genomic regions
(Supplementary Data 6). Furthermore, they were similarly enriched
in 45 chromosomal segments that were previously shown to be
specific to Norin 61 based on the unique pattern of transposable
elements (TEs) and include putative alien introgressions4,24,25

(p = 0.000264, Fisher’s exact test; Supplementary Data 5 and 7). We
next determined the expression patterns of those genes and found
that 202 of the 592 Norin 61-specific genes were expressed at least in
one of the examined tissues in Norin 61 (Supplementary Data 4), and
more than half of them (107) showed tissue-specific expression
(tau > 0.8), excluding transposable elements (Supplementary
Data 8). Among the genes with tissue-specific expression patterns,
functional descriptions related to defence response are enriched
(Gene Ontology analysis; Supplementary Data 9). Within the

genomic regions with Norin 61 specific TE patterns, we find genes
related to disease resistance and plant immunity, such as NON-
EXPRESSER OF PR GENES 1 and RGA2. These results demonstrate that
the cultivar-specific chromosomal segments not only harbour
unique coding and TE sequences consistent with introgressions but
also encode genes with specific expression patterns, suggesting that
these segments are promising targets for finding genes responsible
for unique traits such as disease resistance.

Duplication of genes has been identified as a major driver of gene
function evolution and adaptation in plants17. In wheat, a large number
of tandem duplications was previously found both in the Chinese
Spring (IWGSC v1.1)26 reference genome and the 10+ wheat
assemblies4. Our full de novo gene annotation of the 10+ wheat gen-
omes, in combination with the extensive gene expression data

Fig. 2 | The wheat core-, shell- and cloud- genome and homoeologous
expressionpatterns. AUpSet plot showing intersects of orthogroup conservation
between cultivars and the relation to their breeding programmes and sowing
season. Locations are at the country/state level as cultivars are representative of
national breeding programmes. B A representation of CDC Stanley chromosome
3B showing the positions of Canadian-specific genes (top bar), heatmaps showing
coverage scores between genes in CDC Stanley and CDC Landmark (middle bar)
and coverage scores between CDC Stanley and Norin 61 (bottom bar). Coverage
scores are calculated using kmers from each CDC Stanley gene to search the
genomeof theother cultivar and range from0 to 1with values closer to 1 indicating
greater similarity. Regions of greater difference are represented in the heatmaps as
darker bands. The plot shows a detailed view of the 0–50Mb region of chromo-
some 3B (indicated by a red box). The mean of the coverage score between CDC
Stanley genes in this region and genes in the non-Canadian lines is plotted. A
cluster of four Canadian-specific genes (marked by a red dashed line) lies in a
region which is noticeably different between CDC Stanley and the non-Canadian
lines potentially representing an introgression.C Percentage of genes belonging to

the core-, shell- and cloud- orthologous groups across cultivars. D Violin plots of
core, shell and cloud log2 average gene expression across all combined cultivars
and tissues, for each subgenome. Internal box plots display the median (centre
line), with boxes representing the 25th to 75th percentiles (interquartile range) and
whiskers extending to 1.5× the interquartile range. Outliers are not displayed.
Pairwise comparisons between categories (core vs shell vs cloud) were performed
using two-sided Dunn’s test for multiple comparisons following a Kruskal–Wallis
test. Bonferroni correction was applied to adjust p-values for multiple testing.
Exact p-values are shown above each comparison. Higher mean expression was
observed in core genes across all subgenomes. E Ternary plots, of stable (left) and
dynamic (right) 30-let (definition in main text) expression, where there is an
homeolog present on each subgenome, of all tissues in all cultivars, combined,
showing more overall balanced expression in stable 30-lets and unbalanced
expression in dynamic 30-lets. Source data are either provided in an online repo-
sitory (https://doi.org/10.5281/zenodo.16964999)78 or as a Source Data
file (Fig. 2C).
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presented in this study, allowed for an in-depth assessment of gene
duplication dynamics across cultivars in hexaploid wheat.

We identified on average 7,011 tandem arrays (HC genes only) in
each cultivar, with the lowest in CDC Landmark (6889) and ArinaLrFor
as the highest (7196). We further classified these tandems as to whe-
ther they are true tandems (exactly two copies) or part of a tandem
array (more than two genes). In the first category, there are on average
2918 and in the latter 4093.

In addition, we tested whether there is a bias in expression
towards one member of the array. We found that for the true tandem
arrays 2384 (88%) one of the twomembers was biased in its expression
with respect to the other member, whereas for 534 (12%) arrays both
copies were expressed at similar levels (Supplementary Fig. 2D). For
arrays of tandems 904 (19%) showed a balanced expression, whereas
3188 (81%) were imbalanced.

Amongst all tandemly duplicated genes in wheat, biological
functions associated with phosphorylation, response to stimulus and
stress and reproductive processes were enriched (Supplementary
Data 10). Interestingly, biological processes for responses for stress,
stimuli and toxic substances were enriched within the groups of
balanced true tandems. Protein modification processes, regulation of
biosynthetic processes and regulation of gene expression were enri-
ched in the unbalanced true tandems.

We also investigated the conservation of tandem arrays across
all cultivars. MCScanX27 was used to construct co-linear chains of
tandems shared by two or more cultivars. For the resulting 2950
tandem chains (at least two, and up to nine cultivars in the chain) we
investigated the conservation of their expression profiles. We found
1567 tandem chains with conserved/constant expression patterns
across the tandems in the chain (that is either all balanced or
imbalanced) and 1383 tandem chains with variable expression pro-
files. These results highlight the impact of tandemly duplicated genes
as a potential key driver of evolution and adaptation. Besides func-
tional redundancy of homoeologous genes in hexaploid wheat, tan-
dem genes and their expression (bias) are therefore an important
target for breeding applications.

Conservation of global expression in the wheat pan-
transcriptome
To investigate changes in global gene expression across cultivars,
biological replicates from whole aerial organs at dusk and dawn, and
from flag leaf, root, spike and grain, were aligned to the corre-
sponding de novo gene models to generate normalised gene
expression counts. We observed from principal component analysis
of the normalised counts that most of the variance is represented by
the first principal component, representing the different develop-
mental stages and also similar grouping of expression overall (Sup-
plementary Fig. 1). We then used these normalised counts from the
nine cultivars together with complete de novo annotations for the
core, shell and cloud group genes, to explore differences in expres-
sion between tissues across all cultivars. The patterns of expression
observed in each individual orthologous class were consistent across
tissues, and between sub-genomes, with core genes showing an
overall higher mean expression than either shell or cloud (Fig. 2D,
Supplementary Fig. 4). Cloud average gene expression was observed
to be significantly lower than both core and shell, irrespective of
tissue type or sub-genome biases (p-adj < 0.05). Overall, there is a
globally conserved pattern of expression.

The tissue-specific gene index (tau) was employed to assess the
degree of gene expression specificity to flag leaf, root, spike or grain
tissues across all cultivars (Supplementary Fig. 5A). We observed the
least number of tau genes in flag leaf (1005–3202 specific genes), that
were significantly less (t-test; p <0.001) overall compared to either
root (4736–8974 specific genes), spike (5453–9323 specific genes) or
grain (3955–12,157 specific genes), that showed no significant

difference between eachother. However, the number of specific genes
showed the least cultivar variability for flag leaf tissues, compared to
the wide range in the number of grain-specific genes observed
between cultivars. This could be the result of contrasting tran-
scriptomic complexity between flag leaf and grain tissues, represent-
ing different developmental stages of maturity and metabolic activity.
In polyploid crops, agricultural traits are often modulated by an
interaction of homoeologous copies of genes6. In wheat, previous
studies have focused on tissue-specific expression across homo-
eologous triads, identifying sets of triads that are either balanced or
unbalanced in their sub-genome expression. Here, we compared var-
iation in triad expression across cultivars using all 13,521 identified sets
of 30-let genes (30-lets are defined asgenes present as a triad in all nine
cultivars and Chinese Spring) with a homoeolog present on each sub-
genome of the de novo annotated cultivars. Using previously reported
cut-off values6, we observed similar sub-genome expression in these
30-lets, in each of the cultivars, to that reported previously in Chinese
Spring, with 102 also being classed as not expressed (Supplementary
Fig. 5B)6. However, when comparing the bias of sub-genome expres-
sion, we observed 8,028 (59.37%) of these 30-lets to have a conserved,
‘stable’, balanced expression between the three homoeologous copies
across all cultivars. Whereby ‘stable’ expression relates to a conserved
sub-genome expression bias between cultivars, as opposed to a
‘dynamic’ expression where a change in sub-genome expression bias
can be observed in one or more cultivars (5052 (37.36%) of 30-lets).

As well as conservation of the balanced state, we also see con-
servation in dominance or suppression within triad groups, with
276 showing stable suppressed expression and 63 stable dominant
expression. Stably expressed 30-lets showed GO term enrichment for
essential biological processes associated with photosynthesis, trans-
lation, DNA replication, exocytosis, glycolytic process and cell redox
homoeostasis (Supplementary Fig. 6A). Whilst the 5052 37.36%
‘dynamically’ expressed 30-lets that showed a change in the bias of
sub-genome expression in at least one cultivar were found to be sig-
nificantly enriched for transmembrane transport, response to stress,
response to oxidative stress, defence response and photosynthesis.
These dynamic 30-lets were observed to be less fixed to a specific sub-
genome expression pattern compared to stably expressed 30-lets,
showing a further Euclidean distance from a, b, c or centroid points
(Fig. 2E). Across these dynamically expressed 30-lets, 4467 showed
balanced expression in at least one cultivar, with B sub-genome sup-
pression being the next most represented balance of expression
occurring in 1972 of the dynamic 30-let sets (Supplementary Fig. 6B).
Overall, more suppression of expression was seen than dominance.
The Kruskal-Wallis test, applied to assess differences in the mean
values of the dynamic 30-let bias across the cultivars, revealed no
significant differences when examining the total percentage of each
expression bias (p >0.05). This suggests that the bias of dynamic
expression, whilst different for individual 30-lets, has been pro-
portionally conserved across these cultivars.

Conserved patterns of co-expression
To explore how regulatory networks are conserved across tissues and
cultivars of the pan-transcriptome, we selected four cultivars (Ari-
naLrFor, Jagger, Julius and Norin 61) that encompassed the range of
ancestral groups represented by the wheat pan-genome modern cul-
tivars (AG 1, 2 and 5)28 and constructed co-expression networks. For
each cultivar, we used alignments to the corresponding de novo high-
confidencegenemodels, retaining genes expressed at greater thanfive
normalised counts in a minimum of two samples. The resulting genes
(ArinaLrFor: 102,748; Jagger: 95,162; Julius: 98,435 and Norin 61:
97,734) were used to build four cultivar-specific networks. Between 14
(Norin 61) and 18 (Julius) modules were identified for each network,
accounting for between 38.4% (Jagger) and 46.1% (ArinaLrFor) of the
genes in each cultivar-specific dataset (Supplementary Data 11 and 12).
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We used hierarchical clustering of 68 module eigengenes (ME)
from all cultivar networks to identify six consensus metamodules
(Fig. 3A) spanning the four de novo cultivar networks. Five of the six
metamodules contained modules from all cultivars, demonstrating
conservation of expression patterns across both tissue type and cultivar.
The orthologous framework described above was used to compare the
gene content of thesemodules. Between 19.4–40.5%of orthogroups and
60.5–72.2% of GO terms present in the three largest metamodules (m1,
m2 and m6) were common to ArinaLrFor, Jagger, Julius and Norin 61
modules (Supplementary Data 13) demonstrating cross-cultivar con-
servation of gene content and function. GO term enrichment analysis
revealed that these three conservedmetamodules were involved in core
processes such as photosynthesis, phosphorus metabolism, nucleo-
some assembly, cellular component organisation andprimarymetabolic
processes (Fig. 3B, Supplementary Fig. 7A, Supplementary Data 14).

Two smaller metamodules, m3 and m4 had fewer GO terms in
common (23.7 and 27.5%, respectively) and less than 5% of OG in

common to all four cultivars. Whilst the expression patterns of genes
belonging to all cultivars were similar, GO term analysis for metamo-
dule three (m3) revealed that Jagger, Julius and Norin 61 were sig-
nificantly enriched for genes involved in organic acid biosynthesis and
ArinaLrFor genes were enriched for different biological processes
including phenylpropanoid metabolism (Supplementary Data 14,
Supplementary Fig. 7B). Phenolic compounds are important for plant
structural integrity and are implicated in the biosynthesis of key biotic
and abiotic defence compounds29. Metamodule four (m4) had the
smallest intersection of OG and GO terms between cultivars, and this
was reflected in diverse GO term enrichment for each cultivar (Sup-
plementary Fig. 7C). The finalmetamodule (metamodulefive;m5) only
contained modules from Jagger and Julius and was enriched for genes
involved in intracellular transport. Jagger genes in this metamodule
weremost significantly enriched formolybdopterin processeswhereas
Julius genes were primarily enriched for genes associated with cellular
localisation and positioning.

Fig. 3 | Components of the cultivar-specific networks with functional annota-
tion and cultivar specific differences. A Hierarchical clustering of 68 module
eigengenes from four cultivar networks identifying sixmetamodules (m1-m6). Each
branch corresponds to a separate cultivar network module (ARI: ArinaLrFor, JAG:
Jagger, JUL: Julius, NOR: Norin 61). B GO terms of biological processes associated
with genes in conserved metamodule one. Only terms with p-adj < 0.05 and
>10 significant genes are shown. Bubble colour indicates the −log2 p-value sig-
nificance from Fisher’s exact test and size indicates the frequency of the GO term in
the underlying EBI Gene Ontology Annotation database (larger bubbles indicate
moregeneral terms).CNetwork fragment from Juliusmodule significantly enriched

for cloud genes. Labelled nodes refer to cloud genes annotated ashistones. The top
five highly connected genes for each cloud gene are coloured according to core or
shell genomemembership. Node size is scaled to the log2 average expression +1 of
each gene across tissues and edge width reflects the weight of the connection
between nodes. D Expression of two divergent 30-let triads (L: HOG0029794, R:
HOG0020263)with similarly divergent subgenomepatterns of expressionbetween
Jagger and Julius (HOG0029794) and ArinaLrFor and Julius (HOG0020263).
Annotated as F-box transcription factor and LRR protein, respectively. Tissues D:
dawn, F: flag leaf, G: grain, R: root, S: spike, V: dusk. Source data are provided as a
Source Data file.
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Co-expression of cloud genes
We identifiedmoduleswithin our four cultivar-specific networkswith a
significant over-representation of previously defined cloud genes
(Supplementary Data 15). Four of these modules (one per cultivar),
containing more than 10 cloud genes, demonstrated highly correlated
MEs (Pearson correlation coefficient >0.9, Supplementary Data 16) and
could be identified within the same metamodule (m2), revealing their
conservation in expression across tissue types and cultivar. The
majority of cloud genes in these four modules (69–86.7%) were
annotated as histones and were located in clusters on the genome.
Histones have an essential role in transcriptional regulation and
chromosome stability, with variants of paramount importance in the
regulation of plant growth and development, and responses to both
biotic and abiotic stresses30. Their co-expression in the cloud sector of
all four cultivars could be indicative of related functions conferring
cultivar-specific flexibility and adaptation. We were able to query our
network resource to identify genes most highly connected to these
histone orthologues for each cultivar. Visualising these network frag-
ments for Julius revealed the connectivity of cloud genes to core and
shell components and illustrated how the histone-annotated cloud
genes were an integral part of the whole network (Fig. 3C, Supple-
mentary Data 17 and 18).

Cultivar-specific expression of 30-let genes
For each cultivar network we compared inter-module relationships
to identify network modules with divergent or similar patterns of
expression. We then used these module relationships to compare
how the 30-let triads were split across modules within each of the
four cultivar networks. Of the 14,864 conserved 30-lets, we were
able to identify between 39.1% (Norin 61) and 42.9% (ArinaLrFor) of
30-lets present as complete triads within each network. Of these
triads, most were assigned to modules defined as the same or
similar, reflecting triad conservation in both gene expression across
tissues and orthology (ArinaLrFor 96.8%; Jagger 96.1%; Julius 97.1%;
and Norin 61 96.7%).

The remaining triads (ArinaLrFor 3.2%; Jagger 3.9%; Julius 2.9%;
and Norin 61 3.3%) spanned divergent network modules (Supple-
mentary Data 19). Divergent triads in the Jagger and Julius networks
were significantly enriched for GO terms associated with phospho-
lipid biosynthesis; compounds implicated in signalling pathways
and regulation31 and ArinaLrFor and Julius were enriched for genes
involved in transcription elongation (Supplementary Data 20).
Comparing these divergent triads sets across cultivars showed that
these patterns of divergent subgenome expression were mostly
cultivar-specific with >71% divergent triads demonstrating network
specificity. The remaining 93 triads exhibited divergent subgenome
expression in two or more cultivar networks (Supplementary Fig. 8)
and contained genes with a range of functions, including leucine-
rich repeats, DNA double-strand break repair and transcription
factors, including five belonging to the F-box superfamily (Fig. 3D,
Supplementary Data 21). F-box proteins play regulatory roles in
protein degradation in response to cellular signals during plant
development and growth, hormone responses and biotic/abiotic
stress responses32.

Our work demonstrates the strength of a comparative network
approach in identifying potentially biologically conserved pathways
between cultivars. Combining these networks with our orthologous
pan-genome framework enabled the identification of genes conserved
across cultivars and tissues in both function and expression. We were
also able to uncover co-expression modules demonstrating cultivar-
specific patterns of expression, indicating diversity and scope within
eachcultivar for adaptation andflexibility. The resourceswegenerated
also enabled us to place these cultivar-specific variations in a wider
genomic context through the identification of highly connected net-
work members.

Uncovering variation in the prolamin superfamily and immune-
reactive proteins across cultivars
Prolamins represent a large superfamily in wheat involved in stress
responses, cell growth and plant development, as well as end-use
quality and protein content33. Additionally, alongwithHMW-glutenins,
prolamins trigger immune reactions in a subset of the population34.
Here, we investigated the qualitative and quantitative differences in
the 687 genes from the prolamin superfamily and HMW-glutenins to
uncover their variations across the newly generated wheat pan-
genome and pan-transcriptome data. We observed clear expression
differences for individual developmental stages and between wheat
cultivars for many genes from the prolamin superfamily, highlighting
spatiotemporal variation in expression profile (Fig. 4A).

Comparison of potential immune reactive genes identified in the
Chinese Spring reference genome (IWGSC v1.1) and across
cultivars24,33,35 highlighted the challenges of precise annotation and
characterisation of the dynamically expanded prolamin gene families
in cultivars36–38. This analysis therefore, utilises the manually curated
Chinese Spring prolamin annotations33 as the common reference for
comparative gene expression and adds the transcriptomes (gener-
ated in the same way as for the de novo annotated cultivars; details in
‘Methods’) of five additional wheat cultivars without chromosome-
scale genome assemblies and de novo gene predictions. The
expression patterns of potentially immune-reactive gene products
indicated differences in the major allergens and antigens (glutenins
and gliadins). For example, SY Mattis and LongReach Lancer showed
lower gene expression levels in alpha and gamma gliadins. Sub-
sequent gene set enrichment analysis highlighted gamma gliadins as
primarily enriched in the downregulated genes (Supplementary
Fig. 9; Supplementary Data 22 and 23).

Celiac disease (CD) related epitope sequences encoded in the
gliadin and glutenin genes show a significant variation in the wheat
sub-genomes33,35 and their generated immune response34. We ana-
lysed CD epitopes across cultivars and found varying expression
levels of HLA-DQ epitope-containing genes. Notably, SY Mattis and
LongReach Lancer exhibited lower expression, while Cadenza and
Jagger showed higher expression. Cultivar-specific analysis reveals
that ArinaLrFor and SY Mattis have lower alpha gliadin HLA-DQ epi-
tope expressions due to differences in the expression activities of the
three sub-genomes, possibly influenced by variations in cis-
regulatory mechanisms and related transcription factor gene
expressions (Fig. 4B, C, Supplementary Data 24–26; Supplementary
Fig. 10). Although the sub-genome-specific expression patterns of
gamma gliadin HLA-DQ epitopes did not show significant variation,
the expression levels of alpha-gliadin genes with HLA-DQ epitopes
from the A genomewere lower in SYMattis and LongReach Lancer. In
addition, the highly immunogenic D genome alpha-gliadin epitope
expression levels were lower in the ArinaLrFor cultivar (Supple-
mentary Fig. 11A). Our results indicate that fine-tuned sub-genome-
specific balance in the expression profiles may be associated with
differences in the regulatory transcription factor profiles (Fig. 4B, C,
Supplementary Data 26). Correlation analysis highlights common
regulatory genes such as the PBF DOF triad (TraesCS5A02G155900,
TraesCS5B02G154100, TraesCS5D02G161000) in complex with SPA-
bZIP TFs regulate the expression of a range of prolamin and starch
synthesis genes through the endosperm box39,40, including the
epitope-rich alpha and gamma gliadin genes, while different subsets
of NAC or MYB genes impact the alpha and gamma gliadin gene
expression (Supplementary Data 26). TF binding site motif enrich-
ment analysis shows gliadin-type and epitope group-specific motif
enrichments, offering potential targets for genome editing (Supple-
mentary Data 27).

Gliadin and glutenin loci were found to be highly conserved in all
cultivars, with some variation due to the presence of pseudogenes and
gene duplications (Supplementary Fig. 11B). Reverse translated
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consensus sequences of the known CD-specific T-cell epitopes were
mapped to the genomes of all cultivars to determine the number and
location of gliadin and glutenin genes containing CD-related immune
reactive peptide regions (Supplementary Fig. 11B, Supplementary
Data 28). The number or combination of epitopes in the loci was not
significantly different between cultivars. However, the gamma gliadin
and alpha gliadin gene models with a high number of epitopes were
found in cultivars ArinaLrFor, Norin 61 and Mace, respectively (Sup-
plementary Fig. 11B, Supplementary Data 28).

Although highly conserved in their locus structure on chromo-
some 6D, alpha gliadin genes encoding highly immunogenic proteins
showed copy number variation within the wheat pan-genome. We
constructed a localised pan-genome graph from five cultivars (Norin
61, CDC Stanley, SYMattis, Julius,Mace) and extracted the subgraph of

the alpha gliadin-containing locus (Fig. 4D, Supplementary Fig. 12,
Supplementary Data 29). Inspection of the subgraph helped to resolve
the complex structure of the locus, with copy number variation
observed as a loop in the paths of SY Mattis, Julius, CDC Stanley, Mace
(2 copies of alpha gliadin genes), but not within the Norin 61 path
(single alpha gliadin copy). While in total 4 to 6 epitopes were identi-
fied in the alpha-gliadins of the wheat pan-genome cultivars, 8 epi-
topes were detected in cultivars Mace and Norin 61 (Supplementary
Fig. 11B). The gene expression profiles were found to be conserved
with regard to their contribution to the total locus expression but can
vary substantially for the individual genes between cultivars (Supple-
mentary Data 30). These results indicate that gene copy number
expansion primarily affected the centre of the locus and resulted in the
increase of gene variants with high epitope counts. While genome-
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culated as the sum of gene expression profiles with the highlighted HLA-DQ epi-
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expressions, major storage protein gene expression regulators. D Representation
of the variation graph for the region of 6D containing the alpha-gliadin locus
(Supplementary Fig. 11B). Horizontal coloured lines depict paths through the graph

for each cultivar; Norin 61 (6D: 26,703,647-27,222,360 bp), CDC Stanley (6D:
28,164,601-28,660,350 bp) and Mace (6D: 26,808,846-27,298,593 bp), with SY
Mattis (6D: 26,645,382-27,096,594 bp) and Julius (6D: 26,983,100-27,437,565 bp)
sharing a single path. Rectangular blocks (a-p) represent individual genes at cor-
responding locations across cultivars (green: in common to all four cultivars, blue:
occurring in one cultivar and purple: occurring in two cultivars). Gene d is present
as a single copy in Norin 61, and duplicated in CDC Stanley, SY Mattis, Julius and
Mace. This duplication is represented as a loop in the path through the graph for
these cultivars (Supplementary Fig. 12). Source data are either provided as a Source
Data file or in an online repository (Fig. 4D; https://doi.org/10.5281/zenodo.
16964999)78.
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wide construction and interpretation of pan-genome graphs remains a
daunting task for complex genomes such as wheat, we found localised
subgraphs, augmented by our de novo annotations, particularly
helpful in resolving complex loci and uncovering structural variation,
as also demonstrated in the current draft human pan-genome41.

Discussion
We have built de novo gene annotations for nine wheat assemblies
representative of global breeding programmes4. Our consolidated
gene annotation approach generated a robust set of core, high-
confidence genes shared across cultivars. It also identified genes and
gene families that are found exclusively in or amplified in cultivars
derived from specific breeding programmes. It is likely that some of
this variation has come through widespread introgression events42,
often associated with adaptation to biotic or abiotic stress18. Our
annotations also identified cultivar-specific variation in tandem
gene duplication. Novel gene content, gene duplication and neo-
functionalisation together with gene expression patterns will have
impact on researchers and breeders as they identify genes under-
lying traits, manipulate gene expression or incorporate and track
new genetic variation.

Our analysis of global gene expression identified sets of genes
with stable homoeologous expression patterns between cultivars,
demonstrating tightly regulated key biological processes. We also
identified homoeologous triads diverging in their expression patterns
between cultivars, revealing genes enriched for processes associated
with biotic and abiotic stress. Understanding the regulatory networks
driving these altered patterns will provide important targets for
manipulating these processes. Using network analysis, we identified
widespread conservation of expression patterns across tissues and
cultivars before focusing on cultivar-specific gene sets, to reveal net-
works of genes involved in regulation of plant growth and develop-
ment and in responses to both biotic and abiotic stresses. These
cultivar-specific network changes may be the result of wheat breeding
programmes targeted to local environments. We also demonstrated
the utility of our new resources by investigating genomic variation in
the prolamin superfamily, focusing on immunogenic potential.

In conclusion, this study reveals layers of hidden diversity
spanning our modern wheat cultivars. This diversity is likely to
underpin the agronomic success of wheat over a wide range of global
mega-environments.

Methods
Genome datasets used
This study builds on foundational genomes, analysis and datasets4.
Here, we constructed full de novo gene predictions and an ortholo-
gous framework (defining core/shell/cloud gene sets) for 9 wheat
cultivars with chromosome-scale genome assembly sequences: Ari-
naLrFor (abbreviated as ‘ARI’ throughout the manuscript), Jagger
(JAG), Julius (JUL), Lancer (LAC), CDC Landmark (LDM), Mace (MAC),
Norin 61 (NOR), CDC Stanley (STA) and SY Mattis (SYM).

The prolamin analyses utilise the manually curated Chinese
Spring prolamin annotations33 as the common reference for com-
parative gene expression and adds the transcriptomes (generated in
the same way as for the de novo annotated cultivars) of five additional
wheat cultivars without chromosome-scale genome assemblies and de
novo gene predictions: Cadenza (CAD), Claire (CLA), Robigus (ROB),
Weebil (WEE) and Paragon (PAR).

Plant materials and growth conditions
The wheat cultivars were grown in a Controlled Environment
Room (CER) (Conviron BDW80; Conviron, Winnipeg, Canada) set at
16 h day/8 h night photoperiod (300μmolm−2 s−1, lights on at 05:00,
lights off at 21:00), temperatures of 20/16 °C, respectively, and 60%
relative humidity. Plants were sampled in triplicate at the 3-leaf stage

(Zadoks GS13), harvesting whole roots and whole aerial organs sepa-
rately, 4 h after dawn (09:00). Whole aerial organs were also sampled
2 h after dusk (23:00). Plants for subsequent adult plant sampling were
treated according to their vernalisation requirements. In the case of
spring wheat cultivars (CDC Landmark, CDC Stanley, Paragon,
Cadenza, Mace and LongReach Lancer), seedlings were grown as
described above. At 3-leaf stage, seedlings were transferred to 1 L pots
containing Petersfield Cereal Mix (Petersfield, Leicester, UK) and
maintained under the sameCER conditions. For winter wheat cultivars
(Julius, Jagger, ArinaLrFor, Robigus, Claire and SY Mattis) and a facul-
tative spring cultivar (Norin 61), seedlings were transferred in 40-well
trays (7 days after sowing) to a vernalisation CER running at 6 °C with
8 h day/16 h night photoperiod for 61 days. After this period the plants
were transferred to 1 L pots containing Petersfield Cereal Mix
(Petersfield, Leicester, UK) andmoved to the same CER and settings as
described for the spring wheat cultivars. For both spring and winter
wheat cultivars, three additional samples were harvested: complete
spike at heading (GS59), flag leaf 7 days post anthesis (GS71) andwhole
grains 15 days post anthesis (GS77). All samples were harvested 4 h
after dawn (09:00), and a single plant was used per each of the three
biological replicates.

Sample preparation and sequencing
Total RNA was extracted using Qiagen RNeasy Plant Mini Kit (cat. no.
74904) and DNAse treated using an Invitrogen TURBODNase kit (cat.
no. AM2238) according to the manufacturer’s protocol. Bead pur-
ification of the RNA was conducted using the Agencourt RNAClean
XP beads.system (cat. no. A63987). Final sample concentrations were
verified using a Qubit 4 Fluorometer, and the integrity of the RNA
was checked on the Agilent 2100 Bioanalyzer, using the RNA 6000
nano kit (Agilent, 5067-1511), running the plant total RNA assay. The
directional RNA-seq libraries were constructed using the NEBNext
Ultra II Directional RNA Library prep for Illumina kit (NEB, E7760L)
utilising the NEBNext Poly(A) mRNA Magnetic Isolation Module
(NEB, E7490L) and NEBNext Multiplex Oligos for Illumina (96 Unique
Dual Index Primer Pairs) (cat. no. E6440S/L) at a concentration of
10 µM. The final libraries were equimolar pooled, a q-PCR was per-
formed and the pool was sequenced on a Illumina NovaSeq 6000
with 150 bp paired-end reads.

The Iso-Seq libraries were constructed from 1 µg of total RNA per
sample and full-length cDNA were then generated using the SMARTer
PCR cDNA synthesis kit (Takara Bio Inc, 639506). The libraries were
sequenced on the Sequel Instrument v1, using 1 SMRTcell v2 per
library. All libraries had 600-min movies, 120min of immobilisation
time and 120min pre-extension time.

Data quality control and sample validation
We used a set of cultivar specific SNPs to confirm the cultivar origin of
each replicate and the developmental stage of each sample was vali-
dated through a machine learning approach trained using the pooled
RNA-seq samples and then runon the entire set ofbiological replicates.
Principal component analysis of the pooled samples shows them to
cluster by developmental stage as expected.

Gene annotation
For the structural gene annotation of the chromosome-scale
assembled cultivars, we combined de novo gene calling and
homology-based approaches with RNAseq, Isoseq and protein
datasets. The RNAseq data were mapped using STAR43 (v2.7.8a) and
further assembled into transcripts by StringTie44 (v2.1.5, parameters
-m 150-t -f 0.3). PacBio Iso-Seq transcripts were derived from the
raw reads using PacBio SMRT Link software (v5.1.0.26412rev2,
pbsmrtpipe.pipelines.sa3_ds_isoseq2, default parameters). The Iso-
Seq transcripts were aligned to the genome assemblies using
GMAP45 (v2018-07-04). To assist the homology-based annotation
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approach, Triticeae protein sequences from publicly available
datasets (UniProt, https://www.uniprot.org, 05/10/2016) were
aligned against the genome sequence assemblies of all cultivars
using GenomeThreader46 (v1.7.1; arguments -startcodon -final-
stopcodon -species rice -gcmincoverage 70 -prseedlength 7 -prhdist
4). All transcripts derived from RNAseq, IsoSeq and aligned protein
sequences were combined using Cuffcompare47 (v2.2.1). Stringtie
(version 2.1.5, parameters --merge -m150) was employed tomerge all
sequences into a pool of candidate transcripts. To identify potential
open reading frames and to predict protein sequences within the
candidate transcript set, TransDecoder (version 5.5.0; http://
transdecoder.github.io) was used.

We used Augustus48 (v3.3.3) for the ab initio gene prediction.
Guiding hints based on the RNAseq, protein, IsoSeq and TE datasets
described above were used to counteract potential over-prediction49.
Augustus was run using the wheat model.

A consolidated set of gene models was selected using mikado50,
as implemented in the Minos pipeline (https://github.com/EI-
CoreBioinformatics/minos), with models scored and selected based
on a combination of intrinsic qualities and support from tran-
scriptome and protein alignments.

BLASTP51 (ncbi-blast v2.3.0 + , parameters -max_target_seqs 1
-evalue 1e-05) was used to compare potential protein sequences with a
trusted set of reference proteins (Uniprot Magnoliophyta, reviewed/
Swissprot, downloaded on 3 Aug 2016; https://www.uniprot.org). This
approach was employed to differentiate gene candidates into com-
plete and valid genes, non-coding transcripts, pseudogenes and
transposable elements. This step was assisted by PTREP (Release 19;
http://botserv2.uzh.ch/kelldata/trep-db/index.html), a database of
hypothetical proteins containing deduced amino acid sequences in
which internal frameshifts have been removed in many cases. We
selected best hits for each predicted protein from each of the three
databases used. Only hits with an e-value below 10e-10 were con-
sidered. Functional annotation of all protein sequences predicted in
our pipeline was performed with the AHRD pipeline (https://github.
com/groupschoof/AHRD).

We classified predicted proteins into two confidence classes:
high and low confidence. Hits with subject coverage (for protein
references) or query coverage (transposon database) greater than
80% were considered significant and protein sequences were clas-
sified as high-confidence based on following criteria: protein
sequence was complete and had a subject and query coverage above
the threshold in the UniMag database or no BLAST hit in UniMag but
in UniPoa and not PTREP; a low-confidence protein sequence was
incomplete and had a hit in the UniMag or UniPoa database but not
in PTREP. Alternatively, it had no hit in UniMag, UniPoa, or PTREP,
but the protein sequence was complete. In a second refinement
step, low-confidence proteins with an AHRD-score of 3* were pro-
moted to high-confidence.

BUSCO52 (v5.1.2.) software was used to evaluate the completeness
and accuracy of structural gene predictions with the ‘poales_odb10’
database containing a total of 4896 single-copy genes. OMArk53

(v0.3.0) was also used to evaluate the consistency of the gene models
against gene families in the Pooideae clade. The evidence-basedpart of
the annotation pipeline is available at Github (https://github.com/
PGSB-HMGU/plant.annot).

Consolidation
Pairwise whole genome alignments were generated using lastz54. The
resulting alignments were stitched together into a single whole gen-
ome alignment using TBA/multiz55. The MAF output was converted
into HAL format using maf2hal56.

De novo gene annotation from one cultivar was lifted over to all
other cultivars using the whole genome alignment and the halLiftover

tool, whereas only full-length gene models were kept. Missing gene
models in one cultivar were identified using bedtools57.

Tandem array detection
Tandemarrayswere identifiedusing the tandemdiscoverymodel from
the MCScanX package27, with the following definitions: TrueTandems
contain exactly two gene copies and TandemArrays are a sequential
array of tandemly duplicated genes. Collinear tandems (chains) were
detected using the detect_collinear_tandem_arrays tools provided by
MCScanX and the results were filtered for TrueTandems. As described
in the Alignment and Gene Expression Analysis section we used strin-
gentmapping procedures to ensure only uniquelymapped reads were
quantified, ensuring that we were able to correctly attribute reads to
each respective gene copy. Expression bias was calculated using a
modified method6. Here we used normalised read counts instead of
TPM values and a cut-off of 0.8. The following categories were
assigned: unbalanced for tandems with only one gene expressed and
no expression data for second gene; or for tandems in which only one
gene is expressed under all RNAseq conditions; balanced, where both
array members are equally expressed.

Orthogroup analysis
Two runs of OrthoFinder58 were performed to construct the
orthologous framework and both the triads and 30-lets datasets
(see respective sections for definitions). The first OrthoFinder run
used the full/unfiltered set of de novo predicted HC genes (sub-
genomes separated and treated as individual genomes) plus the Chi-
nese Spring IWGSC RefSeq v1.1 annotation to construct 30-lets and
triads. The second OrthoFinder run used the TE- and plastid-filtered
set of de novo predicted HC genes to construct an orthologous
framework for the pan-genome analyses. The resulting HOGs
(Hierarchical Orthologous Groups) were used to determine the core-
, shell- and cloud- gene sets. The longest isoforms from high-
confidence genes were used as input for Orthofinder58. We first
applied filtering criteria for TE- and plasmid-related gene descriptions.
Orthofinder was run using standard parameters. We used the UpSetR
in the R package (http://gehlenborglab.org/research/projects/upsetr/)
to analyse and visualise how many orthogroups are shared between
the cultivars or are unique to a single species. GENESPACE14 was used
to derive and visualise syntenic relationships between all chromo-
somes and subgenomes. Scripts for the definition of core-, shell- and
cloud- gene sets were deposited at Github (https://github.com/PGSB-
HMGU/BPGv2).

Analysis of canadian-specific genes
Taking each genome in turn as a reference, kmers of length 51 were
identified from genic regions using the annotation for that reference.
These kmers were used to search the genomes of the other cultivars
and a coverage score was computed59 between each gene in the
reference and every other genome. The coverage score (a value
between 0 and 1) can be used as a proxy for sequence similarity/dif-
ference between genes in different cultivars where values closer to 0
indicate greater difference and values closer to 1 indicate similarity.
Coverage scores for genes along chromosomes were plotted using the
seaborn visualisation library60 in Jupyter notebook. Coverage scores
were also visualised as heatmaps with coverage scores close to 0
represented as dark bands.

Alignment and gene expression analysis
Samples were aligned to the chromosome-scale assembled cultivars,
using HISAT2 v2.0.461 and Stringtie v1.3.362 was used to extract
and quantify uniquely mapped reads at gene level to the respective
de novo gene models. Normalised counts were generated using
DESeq263.
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GO term analysis
Functional enrichment of genes for biological processes was performed
using the gene ontology enrichment analysis package, topGO64 in R
(v3.6.0, with the following parameters: nodeSize = 10, algorithm=
‘parentchild’. Enrichment of GO terms was tested using a one-sided
Fisher’s exact test. p-values were adjusted for multiple testing using the
Benjamini-Hochberg method and GO terms with adjusted p<0.05 were
considered significantly enriched. GO terms refer to ontology terms for
biological processes unless otherwise specified and were obtained from
Ensembl Plants 51, using the BioMart tool. Bubble plots were plotted
using ggplot in R, adapting code from ref. 65.

Tissue specific index
Specificity of gene expression to developmental stages was deter-
mined using the tissue specific index66. Where, N is the number of
developmental stages (condition), and xi is the expression profile
component for a given gene in each condition, normalised by the
maximal expression value of the given gene from all conditions con-
sidered. This allowedus to classify genes as being highly specific toone
condition (tau =>0.8). Assignment of tau values was performed in R
using code adapted from previous work67.

Subgenome expression bias
Analysis of subgenome expression focused on 30-let homoeologs with
a 1:1:1 relationship across all three subgenomes. Of these, 13,521 were
determined to be macrosyntenic, belonging to the same subgenome
in all cultivars (excluding UK cultivars which are not assembled), and
10,653 as microsyntenic, belonging to the same chromosome and
subgenome in all cultivars (excluding UK cultivars). From these 66 30-
lets were not taken forward in the analysis due to low expression and/
or qualityfiltering determinedbyDESeq2 (R package v 4.0.3) of at least
one homoeolog in each set. Relative expression of 30-lets across
homoeologs and associated subgenome expression biases were cal-
culated as previously reported, through use of our triad.expression R
package (https://github.com/AHallLab/triad.expression).

Analysis of Norin 61-specific genes and expression pattern
Norin 61 unique genomic regionsweredefined as regionswith conserved
ratios of <0.5 amongnine cultivars: Stanley, SYMattis, ArinaLrFor, Jagger,
Julius, Lancer, Landmark, Mace and Norin 61. The average conservation
ratio was calculated using a 2 Mbp window and 5 kbp step size. Fisher’s
exact test was used to determine whether Norin 61-specific genes were
enriched in theseNorin 61 unique genomic regions. Furthermore, unique
TE regions of Norin 61 identified by the pattern of TEs were analysed
similarly24. Tissue specificity of gene expression (tau) was calculated
using the expression levels of Norin 61 using the samemethod described
above. Genes with a tau value>0.8 were considered as genes with tissue-
specific expression. GO enrichment analysis was performed by using R
Bioconductor package topGO version 2.54.064 using the elim algorithm
and Fisher’s exact test with FDR<0.05, with 195 expressed Norin 61-
specific genes excluding transposable elements. Only GO terms asso-
ciated with more than ten genes were considered.

Co-expression analysis (WGCNA)
The WGCNA R package68 (R version 3.6.0) was used to build co-
expression networks for four cultivars (ArinaLrFor, Jagger, Julius and
Norin 61). These cultivars encompass the range of ancestral groups
represented by the wheat pan-genomemodern cultivars (AG 1, 2 and 5)28.
The expression matrices for each of the selected cultivars contained
DESeq2 normalised counts of high confidence genes derived from
alignment to the respective chromosome level assemblies and corre-
sponding de novo annotations. These matrices were filtered and genes
where the sum of counts across all samples was greater than 5 in at least
2 samples were retained. We usedWGCNA to construct signed networks
for each cultivar using the blockwiseModules function. A soft power

threshold of 9 (ArinaLrFor, Jagger) or 10 (Julius, Norin 61) was used,
together with the following parameters; minModuleSize= 30, corType=
bicor, maxPOutliers =0.05, mergeCutHeight =0.3, minKMEtoStay =0.4,
maxBlockSize=35,000. Eigengeneswere then extracted for eachmodule
from each of the resulting four cultivar networks.

Defining threshold for classifying inter-module relationships
To classify inter-module relationships and identify modules with
divergent or similar patterns of expression we defined a threshold of
module similarity. Initially we calculated the distance between each
pairwise module comparison for each cultivar network, using the
Pearson correlation distance. For each cultivar we used the maximum
distance of each of these pairwise comparisons, for each module and
calculated the medians of these maxima. Next, we investigated the
proportion of 30-let triads identified as split across network modules,
that would be classed as divergent using amodule similarity threshold
of 0-100%. From these results we selected a module similarity
threshold of 85% the median of maximum distances, with distances
above this classed as divergent and distances below, classed as similar.

Identifying metamodules
We used the R package clValid69 to determine the optimal number of
clusters for the 68 ME from across all networks. The resulting Dunn
index70 and silhouette width71 indicated that the optimum number of
clusters for our ME dataset was 6. We calculated the pairwise Pearson
correlation coefficients for all our 68 cultivarME (cor()) and converted
this to a dissimilarity matrix (as.dist()). We used hierarchical clustering
of this dissimilarity matrix (hclust()) to define metamodules.

Visualising highly connected cloud genes within the Julius
network
We identified a network module both significantly enriched for and
containing the highest number of cloud genes (29; JULbrown) and used
the adjacency function of WGCNA to determine the network adjacency
of each of these cloud genes within the JULbrown module. We selected
the five most highly connected module genes to each cloud gene and
used the R package igraph72 to visualise the integration of these cloud
genes into the JULbrown module. Using the graph adjacency function,
graph adjacencies were created based on the Pearson correlation dis-
tances between genes in pairwise fashion. These directed graphs were
simplified to remove multiple edges and loops, filtered to retain only
those connections with an absolute Pearson correlation > 0.9. The mst
function using the prim algorithm was used to create a minimum
spanning tree and the resulting subgraph was visualised using the plot
function with isolated nodes excluded.

Reference allergen identification and chromosome 6D
comparison
Reference allergens in the wheat pan-genome were filtered using
blastn algorithm against the identified sequences in the IWGSC v1 gene
annotation v1.133. To identify unannotated gliadin and glutenin gene
models and to compare the potential immune reactivity of the wheat
cultivars, known CD-associated HLA-DQ T-cell epitopes were reverse
translated, and the consensus nucleotide sequences were used for a
motif search with 100% sequence identity. The mapped epitope-rich
regions were used to compare the alpha-gliadin locus in chromosome
6D. Additional gene models representing complete gene models with
DQ epitopes were manually annotated. The locus organisation was
compared to the Chinese Spring chromosome 6D alpha gliadin locus
in the IWGSC v1 reference genome assembly33.

Epitope expression analysis
The epitope expression values were calculated by multiplying the
DESeq normalised count values of genes where the reverse-translated
consensus epitope sequence was detected by the number of epitopes
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in each sequence. The resulting values were then added together for
each epitope type, as well as epitope types at the genome level.

Promoter motif enrichment analysis
Gene models representing the major alpha-gliadin and gamma-gliadin
gene models were selected for the comparative analysis. To investigate
the impact of transcriptional regulation at subgenome levels, epitope
group-specific 1000bp promoter sequence lists were extracted from the
homoeologous chromosome 1 and 6 groups of the A, B and D sub-
genomes using the genemodels of the chromosome assembled cultivars.

Transcription factor binding site (TFBS) enrichment analysis was
performedusing the simple enrichment analysis (SEA) algorithm in the
MEME suite73, with the non-redundant plant-specific JASPAR 2022
motif collection for mapping. As a control promoter sequence list,
1000-bp promoter sequences were extracted from the Chinese Spring
reference genome26 high-confidence gene models, and 1% randomly
sampled promoter sequences representing gene models across the 21
chromosomes were used.

TFBS enrichment results were filtered at an adjusted p<0.05 using
the method proposed by Benjamini and Hochberg74 and motif hits
characteristic of 100% of the analysed promoter sequences (100% true
positive list), were used further analysed. Motifs showing gluten gene
family type (alpha or gamma gliadin) and subgenome specificity were
also highlighted (Supplementary Data 27). Motif enrichment ratios of
each motif-epitope group pair were visualised in a clustered heatmap.

Gliadin gene co-expression analysis
Gene models with known TF functions were filtered using the existing
gene annotations6,26. Correlation values between DESeq normalised
counts >1 log2 transformed DESeq counts of glutenin and gliadin gene
models and the TF gene models expressed in the grain tissue were
calculated in R. Hits with r>0.8 and adj. p<0.01 were filtered and used
for further analysis (Supplementary Data 2). Wheat orthologs of repre-
sentative TF genes identified through the enriched significant TFBSs
were filtered andmatched with the representative promotermotifs. The
grain-specific co-expression network was created in Cytoscape (version
3.10.2) using a co-expression cut-off value of 0.8. The resulting network
was annotated with the reference allergen-specific information for
disease-relatedness and gene family. The first neighbour network was
visualised in Cytoscape (Supplementary Fig. 10).

Pan-genome graph construction of 10Mb 6D region
We extracted a 10Mb region (20–30Mb) encompassing the alpha glia-
din locus from the top of chromosome 6D for the cultivars Norin 61,
CDC Stanley, SY Mattis, Julius and Mace. To estimate the divergence of
the input sequences, we used mash-2.275, specifically the mash triangle
command, to calculate a maximum sequence divergence of 0.039. To
account for possible underestimation of sequence divergence and
localised structural variants, we specified a minimum mapping identity
value (-p 90) for pangraph construction using PGGB76 together with
segment size (-s 30kb), number of mappings (-n 6), minimum length of
exact matches (-k 311), target sequence length for POA (-G 13117, 13219),
mean length of each sequence pad for POA (-O 0.03) and k-mer size for
mapping (-K 111). Default settings were used for all other parameters.

Extracting the alpha-gliadin locus sub-pangraph
UsingODGI toolkit77 we extracted the subgraphof the alpha-gliadin locus
from our 6D graph build. We used the odgi extract command together
with coordinates of the Norin 61 gene models described in Supplemen-
tary Data 29 to extract the 520.7 kb region encompassing the locus (6D:
26,703,647-27,222,360bp) and the corresponding paths intersecting
with this region in CDC Stanley (6D: 28,164,601-28,660,350bp), SY
Mattis (6D: 26,645,382-27,096,594bp), Julius (JUL 6D: 26,983,100-
27,437,565bp) andMace (6D: 26,808,846–27,298,593bp). We used odgi
sort to sort the resulting subgraph and odgi procbed to adjust the

coordinates of the gene models for each cultivar to fit the resulting
subgraph. odgi inject allowed us to visualise the placement of these gene
models across the graph and identify cultivar-specific haplotypes. We
generated a graphical fragment assembly (gfa) of this subgraph78 using
odgi view.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome sequence and gene annotations of all wheat cultivars can
be viewed and downloaded in Ensembl Plants (https://plants.ensembl.
org/Triticum_aestivum/Info/Cultivars). This includes the de novo
genes for the chromosome level cultivars generated within this study,
and projected genes for all assemblies from the IWGSC RefSeq v1.1
annotation. All read data used in this study is available at the European
Nucleotide Archive under accession PRJEB51827. Relevant data and
results, including the gene sets for core/shell/cloud genomeandwheat
‘30-lets’, have been deposited online (https://doi.org/10.5281/zenodo.
16964999)78. Source data are provided with this paper.
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