nature communications

Article https://doi.org/10.1038/s41467-025-63856-7

Trans-eQTL mapping prioritises USPIS as a
negative regulator of interferon response at
a lupus risk locus
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Although genome-wide association studies have provided valuable insights
into the genetic basis of complex traits and diseases, translating these findings
to causal genes and their downstream mechanisms remains challenging. We
performed trans expression quantitative trait locus (trans-eQTL) meta-analysis
in 3734 lymphobilastoid cell line samples, identifying four robust loci that
replicated in an independent multi-ethnic dataset of 682 individuals. The
trans-eQTL signal at the ubiquitin specific peptidase 18 (USPIS8) locus coloca-
lised with a GWAS signal for systemic lupus erythematosus (SLE). USP18 is a
known negative regulator of interferon signalling and the SLE risk allele
increased the expression of 50 interferon-inducible genes, suggesting that
the risk allele impairs USP18’s ability to effectively limit the interferon
response. Intriguingly, the USPIS8 trans-eQTL signal would not have been
discovered in a meta-analysis of up to 43,301 whole blood samples, reaf-
firming the importance of capturing context-specific genetic effects for
GWAS interpretation.

Genome-wide association studies (GWAS) have provided valuable regulatory consequences is trans gene expression and protein
insights into the genetic basis of complex traits and diseases. How-  quantitative trait loci (trans-QTL) analysis. Trans-QTL studies test for
ever, translating GWAS findings to actionable drug targets has association between genetic variants across the genome and
remained challenging, particularly when the functions of the asso- expression levels of all measured genes or proteins'. In a prominent
ciated genes are unknown. A promising technique to identify the example, an erythrocyte-specific regulatory element first identified
effector genes of GWAS variants as well as their downstream as a trans protein QTL (¢trans-pQTL) for foetal haemoglobin (HbF)
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was used to design the first ever gene editing therapy for sickle-cell
disease™’.

Trans-QTLs are especially promising, because 60%-90% of gene
and protein expression heritability is located in trans*, most associa-
tions detected in large-scale pQTL studies are located in trans®, and cis-
QTL discovery is starting to saturate after 10,000 samples’. Further-
more, most complex trait heritability has been proposed to be medi-
ated by trans-QTL effects*. However, current large-scale trans-eQTL
and trans-pQTL studies have been limited to easily accessible bulk
tissues such as whole blood®” or plasma**™'. Bulk tissue studies are
subject to cell type composition effects which can be difficult to dis-
tinguish from true intracellular trans-QTLs"®. The whole blood and
plasma studies are also likely to miss cell type and context specific
regulatory effects. In contrast, trans-eQTL studies in other tissues and
purified cell types have had limited statistical power due to small
sample sizes (typically less than one thousand samples), enabling the
discovery of only very large effects and potentially underestimating
pleiotropic effects on multiple target genes" .

A key limitation in our understanding of how trans-eQTLs con-
tribute to complex traits and how they interact with cis-eQTL is the lack
of well-characterised disease-associated trans-eQTL signals®. Two most
prominent examples include the adipose-specific KLF14 locus asso-
ciated with type 2 diabetes'®” and the IRX3/5 locus associated with
obesity?>?, At the KLFI14 locus, the lead variant (rs4731702) is a cis-
eQTL for the KLFI14 transcription factor and was associated with the
expression of 385 target genes in trans, 18 of which also had inde-
pendent cis associations for other metabolic traits”. The simultaneous
regulation of multiple target genes in trans-eQTL regulatory networks
seems to be a general property of many known trans-eQTL signals®'>'*,
However, what proportion of trans-eQTL target genes directly mediate
the disease or trait associations as opposed to being independent
‘bystanders’ with minimal direct causal effect has remained unclear.

We performed the largest trans-eQTL meta-analysis in a single cell
type, comprising 3734 lymphoblastoid cell line (LCL) samples across
nine cohorts (MetalLCL). LCLs are obtained by transforming primary
B-cells with Epstein-Barr virus”. LCLs have been widely used as a
resource for human genetics, from banking cells from rare genetic dis-
orders, through control material in laboratories to prevent repetitive
blood sampling, to the study of tumorigenesis, mechanisms of viral
latency and immune evasion®. Furthermore, Epstein-Barr virus has been
epidemiologically linked to several autoimmune diseases in which B
cells are implicated to play a pathogenic role, such as multiple sclerosis
(MS)?** and systemic lupus erythematosus (SLE)* with recent studies
starting to elucidate the potential molecular mechanisms underlying
these associations® %, Thus, trans-eQTLs discovered in LCLs might
provide insights into the pathogenesis of these autoimmune diseases,
especially in the context of chronic exposure to viral stimuli.

After stringent quality control, we identified four highly
robust trans-eQTL associations that replicated in an independent
cohort (n=682) and were associated with multiple target genes.
At the USP18 locus, the trans-eQTL signal colocalised with a GWAS
association for SLE. The SLE risk allele was associated with
increased activity of the type I interferon signalling pathway and
increased expression of several classical interferon response
genes. While there is robust evidence for the potential causal role
of increased interferon signalling in SLE pathogenesis, we find
that the expression of many individual interferon response genes
is unlikely to have a direct causal effect on SLE. Our results cau-
tion against blindly using trans-QTL associations for target gene
prioritisation without clear understanding of the trans-QTL
mechanism and robust genetic evidence from cis-acting variants
implicating the same gene. To support secondary use of our data,
we have made the complete MetalLCL cis and trans-eQTL sum-
mary statistics for 18,792 genes publicly available via the eQTL
Catalogue FTP server.

Results

Large-scale trans-eQTL meta-analysis in a single cell type

We performed a large-scale trans-eQTL study, utilising data from LCLs
collected from 3734 donors (2238 female, 1496 male) across nine
cohorts of European ancestries (Supplementary Table 1). To avoid
confounding by technical factors, we performed association testing
separately in each cohort and meta-analysed the results (Fig. 1A). After
excluding cis associations located within 5 Mb of the target gene, we
identified 79 suggestive independent trans-eQTL loci at p<1x10™
threshold (Fig. 1B). To identify robust signals associated with multiple
target genes and reduce the risk of false positives caused by cross-
mappability”, we further required each locus to be associated with at
least five independent target genes (p<5x107%) with low cross-
mappability scores (see Methods). This filtering reduced the number
of candidate loci to six (Fig. 1B), four of which replicated in an inde-
pendent multi-ethnic cohort of 682 individuals®. These four replicat-
ing trans-eQTL loci were located near the BATF3, MYBL2, USP18, HNF4G
genes (Supplementary Data 1, Supplementary Fig. 2). While the strong
trans-eQTL signal near the BATF3 transcription factor (2294 targets at
FDR 5%) has been previously reported”, the other three seem to be
novel. Remarkably, the trans-eQTL targets at the MYBL2 locus were
consistent with direct activation by the MYBL2 transcription factor
(Supplementary Note 1), indicating that our analysis is identifying
biologically interpretable signals.

USP18 is a negative regulator of interferon response at a lupus
GWAS locus

To prioritise the four trans-eQTL loci for follow-up analysis, we per-
formed GWAS lookup using the Open Targets Genetics Portal®> and
found that only the USPI8 locus lead variant (chr22_18166589 T_C,
rs4819670) was in high LD (r*>0.9) with an annotated GWAS hit.
Specifically, the USP18lead variant was identical to a GWAS lead variant
reported for SLE in East Asians®. Using the point estimation of colo-
calisation (POEMColoc) method, we confirmed that the two signals
colocalised (PP4 =0.97) (Fig. 2A)*. The colocalisation also replicated
in an SLE GWAS meta-analysis across the UK Biobank (UKBB)¥,
FinnGen®*® and Million Veterans Program (MVP)* biobanks (Supple-
mentary Fig. 3)*. At this locus, we identified 40 trans target genes at
false discovery rate (FDR) 5% that were all strongly enriched for
Reactome interferon signalling (R-HSA-913531, p=11x10"%) and
interferon alpha/beta signalling (R-HSA-909733, p=1.7x10"%) path-
ways. The rs4819670-C allele was associated with decreased expres-
sion of multiple canonical type I interferon response genes (e.g., ISG1S5,
IFI144, OASI-3) (Fig. 2B). Reassuringly, we observed consistent effect
sizes across nine sub-cohorts in our meta-analysis (I> heterogeneity
statistic = 0.46, Supplementary Fig. 2, Supplementary Data 2). The
rs4819670-C was also associated with decreased risk of systemic lupus
erythematosus (SLE) in East Asians® as well as in the MVP-FinnGen-
UKBB meta-analysis™.

We next sought to identify the most likely causal gene at the
USPI8locus. Since the trans-eQTL effect was detected in monocultures
of LCLs*, this implies that the causal cis effect mediating the trans
associations must also be present in the same cell type (i.e., it cannot
be mediated by a trans-acting factor such as a cytokine produced by
some other cell type). Although the rs4819670 variant was located in
an intron of USPIS8, we did not detect a significant cis-eQTL effect for
USPIS8 or any other neighbouring gene neither in our meta-analysis nor
the full eQTL Catalogue release 6*°. We also did not detect a splicing
QTL for USPI8 or other neighbouring genes in eQTL Catalogue release
6. However, the rs4819670 lead variant was in high linkage dis-
equilibrium (LD) with a USPI8 missense variant rs3180408
(chr22_18167915_C_T, ENSP00000215794.7:p.Thrl69Met) in both Eur-
opean and East Asian populations (r=-1, r*=1 in EAS and r=-0.98,
r?=0.96 in EUR 1000 Genomes superpopulation). Furthermore,
the rs3180408 missense variant was the lead variant for SLE in the
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Fig. 1| Overview of the MetaLCL study. A Overview of the study design and
participating cohorts. B Significant trans-eQTLs detected in the meta-analysis. The
upper scatter plot shows the number of trans-eQTL target genes detected at each
trans-eQTL locus with p <5x1078, Six trans-eQTL loci with the most target genes
have been labelled with the name of the closest cis gene. The lower scatter plot

shows all significant loci for each tested gene at the more stringent p<1x10™
threshold. Cis associations are located on the diagonal while putative trans asso-
ciations are located off diagonal. The points represent two-sided p-values from
inverse-variance weighted meta-analysis. Source data are provided as a Source
Data file.

MVP-FinnGen-UKBB meta-analysis (Supplementary Fig. 3). Notably,
USP18 is a known negative regulator of interferon signalling and a rare
loss-of-function mutation in USPI8 causes severe type | interferono-
pathy (Fig. 2C)**2, Similarly, USPI8 knock-out in human macrophages
increased the expression of several canonical interferon response
genes upon stimulation with interferon-beta®’. Thus, these results
indicate that USPI8 is the most likely causal gene at this trans-
eQTL locus.

However, identifying the exact causal variant remains challenging.
While the absence of cis eQTL and splicing QTL evidence suggests that
the likely causal mechanism is the rs3180408 missense variant, the
missense variant was predicted to be benign by all tested variant effect
prediction tools available from Ensembl VEP*‘. Alternatively, there

could be other genetic variants in the region that are not captured by
current genotype imputation reference panels (such as structural
variants). One potential strategy to assess the functional impact of the
rs3180408 missense variant on trans-eQTL target gene expression
would be genome editing, but our power calculations (see Supple-
mentary Note 2) suggest that this would be extremely challenging due
to the small expected effect size of the variant.

Role of aberrant interferon signalling in lupus pathogenesis

Several studies have suggested that causal GWAS genes are enriched in
shared pathways or biological processes* . To further characterise
the potential role of USP18 target genes in lupus, we performed
additional trans-eQTL meta-analysis across the nine discovery cohorts
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(JAK1) to the type I interferon receptor*. Source data are provided as a Source
Data file.

and one replication cohort (total n =4416). This increased the number
of significant USP18 target genes to 50 (FDR <5%). Notably, 18/50
target genes overlapped the Reactome interferon alpha/beta signalling
(R-HSA-909733) pathway (hypergeometric test, p=4.14 x10"**) and

26/50 genes overlapped a consensus set of interferon response genes
(n=124) identified by Mostafavi et al.*® (p = 1.44 x 107?, Supplementary
Data 3). Reassuringly, 40/50 genes were also more highly expressed in
peripheral blood mononuclear cells from SLE cases compared to

Nature Communications | (2025)16:8795


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63856-7

A Proteins involved in signal transduction via IFNAR1/2

IFN-1.
'A y USP18 targets
Y IFN-1 receptor 1 DE
IFN-1 receptor 2 /
<\ GWAS
ChEMBL
~ PID
@ \\g' 0O ¥
L pIsG15- ‘ Kb & &
i vk C%%
SJ USP18
y‘ STAT1
y i— RO
JAK1 %
STAT2
USP18 targets
DE
GWAS
ChEMBL
PID
KL
O O P (& o
NI SR~ Q}Q%
USP18 targets
DE
GWAS
ChEMBL
PID
U D M o O
& E L E &

Fig. 3 | Role of interferon signalling in SLE pathogenesis. A Upstream regulators
of interferon response genes (IFNA* contains multi-gene interferon-alpha gene
cluster). B Downstream transcriptional targets of the interferon signalling (HLA*
marks the HLA region). The increased gene expression is marked in red, while
reduced gene expression is marked in blue. The visualisation illustrates the effect

N

Q»

/\
<2{<

2
&
<

B Transcriptional targets of interferon response

min EnllEEREsen wn =

<<\

CAHAIFPTFFTILILLIS
€YV FXFF X Q@v@@ Q\%v X A

('ov‘

on USPI18 target genes in relation to the SLE risk allele. DE - differential gene
expression in SLE cases versus controls*’; GWAS - GWAS hits for SLE*, ChEMBL,
phase III - SLE phase Il clinical trials from ChEMBL®, PID - genes causing primary
immunodeficiency from Genomics England. Source data are provided as a Source
Data file.

controls*’ (Supplementary Data 3), consistent with the established role
of increased interferon signalling in SLE®.

To better understand the role of the USP18 target genes in the
interferon alpha/beta signalling pathway, we focussed on the 60 genes
belonging to the Reactome R-HSA-909733 interferon alpha/beta sig-
nalling pathway and divided them into three categories - category I
proteins involved in signal transduction via IFNAR1/2 receptor (n=13
genes, including the multi-gene interferon-alpha gene cluster, Fig. 3A);
category IIl: downstream transcriptional targets of the interferon sig-
nalling (38 genes from the Reactome R-HSA-1015702 sub-pathway,
Fig. 3B) and category III: other pathway genes (n = 9) not belonging to
the first two categories (Supplementary Fig. 5). We found that 16/50
USP18 targets were shared with the 38 category Il genes (transcrip-
tional targets of interferon response) (p=1.18x107?’, Fisher’s exact

test). In contrast, only 2/50 USP18 trans-eQTL target genes (STATI and
ISG15) were shared with the 13 category I genes (IFNAR1/2 receptor
signal transduction proteins) and none were shared with the 9 cate-
gory lll genes. This suggests that the USP18 trans-eQTLs are primarily
capturing the transcriptional targets of interferon response (category
1), consistent with the established role of USP18 in regulating these
genes (Fig. 2C)*.

Next, we assessed if there were additional lupus GWAS signals
overlapping the three categories of interferon response genes defined
above. We first used the Open Targets Genetics portal to extract the
prioritised target genes for 108 lupus GWAS loci from Yin et al.*. This
revealed that three prioritised lupus genes (USPIS, STATI, IFNA1-17)
were shared with the 13 category | genes (IFNAR1/2 signal transduction
proteins, Fig. 3A) and four prioritised genes (/IRF1/5/8 and OAS1) were
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shared with the 38 category Il genes (transcriptional targets of inter-
feron response, Fig. 3B). Out of these, IRF1/5/8 are themselves tran-
scription factors involved in the regulation of interferon
production®?, and stronger IRF1 binding across many GWAS loci has
been associated with higher Crohn’s disease risk®. OASI represents a
classical antiviral gene and here the SLE GWAS lead variant is in perfect
LD with a fine-mapped splice QTL for OASI in the eQTL Catalogue
(Supplementary Fig. 6)*°. The consequences of this splice variant have
been extensively studied in the context of Sjogren’s syndrome and
COVID-19 hospitalisation®***. Unfortunately, we were not able to check
if there were additional sub-threshold hits for lupus near the interferon
alpha/beta signalling pathway genes, because the genome-wide sum-
mary statistics from Yin et al.*®> were not available.

We also overlapped interferon alpha/beta signalling pathway
genes with ongoing or completed phase Ill clinical trials for SLE
extracted from the ChEMBL database™. We identified three category |
(interferon signal transduction) genes (IFNARI, JAKI and TYK2) that
have been targeted by a clinical trial for SLE (Fig. 3A). While the trials
targeting JAKI and TYK2 are currently ongoing, a randomised control
trial of anifrolumab, a human monoclonal antibody to type l interferon
receptor subunit 1 (/FNARI), found it to be an effective treatment for
SLE”. None of the category Il genes (transcriptional targets of inter-
feron signalling, Fig. 3B) and category Ill genes (Supplementary Fig. 5)
are currently in a phase IlI clinical trial for SLE (Fig. 3B).

There is an emerging consensus that rare mutations in genes
prioritised for autoimmune diseases from GWAS studies can often also
cause primary immunodeficiencies (PIDs)**°. For example, loss-of-
function mutations in USPIS cause rare type I interferonopathy**2, At
the same time, GWAS studies for SLE and other autoimmune diseases
are still only powered to detect variants with large effects. Thus,
knowing if a gene causes PID might be a useful (if noisy) indicator that
the same gene might be discovered in a future larger autoimmune
GWAS study. We obtained the list of genes causing either PID or
monogenic inflammatory bowel disease from Genomics England® and
overlapped those with the three categories of interferon response
genes defined above. We found that 10/13 category I genes (interferon
signal transduction) have previously been implicated in causing PID,
including USPI8 and all three phase Il drug candidates for SLE
(Fig. 3A). In contrast, only 8 of the 38 category Il genes (transcriptional
targets of interferon response) have been implicated in PIDs (Fig. 3B),
including OASI and /RFS8 also detected by SLE GWAS. Finally, none of
the category Il genes have been implicated in PIDs (Supplemen-
tary Fig. 5).

Triangulation of evidence from prioritised lupus GWAS target
genes, phase Il clinical trial information and overlap with primary
immunodeficiency genes reaffirms modulation of aberrant interferon
alpha/beta signalling in B-cells as an emerging therapeutic opportunity
for SLE (category 1, Fig. 3A)°*%2, This is further supported by recent
studies demonstrating that depleting autoreactive B-cells via anti-
CD19 CAR T cell therapy is an effective therapy for SLE and other
autoimmune diseases®>®*, In contrast, most trans-eQTL targets of
USP18 are transcriptional targets of interferon response (category II,
Fig. 3B) and it is far less clear what are the potential causal roles of
these genes in SLE pathogenesis.

Replication of the USPIS8 trans-eQTL signal in whole blood

To understand the context-specificity of the USPIS trans-eQTL signal,
we performed additional replication in the eQTLGen Phase 2 trans-
eQTL meta-analysis of up to 43,301 whole blood samples. We observed
that the USPI8 missense variant rs3180408 was nominally associated
(p <0.05) with the expression of 7/50 USP18 target genes, including
our lead target gene HERCS (p = 0.037) as well as canonical interferon
response genes IFl44 and ISG15 (Supplementary Data 4). For 6/7
nominally significant associations, the effect direction was concordant
between the LCL and whole blood meta-analyses, but the effect size

was an order of magnitude smaller in whole blood (Supplementary
Data 4). We further tried to replicate the USPIS trans-eQTL association
in naive B cells using single-cell RNA-seq data from 844 individuals
from the OneKIK cohort™, but none of the tested genes were asso-
ciated with the trans-eQTL lead variant (Supplementary Data 5). Thus,
even at these large sample sizes, the USPIS trans-eQTL signal would
not have been discovered in whole blood or naive B-cells.

To understand the potential reasons for the attenuated effect in
whole blood, we compared the expression level of the USPI8 gene
across 49 GTEx tissues. We found that USPI8 had the highest expres-
sion in LCLs (median transcripts per million (TPM)=45.3) and one of
the lowest in whole blood (median TPM = 0.46). Since USP18 s itself an
interferon response gene and LCLs are characterised by a strong
interferon signature driven by active infection with the Epstein-Barr
virus, we characterised the expression of USPIS in naive B-cells as well
as B-cells stimulated with interferon-alpha and TLR7/8 agonist R848
for 16, 40 and 64 h. We found that the expression level of USPI8 in
B-cells was upregulated by -3.5-fold after 16 h of stimulation and stayed
elevated for at least 64 h (Supplementary Fig. 7). This suggests that the
very strong active interferon signalling and associated upregulation of
USPI8 transcription in LCLs is required for the trans-eQTL signal to be
detected.

Discussion

We performed the largest trans-eQTL study in a single cell type where
we profiled the expression of 18,792 genes in 3737 individuals from
nine cohorts. We then replicated these findings in an independent
multi-ancestry LCL cohort of 682 individuals. After careful quality
control, we identified six independent loci that were associated with
five or more target genes, and that were unlikely to be driven by cross-
mappability artefacts. While we primarily focussed on the SLE-
associated USPI& locus in our analysis, we have publicly released the
complete genome-wide summary statistics from our MetaLCL project
via the eQTL Catalogue FTP server. In addition to disease-specific
colocalisation applications, we expect that our summary statistics will
motivate the development and application of novel summary-based
aggregative trans-eQTL mapping methods® .

While the GWAS signal for SLE at the USPIS8 locus was discovered
in East Asian cohorts®, our trans-eQTL analysis was based on samples
of predominantly European genetic ancestry. The shared GWAS and
trans-eQTL lead variant (rs4819670) is common in both genetic
ancestry groups (EAS MAF =0.16; EUR MAF =0.36), indicating that
allele frequency differences alone cannot explain why the SLE GWAS
association has not been detected in European ancestry individuals.
However, prevalence, severity and age of onset of SLE varies con-
siderably between ancestry groups®®. Furthermore, heterogeneity of
GWAS effect sizes between European and East Asian SLE GWAS studies
has been reported®®. Mechanisms of this genetic heterogeneity are
unknown, but one plausible explanation is the presence of gene-
environment interactions (e.g., diet or exposure to regional patho-
gens). In contrast, eQTL effect sizes in cultured LCLs are highly con-
cordant between genetic ancestry groups®, indicating that our use of
European-ancestry samples to interpret a GWAS hit discovered in East
Asians is unlikely to systematically bias our results in this case. Fur-
thermore, the USPIS8 trans-eQTL signal replicated in a multi-ancestry
cohort®, indicating that the trans-eQTL effect is shared across ances-
tries. Finally, the USP1I8 SLE GWAS signal is also present in the MVP-
FinnGen-UKBB meta-analysis (Supplementary Fig. 3).

Despite the strong evidence for the critical role of type I interferon
response in SLE pathogenesis***° and three active clinical trials, we
were surprised to see that of the 50 USP18 target genes, only OASI had
an independent cis-association with SLE. Expanding the analysis to
interferon response genes from Reactome further implicated IRF1/5/8
genes and the HLA region, but most interferon response genes were
not detected in the SLE GWAS. One potential explanation for this could
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be the limited statistical power of the SLE GWAS that profiled 13,377
cases and 194,993 controls, identifying a total of 113 loci®. Further-
more, Liu et al. demonstrated that if multiple effector genes (‘core’
genes) are co-regulated by shared trans factors, with shared directions
of effects (which seems to be the case for the interferon response
genes), then nearly all heritability would be due to trans effects, further
reducing the power to detect cis-acting signals at individual target
genes®.

However, interferon response involves rapid upregulation of a
broad transcriptional regulatory network of genes with diverse biolo-
gical functions, only a subset of which might have a direct causal effect
on SLE. This is supported by the fact that among the 38 interferon
response genes (category Il), only OAS1, ADAR, PSMBS, SAMHDI1 and
the IRF transcription factors have been implicated in causing primary
immunodeficiencies (Fig. 3B). The remaining interferon response
genes might thus be better thought of as biomarkers of the complex
effect of interferon signalling on multiple parts of the immune
system**“°, Similarly, it has been previously shown that variants in the
IL6R region that are associated with circulating C-reactive protein
(CRP) concentrations, are also associated with coronary artery disease
(CAD) risk’, but variants in the CRP region are not’. Thus, plasma
levels of CRP do not seem to have a direct causal effect on CAD risk, but
can still act as a molecular readout (biomarker) of the /L6R-mediated
inflammatory response that does seem to have a causal effect’”. These
observations suggest that widespread horizontal pleiotropy in gene
regulatory networks could be a general property of trans-QTLs and
could help explain why using trans-pQTL signals in Mendelian rando-
misation analysis has had low specificity for identifying known drug
targets”>’*. Instead, we propose that target genes identified from large-
scale trans-QTL studies could be better thought of as drug response
biomarkers for drugs targeting the cis gene responsible for the trans
association®,

A limitation of our trans-eQTL analysis is its susceptibility to cross-
mappability artefacts (Supplementary Data 6). While heuristic
approaches have been developed to filter such artefacts post hoc, these
approaches are not guaranteed to remove all cross-mappability effects
and might be too conservative at other loci®. Cross-mappability arte-
facts also tend to replicate well in independent cohorts®. Furthermore,
as the sample size of trans-eQTL studies increases, the power to detect
subtle cross-mappability effects as putative trans-eQTLs also increases.
To avoid these false positives, we used a very conservative strategy of
requiring each trans-eQTL locus to have at least five independent tar-
get genes that all pass the cross-mappability filter. As a result, we likely
missed many true trans-eQTLs regulating single or few target genes
(e.g., trans-eQTL effect near the CIITA transcription factor on multiple
HLA genes that has been replicated in several independent
studies®*”>7, Supplementary Data 1, Supplementary Fig. 8). Future
large-scale trans-eQTL studies will likely require the development of
novel methods to properly adjust for cross-mappability, such as
explicit modelling of transcript compatibility read counts between cis
and trans target genes’®.

While large-scale trans-eQTL studies using both bulk and single-
cell measurements are likely to continue for easily accessible tissues
such as whole blood (e.g., eQTLGen Phase 27°), it seems unlikely that
we will be able to perform trans-eQTL studies comprising tens of
thousands of individuals for all disease-relevant cell types and con-
texts. A promising alternative is to use arrayed CRISPR screens or
single-cell approaches to identify downstream gene-regulatory effects
of disease-associated genes or individual genetic variants*®50%,

Methods

Datasets, samples and ethics

We used genotype and gene expression data from ALSPAC*#*%
TwinsUK®, CoLaus®***, GEUVADIS®, MRCA®¢, MRCE®*$, GENCORD®’,
GTEx v8” and CAP?° studies. For replication, we used data from the

MAGE cohort®. The RNA sequencing and genotype data from the
GEUVADIS and MAGE studies was publicly available as part of the 1000
Genomes project. For the other studies, we applied for access to
individual-level data via relevant data access committees (DACs),
explaining the aim of our project and the intent to publicly share meta-
analysis summary statistics. Informed consent was obtained when
research participants joined the ten studies listed above. The use of the
CAP data for this project was approved by the National Heart, Lung and
Blood Institute DAC. The use of the GTEx data for this project was
approved by the National Human Genome Research Institute DAC. The
use of the GENCORD data for this project was approved by the GEN-
CORD DAC. The use of the MRCA and MRCE data for this project was
approved by the Gabriel Consortium DAC. The use of TwinsUK data for
this project was approved by the TwinsUK Resource Executive Com-
mittee. The use of the ALSPAC data for this project was approved by
the ALSPAC Executive Committee. For the ALSPAC cohort, ethical
approval for the study was obtained from the ALSPAC Ethics and Law
Committee and the Local Research Ethics Committees. Consent for
biological samples has been collected in accordance with the Human
Tissue Act (2004). The CoLaus study was approved by the Institutional
Ethics Committee of the University of Lausanne. Single-cell RNA-seq
samples were sourced ethically, and their research use was in accord
with the terms of informed consent under an institutional review
board/ethics committee-approved protocol (UK Regional Ethics
Committee approval granted to work at Wellcome Sanger Institute,
protocol reference number 15/NW/0282; project was approved by the
Ethics on Research Committee of the Institute of Neurobiology at
Universidad Nacional Autonoma de Mexico (UNAM), with the approval
number 110.H.).

Statistics and reproducibility

We performed genome-wide trans-eQTL meta-analysis across
3734 samples (2238 female, 1496 male) from 9 cohorts (Supplemen-
tary Table 1). Sex was assigned based on X and Y chromosome gene
expression and genotype data as described previously”. We included
all samples available to us into the discovery meta-analysis. We
excluded a small number of samples due to issues with gene expres-
sion or genotype data quality (see below). To avoid potential con-
founding by population stratification, we exclude the 87 YRI ancestry
individuals from the GEUVADIS dataset and 34 diverse ancestry sam-
ples from the GTEx dataset (defined based on genotype principal
components). No statistical method was used to pre-determine sample
size. However, evidence from several previous trans-eQTL studies with
comparable or smaller sample sizes suggest that we should have suf-
ficient power to detect trans-eQTLs with large effects”*"*!51° Due to
limited sample size of our study and significant computational cost
involved, we did not perform sex-stratified trans-eQTL analysis. Bio-
logical sex was included as a covariate in association testing. We used
power calculations to estimate if we had sufficient power to replicate
the USP18 trans-eQTL effect in the MAGE cohort (Supplementary Note
2). The experiments were not randomized. The investigators were not
blinded to allocation during experiments and outcome assessment.

Genotype data quality control and imputation

Pre-imputation quality control. Genotype imputation was performed
as described previously*’. Briefly, we lifted coordinates of the geno-
typed variants to the GRCh38 build with CrossMap v0.4.1°>. We aligned
the strands of the genotyped variants to the 1000 Genomes 30x on
GRCh38 reference panel® using Genotype Harmonizer®. We excluded
genetic variants with Hardy-Weinberg p <107, missingness > 0.05 and
minor allele frequency <0.01 from further analysis. We also excluded
samples with more than 5% of their genotypes missing.

Genotype imputation and quality control. Most of the datasets were
imputed using the 1000 Genomes reference panel based on the
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GRCh38 genome version. ColLaus dataset was imputed using the
TOPMed Imputation Server®®’, while still aligning with the same
reference genome version. Additionally, GEUVADIS, GTEx and MAGE
cohorts utilised whole genome sequencing data aligned to the GRCh38
reference genome.

We pre-phased and imputed the microarray genotypes to the
1000 Genomes 30x on GRCh38 reference panel® using Eagle v2.4.1°
and Minimac4’®. We used bcftools v1.9.0 to exclude variants with
minor allele frequency (MAF)<0.01 and imputation quality score
R?’<0.4 from downstream analysis. The genotype imputation and
quality control steps are implemented in eQTL-Catalogue/genimpute
(v22.01.1) workflow available from GitHub. Subsequently, we used
QCTOOL v2.2.0 to convert imputed genotypes from VCF format to
bgen format for trans-eQTL analysis with regenie.

Gene expression data

Studies. We used gene expression data from seven RNA-seq studies
(TwinsUK®*, CoLaus®**¢, GEUVADIS*’, GENCORD®, GTEx v8”, CAP,
MAGE®®) and three microarray studies (ALSPAC**>®, MRCA®*® and
MRCE®$).

RNA-seq quantification and normalisation. RNA-seq data were pre-
processed as described previously®. Briefly, quantification of the
RNA-seq data was performed using the eQTL-Catalogue/rnaseq
workflow (v22.05.1) implemented in Nextflow. Before quantification,
we used Trim Galore v0.5.0 to remove sequencing adapters from the
fastq files. For gene expression quantification, we used HISAT2%
v2.2.1 to align reads to the GRCh38 reference genome (Homo -
sapiens.GRCh38.dna.primary_assembly.fa file downloaded from
Ensembl). We counted the number of reads overlapping the genes in
the GENCODE V30 reference transcriptome annotations with fea-
tureCounts v1.6.4.

We excluded all samples that failed the quality control steps as
described previously”. We normalised the gene counts using the
conditional quantile normalisation (cqn) R package v1.30.0 with gene
GC nucleotide content as a covariate. We downloaded the gene GC
content estimates from Ensembl biomaRt and calculated the exon-
level GC content using bedtools v2.19.0'°. We also excluded lowly
expressed genes, where 95 per cent of the samples within a dataset had
transcripts per million (TPM)-normalised expression less than 1. Sub-
sequently, we used the inverse normal transformation to standardise
quantification estimates. Normalisation scripts together with con-
tainerised software are publicly available at https://github.com/eQTL-
Catalogue/qcnorm.

Microarray data processing. Gene expression from 877 individuals in
the ALSPAC cohort was profiled using Illumina Human HT-12 V3
BeadChips microarray. We used the normalised gene expression
matrix from the original publication®. In the MRCA cohort, gene
expression from 327 individuals was profiled using the Human Gen-
ome U133 Plus 2.0 microarray. We downloaded the raw CEL files from
ArrayExpress (E-MTAB-1425) and normalised the data using the Robust
Multi-Array Average (RMA) method from the affy Bioconductor
package'®. In the MRCE cohort, gene expression from 484 individuals
was profiled using the Illumina Human-6 vl Expression BeadChip. As
raw data was unavailable, we downloaded the processed gene
expression matrix from ArrayExpress (E-MTAB-1428). In all three
microarray datasets, we applied inverse normal transformation to each
probe before performing trans-eQTL analysis. If there were multiple
probes mapping to the same gene, the probe with the highest average
expression was used.

Trans-eQTL mapping and meta-analysis
We performed independent quality control and normalisation on all
datasets and only included 18,792 protein coding genes in the analysis.

Trans-eQTL analysis was conducted separately on each dataset with
regenie'® For studies containing related samples (TwinsUK, MRCA and
MRCE) and ALSPAC, both step 1 and step 2 commands were employed,
while for other datasets with a smaller number of unrelated samples
(Supplementary Table 1), regenie was run in the linear regression mode
(step 2 only). We used sex and six principal components of the nor-
malised gene expression matrix and six principal components of gen-
otype data as covariates in the trans-eQTL analysis. All scripts used to
run trans-eQTL are publicly available at https://github.com/freimannk/
regenie_analysis. Subsequently, we performed an inverse-variance
weighted meta-analysis across studies. Meta-analysis workflow is
available at https://github.com/freimannk/regenie_metaanalyse.

We used a cis window of + 5 Mb to assign identified eQTLs into cis
and trans eQTLs. To determine significant loci, we excluded variants
proximal (+1.5Mb) to the most highly associated variant per gene.
This approach allowed us to identify distinct and robust signals while
mitigating potential confounding effects from nearby variants. By
applying these filters, we found 79 trans-eQTLs loci at a suggestive p-
value threshold of 1x10™,

Accounting for cross-mappability

A major source of false positives in trans-eQTL analysis is cross-
mappability, whereby RNA-seq reads from gene A erroneously align to
gene B, leading to very strong apparent trans-eQTL signals*. To
exclude potential cross-mappability artefacts, we excluded all trans-
eQTLs where there was high cross-mappability (cross-mappability
score from Saha et al.”’ > 1) between the trans-eQTL target gene and at
least one protein coding gene in the cis region (+ 1.5 Mb) of the trans-
eQTL lead variant. Since some of the strongest cross-mappability
artefacts affected one or few target genes (Supplementary Data 6), we
further restricted our analysis to trans-eQTL loci that had five or more
target genes with p <5x 1078 and cross-mappability score <I.

Random-effect meta-analysis

To further assess the robustness of our meta-analysis results, we per-
formed a random-effects meta-analysis on the ten lead variants iden-
tified by our primary analysis. We used the DerSimonian-Laird method
implemented in PyMARE. We estimated the between-study variance
(t2) and assessed statistical significance using a z-score and a two-
tailed p-value. All of the associations remained significant using the
random-effect model (Supplementary Data 1).

Replication of trans-eQTL associations

MAGE. Since we used somewhat arbitrary thresholds to define the
initial set of 10 loci (lead p<1x107", five or more targets with
p<5x107), we sought to replicate our findings in an independent
Multi-ancestry Analysis of Gene Expression (MAGE)*® cohort. MAGE
consisted of data from 731 lymphoblastoid cell lines from the 1000
Genomes project, 682 of which also had whole genome sequencing
data available. We used two strategies to assess replication. First, we
assessed if the lead variant-gene pair was nominally significant
(p<0.05) in the replication dataset with concordant direction of
effect. Based on this criterion, 7/10 loci replicated (Supplementary
Data 1). Secondly, since all of our loci had multiple target genes, we
used the pil statistic to estimate the proportion of FDR <5% target
gene at each locus that had a non-null p-value in the replication
dataset'®. We used the qvalue R package'™ to calculate pil=1-qva-
lue(5% FDR trans gene p-values)$piO. For 3/10 loci, the proportion of
non-null p-values was > 0.5 (Supplementary Data 1). Note that repli-
cation in an independent cohort does not help to reduce false positives
due to cross-mappability, as cross-mappability artefacts tend to be
highly replicable®.

eQTLGen consortium. The eQTLGen Consortium is an initiative to
investigate the genetic architecture of blood gene expression and to
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understand the genetic basis of complex traits. We used interim
summary statistics from eQTLGen phase 2, wherein a genome-wide
eQTL analysis has been performed in 52 cohorts, representing 43,301
individuals.

All 52 cohorts performed cohort-specific analyses as outlined in
the eQTLGen analysis cookbook (https://eqtlgen.github.io/eqtlgen-
web-site/eQTLGen-p2-cookbook.html). Genotype quality control was
performed according to standard bioinformatics practices and inclu-
ded quality metric-based variant and sample filtering, removing rela-
ted samples, ethnic outliers and population outliers. Genotype data
was converted to genome build GRCh38 if not done so already and the
autosomes were imputed using the 1000 Genomes 30x on GRCh38
reference panel® (all ancestries) using the eQTLGen imputation pipe-
line (eQTLGen/eQTLGenImpute).

Like the genotype data, gene expression data was processed using
the eQTLGen data QC pipeline (eQTLGen/DataQC). For array-based
datasets, we used the results from the empirical probe mapping
approach from our previous study® to connect the most suitable probe
to each gene which has previously been to show expression in the
combined BIOS whole blood expression dataset. Raw expression data
was further normalized in accordance with the expression platform
used (quantile normalization for Illumina expression arrays and
TMM'® for RNA-seq) and inverse normal transformation was per-
formed. Gene expression outlier samples were removed and gene
summary information was collected for filtering at the central site.
Samples for whom there were mismatches in genetically inferred sex,
reported sex, or the expression of genes encoded from sex chromo-
somes, were removed. Similarly, samples with unclear sex, based on
genetics or gene expression were removed.

An adaptation of the HASE framework'®® was used to perform
genome-wide meta-analysis. For genome-wide eQTLs analysis, this
limits the data transfer size while ensuring participant privacy. At each
of the cohorts, the quality controlled and imputed data was processed
and encoded so that the individual level data can no longer be
extracted, but while still allowing effect sizes to be calculated for the
linear relationship between variants and gene expression (eQTLGen/
ConvertVcf2Hdf5 and eQTLGen/PerCohortDataPreparations).

Centrally, the meta-analysis pipeline was run on the 52 cohorts.
The pipeline which performs per cohort calculations of effect sizes and
standard errors and the inverse variance meta-analysis is available at
eQTLGen/MetaAnalysis. We included 4 genetic principal components,
20 gene expression principal components and other technical cov-
ariates (e.g., RNA integrity number) where available. Per every dataset,
genes were included if the fraction of unique expression values was
equal or greater than 0.8, variants were included based on imputation
quality, Hardy-Weinberg equilibrium (HWE) and minor allele fre-
quency (MAF) (Mach R2> 0.4, HWE p >1x107® and MAF > 0.01). In an
additional step, genes were filtered to include only those genes that
were available in at least 50% of the cohorts and 50% of the samples.

OneKI1K. The OneK1K dataset consisted of single-cell RNA sequencing
(scRNA-seq) data from naive B cell samples collected from 844 donors.
We relied on the original cell type annotations provided by the
authors. Following the same approach as in the primary analysis, the
data were processed using regenie in linear regression mode (step 2
only). For the trans-eQTL analysis, we included sex, six principal
components of the normalized, rank-based inverse normal-
transformed gene expression matrix, and six principal components
of genotype data as covariates.

Differential gene expression in SLE cases versus controls

We re-analysed the microarray gene expression data from Banchereau
et al.*” to explore differential gene expression between SLE cases and
controls. After downloading the processed data from GEO (GSE65391),
we selected one sample from each individual for our analysis based on

their earliest recorded visits. The filtered dataset comprised a total of
204 samples, including 46 samples from healthy individuals and
158 samples from individuals diagnosed with SLE. We also applied the
inverse normal transformation to standardise the gene expression
values. Subsequently, we used the Python statsmodels'®” module to fit
a linear model to identify genes that were differentially expressed
between SLE cases and controls. We included gender, age and batch as
covariates in all models.

Overlap between USPIS8 target genes and GWAS hits for SLE
We downloaded the list of prioritised target genes for the Yin et al.
GWAS study (GCSTO011956) from the Open Targets Genetics Portal. We
combined the list of genes prioritised by either the L2G or the closest
gene approach, yielding n=109 target genes. We then overlapped
these target lists with the list of 50 trans-eQTL targets for the USP18
locus (FDR < 5%).

Single-cell differential gene expression in resting and stimulated
B-cells

Sample collection, cell isolation and cryopreservation. Blood sam-
ples were collected from five healthy Mexican individuals (three males
and two females). Peripheral blood mononuclear cells (PBMCs) were
isolated using Vacutainer CPT tubes, according to manufacturer
instructions. Samples were cryopreserved in RPMI 1640 culture media
(Sigma), Fetal Bovine Serum (FBS) and Dimethyl sulfoxide (DMSO) and
stored at —80 °C for 24 h, before being transferred to liquid nitrogen.

Thawing and stimulation. Cryopreserved PBMCs were thawed quickly
and washed in 14 mL of room temperature complete RPMI 1640 media
(10% FBS, 1% Penicillin-Streptomycin, 1% L-Glutamine). Cells were
incubated at 37 °C, 5% CO, for 2 h. Cells were then stimulated with
interferon alpha (IFN-a, Bio-techne) and R-848 (Resiquimod, Cam-
bridge Bioscience) at a working concentration of 1000 U/mL and 2 pg/
ml, respectively. Cells were incubated at 37 °C, 5% CO2 and harvested
after 16 h, 40 h and 64 h of stimulation. Unstimulated cells were kept in
culture without any stimuli for 16 h (i.e., O h of activation).

Multiplexing, CITE-seq staining & scRNA-seq. Upon harvesting, cells
were resuspended in a cell staining buffer (Biolegend) and cell hashing
and genotype-based multiplexing was performed. Donors of the same
stimulation condition were mixed at equal ratios (each pool corre-
sponded to a mix of cells from four to five different individuals). These
pools were stained with the TotalSeq-C Human Universal Cocktail, V1.0
(137 cell surface proteins (CSP), Biolegend), in addition to a unique
hashtag antibody oligonucleotide (HTO, Biolegend) which corre-
sponds to the stimulation condition pool. After staining and washing,
all stimuli condition pools were pooled together at equal ratios. This
pool was then stained with live/dead dye 4,6-diamidino-2-phenylindole
(DAPI, Biolegend) and dead cells were removed using fluorescence-
activated cell sorting.

Cells were next processed using the 10X Genomics Immune Pro-
filing 5’ high-throughput (HT) v2 kit, as specified by the manufacturer’s
instructions. 1.15x10° cells were loaded into each inlet of a 10X
Chromium X to create Gel Bead-in-emulsions (GEMs). Two 10X HT
reactions were loaded per time point of sample processing (targeted
recovery was 40,000 cells per 10X reaction). Reverse transcription was
performed on the emulsion, after which cDNA and CITEseq super-
natant were purified, amplified and used to construct RNA-sequencing
and CSP sequencing libraries, respectively. These RNA and CSP
libraries were sequenced at a 5:1 ratio, respectively, using the Illumina
NoveSeq 6000 S4, with 100-bp paired-end reads and all 10X reactions
were mixed at equal ratios and sequenced across two lanes.

Deconvolution of single cells by genotype. Each 10X reaction com-
prised a mix of cells from unrelated individuals. Thus, natural genetic
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variation was used to assign cells to their respective individuals. First, a
list of common exonic variants was compiled from the 1000 Genomes
Project phase 3 exome-sequencing data (MAF > 0.05). Next, cellSNP
(v1.2.1) was used to generate pileups at the genomic location of these
variants. These pileups, in combination with the variants called from
genotyping in each individual, were used as an input for Vireo'®
(v0.5.7). If any cell had less than 0.9 posterior probability of belonging
to any individual or were of mixed genotypes they were labelled as
‘unassigned’ and ‘doublets’, respectively, and removed from down-
stream analysis.

Data processing and quality controls. Raw scRNA-seq and CITE-seq
data were processed using the Cell Ranger Multi pipeline (v7.0.0, 10x
Genomics). In brief, RNA and CSP library reads were first assigned to
cells. RNA reads were then aligned to the GRCh38 human reference
genome and CSP antibody reads were matched to the provided list of
known barcodes. Ensembl version 93 was used as a reference for gene
annotation, and gene expression was quantified using reads assigned
to cells and confidently mapped to the genome. Additionally, Cell
Ranger multi was used to deconvolute samples based on HTOs. It uses
an algorithm which employs a latent variable model over a state space
composed of each HTO used in the experiment to assign each cell to a
stimulation condition or as a doublet.

Results from RNA and CSP quantification in Cell Ranger were
imported into RStudio (v4.3.1) and analysed using Seurat (v5.0.1). Any
cell identified as doublet or unassigned by Vireo and or antibody
hashtag deconvolution method were excluded. 10X reactions were
split by time point and stimuli condition. Cells with 1.5-2.5 median
absolute deviations below the median of genes and counts detected
were discarded. Additionally, cells with 3-4 median absolute deviation
above the median for the percentage of mitochondrial reads detected
were discarded. The resulting cells were then annotated by Azimuth'®®
(v0.5.0), using the Azimuth PBMC reference dataset that was gener-
ated as part of the Hao and Hao et al., 2021 paper'®.

Pseudobulk and normalisation. Raw counts were pseudobulked by
Azimuth annotated level 1 cell types (CD4, CDS8, B, Mono, DC, NK,
Other and Other T) per donor, per time point and per stimulation
condition, via edgeR"° (v4.0.16). Pseudobulked raw counts were then
counts per million (CPM) normalised and log, transformed
with edgeR.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The whole genome sequencing data for the GEUVADIS and MAGE
studies was downloaded from the 1000 Genomes website (https://
www.internationalgenome.org/data-portal/data-collection/30x-
grch38). The GEUVADIS RNA-seq data was downloaded from the Eur-
opean Nucleotide Archive (ENA) under accession PRJEB3366. The
MAGE RNA-seq data was downloaded from the ENA (accession
PRJNA851328). The genotype and RNA-seq data from the GENCORD
study was downloaded from European Genotype-phenotype Archive
(EGA) under accessions EGADO0001000425 and EGADO0001000428.
The microarray gene expression data from the MRCA and MRCE stu-
dies was downloaded from ArrayExpress (accessions E-MTAB-1425 and
E-MTAB-1428) and the genotype data was downloaded from EGA
(accession EGASO00000000137). The gene expression and genotype
data from GTEx and CAP studies was downloaded from dbGaP
(accessions phs000424.v8.p2 [https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2] and
phs000481.v3.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000481.v3.p2]). The RNA-seq data from

the TwinsUK study was downloaded from EGA (accession
EGAD00001001086) and genotype data was obtained from TwinsUK
(https://twinsuk.ac.uk/researchers/access-data-and-samples/request-
access/). The gene expression data from SLE cases and controls is
available from GEO under accession code GSE65391. The informed
consent obtained from ALSPAC participants does not allow the
microarray and genotype data to be made freely available through any
third party maintained public repository. However, data used for this
study can be made available on request to the ALSPAC Executive. The
ALSPAC data management plan describes in detail the policy regarding
data sharing, which is through a system of managed open access. Full
instructions for applying for data access can be found here: http://
www.bristol.ac.uk/alspac/researchers/access/. The ALSPAC study
website contains details of all the data that are available (http://www.
bristol.ac.uk/alspac/researchers/our-data/). The RNA-seq and geno-
type data from the ColLaus cohort can be accessed by directly con-
tacting the cohort (https://www.colaus-psycolaus.ch/professionals/
how-to-collaborate/). The MetalLCL full trans-eQTL meta-analysis
summary statistics are available from the eQTL Catalogue FTP server
(https://www.ebi.ac.uk/eqtl/Data_access/) and additional documenta-
tion is available on the project website (https://github.com/AlasoolLab/
MetalCL). Source data are provided with this paper.

Code availability

The MetalCL trans-eQTL analysis workflows are available from https://
github.com/freimannk/regenie_analysis, the MetaLCL meta-analysis
workflow is available from https://github.com/freimannk/regenie_
metaanalyse. Additional documentation and code used to generate
figures in the paper is available from https://github.com/AlasoolLab/
MetalLCL. The eQTL Catalogue genotype imputation, RNA-seq pro-
cessing and data normalisation workflows are available from https://
github.com/eQTL-Catalogue/genimpute,  https://github.com/eQTL-
Catalogue/rnaseq and https://github.com/eQTL-Catalogue/qcnorm.
The eQTLGen genotype imputation, data quality control, data pre-
paration and meta-analysis workflows are available from https://
github.com/eQTLGen/eQTLGenlmpute, https://github.com/eQTLGen/
DataQC, https://github.com/eQTLGen/ConvertVcf2Hdf5,  https://
github.com/eQTLGen/PerCohortDataPreparations and https://github.
com/eQTLGen/MetaAnalysis.
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