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Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here,
we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-
positive (AAB*), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell
types, including multiple exocrine subtypes. §, Acinar, and other cell types, and related cellular niches, had altered
abundance and gene activity in T1D progression, including distinct pathways altered in AAB* compared to T1D.
We identified epigenomic drivers of gene activity in T1D and AAB* which, combined with genetic association, re-
vealed causal pathways of T1D risk including antigen presentation in § cells. Last, single-cell and spatial profiles
together revealed widespread changes in cell-cell signaling in T1D including signals affecting p cell regulation.
Overall, these results revealed drivers of T1D in the pancreas, which form the basis for therapeutic targets for dis-

ease prevention.

INTRODUCTION

Type 1 diabetes (T1D) is a complex endocrine disorder character-
ized by autoimmune destruction of p cells in the pancreatic islets,
leading to lifelong dependence on insulin therapy. The destruction
of P cells in T1D is caused by interactions with multiple cell types in
and surrounding the islet microenvironment including infiltrating
immune cells, other endocrine cells, and endothelial cells (1-3). Cell
types in the pancreas outside the local islet environment, such as
exocrine acinar and ductal cells, are also increasingly implicated in
T1D pathogenesis (4, 5). p Cells themselves likely contribute to the
development of T1D as well through response to environmental fac-
tors, external signaling to immune, B, and other cell types, and cel-
lular survival (6). The sequence of events in the pancreas that drives
initiation of P cell autoimmunity and progression through stages of
T1D, however, as well as the role of each pancreatic cell type in these
processes, remains poorly understood.

"Biomedical Sciences Program, University of California San Diego, La Jolla, CA, USA.
2Department of Computational Health, Institute of Computational Biology, Helmholtz,
Munich, Germany. 3Department of Pediatrics, University of California San Diego, La
Jolla, CA, USA. “Center for Epigenomics, University of California San Diego, La Jolla,
CA, USA. *Bioinformatics and Systems Biology Program, University of California San
Diego, La Jolla, CA, USA. SPfizer Research and Discovery, Pfizer Inc., Cambridge, MA,
USA.’Department of Pathology, Immunology and Laboratory Medicine, University
of Florida, Gainesville, FL, USA. 8Institute of Experimental and Clinical Pharmacolo-
9 and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg,
Freiburg, Germany. '®Department of Pharmacology and Toxicology, Institute of
Pharmaceutical Sciences, University of Graz, Graz, Austria. 'Field of Excellence Bio-
Health, University of Graz, Graz, Austria. 12Department of Cellular and Molecular
Medicine, University of California San Diego, La Jolla, CA, USA. *Max Delbriick Center
for Molecular Medicine, Berlin, Germany.
*Corresponding author. Email: kgaulton@ucsd.edu
1These authors contributed equally to this work.
$These authors contributed equally to this work.

Melton et al., Sci. Adv. 11, eady0080 (2025) 10 September 2025

Seroconversion to autoantibody positivity (AAB*) against islet
proteins (i.e., self-antigens) precedes T1D onset in nearly all cases
and is used as a clinical biomarker of T1D progression (7, 8). Indi-
viduals at T1D diagnosis can present with a differing number and
type of autoantibodies, which are associated with varying rates of
disease incidence; for example, the presence of a single islet AAB has
a relatively low lifetime risk of T1D, whereas individuals with mul-
tiple AAB have disease rates more than 90% (9-11). As clinical pre-
sentation of T1D does not occur until a large fraction of p cells has
been destroyed, there is a window of time between seroconversion and
TI1D onset where disease processes can potentially be halted or re-
versed (7). Even after onset of T1D, residual f cell mass could poten-
tially be modulated therapeutically to restore metabolic function (12).
Defining changes in disease-relevant cell types across the stages of T1D
progression would both improve our understanding of the mecha-
nisms of T1D as well as reveal potential targets to prevent or reverse
disease. Furthermore, an improved understanding of key changes as-
sociated with progression would also help identify biomarkers of T1D,
which are particularly needed in the early stages of disease to identify
progressors and candidates for therapeutic intervention (13).

Single-cell technology, the focus of this work, enables profiling of
individual cells within the pancreas (5, 14). Previous single-cell
studies of the pancreas in T1D have been limited in that they fo-
cused primarily on gene expression profiling of dispersed cells
(4, 15), which does not provide information on the spatial localiza-
tion of cellular transcriptomes within the pancreas nor the genomic
elements driving changes in gene activity. Recent developments in
spatial transcriptomics enables profiling cells in their native location
(16), which enables understanding cell type-specific changes in the
context of specific cellular neighborhoods and niches in the pan-
creas. This is particularly important in the context of T1D which has
extensive heterogeneity in disease processes within the pancreas
(17). In addition, single-cell epigenome profiling, for example, using
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single-nucleus Assay for Transposase-Accessible Chromatin using
Sequencing (snATAC-seq) or single-cell multiome [paired single-
nucleus RNA sequencing (snRNA-seq) + snATAC-seq], can reveal
transcriptional regulators, cis-regulatory elements (cREs), and gene
regulatory networks (GRNs) driving altered gene expression in T1D
(14, 15). Critically, GRNs and cREs can be intersected with T1D-
associated variation to infer cell type-specific regulatory programs
that may play a causal role in driving disease (5, 18).

Previous single-cell studies have also been limited in the extent
to which they have captured key windows of T1D progression and
pathogenesis (4, 15). Specifically, nondiabetic (ND) AAB™ donors in
these efforts were largely those with single glutamic acid decarbox-
ylase (GAD) autoantibodies (4), which have a relatively lower risk of
developing T1D compared to multiple AAB* donors and do not re-
flect the full arc of progression to T1D (19). Furthermore, many of
the T1D donors in these studies had long-standing T1D where dis-
ease processes are potentially more dormant, whereas profiling do-
nors who had more recently developed T1D may give greater insight
into active disease processes. Third, these studies profiled purified
islets, and profiling tissue sampled from the whole pancreas may
offer greater insight into genomic changes during T1D progression
in exocrine cells and other cell types outside of the islet microen-
vironment.

In this study, we addressed these limitations by performing
single-cell gene expression and epigenome profiling in whole pan-
creas from 32 ND, ND single and multiple AAB*, recent-onset T1D,
and long-standing T1D organ donors, as well as spatial transcrip-
tomics in a subset of ND and recent-onset T1D donors. We deter-
mined changes in pancreatic cell type abundance, cellular pathways,
GRNs, and cell-cell signaling across these stages of T1D progression
and pathogenesis and, using T1D association data, identified path-
ways and gene networks that may play a causal role in the develop-
ment of T1D.

RESULTS
A comprehensive, multimodal, spatially resolved map of
pancreatic cell types
We obtained pancreatic tissue from 32 donors in the Network for
Pancreatic Organ Donors with Diabetes (nPOD) biorepository
including 11 ND, 9 ND autoantibody positive (ND AAB™), and
12 T1D which we separated into 7 recent onset (<1 year from diag-
nosis) and 5 longer duration (>5 years from diagnosis) (table S1).
Within the ND AAB™ group, most organ donors, by our study de-
sign, had multiple autoantibodies (multiple ND AAB™). For all sam-
ples, we performed snRNA-seq and snATAC-seq assays, and for
eight of the samples, we performed single-nucleus multiome (joint
snRNA-seq and snATAC-seq in the same nucleus) assays (table S1).
In addition, for six of the samples, we performed spatial transcrip-
tomic assays using the CosMx Spatial Molecular Imager (Fig. 1A).
After extensive barcode quality control and filtering steps (see
Materials and Methods), we integrated data from all 32 donors
using Harmony (20) and clustered 276,906 gene expression profiles
(Fig. 1B and figs. S1 and S2). We annotated the resulting 18 clusters
based on the expression of known cell type marker genes which re-
vealed 12 pancreatic cell types including exocrine (acinar and ductal),
endocrine (o, f, and §), immune (T cell, B cell, macrophage, and
mast), stellate, endothelial, and Schwann cells (Fig. 1, B and C, and
table S2). Cell type clusters had broadly consistent representation
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across donors and donor characteristics (figs. S2 and S3). We aggre-
gated expression profiles for all cells in the cell type and derived nor-
malized expression levels of each gene using counts per million
(CPM) (data S1). For each cell type, we further identified genes with
expression levels specific [false discovery rate (FDR) < 0.1] to the
cell type which revealed both known and previously unreported sets
of genes with cell type-specific expression (table S3); for example,
well-known genes with expression specific to p cells included INS,
IAPP, and G6PC2 as well as others with no now known role in  cell
function (e.g., PLCH2, NRG2, RBFOX3, and MTUS2).

Several cell types displayed multiple subclusters representing
both known cell subtypes, such as active and quiescent stellate cells,
blood vessel cells (BVECs), lymphatic endothelial cells (LECs), and
MUCS5b" ductal cells, as well as several potential subtypes of acinar
cells (Fig. 1, B and C). As the genomic properties of these subtypes
have not been completely described previously, we derived sets of
marker genes for each subtype (see Materials and Methods and
table S3). For BVECs and LECs, in addition to reported marker
genes PLVAP (BVECs) and FLT4 (LECs), we observed specific up-
regulation of genes in each subtype such as INHBB, BMP6, FCN3,
and PCATI9 in BVECs and EFNA5, COLECI2, and MYCTI in
LECs. In MUCBS5" ductal cells, there was up-regulation of ERN2,
CYP2C18, MYO7B, and DMBTI compared to the primary subtype
of ductal cells. For acinar cells, the primary cluster, which we anno-
tated as “basal” acinar cells, was enriched for genes and pathways
involved in digestive enzyme production and secretion. Other clus-
ters included “high-enzyme” acinar cells with higher expression of
enzymes such as chymotrypsin (CTRBI1/2), trypsinogen (PRSSI and
PRSS2), lipase (PNLIP), carboxyl ester lipase (CEL), chymotrypsin-
like elastase (CELA3A/B), and increased oxidative phosphorylation
and translation, “signaling” acinar cells with increased signaling and
stress-response activity, and “signaling/differentiation” acinar cells
with increased signaling, metallothionein (MT1/MT2), and identity
and differentiation genes (REG1A/B and PTFIA) (Fig. 1D).

To next characterize the spatial organization of pancreatic cell
types, we performed RNA in situ hybridization of 1010 genes with
CosMx from a subset of donors including three ND and three
recent-onset T1D (tables S1 and S4). We imaged a total of 82.6M
transcripts from 71 fields of view (FOVs) in pancreatic sections from
three ND (32 FOVs) and three recent-onset T1D donors (39 FOVs)
(fig. S4A) and assigned transcripts to 392,248 cells overall (80 me-
dian genes and 200 median transcripts per cell), using the CosMx
default segmentation. We performed unsupervised clustering of cel-
lular gene expression profiles, which revealed nine distinct clusters
including exocrine, endocrine, endothelial, immune, and mast cells
(fig. S4B). We next mapped finer-grained cell type annotations from
snRNA-seq using moscot (fig. S4, B and C) (21), which revealed
14 cell types and subtypes that were confirmed on the basis of mark-
er gene expression (Fig. 1E and fig. S4). Spatial neighborhood en-
richment using squidpy (22) revealed expected cell type clustering
including acinar subtypes, ductal subtypes, endocrine cells (p, o,
and §), and connective cells (e.g., endothelial, immune, and stellate)
(Fig. 1F).

Next, we sought to determine whether spatial neighborhoods
form recurrent niches across the pancreas, by defining niches in-
volving a cell type using a gene-gene covariance matrix (23) in a
spatial neighborhood of 30 cells. We recovered six niches in total,
characterized by cell type abundance (see Materials and Methods),
including three exocrine (acinar-enriched, ductal-enriched, and
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Fig. 1. Cell type-specific map of gene expression in the pancreas. (A) Design of study profiling human pancreas from ND, ND AAB*, and T1D donors using single-cell
assays. (B) Uniform Manifold Approximation and Projection (UMAP) plot showing clustering of 276,906 nuclei from single-nuclear RNA-seq of 32 whole pancreas donors
from the nPOD biorepository. Clusters are labeled on the basis of cell type and subtype annotations. (C) Dot plot showing the normalized expression levels of selected
known marker genes for pancreatic cell types and subtypes. (D) Dot plot of genes with preferential expression across different subtypes of acinar cells (top left) and nor-
malized enrichment score (NES) of pathways enriched in each subtype using fgsea (top right). Box plot showing donor CPM of selected genes with preferential expression
in different subtypes of acinar cells. GTPase, guanosine triphosphatase. (E) Representative FOV per condition (ND: top, T1D: bottom) showing (from left to right) immuno-
fluorescence, coarse cell type annotation with the spatial gene panel directly, and finer-grained cell type annotation transferred from the snRNA-seq data. DAPI,
4',6-diamidino-2-phenylindole. (F) Matrix plots showing the neighborhood enrichment of cell types based on spatial neighbors. Cell type labels are the same as fine-
grained annotations in (E). (G) Stacked barplot illustrating the relative abundance of each cell type in each multicellular niche. Cell type labels are the same as fine-grained
annotations in (E, left). Dot plot showing the normalized gene expression levels of spatially variable genes across multicellular pancreatic niches (right). (H) Box plot
showing normalized cell counts for selected pancreatic cell types and subtypes grouped by T1D status. P values from likelihood ratio test, **FDR < 0.1, *uncorrected P <
0.05. (I) Stacked barplot showing the relative abundance of each multicellular niche per condition. Niches have altered abundance in ND samples denoted as *P < 0.05.
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MUC5b ductal-enriched) niches, one endocrine niche, one niche
including both endocrine and exocrine cells (endo-exo), and one
niche consisting of connective cells (Fig. 1G). To characterize each
niche, we identified spatially variable genes (Moran’s I > 0.2, P < 0.05)
that captured gene signatures specific to the niche (Fig. 1G). In the
acinar-enriched niche, marker genes from the basal and high-enzyme
cell types showed strong spatial clustering (PRSS2 and REGIA). In
comparison, the ductal-enriched niche had more spatial associa-
tion with signaling and signaling/differentiation acinar cells (MTIX,
SOD2, and MT2A). In the MUC5b ductal-enriched niche, spatially
variable genes were strongly associated with immune interactions
(HSPAIA, HLA-A, and B2M). In addition, the endocrine niche had
highly distinct patterns which highlighted multiple endocrine-specific
genes (e.g., INS, GCG, SST, and IAPP) (Fig. 1G).

Last, we determined whether there were changes in abundance
of cell types and subtypes in T1D progression based on snRNA-seq
(see Materials and Methods). There was a significant decrease (like-
lihood ratio test, FDR < 0.1) in f cells (Fig. 1H and table S5)
although we still observed residual p cells in T1D particularly in
recent-onset (ND = 1.5%, recent-onset T1D = 0.93%). We also ob-
served a significant decrease (FDR < 0.1) in & cells in T1D and
increased abundance of immune populations in ND AAB* and
recent-onset T1D. There was also nominal evidence (P < 0.05) for
altered abundance of specific subtypes including high-enzyme
acinar (P = 0.037) and MUC5b™ ductal cells (P = 0.049). We next
asked whether there were corresponding changes in the abundance
of specific niches in T1D in spatial profiles. We quantified the pairwise
similarity between ND and T1D spatial graphs using Wasserstein
distance (fig. S4D) (24), which revealed substantial changes in the
underlying structure of endocrine cells (o and p) in T1D. We also
observed significant changes in the abundance of the endocrine and
MUCS5b™ ductal niche in T1D (P < 0.05) (Fig. 11).

Comprehensive map of pancreatic cell

type-accessible chromatin

To understand how the epigenome may drive changes in cell type-
specific gene expression in T1D, we next created a matched map of
accessible chromatin in pancreatic cell types. Of the 32 nPOD do-
nors with snATAC-seq assays, 30 passed quality control (see Materi-
als and Methods). We filtered, integrated, and clustered accessible
chromatin profiles from the 30 donors and annotated cell type iden-
tity by label transfer of the gene expression map using Seurat (see
Materials and Methods) (25). After filtering nuclei with low transfer
predictions (<0.5), there were 203,348 chromatin profiles mapping
to the same cell types and subtypes (Fig. 2A and figs. S6 and S7). We
estimated that label transfer was >97% accurate at the cell type level
by comparing the predicted and actual identity of accessible chro-
matin profiles in single-cell multiome data. We also confirmed that
predicted cell types were accessible at the promoter regions of key
marker genes (Fig. 2B). The proportions of each cell type were high-
ly correlated between expression and chromatin maps (r = 0.98,
P=17x10""; fig. $8).

We identified transcription factor (TF) binding motifs preferen-
tially enriched in each pancreatic cell type and subtype using chrom-
VAR (26). At the cell type level, enriched sequence motifs revealed
key regulators of each cell type; for example, p cells and other endo-
crine cells were enriched for REX and FOXA motifs; ductal cells for
HNF1, ONECUT, and TEAD motifs; endothelial cells for ETV, FLI,
and GABPA motifs; and T cells for RUNX, ETV, and ETS motifs,

Melton et al., Sci. Adv. 11, eady0080 (2025) 10 September 2025

among others (Fig. 2C and table S6). Motif enrichments also high-
lighted regulators that distinguished accessible chromatin profiles of
cell types within specific lineages; for example, NEUROD1 and
NR3C1 had stronger enrichment in § compared to other endocrine
cells (Fig. 2C). Acinar cells showed distinct sets of enriched TF mo-
tifs across different subclusters, including signaling acinar cells
which were more enriched for FOS/JUN, activating transcription
factor (ATF), and Nuclear Factor Erythroid (NFE) motifs (Fig. 2, C
and D, and table S6). In high-enzyme acinar cells, the strongest
enrichments were for TFs such as Zinc finger E-box-binding
(ZEB), Snail transcription factor (SNAI1-3), and Transcription Factor
(TCF3-4), which were also the most enriched motifs in acinar cells
overall compared to other cell types (Fig. 2, C and D, and table S6).
As structurally related TFs often have similar motifs, we linked TF
motifs enriched in subclusters to specific TFs in the same structural
subfamily with concordant expression patterns. For example, FOSL2
and JUNB/D, as well as ATF3, NFE2L2, and BACH1/2, were in-
creased in signaling acinar cells, and TCF3 had increased expression
in high-enzyme acinar cells (Fig. 2D).

For each cell type and subtype, we next defined candidate cREs.
We derived “pseudo’-bulk accessible chromatin profiles by aggre-
gating reads from all cells for that cell type or subtype and identified
cREs by performing peak calling with Model-based Analysis of
ChIP-seq (MACS2). In total, there were 368,688 cREs across cell
types and an average of 94.3k cis-regulatory elements (cREs) per cell
type (data S2). Among cREs in our study, 9.4 and 7.4% were unique
compared to a pan-tissue (27) and pancreas-specific (5) cRE cata-
log, respectively, such as a T cell cRE directly upstream of ZNF746
(Fig. 2E). We identified cREs with cell type-specific activity by com-
paring accessible chromatin profiles across cell types (data S3; see
Materials and Methods). Cell type-specific cREs were enriched
for sequence motifs of key cell type TFs as well as proximity to
genes involved in cell type-specific function (tables S7 and
S8). For example, B cell-specific cREs were significantly enriched
(FDR < 0.1) for proximity to insulin secretion-related pathways
and RFX, FOXA, NEUROD, and NKX6.1 TF motifs, whereas
endothelial-specific cREs were significantly enriched for proximity
to angiogenesis, blood vessel morphogenesis, and vasculature path-
ways and FLL, ETS, and ETV TF motifs (tables S7 and S8). We also
identified cREs specific to several of the subtypes within acinar cells;
for example, signaling acinar-specific cREs were enriched for JUN,
FOS, and ATF motifs.

Because of the scarcity of immune populations in the pancreas,
the epigenome of resident and infiltrating pancreatic immune cells
has not been extensively described. In our study, we identified mul-
tiple immune cell types including T cells, macrophages, B cells, and
mast cells, although available cell numbers only enabled defining
cREs in T cells and macrophages. T cell-specific cREs were signifi-
cantly enriched for proximity to genes involved in T cell activation,
T cell receptor complex, and cytokine receptor activity and motifs
for ETS, ETV, and RUNX TFs, while macrophage-specific cREs
were enriched for immune-related processes and PU.1 and SPIB
motifs (Fig. 2F). Compared to a previous study which profiled sev-
eral whole pancreas donors, more than double the number of cREs
were identified in each cell type (T cells: 58.8k versus 24.5k; macro-
phages: 114.3k versus 55.7k). The increased number of cREs im-
proved annotation of T1D-associated variants; for example, candidate
T1D variant rs947474 [posterior probability of association (PPA) =
0.88] (5) overlapped a pancreatic T cell and macrophage cRE not
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Fig. 2. Cell type-specific map of accessible chromatin in the pancreas. (A) UMAP plot showing clustering of 203,348 nuclei from single-nuclear ATAC-seq of 30 pan-
creas donors from the nPOD biorepository. Clusters are labeled with cell type and subtype identity based on label transfer from the gene expression map. (B) Genome
browser showing accessible chromatin signal at the promoter regions of known marker genes for pancreatic cell types. (C) Heatmap showing genome-wide accessibility
from chromVAR of sequence motifs for selected transcription factors (TFs) across cell types (left) and box plots showing donor-level accessibility of selected TF motifs across
cell types (right). (D) Box plot showing genome-wide accessibility of TF motifs with preferential enrichment in subtypes of acinar cells (left) and log fold change in expres-
sion for genes in structural subfamilies for enriched TF motifs, and error bars are SE (right). *FDR < 0.10. (E) Number of cREs identified across all cell types and the percentage
of cREs that do not overlap previous catalogs of cREs (27, 53) (top). Example of a pancreatic T cell-specific cRE at the ZNF746 locus. (F) TF sequence motifs enriched in cREs
with activity specific to each cell type (left) and bar plots showing —log P values of gene sets enriched for proximity to cell type-specific cREs using the Genomic Regions
Enrichment of Annotations Tool (GREAT). (G) Example of a cRE active in pancreatic T cells and macrophages that overlaps a candidate T1D risk variant. (H) Box plot showing
gene-cRE links per gene per cell type (top) and schematic of TF GRNs (bottom). (I) Matrix plot showing scaled z-score of TF activities for top TFs identified for each cell type
using a t test with overestimated variance. (J) Spatial plot of selected TFs showing the TF activity profile (top) and cell type distribution for the respective cell type (bottom).
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identified in these cell types in the pancreas previously and not ac-
tive in other pancreatic cell types (Fig. 2G).

We next predicted networks of genes regulated by TF activity in
each pancreatic cell type (see Materials and Methods). We linked
cREs to target genes in each cell type using the activity-by-contact
(ABC) method, which revealed an average of 46,474 cRE-target
gene links per cell type, as well as based on promoter proximity
(data S4). Using ABC and promoter proximity, genes were linked
to, on average, 2.8 cREs per cell type (Fig. 2H). We identified
genes which had highly cell type-specific cRE links (see Materials
and Methods), and genes with highly cell type-specific cRE links in-
cluded key marker genes such as INS in p cells, GCG in a cells, IL-2,
IFNGRI, and GZMA in T cells, and MARCOS in macrophages. In
each cell type, we next constructed GRNs for 366 TFs by combining
(i) cRE-target gene links, (ii) TF motif predictions in cREs, and (ii)
TF and target gene expression levels (Fig. 2H; see Materials and
Methods and data S5). We annotated likely cellular functions of TF
GRNss by identifying biological pathways with gene sets that signifi-
cantly overlapped TF GRNs. There were thousands of significant
relationships linking TF GRNs to biological pathways across all cell
types (Fisher’s test, FDR < 0.1) (data S6), which annotated many
known regulators of pathway activity as well as many putative func-
tions of TFs.

Last, we used spatial transcriptomic data in combination with cell
type-specific TF GRNs to infer TF activity within cell types and sub-
types in the pancreas. Briefly, we used a univariate linear model to
predict the observed gene expression based on TF-gene interaction
weights, from which we scored TFs as active or inactive in each cell
type (28). We identified TFs with endocrine-specific activity in line
with the previously described regulators of endocrine cell activity,
such as NEURODI, as well as high activity of PAX6 in p cells, where
it is a key regulator of B cell identity, function, and survival (Fig. 2,
I and J) (29). Among other cell types, we inferred high activity for
BHLHAI5/MISTI in acinar cells, where it may play a role in the
maintenance of pancreatic acinar identity (30), and highly specific
activity for MEOX2 in endothelial cells and RUNX3 in T cells (Fig. 2,
I and J). Integrating GRNs with spatial transcriptomic profiles thus
confirmed the specificity of key TFs regulating pancreatic cell types,
including for TFs not measured on the spatial panel directly.

Pancreatic cell type gene expression in T1D progression
Changes in genome-wide gene activity within each pancreatic cell
type during progression to T1D are poorly understood. We there-
fore identified genes and biological pathways in each cell type with
altered activity in ND AAB* and T1D. To increase our power to
detect changes in endocrine cell types, we also used single-cell RNA-
seq from purified islets of 48 donors from the Human Pancreas
Analysis Program (HPAP) (4, 15, 31) including 27 ND, 11 ND
AABY (9 single, 2 multiple), and 10 T1D (6 recent, 4 long-standing).
For each cell type and subtype, we derived gene counts per sample,
tested for differential expression in single and multiple ND AAB™
and recent and long-standing T1D compared to nondiabetes, and
considered genes significant at FDR < 0.1 (see Materials and Meth-
ods). We further performed gene set enrichment of differential
expression results for each cell type and subtype and identified path-
ways with significant (FDR < 0.1) changes in activity in each condi-
tion (see Materials and Methods).

Marked gene expression changes were observed in B cells in
T1D (Fig. 3A). In recent-onset T1D, 704 genes in f cells had a

Melton et al., Sci. Adv. 11, eady0080 (2025) 10 September 2025

significant change (FDR < 0.1) in expression, where the most up-
regulated genes included major histocompatibility complex (MHC)
class I and related (CD74 and B2M) genes, cytokines, and cytokine-
induced genes (IL15, GBP2, and IFIT3), cytokine-responsive TFs
(STAT1/4 and IRFI), and components of the 20S proteosome
(Fig. 3B, fig. S9, and data S7). We also observed up-regulation of
MHC class II genes in T1D, particularly HLA-DPBI, as well as
MHC class 1 modulators such as NLRC5 (fig. S9). At the pathway
level, there was up-regulation of antigen processing and presentation,
interferon signaling, interleukin signaling, and Janus kinase-signal
transducers and activators of transcription (JAK-STAT) signaling
and down-regulation of oxidative phosphorylation, translation, mito-
chondrial function, mitosis, mRNA processing, protein folding and
localization, endoplasmic reticulum (ER)-Golgi transport, and au-
tophagy (Fig. 3C and table S9). We examined whether specific path-
ways up-regulated in T1D showed heterogeneity in expression across
single P cells and pathways including antigen presentation had evi-
dence for bimodal expression while others such as interferon and
JAK-STAT signaling did not (fig. S10). Further, a higher proportion of
B cells from ND AAB* and T1D donors expressed antigen presenta-
tion pathways compared to ND (fig. S10).

Compared to recent-onset T1D, the most significant changes in
gene expression generally differed in long-standing T1D, including
down-regulation of INS and key genes involved in  cell function
such as GLIS3 and G6PC2 (data S7). In addition, antigen presenta-
tion and class I MHC genes were less pronounced, specific IRF TFs
had higher expression, and class II MHC genes had stronger up-
regulation in long-standing T1D (fig. S9). At the pathway level,
interferon signaling was significantly enriched (FDR < 0.1) in long-
standing T1D, although there were overall few pathways with sig-
nificant changes in activity potentially due to the low number of
cells at this stage (table S9). We identified more nominal enrichment
for multiple pathways including up-regulated antigen presentation
and cytokine receptor interactions and down-regulated autoph-
agy, insulin processing, p cell regulation, and f cell development
(table S9).

Given marked changes in gene expression in f cells in recent-
onset T1D, we further characterized whether these pathways had
altered activity within specific localizations in the pancreas. Of
the genes with altered expression in f cells in recent onset T1D and
present in the spatial gene panel, almost all (95%) were up-regulated
in T1D in spatial profiles (Fig. 3D and fig. S11). Furthermore, mul-
tiple up-regulated genes in T1D such as MHC class I genes (e.g.,
HLA-A and B2M) showed spatially dependent expression pat-
terns (Moran’s I > 0.2) within endocrine, immune, and ductal cells
(Fig. 3D). We further characterized pathways in recent-onset T1D
with expression profiles dependent on specific niches and altered
in T1D progression. We identified pathways in the PROGENYy data-
base in LIANA+ (32) to predict pathways preferentially active in
a niche using a multivariate linear model. We identified multiple
pathways with niche-dependent expression, including hypoxia in
the endocrine niche (Fig. 3E). When further assessing T1D-specific
changes, pathways related to hypoxia and inflammation such as tu-
mor necrosis factor-a and JAK-STAT were differentially active in
T1D (fig. S11).

In contrast to T1D, few individual genes had significant changes
in expression in B cells in either single or multiple ND AAB* (Fig. 3A).
We determined whether more subtle changes might be occurring at
these stages. Genes altered in recent-onset T1D had significantly
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Fig. 3. Cell type-specific changes in gene expression in T1D progression. (A) Number of genes in each cell type with significant (FDR < 0.1) changes in expression in
T1D stages compared to nondiabetes (top). Number of pathways enriched in genes with up- and down-regulated expression in each cell type in T1D stages (bottom). The
results in all panels include 80 donors (nPOD + HPAP) for endocrine cells and 32 donors (nPOD) for nonendocrine cells. Note that nonendocrine cells were not tested for
single ND AAB* association. (B) Volcano plot showing differential expression in f cells in recent-onset T1D compared to ND. (C) Bar plot showing normalized enrichment
(NES) of pathways enriched in up- and down-regulated genes in {3 cells in recent-onset T1D (bottom). MT, Mitochondrial. (D) Scaled expression in spatial profiles of genes
with up-regulated expression in T1D in f cells (left). Spatially dependent expression of selected genes up-regulated in T1D in each cell type (right). (E) Pathways with dif-
ferential expression within spatial niches in T1D compared to ND. EGFR, epidermal growth factor receptor; TNFa, tumor necrosis factor-a. (F) Scatterplot of log fold change
in expression of genes in f cells in single or multiple ND AAB* compared to recent-onset (top) and long-duration T1D (bottom). Line shown in each plot is from a linear
model of log fold change values, and P values are from Spearman correlation. FC, fold change. (G) Normalized enrichment of pathways in recent-onset T1D and multiple
ND AAB™*. Pathways are colored on the basis of significant enrichment (FDR < 0.1) in either, or both, states. (H) Normalized enrichment of pathways in B cells across each
T1D state compared to nondiabetes. (I) Log fold change in expression of selected genes in f cells in each T1D state compared to ND. (J) Normalized enrichment of path-
ways in other pancreatic cell types in recent-onset T1D or multiple ND AAB™*. For all panels, *FDR < 0.1, P < 0.05.
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correlated effects in multiple ND AAB*, although not in single ND
AAB™ (Fig. 3F). At the pathway level, antigen processing and pre-
sentation were up-regulated in both single and multiple ND AAB™,
and interferon signaling was up-regulated in multiple ND AAB™
(Fig. 3, G and H, and table S9). Among key genes in these pathways,
MHC class I genes and interferon signaling IRF TFs were up-
regulated in multiple but not in single ND AAB™ (Fig. 31 and data
S7). We also identified pathways altered specifically in single and
multiple ND AAB* and not in recent-onset T1D; for example, heat
stress response was up-regulated in single and multiple ND AAB*,
extracellular matrix (ECM) organization, cytokine-cytokine inter-
actions, and G protein—-coupled receptor (GPCR) ligand binding
were all down-regulated in multiple ND AAB+, and transforming
growth factor-p (TGF-f) signaling was down-regulated in single
ND AAB" (Fig. 3H and table $9). In addition, class Il MHC antigen
presentation was strongly up-regulated in multiple ND AAB™, but
not in single ND AAB™, including class Il MHC genes HLA-DBP]I
and HLA-DRBI (data S7 and table S9). These results highlight that
single and multiple ND AAB* have both shared and distinct ge-
nomic changes in p cells compared to T1D.

Changes have been reported in the exocrine pancreas in T1D
and at-risk individuals (33), and in our study, we observed marked
changes in exocrine cell gene expression in T1D progression. In
basal acinar cells, there were 255 genes with altered expression in
recent-onset T1D, almost all of which (95%) had decreased expres-
sion (Fig. 3A and data S7). Basal acinar and other acinar subtypes
showed down-regulation of numerous pathways in recent-onset
T1D including those related to signaling, stimulus response, me-
tabolism, and protein transport (Fig. 3A and table S9). In multiple
ND AABT, the high-enzyme acinar subtype showed significantly
higher expression of antigen presentation, interferon signaling, and
immune-related pathways, as well as increased activity of amino
acid metabolism, which is necessary for enzyme production, carbo-
hydrate and glucose metabolism, transcriptional activity, and respi-
ration (Fig. 3] and table S9). We also observed down-regulation of
genes in ductal cells in T1D associated with small molecule trans-
port, stimulus response, cytokine signaling, and RNA processing
but no evidence for changes in ND AAB™ (table S9).

Other cell types in islets and the surrounding microenvironment
also had significant changes in activity across entire pathways dur-
ing progression to T1D. In a cells, antigen presentation, interferon
signaling, and other pathways were significantly increased in T1D
with less pronounced effects for these pathways in multiple ND
AAB" and, in contrast to B cells, little change in single ND AAB*
(Fig. 3] and table S9). & Cells showed more prominent changes in
multiple ND AAB™, including significantly increased hypoxia and
heat stress response and cell cycle-related pathways and decreased
signaling pathways, as well as in single ND AAB™ (Fig. 3] and ta-
ble S9). In endothelial cells, we observed increased interleukin-2
(IL-2) and JAK-STAT signaling as well as Stem Cell Factor (SCF)/
KIT signaling, which promotes angiogenesis (34, 35), in recent-
onset T1D (Fig. 3] and table S9). In activated stellate cells, there was
decreased expression of translation and RNA processing in ND
AAB" and down-regulation of many pathways in recent-onset T1D
(table S9). We observed few significant changes in gene or pathway
activity in immune (T cell and macrophage) cells, although this
could be due to the small number of cells profiled for these cell types.

Together, these results reveal key genes and pathways altered in
pancreatic cell types in ND AAB* and T1D donors with both shared

Melton et al., Sci. Adv. 11, eady0080 (2025) 10 September 2025

and distinct changes in ND AAB* compared to T1D, which in ND
AAB* included antigen presentation, interferon signaling, ECM-
related and stress response pathways in p cells, and metabolism and
immune signaling in acinar cells.

Changes in the pancreatic cell type-specific epigenome in
T1D progression

We next examined to what extent altered gene and pathway activity
in pancreatic cell types in T1D progression is driven by changes in
the epigenome using snATAC-seq profiles from 30 ND, ND AAB™,
and T1D donors from nPOD. First, we identified cREs in each cell
type with altered activity in T1D progression using a linear mixed
model to account for pseudo-replication (see Materials and Meth-
ods). We observed significant changes (FDR < 0.1) in cRE activity in
ND AAB" (single and multiple) and T1D for most pancreatic cell
types (data S8). p Cell cREs with increased activity in recent-onset
T1D were significantly enriched (FDR < 0.1) for sequence motifs of
steroid hormone receptors (NC3C1 and NR3C2), NE-Y (NFYA,
NFYB, and NFYC), interferon response factors (IRF2 and IRF7),
and stress-response TFs (ATF4, STAT1, and CEBPG) among others
(Fig. 4A and table S10). Conversely, cREs with decreased activity in
T1D were significantly enriched for sequence motifs of TFs involved
in core P cell functions, such as HNF1 and RFX, with many f cell
identity TFs (NKX6.1 and PDX1) and other TF families including
FOXA and MEF showing more nominal enrichment (Fig. 4A and ta-
ble S10). We also identified sequence motifs enriched in f cell cREs
altered in ND AAB*, including IRE, TCE, and STAT TF motifs in cREs
with increased activity and MEE, RFX, and NFAT TFs in cREs with
decreased activity, although other T1D-associated motifs such as HNF1
showed no change in ND AAB* (Fig. 4A and table S10). Sequence
motifs were also enriched cREs altered in T1D progression for other
pancreatic cell types, such as MEF and REX TF motifs in o cells,
RUNX TF motifs in activated stellate cells, STAT TF motifs in endo-
thelial cells, and FOS/JUN motifs in ductal cells.

We determined next whether TF motifs enriched in T1D-
associated cREs in pancreatic cell types had broader, genome-wide
changes in activity in T1D progression by modeling sequence motif
accessibility across individual cells using chromVAR (see Materials
and Methods) (26). In p cells, we observed consistent changes in the
genome-wide accessibility of specific sequence motifs in T1D pro-
gression, including increasing accessibility of IRF motifs and de-
creasing accessibility of REX, FOXA, and MEF motifs from ND
AABY to T1D states (Fig. 4B and table S11). In other cases, sequence
motifs had different patterns in ND AAB* and T1D, such as de-
creased accessibility of HNF1 and increased accessibility of PAR-
related and hormone receptor TFs in T1D only and opposed
accessibility of STX TFs in ND AAB* and T1D. While a cells showed
similar increases in accessibility of hormone receptor, stress re-
sponse, and PAR-related TFs in T1D progression as in f cells, there
were also several marked differences such as increased accessibility
of MEF and REX motifs in ND AAB* and recent-onset T1D, respec-
tively (Fig. 4B and table S11).

We used TF GRNs to determine which TFs drive changes in
pathway activity in T1D progression. In f cells, pathways altered in
ND AAB™ and T1D had highly specific links to TF GRNS, suggest-
ing key regulators of pathway activity in T1D progression (Fig. 4C
and data S6). For example, pathways up-regulated in p cells in T1D
and ND AAB* such as interferon signaling were linked to GRNs for
IRF TF motifs, and antigen processing and presentation were linked
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Fig. 4. Epigenomic changes in pancreatic cell types in T1D progression. (A) Fold enrichment of sequence motifs for TFs enriched in p cell cREs with up-regulated or

down-regulated activity in (top) recent-onset T1D or (bottom) ND AAB* (both single and multiple) using snATAC-seq from 30 donors (nPOD). (B) Box plots showing donor-
level genome-wide accessibility of selected TF motifs in p cells (left) and « cells (right) from chromVAR across nondiabetes (ND), ND AAB*, and recent-onset T1D (T1D).
(C) TF GRNs enriched for overlap with genes in biological pathways in p cells altered in T1D progression. (D) Biological pathways in f cells enriched for overlap with the
HNF1A GRN (top). p Cell expression of HNF1A in T1D progression, values represent log fold change and error bars are SE (middle). p Cell activity of biological pathways linked
to the HNF1A GRN in T1D progression (bottom). (E) TF GRNs enriched for overlap with genes in biological pathways in acinar cells altered in T1D progression. (F) Genome
browser views of the TSHR (top) and HLA-A (bottom) loci where 3 cell cREs with altered activity in T1D were linked to genes with concordant changes in expression in T1D.
(G) Genome-wide enrichment of T1D-associated variants in f cell cREs linked to pathways with altered expression in ND AAB*. Values represent log enrichment from fg-
was, and error bars are 95% confidence interval. (H) Genome browser view of T1D-associated variants and f cell accessible chromatin in ND, ND AAB*,and T1D at the IRF1
locus, where candidate T1D variant overlaps a p cell cRE with altered activity in T1D progression. (I) Genome browser view of T1D-associated variants and both p cell and
T cell accessible chromatin in ND, ND AAB™, and T1D at the STAT4 locus. Candidate T1D variants at this locus overlap T cell cREs.

Melton et al., Sci. Adv. 11, eady0080 (2025) 10 September 2025

9 of 22

GZ0Z ‘02 $2g0100 U0 YBU101|qIq RAIUSZ - USYOU Al LUNNUSZ Z1joyw pH Te BI0°80us 105 MMM//:SAY WO | Papeo lumod



SCIENCE ADVANCES | RESEARCH ARTICLE

to NFY, IRF, and nuclear factor kB (NF-kB) TF GRNSs, while down-
regulated pathways in T1D such as ER and Golgi-related processes
were linked to CREB3L1, XBP1, and other TF motifs (Fig. 4C). We
also identified TF GRNs linked to pathways altered specifically in
ND AAB?Y, such as heat stress-related pathways and heat shock fac-
tor (HSF) TF GRNs, ECM-related pathways and ETS, ELK and ELF
TFs, and GPCR signaling pathways and RFX and FOXA GRNs
(Fig. 4C and data S6). While we observed a strong change in HNF1
motif accessibility, as well as HNF1A expression, in p cells in T1D
(Fig. 4, B and D), no pathways linked to the HNF1 GRN had a sig-
nificant change in expression in T1D. However, there was a more
nominal change in f cell development and function pathways linked
to the HNF1 GRN in T1D (Fig. 4D), supporting that reduced HNF1
activity likely underlies altered p cell function in T1D, as has been
shown in the context of type 2 diabetes (36).

Similarly, in other pancreatic cell types, TF GRNs were linked to
pathways with altered activity in ND AAB™ or T1D. For example, in
enzyme-high acinar cells, metabolic pathways altered in ND AAB™
were linked to GRNs for specific TFs such as glucose metabolism
and HNF1, amino acid metabolism and STAT1, and oxidative phos-
phorylation and MEF and FOS TF GRNs (Fig. 4E and data S6). In
activated stellate cells, fibrin-related pathways up-regulated in ND
AAB* were significantly linked to ELK, HOX, CEBP, and other TF
GRNs. In endothelial cells, IL-2 and JAK-STAT signaling path-
ways up-regulated in T1D were strongly linked to NF-xB (REL and
RELA) and IRF TF GRNs, and SCE/KIT signaling was also linked to
HOX family TF GRNs, among others. We further explored changes
in TF activity inferred from spatial gene expression profiles of TF
GRNs across cell types, which revealed increased activity of im-
mune regulation, inflammation and signaling TFs (e.g., STATS3,
RBP]J, FOSL2, and JUND), and reduced activity of endocrine-related
TFs (e.g., PAX6, GLI3, MAFA, INSM1, and NEUROD1), in T1D
compared to nondisease (fig. S12).

We next annotated specific p cell cREs altered in T1D progres-
sion with putative target genes and assessed changes in regulatory
programs at specific loci. There were 114 B cell cREs with altered
activity in T1D progression linked to genes with significant changes
in expression. For example, a p cell cRE on chromosome 14 in the
first intron of TSHR had increased accessibility in recent-onset T1D
and was linked to TSHR, which had among the largest increases in
expression in recent-onset T1D (Fig. 4F). We identified similar cREs
up-regulated in recent-onset T1D linked to genes with highly up-
regulated expression including HLA-A (Fig. 4F), as well as CD74,
GADI, IL15, and STAT1/4. In other cases, we observed epigenomic
changes in p cells that may precede changes in expression of cognate
target genes. For example, a cRE upstream of JAPP had reduced ac-
cessibility in early T1D, although IAPP itself only had a significant
decrease in expression in longer-duration T1D.

Given pathways and transcriptional regulators with altered cell
type activity in TI1D progression, we determined whether any
changes before T1D onset showed evidence for a role in genetic risk
of T1D. We tested for enrichment of cREs linked to genes in each
pathway for T1D-associated variants genome-wide (excluding the
MHC locus) using fgwas (see Materials and Methods) (5, 37). In
cells, several pathways altered in ND AAB™ were enriched for T1D-
associated variants including antigen processing and presentation
(log enrich = 4.48), class II MHC antigen presentation (log en-
rich = 4.74), and interferon signaling (log enrich = 6.00) as well as
several extracellular interaction-related processes (focal adhesion

Melton et al., Sci. Adv. 11, eady0080 (2025) 10 September 2025

and laminin interactions) and GPCR signaling (Fig. 4G). By com-
parison, multiple other pathways previously implicated in driving
T1D risk in f cells, such as apoptosis, autophagy, mitophagy, and
senescence, showed limited to no enrichment (Fig. 4G). Among
other cell types, we found evidence for enrichment of immune, me-
tabolism, and transcription-related pathways in high-enzyme as
well as basal acinar cells (fig. S13).

We further identified specific T1D risk loci that may alter regula-
tory activity of disease-enriched pathways in key cell types such as
B cells, T cells, and other immune populations and exocrine cells
during T1D progression. We identified candidate causal variants at
known T1D loci by overlapping cREs altered in T1D progression with
published fine-mapping data (5). In f cells, multiple candidate causal
variants at the IRFI locus overlapped cREs with increased activity in
T1D including at the promoter and downstream of IRF1 (Fig. 4H and
table S12). There was increased p cell expression of IRFI through
stages of T1D progression, and IRFI is a driver of f cell interferon
responses, which is a pathway broadly enriched for T1D-associated
variants (Fig. 4H). Conversely, at the STAT4 locus, we identified cREs
with increased activity in B cells as well as T cells, although candidate
causal variants for T1D at the STAT4 locus only overlapped cREs ac-
tive in T cells (Fig. 4I). This finding supports that while increased
STAT4 activity in P cells is observed in T1D, the STAT4 locus more
likely affects T1D risk through altered T cell function.

Proinflammatory cytokine exposure has been used as a model to
study genetic risk of T1D in p cells (18, 38), but the extent to which
cytokine-induced changes in f cells captures transcriptional regula-
tors and sites of T1D risk in actual T1D progression is not well es-
tablished. Several TF motifs enriched in cytokine-responsive cCREs
mirrored those enriched in ¢cCREs up-regulated in T1D including
IRF and STAT TFs, while other TFs such as steroid hormones may
be more specific to T1D progression. We next compared the overlap
of T1D risk loci with cCREs altered in T1D progression and
cytokine-responsive cCREs from a prior study (38). Risk variants at
a subset of T1D loci overlapped both sets of cCREs, including the
IRFI locus. These results suggest that cytokine exposure partially
recapitulates epigenomic changes in f cells during T1D progression
and may help model disease mechanisms at specific loci. Together,
these results reveal transcriptional regulators and networks altered
in T1D progression, including those regulating pathways that likely
play a causal role in T1D such as antigen presentation, interferon
signaling, and extracellular interactions in f cells.

Changes in pancreatic cell-cell signaling in T1D progression
External signaling between cell types is a key driver of changes in cell
type-specific regulation and function, and therefore, we lastly identi-
fied cell-cell signaling interactions in the pancreas altered in T1D pro-
gression. We first inferred cell-cell interactions using snRNA-seq data
for 32 nondiabetes, ND AAB* (both single and multiple), and T1D
donors in nPOD using 1939 ligand-receptor (LR) pairs in CellChat
(see Materials and Methods) (39), which revealed 87,650 interactions
significant (FDR < 0.1) in at least one condition (table S13). Grouping
ligands into functional categories revealed classes of outgoing signals
preferentially produced by each cell type; for example, hormones,
neuropeptides, and cell adhesion molecules from endocrine cells and
enzymes from exocrine cells (fig. S14 and table S14).

We identified cell-cell interactions with changes in activity in
T1D progression using a permutation test and considered changes
significant at FDR < 0.1 (see Materials and Methods). Overall, there
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Fig. 5. Cell-cell signaling networks altered in T1D progression. (A) Summary of total interaction strength (top) and number of interactions (middle) for each pancre-
atic lineage in nondiabetes, ND AAB™ (both single and multiple), recent-onset T1D, and long-standing T1D using snRNA-seq from 32 donors (nPOD). Bar plot showing the
number of LR interactions per donor FOV in spatial slides, and error bars are SE (bottom). (B) Heatmap showing normalized interaction strength of signals for each cell
type among donors which were nondiabetes, ND AAB*, recent-onset T1D, and long-standing T1D. Stars represent significance of the difference in interaction strength in
each T1D state compared to nondiabetes. **FDR < 0.01 and *FDR < 0.05. (C) Difference in strength of interactions between p cells and other cell types and subtypes in
ND AAB™, recent-onset T1D, and long-duration T1D. **FDR < 0.01 and *FDR < 0.05. (D) Interaction strength of signals for each cell type summarized by functional catego-
ries. **FDR < 0.01 and *FDR<0.05. CAM, cell adhesion molecule. (E) Normalized interaction strength in recent-onset T1D and nondiabetes for ligands with significant
change in signal involving f cells. **FDR < 0.01 and *FDR < 0.05. (F) Heatmap per donor showing the interaction score of the top LR interactions from a likelihood ratio
test comparing ND and T1D donors. (G) Spatial plots of a representative FOV (T1D: top, ND: bottom) highlighting spots with an interaction between HLA-C and CD8A and
the cell types where this interaction occurs. (H) Volcano plot showing genes with up- and down-regulated expression in EndoC-BH1 after BMP5 treatment (left). Pathways
enriched in up- and down-regulated genes in BMP5 exposure (right). The experiment was performed using n = 6 biological replicates per treatment. MAPK, mitogen-
activated protein kinase. (I) Volcano plot showing genes with up- and down-regulated expression in EndoC-BH1 after progranulin (PGRN) treatment (left). Biological
pathways enriched in genes with up- and down-regulated expression after PGRN exposure (right). The experiment was performed using n = 3 biological replicates per
treatment. TCA, citric acid cycle.
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was a reduction in the number and strength of interactions in recent-
onset and long-standing T1D compared to nondiabetes, which was
largely driven by exocrine cells (Fig. 5A). In both ND AAB* and
recent-onset T1D, there was increased strength of interactions involv-
ing endocrine cells and other cell types, although the total number of
interactions was reduced (Fig. 5A). We further identified cell-cell in-
teractions among cells in spatial niches and determined changes in
T1D using spatial transcriptome profiles. We identified spatially coex-
pressed LR interactions by Moran’s bivariant extension in SpatialDM
(40) using LR pairs from CellChat (39). We compared the number of
detected interactions considering each FOV as technical replicates of
a donor and observed significant heterogeneity across donors and,
like dispersed cell data, fewer interactions in T1D compared to ND
donors (H statistic = 19.6, P = 0.0015) (Fig. 5A).

Among specific cell types, endocrine cells displayed significant in-
creases in both outgoing and incoming signaling in recent-onset T1D
(Fig. 5, B and C). We also observed significant increases in incoming
signaling to endothelial, ductal, and activated stellate cells, as well as
nominal changes in basal and high-enzyme acinar, immune, and stel-
late cells, in recent-onset T1D. Summarizing signaling by functional
category revealed broad classes of cell type-specific signals altered in
T1D; for example, p and other endocrine cells had increased signaling
from cell adhesion molecules, whereas T cells had increased antigen
presentation and interleukin signaling (Fig. 5D). We further exam-
ined changes in signaling between specific pairs of cell types in T1D
progression (table S15). Significant changes (FDR < 0.1) in recent-
onset T1D included increased incoming and outgoing signaling in-
volving B cells, including between f cells themselves (Fig. 5C), as
well as increased signaling for a cells, outgoing signaling from high-
enzyme acinar cells, and incoming signaling to endothelial cells.

Given the importance of external signaling to B cells in T1D, we
focused specifically on signals involving f cells. In recent-onset
T1D, autocrine/paracrine signals incoming to f cells with signifi-
cant changes in activity included cell adhesion molecules NRXN1,
CADM1, and NEGRI from all endocrine cell types and the secreted
factor BMP5 from p cells (Fig. 5E). In addition, high-enzyme acinar
cells had increased signaling of trypsinogen (Fig. 5E), and stellate
cells had increased signaling of ECM and cell adhesion molecules to
B cells. Among immune cells, signals with significant changes in sig-
naling to f cells included GZMA and CCL5 from T cells and VSIR,
PGRN, and LGALS9 from macrophages (Fig. 5E). In return, p cells
had increased signaling of IL7 and MHC class I genes HLA-A and
HLA-C to T cells, as well as increased signaling of BMP5, EFNAS5,
DLKI,and ANGPTL2 to macrophages. Notably, multiple B-immune
cell signals altered in a T1D map to T1D risk loci (e.g., DLK1, HLA-
A, HLA-C, and IL7R) (5).

We next identified differential interactions (P < 0.05) in spatial
profiles by performing a likelihood ratio test, which provided sup-
port for many T1D-associated interactions identified in dispersed
cell data. For example, interactions involving HLA class I (e.g.,
HLA-C), APP, SPP1, and BMP5, as well as ECM-related interac-
tions, were altered in T1D (Fig. 5, F and G). We also identified ad-
ditional interactions enriched in T1D donors, for example, between
migration inhibitory factor MIF and its transmembrane receptor
CD74, consistent with previous studies (41), and involving several
chemokines. Next, we identified spatially coexpressed LR pairs using
the Moran’s I score in Liana+ (32). We obtained the top interactions
associated with each niche using non-negative matrix factorization
(see Materials and Methods). In T1D, an interaction between APP
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and CD74 was enriched in the endocrine niche, where APP is in-
volved in inflammation and could promote immune responses in
T1D (fig. S15). Conversely, interactions involving INS, IGFIR, INSR,
and CALM]I, among others, were enriched in the endocrine niche
from nondisease donors (fig. S15).

Several ligands that signal to f cells in T1D progression includ-
ing BMP5 and PGRN have not been previously implicated in T1D,
and cellular responses to these ligands may contribute to changes in
gene activity observed in f cells in T1D. We thus determined the
effects of in vitro exposure to these ligands on gene expression using
the B cell model EndoC-BHI. Exposing f cells to BMP5 in culture
revealed 1926 genes with significant change (FDR < 0.1) in expres-
sion, where the most up-regulated genes were ID1-4 and SMADG6-7,
known targets of BMP that regulate proliferation and differentia-
tion, and the f cell identity gene MAFA (Fig. 5H and table S16).
More broadly, BMP5 exposure up-regulated pathways (FDR < 0.1)
related to TGF-p signaling, glycolysis, secretion, and lipid metabo-
lism and down-regulated pathways such as antigen presentation and
chemokine signaling (Fig. 5H). Second, PGRN encodes secreted
proteins produced by macrophages and ductal cells. Upon exposure
to granulin, 491 genes had a significant change (FDR < 0.1) in ex-
pression including up-regulation of f cell function and insulin se-
cretion genes MAFA, ISLI, SOX4, CRY2, and down-regulation of
apoptosis-related genes PEA15, PDCD5, and CCARI (Fig. 51 and
table S17). More broadly, granulin up-regulated cholesterol and
glycerolipid metabolism and down-regulated interleukin signaling
and inflammation, transcription and translation, and cell death.
Overall, these results support that both BMP5 and PGRN suppress
pathways up-regulated in f cells in T1D and therefore may play a
protective role in B cells during T1D progression. These results to-
gether reveal broad changes in predicted cell-cell signaling in T1D
progression most prominently among endocrine cells and niches
but also involving other cell types, including signals altered in T1D
that modulate T1D-relevant regulatory programs in p cells.

DISCUSSION

Single-cell and spatial profiling of human pancreas donors revealed
extensive changes in the abundance, regulation, and signaling of
specific cell types in T1D progression, including processes that play
a likely causal role in driving disease. In f cells, class I and class II
MHC antigen presentation and interferon signaling pathways, TF
regulators of these pathways, and cREs linked to genes in these path-
ways all had up-regulated activity in recent-onset T1D and ND
AAB*. Antigen presentation was altered as early as single ND AAB*
donors, suggesting that aberrant antigen presentation in f cells may
be an initial triggering event in T1D. A larger proportion of f cells
from ND AAB™* and T1D donors expressed antigen presentation
pathways, although whether subsets of these cells drive initiation or
exacerbation of immune responses requires further investigation.
Antigen presentation and interferon signaling pathways in p cells
were broadly enriched for T1D-associated variants, and specific risk
loci for TID were linked to key genes in these pathways such as
IRFI. In contrast, we found limited evidence that pathways directly
related to apoptosis, as well as other processes implicated in T1D in
B cells such as autophagy, senescence, and mitophagy, harbor T1D
risk and are thus more likely consequences of disease. It has been
long hypothesized that p cells affect genetic risk of T1D through
increased cell death (41-47). Our results support that § cells may
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primarily contribute to T1D risk via the initiation or exacerbation of
immune responses, which necessitates different cellular models and
phenotypic readouts to understand their role in disease.

In addition to shared pathways, gene activity in p cells and other
pancreatic cell types had distinct changes in ND AAB* compared to
recent-onset T1D, revealing that genomic profiles before T1D onset
are only partially intermediate to those in T1D. In addition, the lack
of individual genes with highly significant changes expression in
ND AAB™ suggests that changes at these stages are likely more sub-
tle, in contrast to previous reports (4). Several pathways in  cells
were altered specifically in single and multiple ND AAB* such as
heat shock response and ECM organization. Heat shock responses
are activated by a variety of stressors, promote antigen presenta-
tion in B cells, and can act as chaperones for antigens and thus may
plausibly contribute to the initiation of autoimmunity (48, 49). The
breakdown of ECM is also an important process in T1D, as both a
precursor to immune invasion and by affecting intrinsic B cell func-
tion (50). We observed a similar pattern of both shared and distinct
changes in the epigenome of § cells in ND AAB* compared to T1D,
including increased NEUROD1 activity and decreased SIX TF ac-
tivity. There were also shared and distinct features in T1D based on
the duration of disease; for example, a more pronounced reduction
in f cell function in long-standing T1D.

In contrast to p cells, changes in pathway activity in a cells were
largely restricted to multiple ND AAB+ and T1D, including anti-
gen presentation and interferon response pathways and transcrip-
tional regulators of these pathways. This supports that immune
responses are more pronounced within p cells compared to « cells
particularly in the early stages of T1D, which may reflect differ-
ences in immune targeting as well as the intrinsic properties of
each cell type. The latter is supported by in vitro studies showing
pronounced responses of B cells to external stressors (18). A previ-
ous study revealed changes in a cell function and gene expression
in single ND AAB?" using data from HPAP (51), although there
were overall few genes with altered expression which supports our
findings that genomic changes in a cells before T1D are likely sub-
tle. In addition, several TF families such as RFX and MEF2 had
different patterns of accessibility between a cells and f cells in
T1D, further highlighting the unique responses of each cell type
to disease. Conversely to o cells, 8 cells had altered activity of mul-
tiple stress and inflammatory response pathways both in single
and multiple ND AABY, as well as decreased abundance in T1D,
suggesting that they may play an as-of-yet unappreciated role in
T1D progression.

Given that we profiled pancreatic tissue samples and not purified
islets, our study was uniquely placed to reveal changes in the exo-
crine pancreas compared to previous single-cell studies (4, 15). We
identified multiple clusters of acinar and ductal cell types which had
distinct genomic profiles and may represent heterogeneous sub-
types of these cell types. In acinar cells, subclusters were broadly
related to enzyme production and signaling responses, and previous
reports highlighted similar heterogeneity in secretory and idling
acinar cells (52). Similar hormone-producing and signaling states
have been reported in endocrine cells (53) and thus may represent
a common property of secretory cells. Resolving exocrine subclus-
ters revealed genomic changes within specific exocrine subtypes
in T1D. Enzyme-high acinar and MUC5B" ductal cells were more
abundant in ND AAB* donors, and acinar subtypes had altered im-
mune signaling, metabolism, and transcriptional pathways, as well
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as increased signaling to p cells, in T1D progression. Specific path-
ways within acinar cells altered in T1D progression also harbored
T1D-associated variants, further supporting a role for exocrine pan-
creas in T1D risk (4, 5) and providing new in-roads to determine
how cellular processes in acinar cells contribute causally to T1D.

Signaling relationships between pancreatic cell types revealed in-
coming and outgoing external signals during progression to T1D.
Cell-cell signaling between immune and p cells highlighted known
signals in T1D (54, 55), as well as potential mechanisms of genes
implicated in T1D risk such as DLKI and IL7 (5). Additional signals
incoming to f cells in T1D such as BMP5 and PGRN have no prior
known role in disease. BMP5 has increased autocrine/paracrine sig-
naling in T1D and in vitro suppressed antigen presentation- and
chemokine-related genes and enhanced expression of several genes
linked to P cell proliferation and function. Other BMP proteins have
been shown to both enhance and inhibit f cell function, maturity, and
proliferation (56-58), where the direction of effect depends on the
level of BMP signaling. PGRN suppresses class I MHC expression and
T cell infiltration of ductal adenocarcinoma cells in the context of
pancreatic cancer and has been shown to promote proliferation in
mouse models of B cells (59, 60). Signaling pathways altered in T1D,
particularly those involved in T1D risk, may represent therapeutic ar-
eas for preserving f cell function to prevent or reverse T1D.

There were several limitations of the data and analyses in our
study to highlight. Current single-cell and spatial assays provide
sparse profiles per cell which can affect downstream analyses. For
example, although we used data integration methods designed to
overcome sparsity in spatial data (21I), there are still challenges in
annotating cell types and subtypes among cells with sparse profiles.
In addition, analyses such as differential expression, TF activity, and
cell-cell communication likely underrepresent true biological sig-
nals that are lowly expressed and have more limited detection in
single-cell and spatial assays. The data from single-cell and spatial
assays also represent a limited sample of the whole pancreas. For
example, our single-cell assays profiled the head of the pancreas, and
whether cell type-specific changes in T1D in this region reflect
those in the body and tail is unknown. Similarly, spatial assays pro-
filed FOV selected on the basis of specific criteria which limited our
ability to define changes in T1D more broadly across the pancreas.
Overcoming these limitations with current technology could consist
of repeated assays per donor covering many different regions and
FOV. Last, cell-cell interactions in our study represent predictions
based on gene expression, which may not necessarily reflect ligand
and receptor protein abundance nor capture direct LR interactions,
and additional experiments are needed to validate these interactions.

Last, one key area for future studies to address is the still rela-
tively limited profiling of donors across all dimensions of T1D
pathogenesis and progression. For example, we profiled few donors
from nPOD that were single ND AAB*, which prohibited under-
standing changes in nonendocrine cells in the earliest stages of dis-
ease initiation. In addition, while we grouped ND donors by the
number of autoantibodies, there is further granularity in how T1D
stages can be defined. For example, stage 2 of T1D is marked by both
multiple autoantibody positivity and reduced f cell function (61),
and refined characterization of T1D stages may help reveal drivers
of dysglycemia in T1D progression. The extent of differences in ge-
nomic profiles of heterogeneous subgroups of T1D, for example,
based on age of onset, HLA background, or other variables (62-64),
is also largely unknown. Continued collection of single-cell and
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spatial data from much larger sample sizes will be instrumental in
enabling all these analyses. Last, studies pairing pancreas data with
other T1D-relevant tissues from matched donors, for example, pan-
creatic lymph nodes, will help understand immune infiltration and
cross-tissue signaling in driving T1D in the pancreas.

In summary, our study revealed gene regulatory changes in pan-
creatic cell types in T1D progression and highlighted pathways, regu-
latory networks, and signals that may play a causal role in T1D;
efforts that inform both new directions for mechanistic studies and
targets for therapies to prevent or reverse T1D. We provide these data
and maps in visualization tools at http://t1d-pancreas.isletgenomics.
org to further enhance their utility to the research community. More
broadly, our study highlights the utility of single-cell multiomic and
spatial analysis to reveal insight into cellular processes underlying
progression to complex disease.

MATERIALS AND METHODS

Sample selection

Whole pancreas tissue was obtained from the nPOD biorepository
according to federal guidelines with informed consent obtained
from each donor’s legal representative. Studies were considered ex-
empt and approved by the Institutional Review Board of the Univer-
sity of California San Diego. We selected 7 T1D donors with more
recent onset (<1 year from diagnosis) and 5 T1D donors with longer
duration (>5 years from diagnosis), along with 11 age- and sex-
matched ND individuals. We also selected nine ND donors with
T1D autoantibodies (ND TD AAB™), most of which had multiple
antibodies although one donor was single GAD™*. In total, 32 donors
were obtained for genomic profiling. For all 32 donors, frozen tissue
samples were obtained from head of the pancreas (table S1).

Single-cell assays

Tissue homogenization

For each sample, we homogenized roughly 40 mg of flash-frozen pan-
creas tissue using mortar and pestle on liquid nitrogen, and ground
tissue was used as input for the different single-nucleus assays.
Generation of snATAC-seq data

Ground pancreas tissue was resuspended in 1 ml of nuclei per-
meabilization buffer [10 mM tris-HCI (pH 7.5), 10 mM NaCl, 3 mM
MgCl,, 0.1% Tween 20 (Sigma-Aldrich), 0.1% IGEPAL-CA630 (Sigma-
Aldrich), 0.01% digitonin (Promega), and 1% fatty acid—free bovine
serum albumin (BSA) (Proliant, 68700) in molecular biology-grade
water]. Nuclei suspension was filtered with a 30-pm filter (CellTrics,
Sysmex) and then incubated for 5 min at 4°C on a rotator. Nuclei
were pelleted with a swinging bucket centrifuge (500, 5 min, 4°C;
Eppendorf, 5920 R) and washed with 1 ml of wash buffer [10 mM
tris-HCI (pH 7.5), 10 mM NaCl, 3 mM MgCl,, 0.1% Tween 20, and
1% BSA (Proliant, 68700) in molecular biology-grade water]. Nuclei
were pelleted and resuspended in 10 pl of 1X nuclei buffer (10x
Genomics). Nuclei were counted using a hemocytometer, and 15,360
nuclei were used for tagmentation. snATAC-seq libraries were gen-
erated using the Chromium Single Cell ATAC Library & Gel Bead
Kit v1.1 (10x Genomics, 1000175), Chromium Chip H Single Cell
ATAC Kit (10x Genomics, 1000161), and indexes (Single Index
Kit N Set A, 1000212) following the manufacturer’s instructions. Final
libraries were quantified using a Qubit fluorometer (Life Technolo-
gies), and the nucleosomal pattern was verified using a TapeStation
(High Sensitivity D1000, Agilent). Libraries were sequenced on
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NextSeq 500, HiSeq 4000, and NovaSeq 6000 sequencers (Illumina)
with the following read lengths (Read1 4 Index1 + Index2 + Read2):
50 + 8 + 16 + 50. Libraries were sequenced to an average depth of
333M reads (table S1).

Generation of snRNA-seq data

Ground pancreas tissue was suspended in 500 pl of nuclei buffer:
0.1% Triton X-100 (Sigma-Aldrich, T8787), 1x EDTA free protease
inhibitor (Roche or Pierce), 1 mM dithiothreitol (DTT), and ribo-
nuclease (RNase) inhibitor (0.2 U/pl; Promega, N211B), and 2%
BSA (Sigma-Aldrich, SRE0036) in phosphate-buffered saline (PBS).
Sample was incubated on a rotator for 5 min at 4°C and then pel-
leted with a swinging bucket centrifuge (500¢, 5 min, 4°C; 5920 R,
Eppendorf). The supernatant was removed, and the pellet was re-
suspended in 400 pl of sort buffer [1 mM EDTA and RNase inhibi-
tor (0.2 U/pl) in 2% BSA (Sigma-Aldrich, SRE0036) in PBS] and
stained with DRAQ7 (1:100; Cell Signaling Technology, 7406). A
total of 75,000 nuclei were sorted using an SH800 sorter (Sony) into
50 pl of collection buffer [RNase inhibitor (1 U/pl) and 5% BSA
(Sigma-Aldrich, SRE0036) in PBS]. Sorted nuclei were then centri-
fuged at 1000g for 15 min (Eppendorf, 5920R; 4°C, ramp speed of
3/3), and the supernatant was removed. Nuclei were resuspended in
18 to 25 pl of reaction buffer [RNase inhibitor (0.2 U/ul) and 1%
BSA (Sigma-Aldrich, SRE0036) in PBS] and counted using a hemo-
cytometer. A total of 16,500 nuclei were loaded onto a Chromium
controller (10x Genomics). Libraries were generated using the 10x
Genomics, Chromium Next GEM Single Cell 3" GEM, Library &
Gel Bead Kit v3.1 (10x Genomics, 1000121), Chromium Next GEM
Chip G Single Cell Kit (10x Genomics, 1000120), and indexes
(Single Index Kit T Set A, 10x Genomics, 1000213 or Dual Index Kit
TT Set A, 10x Genomics, 1000215) according to the manufacturer’s
specifications. cDNA was amplified for 12 polymerase chain reac-
tion (PCR) cycles. SPRISelect reagent (Beckman Coulter) was used
for size selection and cleanup steps. Final library concentration
was assessed by the Qubit dsSDNA HS Assay Kit (Thermo Fisher
Scientific), and fragment size was checked using a TapeStation
(High Sensitivity D1000, Agilent). Libraries were sequenced using a
NextSeq 500 and a Novaseq6000 (Illumina) with the following read
lengths (Read1 + Index1 + Index2 + Read2): 28 + 8 + 0 + 90 (single
index) or 28 + 10 + 10 + 90 (dual index). Libraries were sequenced
to an average depth of 206M reads and captured 1580 genes per
nucleus (table S1).

Generation of joint single-nucleus RNA and ATAC-seq

data (Multiome)

Ground tissue was resuspended in 1 ml of wash buffer [10 mM tris-
HCI (pH 7.4), 10 mM NaCl, 3 mM MgCl, 0.1% Tween 20 (Sigma-
Aldrich), 1% fatty acid-free BSA (Proliant, 68700), 1 mM DTT
(Sigma-Aldrich), 1X protease inhibitors (Thermo Fisher Scientific,
PIA32965), and RNasin (1 U pl_l; Promega, N2515) in molecular
biology-grade water]. Nuclei suspension was filtered with a 30-pm
filter (CellTrics, Sysmex) and pelleted with a swinging bucket centri-
fuge (500g, 5 min, 4°C; Eppendorf, 5920 R). Nuclei were resuspended
in 400 pl of sort buffer [1% fatty acid-free BSA, 1X protease inhibi-
tors (Thermo Fisher Scientific, PIA32965), and RNasin (1 U pl_l;
Promega, N2515) in PBS] and stained with 7-aminoactinomycin D
(1 pM; Thermo Fisher Scientific, A1310). A total of 120,000 nuclei
were sorted using an SH800 sorter (Sony) into 87.5 ul of collection
buffer [RNasin (1 U pl_l; Promega, N2515) and 5% fatty acid—free
BSA (Proliant, 68700) in PBS]. Nuclei suspension was mixed in
a ratio of 4:1 with 5X permeabilization buffer [50 mM tris-HCI
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(pH 7.4), 50 mM NaCl, 15 mM MgCl,, 0.5% Tween 20 (Sigma-
Aldrich), 0.5% IGEPAL-CA630 (Sigma-Aldrich), 0.05% digitonin
(Promega), 5% fatty acid-free BSA (Proliant, 68700), 5 mM DTT
(Sigma-Aldrich), 5X protease inhibitors (Thermo Fisher Scientific,
PIA32965), and RNasin (1 U pl™'; Promega, N2515) in molecular
biology-grade water] and incubated on ice for 1 min before pellet-
ing with a swinging bucket centrifuge (500g, 5 min, 4°C; Eppendorf,
5920 R). The supernatant was gently removed, and ~10 pl was left
behind to increase nuclei recovery. A total of 650 pl of wash buffer
[10 mM tris-HCI (pH 7.4), 10 mM NaCl, 3 mM MgCl,, 0.1% Tween
20 (Sigma-Aldrich), 1% fatty acid—free BSA (Proliant, 68700), 1 mM
DTT (Sigma-Aldrich), 1X protease inhibitors (Thermo Fisher Sci-
entific, PIA32965), and RNasin (1 U pl_l; Promega, N2515) in
molecular biology-grade water] was added with minimal dis-
turbance of the pellet, and samples were centrifuged again with a
swinging bucket centrifuge (500g, 5 min, 4°C; Eppendorf, 5920 R).
The supernatant was gently removed without disturbing the pellet,
leaving ~2 to 3 pl behind. Approximately 7 to 10 pl of 1X nuclei
buffer (10x Genomics) were added, and nuclei were gently resus-
pended. Nuclei were counted using a hemocytometer, and 18,300
nuclei were used as input for tagmentation. Single-cell multiome
ATAC and gene expression libraries were generated following the
manufacturer’s instructions (Chromium Next GEM Single Cell
Multiome ATAC + Gene Expression Reagent Bundle, 10x Genom-
ics, 1000283; Chromium Next GEM Chip J Single Cell Kit, 10x Ge-
nomics, 1000234; Dual Index Kit TT Set A, 10x Genomics, 1000215;
Single Index Kit N Set A, 10x Genomics, 1000212) with the follow-
ing PCR cycles: 7 cycles for preamplification, 8 cycles for ATAC in-
dex PCR, 7 cycles for cDNA amplification, and 12 cycles for RNA
index PCR. Final libraries were quantified using a Qubit fluorome-
ter (Life Technologies), and the size distribution was checked using
a TapeStation (High Sensitivity D1000, Agilent). Libraries were se-
quenced on NextSeq 500 and NovaSeq 6000 sequencers (Illumina) with
the following read lengths (Readl + Index1 + Index2 + Read2): ATAC
(NovaSeq 6000), 50 + 8 + 24 + 50; ATAC (NextSeq 500 with custom
recipe), 50 + 8 4+ 16 + 50; RNA (NextSeq 500, NovaSeq 6000),
28 + 10 + 10 + 90. Libraries were sequenced to an average depth
of 104M reads for RNA-seq and 247M reads for ATAC-seq and cap-
tured 1789 genes per nucleus (table S1).
Quality control and filtering
Single nuclei ATAC data were processed and aligned to reference
genome hg38, and duplicate reads were removed using CellRanger
ATAC (v1.1.0). Chromatin accessibility for each sample was quanti-
fied in 5-kb genome windows as previously described (53). Nuclei
with less than 1000 unique ATAC-seq fragments were removed.
Initial quality control was performed to retain cells in each sample
using the following metrics unique usable reads > 5000, fraction pro-
moters used > 0.01, and transcription start site (TSS enrichment)
(TSSe) > 0.3 using scanPy v1.8.0. Doublets were removed using
Amulet v1.0 per sample (65). After quality control, snATAC-seq pro-
files from two donors (6366 and 6459) were excluded from further
analysis due to low barcode numbers and poor clustering.
Single-nuclei RNA samples were processed using CellRanger
(v6.0.1) with reference genome hg38 (66). Individual samples were
processed for quality initially by removing nuclei with less than 500
expressed genes. Doublets were detected for each sample using
DoubletFinder (v2.0.3) using an expected doublet rate of 4% for
all samples (67). In effort to reduce ambient RNA contamination
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largely driven by acinar cells, we used SoupX (v1.6.2) and selected
acinar marker genes, REGIA and PRSSI, to estimate contamination
rates (68). Gene expression count matrices were then corrected for
this predicted contamination, and these correct counts were used
for both clustering and downstream analysis.

Paired multiome data were processed and aligned, and multiplet
reads were removed using cellranger arc (v2.0.0) with the reference
genome hg38. Individual sample quality control was done using
both modalities to remove low-quality nuclei without a minimum of
500 expressed genes and 1000 ATAC-seq fragments. Ambient RNA
contamination was removed using SoupX (v1.6.2) using the same
parameters as previously described. Doublets were detected and re-
moved for both modalities using DoubletFinder (v2.0.3) and Amu-
let (v1.0), with the same parameters as above for single modality
data (65, 67).

Generation of spatial transcriptomic data

Pancreatic tissue from six nPOD organ donors—three with T1D (6228,
6247, and 6456) and three ND (6431, 6339, and 6229), matched by
age and sex—was selected for spatial transcriptomic profiling on
the CosMx platform (NanoString, Seattle, WA). For each donor, five
consecutive Formalin-Fixed, Paraffin-Embedded (FFPE) tissue sec-
tions from the pancreatic body region were cut at a thickness of
4 pm. Sections #1, #2, #4, and #5 were mounted on the back of VWR
Superfrost Plus Micro Slides, centered within the scanning area. Af-
ter sectioning, the slides were air-dried overnight at room tempera-
ture, sealed, and immediately shipped with desiccant and ice packs
to the NanoString facility (Seattle, Washington), where they were
processed within 2 weeks of receipt. Section #3 was triple-stained
for CD3, insulin, and glucagon using chromogen-based immuno-
histochemical staining using the Mach2 Double Stain 1/Mach2
Double Stain 2 HRP-AP Polymer Detection Kit according to the
manufacturer’s instructions (Biocare Medical, Pacheco, CA), and
chromogens used included Betazoid Diaminobenzidine (DAB)
(CD3), Warp Red (insulin), and Ferangi Blue (glucagon; all from
Biocare Medical). Slides were then counterstained with hematoxylin.
After staining, the slide was digitized at X20 magnification using an
Aperio CS2 slide scanner (Leica Biosystems Inc., Wetzlar, Germany),
and this image served as a reference for FOV selection during
CosMx data processing. The FOV's were selected by prioritizing spe-
cific features such as insulitic islets, islets with few insulin-positive
cells, insulin-negative islets, and areas of inflammation in acinar
tissue. The gene panel used for spatial imaging included 1010 genes,
including 1000 genes from the Human Universal Cell Characteriza-
tion RNA Panel and 10 additional custom genes selected for this
project. The imaging experiments using CosMX were performed at
NanoString (Seattle, WA). Cell segmentation was performed by
NanoString using Giotto (69), which included using immunofluores-
cence for glucagon to mark islets, CD3 or CD45 to mark immune cells,
and PanCK for ductal cells + 4',6-diamidino-2-phenylindole.
Quality control and transcriptomic clustering of

segmented cells

For downstream analysis of spatial transcriptomes, we used the Python
toolkits Scanpy (70) and Squidpy (22). For each slide, we imported ma-
trices containing the gene expression, metadata, and positions of seg-
mented cells. We defined a unique cell name and created a merged
anndata object with data from all the slides. We adopted a standard
filtering strategy, removing cells with less than 10 detected genes and
removing genes detected in less than 300 cells. We then normalized the
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counts per cell, such that every cell has the same total count after nor-
malization (1 X 10%), and we log-transformed the counts.

Clustering

Gene expression

After individual sample quality control, high-quality barcodes from
single modality snRNA-seq and the RNA modality of our multiome
data were clustered for 40 samples (32 snRNA and 8 snRNA multi-
ome) using Seurat (v4.3) (71). Quality control metrics such as high
mitochondrial percentage (>1%), high number of genes detected
(>4000 genes), and high number of RNA counts (>7500) were used
to remove low-quality barcodes. A combined clustering was created
using principal components (PCs) from gene expression. We used
Harmony (20) (v1.0.3) to correct the PCs for batch effects across
samples, sex, and sequencing technology. Clusters were removed
with low number of cells (<10 cells) and with quality metrics such
as the number of detected genes and RNA counts lower than other
clusters. Additional doublet cells were removed on the basis of the
expression of 24 canonical markers from unrelated cell types. The
final clustering resolution of 0.5 was determined empirically based
on maximizing the recovery of known pancreatic cell types and sub-
types as distinct clusters.

We leveraged gene expression profiles specific to the wide array
of pancreatic cells from previous work to broadly label each snRNA-
seq cluster as one of the following types: a (GCG), p (INS), endothe-
lial (PLVAP), lymphatic endothelial (FLT4), ductal (CFTR), acinar
(REGIA), stellate (PDGFRB), and variety of immune cells including
T cells (CD3D), macrophages (C1QC), and mast cells (KIT) (table S2).
Using cell type markers previously used to annotate cell type and sub-
type populations such as activated stellate (COL6A3) and quiescent
stellate (SPARCL1), we were able to annotate these clusters. We iden-
tified previously characterized ductal subtype MUCS5b ductal cells
from the presence of known marker genes such as MUC5B, TIFF3,
and CRISP3 (52).

Marker genes of acinar subclusters were identified using DESeq2
(72) (v1.34), followed by gene set enrichment of subcluster marker
genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) (73-75)
and REACTOME (76) pathways using the fgsea package (v1.20) in
R. Briefly, this was done by first creating two sets of sample pseudo-
bulk count matrices of SoupX corrected gene expression for each cell
type, one set which has the summation of count per sample per gene
for that cell type and another with the summation of counts per sam-
ple per gene for all other cell types. We then performed DESeq for
each cell type by concatenating these two matrices as our input and
using cell type as the outcome variable with sample ID as a covariate.
Accessible chromatin
We first merged 40 samples (32 snATAC samples and 8 multiome
snATAC samples) from 29 donors using read counts in 5-kb win-
dows using Signac (77) (v1.9.0). We then performed latent semantic
indexing of the combined snATAC data using Signac (77). Harmony
(v1.0.3) was used to correct for batch effects using the covariates
sample, sex, and sequencing technology (20). Clustering was per-
formed on the batch-corrected PCs using graph-based Leiden clus-
tering. We removed nuclei with a TSSe score < 2 and removed
clusters with less than 10 cells or with overall lower-quality metrics,
such as fraction of read in peaks, number of ATAC fragments per
barcode, and fraction of reads in promoters compared to other clus-
ters. After an initial window-based clustering, we called peaks using
MACS2 (78) (v2.2.7.1) (parameters: -q 0.05 --nomodel --keep-dup
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all) on each cluster and then repeated the entire clustering process
using a consensus set of peaks merged across clusters. Additional
doublets were manually removed based off the presence of promoter
accessibility of other cell type marker genes. This was done using
nine known marker genes (INS, GCG, REGIA, REG2B, CTRB2,
PRSS1, PRSS2, CFTR, and CIQC); promoter region was considered
2 kb upstream of the TSS. Data were clustered again after the re-
moval of doublets. The clustering resolution of 0.5 was defined em-
pirically based on maximizing the recovery of known pancreatic cell
types and subtypes as distinct clusters. To label cell types, we first
assigned gene names to peaks that overlapped 2 kb upstream of TSS
and gene body using the gene activity function in Signac and then
determined gene activity in established marker genes for each cell
type and subtype.

We next performed label transfer on the snATAC object using
our gene expression map as reference and the peak-based chromatin
data as query in Signac. Because of the size of the chromatin data,
before label transfer, we randomly split the barcodes in the object
into smaller subsets. We used the 2k most highly variable features
from the gene expression map to derive transfer anchors using ca-
nonical correlation analysis. These anchors were then used to trans-
fer to the chromatin map using the TransferData function in Seurat
(v4.3). After each subset object was done with label transfer, we
merged the objects and reclustered all the chromatin data together
using the same methods described above. Last, we removed cells
with low prediction scores (max.predicted.score < 0.5), and all cells
passing this threshold were labeled with the predicted cell type an-
notation. For acinar cells, we summed the prediction scores of all
acinar subtypes then filtered by a combined acinar max.predicted.
score < 0.5.

To determine the accuracy of label transfer, we used single-cell
multiome data where the identity of the accessible chromatin profile
is known from the paired gene expression profile. Since the gene ex-
pression and chromatin profiles for these nuclei were analyzed sepa-
rately, we could use them as an independent check. We identified
multiome barcodes present in both chromatin and gene expression
maps and then calculated the percentage of accessible chromatin
barcodes with matching cell type assignments in label transfer and
from the paired gene expression profile. Because of the limited
transferring of subtypes in the chromatin modality, we calculated a
percentage at both the cell type and subtype levels.

Clustering of segmented cells and cell type annotation in
spatial data

To cluster the segmented cells, we first integrated the samples us-
ing scVIv1.1.2 (79). We performed integration by condition using
the slide as a categorical covariate. We then used the latent repre-
sentation to create a shared nearest-neighbor graph and compute
Uniform Manifold Approximation and Projection (UMAP) for two-
dimensional visualization. We performed hierarchical clustering on
the sc VI latent space at resolutions of 0.5 and 0.7, and we identified
15 and 16 transcriptomic clusters for ND and T1D, respectively.
To annotate cell types, we identified marker genes enriched in each
cluster for knowledge-based cell type annotation. We detected en-
docrine cells by hormone expression, f (INS and IAPP) and a (GCG
and TTR); we also identified exocrine cells positively expressing epi-
thelial marker EPCAM, ductal (S§OX9 and KRT19), and acinar (EGF,
DLLI, and JAGI); we further annotated endothelial cells (PECAMI
and VWF), fibroblasts (VIM and COL1A1), immune cells (CD4 and
CD8A), and mast cells (CPA3 and TPSABI).
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Cell type label transfer from reference snRNA-seq data

To achieve a finer annotation on the spatial context, we transferred
the cell type labels from the dissociated reference to the spatial data
using spatial mapping function from moscot v0.3.5 (21). First,
we performed pseudo-bulking of dissociated data using decoupler
v1.6.0 (28). We found the optimal combination of parameters for
the spatial mapping task by hyperparameter tunning per FOV, and
we used cosine distance between the modalities. For the annotation
mapping, we selected the label of the annotated cell with the highest
matching probability.

Identification of spatial cellular neighborhoods

Cellular neighborhoods in the spatial context were computed per
FOV using the squidpy (22) function spatial_neighbors, where we
used generic coordinates and considered 30 nearest neighbors.
Identification and annotation of multicellular spatial niches

To identify multicellular niches, we computed the covet represen-
tation implemented in envi v0.3.0 (23) per FOV. We used the
default parameters, which included 64 genes to represent the cova-
riance matrix. We then created a shared nearest-neighbor graph us-
ing the covet representation and performed unsupervised Leiden
clustering with a resolution of 0.2. To annotate the clusters, we
evaluated the relative cell type abundance in each group per FOV
and performed hierarchical clustering. We aggregated “acinar bas-
al,” “acinar high-enzyme (enz),” “acinar signal,” and “acinar signal-
ing (sig)/differentiation (diff)” subtypes in the acinar niche, “ductal”
and “MUCS5b ductal” subtypes in the ductal niche, “a,” “B,” and
“d” subtypes in the endocrine niche, and “act stellate,” “Q. stellate,”
“endothelial,” “macrophage,” and “T cells” in the connective
tissue niche.

Downstream analysis

Final peak calling and signal tracks

Cell type-specific set of chromatin peaks were derived using MACS2
(78) v2.2.7.1 on the final cell type annotations of our chromatin map
using the following parameters -q 0.05 --nomodel --keep-dup all.
These peak calls were used to accessible chromatin signal tracks in
UCSC genome browser (80).

Marker CREs

Cell type-specific cREs were derived for each cell type and subtype.
We first created a set of union peaks across the whole dataset. This
was achieved by limiting peak size for all called peaks to 300 bp by
centering any peaks larger than 300 bp at their summit and extend-
ing coordinates 150 bp in either direction. We grouped peaks based
on overlap to create clusters of peaks. Within each cluster, the peak
with the highest read count at its summit was identified as the refer-
ence peak for the region. We then generated a list of peaks that did
not overlap any of the reference peaks and iteratively identified ad-
ditional reference peaks again until no peaks remained.

We used this set of union peaks to calculate two sets of sample
level pseudo-bulk matrices per cell type as follows: First, we aggre-
gated the number of ATAC fragments within peaks per donor per
cell type and then, for each cell type, created a second matrix with
the summation of fragments from all other cell types. Normalized
count matrices were generated by dividing the number of fragments
within a peak by the total number of fragments for that sample in
that cell type and then multiplying by a scaling factor (1 x 10°). Cell
type-specific regulatory elements were then determined for each cell
type by comparing the normalized count matrix for a given cell type
with the normalized count matrix of all other cell types summed
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together. To test enrichment of a given peak for each cell type, we
performed a logistic regression model using sample ID as a covari-
ate and corrected for multiple tests using the Benjamini-Hochberg
correction method (FDR < 0.1). We limited the marker cREs per
cell type to the top 5000 cREs ranked by fold change. We performed
motif enrichment of marker cREs for each cell type compared to a
background of all cREs in the cell type using HOMER (81) v5.0.1
and retained enriched motifs at FDR < 0.01. We also tested for gene
set enrichment in marker cREs using GREAT (82) (v4.0.4).
Normalized gene expression levels

We derived normalized gene expression profiles for each cell type by
creating aggregate count matrices by donor per cell type. Counts
were normalized per million (CPM) by dividing the counts for each
gene by the total counts per donor and multiplying by 1 x 10°.

Cell type proportion changes

We first scaled the counts for each cell type in a sample to 10,000
cells per sample. For several cell types, we excluded samples with
abnormally high counts (6278 for p and &; 6393 for T cells and B
cells; 6375 for MUC5b™ ductal cells). We then created a linear mod-
el of the log-transformed counts as a function of disease status (ND,
ND AABY, recent-onset T1D, and long-standing T1D), age, sex, and
body mass index (BMI), as well as a linear model without disease
status. We performed comparison of the models using a likelihood
ratio test in package Imtest in R and considered P values from the
test significant at 0.05.

Differential gene expression

To determine disease-related changes in gene expression, we per-
formed differential analysis using DESeq2 (72) v1.34. Using snRNA-
seq data, we derived pseudo-bulk count matrices for each cell type
by aggregating all barcodes of a donor for each gene on a per cell type
basis. We created the count matrices from the SoupX (68)-corrected
expression counts and then rounded counts in the matrix to the
nearest integer. We included sex, age, and BMI, as well as proportion
of P cells, as covariates in the model. For endocrine cell types, we
included expression counts from scRNA-seq of 48 donors from the
HPAP consortium (31) derived from a previously created single-cell
map (15) and included an additional covariate in the model for
cohort. For a given cell type, we only used samples with at least
20 cells, except for long-standing T1D f cells where we included all
samples, and donor 6234 was excluded from analyses due to aber-
rant numbers of endocrine cells. For nonendocrine cell types, genes
were tested if detected in at least two samples per condition and
had >10 counts across all tested conditions, while for endocrine cell
types, genes were tested if present in at least half of the donors per
condition. We further excluded genes for each cell type that are es-
tablished marker genes for a different cell type. Multiple test correc-
tion was performed using the Benjamini-Hochberg correction, and
we considered genes significant at FDR < 0.1.

Differential cRE accessibility

Using cell type-specific peak calls from MACS2 (78) v2.2.7.1 per
cell type, we created peak by barcode fragment count matrices all
snATAC-seq donors for each disease condition. Peaks with low
accessibility were removed from analysis, as determined by the av-
erage accessibility of peak across all samples less than median acces-
sibility of all peaks across all samples. In addition, for each cell type,
samples were removed with <10 barcodes in that cell type. Last, cell
types with less than 10 cells were not used in this analysis. We tested
each disease condition against ND using glmer (83) in R using the
logistic regression model [peak accessibility ~ disease + scale (FRiP) +
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scale (count) + (1|sample)] using a binary peak count matrix. We
used the fixed covariates of fraction reads in peak (FRiP) and ATAC
fragment count (count) to account for sequencing depth variation
and used sample ID as a random effect to adjust for sample varia-
tion. We considered sample as a random effect to mediate pseudo-
replication of barcodes from the same donors. Cell types with more
than 30,000 cells were subsampled down to 10,000 for this analysis.
Fold change was calculated by dividing the average accessibility of
peaks between conditions. Multiple test correction was performed
using the Benjamini-Hochberg method, and we considered cREs
significant at FDR < 0.1.

Pathway enrichment during T1D using gene expression input
To test for pathways enriched by disease, we performed gene set
enrichment analysis (GSEA) (84, 85). Using the results from our
differential expression analysis, input genes were ranked using the
following formula [—log;¢(P value) X log, fold change], and the
fgsea package (v1.20) in R was run using both KEGG (73-75)
and REACTOME (86-92) databases [parameters: eps = 0.0, min-
Size = 0, maxSize = 1000]. Pathways were considered significant
using FDR < 0.1.

Motif enrichment

We used chromVAR (26) to measure z-scored motif accessibility in
snATAC-seq data. To do so, we prepared peak count data for input to
chromVAR by converting the fixed peak sparse count matrix into a
SummarizedExperiment and estimated Guanine/Cytosine (GC) con-
tent bias using chromVAR built in method (26). Human TF motifs
from JASPAR 2022 (93) were accessed using the JASPAR2022 Bio-
conductor package in R, and motifs were annotated to peaks using
motifmatchr (v.1.21.0) in R. The SummarizedExperiment and motif
annotations were used as inputs into chromVAR computeDeviations
function to derive GC bias—corrected motif accessibility z-scores.
Motifs enriched in cell types

TF motifs were filtered for those with an accessibility of >1.2 based on
chromVAR built-in computeVariability function. Cell types with <50
cells were excluded. Cell type motif accessibility z-scores were averaged
and plotted with pheatmap (v1.0.13) and RColorBrewer (v1.1-3) in R.
Motifs enriched in acinar subtypes

After subsetting the motif matrix to barcodes from acinar cells, we
averaged motif accessibility of each acinar subtype per sample and
then tested each motif using a two-way analysis of variance (ANOVA)
across acinar subtypes also including a donor variable. We then cal-
culated FDR from the P values using the g value package in R. To
identify which specific subtype a significant motif was most en-
riched in, motifs were further tested using a two-way ANOVA com-
paring motif accessibility within the subtype to the average motif
accessibility for the other acinar subtypes together also including a
donor variable. P values for each motif were corrected by the Holm’s
method. Motifs were annotated to subclusters based on being sig-
nificant in the pan-subtype ANOVA, significant in the post hoc
ANOVA with Holm’s correction, and having the highest average de-
viation score in the given cluster.

Motif differential accessibility

To identify motifs with differential accessibility across disease
states, we used a linear mixed model using the ImerTest (v3.1-3)
package in R. We identified motifs in a cell type enriched in cREs
with altered activity in ND AAB* or T1D. For these motifs, acces-
sibility was modeled by barcode using encoded variables to contrast
autoantibody, recent-onset and long-duration T1D against ND
controls. Scaled fractions of reads in peaks and scaled number of
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counts were used as fixed effect covariates, and a random effect
for sample was used to account for pseudo-replication. Samples
with <10 cells in the cell type were excluded, and cell types with
<50 cells or disease states with <20 cells and three samples were
not tested. We obtained P values from the resulting models. Motif
accessibility was averaged by sample and disease state to make
box plots. Motif accessibility per condition was generated by av-
eraging sample average motif accessibility, and volcano plots were
generated by comparing difference in motif accessibility versus
—logio q values, with a difference threshold of 0.25 and g value of
0.05 for dashed lines and coloring and labeling of samples.

Motif enrichment in differential accessible CREs

To identify TF motifs enriched in cRE differential accessibility in each
cell type, we used HOMER (81) (v5.0.1). For each cell type, we identi-
fied cREs with nominal association (uncorrected P < 0.05) and split
cREs by fold change as input and user HOMER function findMotifs-
Genome with a background of all cREs for the cell type with a size
parameter of 200 and a masked version of the human genome
hg38. Multiple test correction was done using the Benjamini-Hochberg
method, and significant motifs were considered at FDR < 0.1.

ABC analysis

To link cREs to target genes, we used ABC (94) v0.2. This was
done by first creating .bam files for each cell containing only bar-
codes from the accessible chromatin map. Since the HiC reference
panel used was in hgl9 genome build, cell type bams and peaks
were converted to hgl9 using CrossMap (95) v0.6.3, and we called
peaks for each cell type with MACS2 v2.2.7.1 using this genome
build. To further improve enhancer activity prediction, we used
publicly available Histone H3 lysine 27 acetylation (H3K27ac)
chromatin immunoprecipitation sequencing data for acinar, duc-
tal, a, B, and d cells (96). We predicted candidate regions and
enhancer activity for each cell type using the following flags:
--peakExtendFromSummit 250, --nStrongestPeaks 150000 and a
list of genes with nonzero expression (CPM > 0) in that cell type.
After ABC analysis, links were converted back to hg38 using
CrossMap. We identified genes with cell type-specific cRE link
profiles by calculating the proportion of the total number of ABC
links for that gene by cell type and calculating Shannon entropy
based on the proportion.

Constructing TF GRNs

To determine GRNs, we constructed units of TFs linked to cCREs
linked to genes. We first used a position frequency matrix (PFMa-
trixList object) of TF DNA binding preferences from the JASPAR
2022 database (93) and width-fixed peaks (97) as input to perform
TF motif analysis. We used the “matchMotifs” function in the R
package motifmatchr (v.1.21.0) to infer cell type-specific cREs
bound by each TE We linked cREs bound by each TF to target genes
based on proximity to the gene promoter (+5 kb) of a TSS in GEN-
CODE V19 or through ABC links (94, 98) at a score cutoff of 0.015.
TF GRNs were retained for analysis if the network included fewer
genes and then the 90th percentile of number of genes linked to a
given TF. In addition to ensure that TF GRNs were active in the as-
sociated cell type, we filtered TF GRNs based on cell type CPM > 1
for the TF gene.

Identification of cell type-specific TF modules and pathway
enrichment

For each pancreatic cell population, we identified pathways and TF
modules enriched using our identified marker CREs. Briefly, this
was done for each cell type by deriving CREs associated with KEGG
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and REACTOME paths using the bedtools intersection TF module
gene-linked CREs with union peaks accessible in that cell type.
These union peak-based pathways were tested for enrichment using
the fgsea package (v1.20) in R. We used the logistic regression mark-
er CRE results to rank peaks using the following formula [—log;o (P
value) X log, fold changes]. Similarly, we tested for TF modules en-
riched in each cell type by defining union peaks associated with a TF
either proximally or through ABC and then using the logistic re-
gression marker CRE results to rank peaks and test for enrichment
using fgsea. For both analyses, we used Benjamini-Hochberg for
multiple test correction and retained results with an FDR < 0.1.
Identification of TF GRNis linked to biological pathways
alteredin T1D

To identify regulators of enriched pathways for each cell type, we
next tested enrichment of each TF module in pathways identified in
our fgsea analysis. We performed the Fisher’s exact test to test for
overlap in genes in each TF GRN and genes in each biological path-
way in KEGG and REACTOME for each cell type. We performed
multiple test correction using FDR and considered TF GRNs linked
to a pathway at FDR < 0.1. Next, we filtered results to biological
pathways with significantly altered expression in T1D and TF motifs
belonging to TF subfamilies with differentially accessibility in T1D
from chromVAR (26) results.

Genetic association enrichment

We tested for enrichment of T1D-associated variants using sum-
mary statistics from a published genome-wide association study (5).
We defined groups of cREs in multiple ways; first, by identifying all
cREs in each cell type linked to genes in each biological pathway in
KEGG and REACTOME using ABC and promoter proximity links
and, second, by identifying cREs in each cell type in GRNSs for each
TE. We calculated Bayes factors for each variant with minor allele
frequency > 0.05 genome-wide, excluding all variants at the MHC
locus, using the method of Wakefield (99). We then tested for en-
richment of T1D-associated variants in groups of cREs genome-
wide using fgwas v0.3.6 (37) with a block size (—k) of 2500.

We overlapped cREs in each cell type with credible sets of vari-
ants at known T1D signals from a published fine-mapping study. We
further determined which cREs had at least nominal evidence (un-
corrected P < 0.05) for differential accessibility in ND AAB* or T1D.
Cell-cell interactions
The gene expression data were prefiltered before running CellChat
(39) v1.1.3. First, any cell type represented by <20 cells for a sample
was excluded. Next, cell types that appeared in fewer than two sam-
ples within a control or disease group were excluded from that group.

We considered a ligand expressed in a specific cell type if the aver-
age expression of the ligand in the cell type was greater than half the
SD of its average expression across all cells in at least two samples.
After applying these filters, we ran CellChat using the RNA data slot
of the Seurat object across the entire CellChat database (CCdb) with
default parameters except for “trim = 0” in the “computeCommunProb”
command and “thresh = 1” in the “subsetCommunication” command
(39). Each control and disease group was processed independently.
Ligands from the CCdb were grouped into categories by manual cu-
ration using UniProt (100) and GeneCard (101, 102) (listed in table S14).
Gene families were downloaded using biomart in the Bioconductor
package (v3.1) in R.

Results from different conditions were consolidated and subjected
to FDR correction using the Benjamini-Hochberg method with the
q value package in Bioconductor (v3.21) in R. Predicted interactions
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with an FDR < 0.1 and an interaction strength (IS) above the second
quartile were considered for downstream interpretation. To remove
residual background contamination due to highly expressed genes,
the following interactions were blacklisted in all cell sources except
the ones listed: INSin p cells, GCG in a cells, SST'in & cells, PRSS1/2/3
in acinar cells, CD8A, CD8B, and CD8B2 in T cells, and CD4 in T
cells and macrophages.

To assess the significance of differences between conditions, we
randomly permuted sample IDs among conditions and reperformed
CellChat analysis 100x and compared outcomes with the observed
results. The permutations were filtered using the same parameters as
for the observed data. Next, we aggregated the IS across different
“units” by summing all LR pairs within a unit and normalizing this
sum by the number of significant interactions for each condition. We
then quantified the difference in effect size (IS — effect size) across
contrasts: ND AAB* versus ND, recent-onset T1D versus ND, and
long-duration T1D versus ND. A P value was calculated by compar-
ing the observed results against the simulations using the formula: the
number of instances where simulation IS — effect size exceeded ob-
servational IS — effect size divided by the number of permutations. P
values were corrected for multiple tests using Benjamini-Hochberg.
We considered interactions with FDR < 0.1 significant.

Functional analysis of spatial genomic profiles

We inferred TF and pathway activities using Liana v1.1.0 (32). For
TF activity inference, we use the cell type-specific GRNs derived
from single-cell multiome. We then fit a univariate linear model to
infer the interaction weights. To identify cell type-specific TFs, we
performed a f test overestimating the variance of each group and
filtered TFs according to an adjusted P < 0.05. We inferred pathway
activities using the PROGENy model (32). We used weights of the
top 500 responsive genes ranked by P value. We then fit a multivari-
ate linear model to obtain the weights corresponding to pathway
interactions. As with the TF activity analyses, we identified cell
type-specific pathways by performing a ¢ test overestimating the
variance of each group.

Cell-cell communication

We analyzed cell-cell communication in spatial transcriptomic data
using SpatialDM v0.2.0 (40). We performed the analysis per condi-
tion, and per donor, having each FOV as technical replicate. For this
study, the parameters / and cutoff were set to 100 and 0.2 to repre-
sent the spatial context. In addition, we computed the weight matrix
using the single-cell mode, and we extracted the LR interactions
from the CCdb (39). To compute the global Moran’s I score and the
local spot detection, we used the z-score method.

EndoC-Bh1 stimulation experiments and RNA-seq

A total of 25,000 EndoC-BH] cells were seeded in media composed
of Dulbeccos modified Eagle’s medium (Corning, 10014CV), 2%
BSA (Sigma-Aldrich, A1470), 3.5 X 107* 2-mercaptoethanol (Gibco,
21985023), 0.12% nicotinamide (MilliporeSigma, 481907), transfer-
rin (5.5 ng/ml; MilliporeSigma, T8158), sodium selenite (6.7 pg/ml;
Sigma-Aldrich, 214485), and 1% penicillin-streptomycin (Gibco,
15140122) on a 96-well (CellTreat Scientific Products, 229105) plate
coated with ECM (Sigma-Aldrich, E1270) and fibronectin (Sigma-
Aldrich, F1141). The recombinant protein concentrations used were
as follows: PGRN (1 pg/ml) and BMP5 (50 ng/ml). EndoC-pH1
cells were obtained from Human Cell Design. RNA was isolated us-
ing the RNeasy Mini Kit (QIAGEN) from EndoC-Bhl cells either
stimulated or unstimulated with each ligand. Samples included
three replicates each for PGRN and its untreated controls and six
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replicates each for BMP5 and its untreated controls. RNA integrity was
assessed using a 2200 TapeStation (Agilent Technologies), and all sam-
ples achieved an RNA integrity number greater than 7. Ribodepleted
total RNA libraries were prepared using the TruSeq Stranded Total
RNA Library Prep Gold kit (Illumina, catalog no. 20020599) and se-
quenced at the UCSD Institute for Genomic Medicine on an Illumina
NovaSeq S4 platform.

Bulk RNA-seq analysis

Quality control of the sequencing data was assessed using FastQC
(v0.12.0). Transcript quantification was performed using Salmon
(103) with default parameters and the hg38 reference indexes.
Counts were imported into R using the tximport (104) package, and
genes with fewer than 10 reads were excluded. Differential gene ex-
pression analysis was conducted using DESeq2 (72), applying an
FDR threshold of <0.1. For pathway enrichment analysis, the fgsea
package (v1.20) in R was used using the “stat” column from DESeq2
results. The fgsea analysis was restricted to gene sets containing >10
and <500 terms. Pathways were corrected for multiple testing using
FDR < 0.1, and only pathways in KEGG (73-75) or REACTOME
(86, 87, 89, 90) were considered.

Supplementary Materials
The PDF file includes:

Figs.S1to S15

Legend:s for tables S1to S17

Other Supplementary Material for this manuscript includes the following:
Tables S1to S17

REFERENCES AND NOTES

1. A.Lehuen, J. Diana, P. Zaccone, A. Cooke, Immune cell crosstalk in type 1 diabetes. Nat.
Rev. Immunol. 10,501-513 (2010).

2. K. Eguchi, R. Nagai, Islet inflammation in type 2 diabetes and physiology. J. Clin. Invest.
127, 14-23 (2017).

3. J.Boldison, F. S. Wong, Immune and pancreatic p cell interactions in type 1 diabetes.
Trends Endocrinol. Metab. 27, 856-867 (2016).

4. M. Fasolino, G. W. Schwartz, A. R. Patil, A. Mongia, M. L. Golson, Y. J. Wang, A. Morgan,
C. Liu, J. Schug, J. Liu, M. Wu, D. Traum, A. Kondo, C. L. May, N. Goldman, W. Wang,
M. Feldman, J. H. Moore, A. S. Japp, M. R. Betts, HPAP Consortium, A. Naji, K. H. Kaestner,
G. Vahedi, Single-cell multi-omics analysis of human pancreatic islets reveals novel
cellular states in type 1 diabetes. Nat. Metab. 4, 284-299 (2022).

5. J.Chiou, R.J. Geusz, M.-L. Okino, J. Y. Han, M. Miller, R. Melton, E. Beebe, P. Benaglio,
S. Huang, K. Korgaonkar, S. Heller, A. Kleger, S. Preissl, D. U. Gorkin, M. Sander,
K. J. Gaulton, Interpreting type 1 diabetes risk with genetics and single-cell epigenomics.
Nature 594, 398-402 (2021).

6. R.Mallone, C. Halliez, J. Rui, K. C. Herold, The p-cell in type 1 diabetes pathogenesis: A
victim of circumstances or an instigator of tragic events? Diabetes 71, 1603-1610 (2022).

7. M. A. Atkinson, The pathogenesis and natural history of type 1 diabetes. Cold Spring
Harb. Perspect. Med. 2,a007641 (2012).

8. C.Pihoker, L. K. Gilliam, C. S. Hampe, A. Lernmark, Autoantibodies in diabetes. Diabetes
54 (Suppl. 2), S52-561 (2005).

9. P J.Bingley, M. R. Christie, E. Bonifacio, R. Bonfanti, M. Shattock, M.-T. Fonte,
G.-F. Bottazzo, E. A. M. Gale, Combined analysis of autoantibodies improves prediction of
IDDM in islet cell antibody-positive relatives. Diabetes 43, 1304-1310 (1994).

10. P.J.Bingley, E. Bonifacio, A. J. K. Williams, S. Genovese, G. F. Bottazzo, E. A. M. Gale,
Prediction of IDDM in the general population: Strategies based on combinations of
autoantibody markers. Diabetes 46, 1701-1710 (1997).

11. G. Fousteri, E. Ippolito, R. Ahmed, A. Rahim Hamad, Beta-cell specific autoantibodies: Are
they just an indicator of type 1 diabetes? Curr. Diabetes Rev. 13, 322-329 (2017).

12. R.A.Oram, E.K. Sims, C. Evans-Molina, Beta cells in type 1 diabetes: Mass and function;
Sleeping or dead? Diabetologia 62, 567-577 (2019).

13. M.Manescu, I. Manescu, A. Grama, A review of stage 0 biomarkers in type 1 diabetes: The
holy grail of early detection and prevention? J. Pers. Med. 14, 878 (2024).

14. S.Preissl, K. J. Gaulton, B. Ren, Characterizing cis-regulatory elements using single-cell
epigenomics. Nat. Rev. Genet. 24, 21-43 (2023).

Melton et al., Sci. Adv. 11, eady0080 (2025) 10 September 2025

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

. R.M. Elgamal, P. Kudtarkar, R. L. Melton, H. M. Mummey, P. Benaglio, M.-L. Okino,

K. J. Gaulton, An integrated map of cell type—specific gene expression in pancreatic
islets. Diabetes 72, 1719-1728 (2023).

. D. Bressan, G. Battistoni, G. J. Hannon, The dawn of spatial omics. Science 381, eabq4964

(2023).

. A.Pugliese, Insulitis in the pathogenesis of type 1 diabetes. Pediatr. Diabetes 17, 31-36

(2016).

. P.Benaglio, H. Zhu, M.-L. Okino, J. Yan, R. Elgamal, N. Nariai, E. Beebe, K. Korgaonkar,

Y. Qiu, M. K. R. Donovan, J. Chiou, G. Wang, J. Newsome, J. Kaur, M. Miller, S. Preissl,

S. Corban, A. Aylward, J. Taipale, B. Ren, K. A. Frazer, M. Sander, K. J. Gaulton, Type 1
diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory
cytokines. Cell Genom. 2,100214 (2022).

. The Type 1 Diabetes TrialNet Study Group, P.J. Bingley, D. C. Boulware, J. P. Krischer, The

implications of autoantibodies to a single islet antigen in relatives with normal glucose
tolerance: Development of other autoantibodies and progression to type 1 diabetes.
Diabetologia 59, 542-549 (2016).

1. Korsunsky, N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y. Baglaenko, M. Brenner,
P-R. Loh, S. Raychaudhuri, Fast, sensitive and accurate integration of single-cell data with
Harmony. Nat. Methods 16, 1289-1296 (2019).

D. Klein, G. Palla, M. Lange, M. Klein, Z. Piran, M. Gander, L. Meng-Papaxanthos, M. Sterr,
L. Saber, C. Jing, A. Bastidas-Ponce, P. Cota, M. Tarquis-Medina, S. Parikh, |. Gold, H. Lickert,
M. Bakhti, M. Nitzan, M. Cuturi, F. J. Theis, Mapping cells through time and space with
moscot. Nature 638, 1065-1075 (2025).

G. Palla, H. Spitzer, M. Klein, D. Fischer, A. C. Schaar, L. B. Kuemmerle, S. Rybakov,

I. L. Ibarra, O. Holmberg, I. Virshup, M. Lotfollahi, S. Richter, F. J. Theis, Squidpy: A scalable
framework for spatial omics analysis. Nat. Methods 19, 171-178 (2022).

D. Haviv, J. Remsik, M. Gatie, C. Snopkowski, M. Takizawa, N. Pereira, J. Bashkin,

S. Jovanovich, T. Nawy, R. Chaligne, A. Boire, A.-K. Hadjantonakis, D. Pe’er, The covariance
environment defines cellular niches for spatial inference. Nat. Biotechnol. 43, 269-280 (2025).
M. Ali, M. Kuijs, S. Hediyeh-zadeh, T. Treis, K. Hrovatin, G. Palla, A. C. Schaar, F. J. Theis,
GraphCompass: Spatial metrics for differential analyses of cell organization across
conditions. Bioinformatics 40, i548-i557 (2024).

T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, Y. Hao,

M. Stoeckius, P. Smibert, R. Satija, Comprehensive integration of single-cell data. Cell 177,
1888-1902.e21 (2019).

A.N. Schep, B. Wu, J. D. Buenrostro, W. J. Greenleaf, chromVAR: Inferring transcription-
factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14,
975-978 (2017).

K. Zhang, J. D. Hocker, M. Miller, X. Hou, J. Chiou, O. B. Poirion, Y. Qiu, Y. E. Li, K. J. Gaulton,
A.Wang, S. Preissl, B. Ren, A single-cell atlas of chromatin accessibility in the human
genome. Cell 184, 5985-6001.e19 (2021).

P. Badia-i-Mompel, J. Vélez Santiago, J. Braunger, C. Geiss, D. Dimitrov, S. Miiller-Dott,
P.Taus, A. Dugourd, C. H. Holland, R. O. Ramirez Flores, J. Saez-Rodriguez, decoupleR:
Ensemble of computational methods to infer biological activities from omics data.
Bioinform. Adv. 2, vbac016 (2022).

R. K. Mitchell, M.-S. Nguyen-Tu, P. Chabosseau, R. M. Callingham, T. J. Pullen, R. Cheung,

. Leclerc, D. J. Hodson, G. A. Rutter, The transcription factor Pax6 is required for
pancreatic f cell identity, glucose-regulated ATP synthesis, and Ca’* dynamics in adult
mice. J. Biol. Chem. 292, 8892-8906 (2017).

M. Jiang, A. C. Azevedo-Pouly, T. G. Deering, C. Q. Hoang, D. DiRenzo, D. A. Hess,

S. F. Konieczny, G. H. Swift, R. J. MacDonald, MIST1 and PTF1 collaborate in feed-forward
regulatory loops that maintain the pancreatic acinar phenotype in adult mice. Mol. Cell.
Biol. 36, 2945-2955 (2016).

K. H. Kaestner, A. C. Powers, A. Naji, HPAP Consortium, M. A. Atkinson, NIH initiative to
improve understanding of the pancreas, islet, and autoimmunity in type 1 diabetes: The
Human Pancreas Analysis Program (HPAP). Diabetes 68, 1394-1402 (2019).

D. Dimitrov, P. S. L. Schéfer, E. Farr, P. Rodriguez-Mier, S. Lobentanzer, P. Badia-i-Mompel,
A.Dugourd, J. Tanevski, R. O. Ramirez Flores, J. Saez-Rodriguez, LIANA+ provides an
all-in-one framework for cell-cell communication inference. Nat. Cell Biol. 26, 1613-1622
(2024).

T. P. Foster, B. Bruggeman, M. Campbell-Thompson, M. A. Atkinson, M. J. Haller,

D. A. Schatz, Exocrine pancreas dysfunction in type 1 diabetes. Endocr. Pract. 26,
1505-1513 (2020).

J. Matsui, T. Wakabayashi, M. Asada, K. Yoshimatsu, M. Okada, Stem cell factor/c-kit
signaling promotes the survival, migration, and capillary tube formation of human
umbilical vein endothelial cells. J. Biol. Chem. 279, 18600-18607 (2004).

C.-H.Wang, S.Verma, I.-C. Hsieh, A. Hung, T.-T. Cheng, S.-Y. Wang, Y.-C. Liu, W. L. Stanford,
R. D. Weisel, R-K. Li, W.-J. Cherng, Stem cell factor attenuates vascular smooth muscle
apoptosis and increases intimal hyperplasia after vascular injury. Arterioscler. Thromb.
Vasc. Biol. 27, 540-547 (2007).

G.Wang, J. Chiou, C. Zeng, M. Miller, I. Matta, J. Y. Han, N. Kadakia, M.-L. Okino, E. Beebe,
M. Mallick, J. Camunas-Soler, T. Dos Santos, X.-Q. Dai, C. Ellis, Y. Hang, S. K. Kim,

20 of 22

GZ0Z ‘02 $2g0100 U0 YBU101|qIq RAIUSZ - USYOU Al LUNNUSZ Z1joyw pH Te BI0°80us 105 MMM//:SAY WO | Papeo lumod



SCIENCE ADVANCES | RESEARCH ARTICLE

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.
49.
50.

51.

52.

53.

54,
55.

56.

57.

58.

Melton et al., Sci. Adv. 11, eady0080 (2025)

P.E. MacDonald, F. R. Kandeel, S. Preissl, K. J. Gaulton, M. Sander, Integrating genetics
with single-cell multiomic measurements across disease states identifies mechanisms of
beta cell dysfunction in type 2 diabetes. Nat. Genet. 55, 984-994 (2023).

J. K. Pickrell, Joint analysis of functional genomic data and genome-wide association
studies of 18 human traits. Am. J. Hum. Genet. 94, 559-573 (2014).

M. Ramos-Rodriguez, H. Raurell-Vila, M. L. Colli, M. I. Alvelos, M. Subirana-Granés,

J. Juan-Mateu, R. Norris, J.-V. Turatsinze, E. S. Nakayasu, B.-J. M. Webb-Robertson,

J.R.J. Inshaw, P. Marchetti, L. Piemonti, M. Esteller, J. A. Todd, T. O. Metz, D. L. Eizirik,

L. Pasquali, The impact of proinflammatory cytokines on the p-cell requlatory landscape
provides insights into the genetics of type 1 diabetes. Nat. Genet. 51, 1588-1595 (2019).
S.Jin, C. F. Guerrero-Juarez, L. Zhang, I. Chang, R. Ramos, C.-H. Kuan, P. Myung,

M.V. Plikus, Q. Nie, Inference and analysis of cell-cell communication using CellChat. Nat.
Commun. 12, 1088 (2021).

Z.Li, T.Wang, P. Liu, Y. Huang, SpatialDM for rapid identification of spatially co-expressed
ligand-receptor and revealing cell-cell communication patterns. Nat. Commun. 14,3995
(2023).

J. Dooley, L. Tian, S. Schonefeldt, V. Delghingaro-Augusto, J. E. Garcia-Perez, E. Pasciuto,
D. Di Marino, E. J. Carr, N. Oskolkov, V. Lyssenko, D. Franckaert, V. Lagou, L. Overbergh,
J.Vandenbussche, J. Allemeersch, G. Chabot-Roy, J. E. Dahlstrom, D. R. Laybutt,

N. Petrovsky, L. Socha, K. Gevaert, A. M. Jetten, D. Lambrechts, M. A. Linterman,

C. C. Goodnow, C. J. Nolan, S. Lesage, S. M. Schlenner, A. Liston, Genetic predisposition
for beta cell fragility underlies type 1 and type 2 diabetes. Nat. Genet. 48, 519-527 (2016).
A. Liston, J. A. Todd, V. Lagou, Beta-cell fragility as a common underlying risk factor in
type 1 and type 2 diabetes. Trends Mol. Med. 23, 181-194 (2017).

L. Marroqui, I. Santin, R. S. Dos Santos, L. Marselli, P. Marchetti, D. L. Eizirik, BACH2, a
candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic p-cells via JNK1
modulation and crosstalk with the candidate gene PTPN2. Diabetes 63, 2516-2527 (2014).
1. Santin, F. Moore, M. L. Colli, E. N. Gurzov, L. Marselli, P. Marchetti, D. L. Eizirik, PTPN2, a
candidate gene for type 1 diabetes, modulates pancreatic p-cell apoptosis via regulation
of the BH3-only protein Bim. Diabetes 60, 3279-3288 (2011).

I. Santin, D. L. Eizirik, Candidate genes for type 1 diabetes modulate pancreatic islet
inflammation and p -cell apoptosis. Diabetes Obes. Metab. 15, 71-81 (2013).

J. Sterling, F. Pociot, Type 1 diabetes candidate genes linked to pancreatic islet cell
inflammation and beta-cell apoptosis. Genes 8, 72 (2017).

M. L. Colli, F. Moore, E. N. Gurzov, F. Ortis, D. L. Eizirik, MDA5 and PTPN2, two candidate
genes for type 1 diabetes, modify pancreatic p-cell responses to the viral by-product
double-stranded RNA. Hum. Mol. Genet. 19, 135-146 (2010).

M.-F. Tsan, B. Gao, Heat shock proteins and immune system. J. Leukoc. Biol. 85, 905-910
(2009).

K. C. Kregel, Invited Review: Heat shock proteins: Modifying factors in physiological
stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177-2186 (2002).
M. Bogdani, E. Korpos, C. J. Simeonovic, C. R. Parish, L. Sorokin, T. N. Wight, Extracellular
matrix components in the pathogenesis of type 1 diabetes. Curr. Diab. Rep. 14, 552 (2014).
N. M. Doliba, A.V. Rozo, J. Roman, W. Qin, D. Traum, L. Gao, J. Liu, E. Manduchi, C. Liu,

M. L. Golson, G. Vahedi, A. Naji, F. M. Matschinsky, M. A. Atkinson, A. C. Powers,

M. Brissova, K. H. Kaestner, D. A. Stoffers, a cell dysfunction in islets from nondiabetic,
glutamic acid decarboxylase autoantibody-positive individuals. J. Clin. Invest. 132,
e156243 (2022).

L. Tosti, Y. Hang, O. Debnath, S. Tiesmeyer, T. Trefzer, K. Steiger, F. W. Ten, S. Lukassen,
S.Ballke, A. A. Kuihl, S. Spieckermann, R. Bottino, N. Ishaque, W. Weichert, S. K. Kim, R. Eils,
C. Conrad, Single-nucleus and in situ RNA-sequencing reveal cell topographies in the
human pancreas. Gastroenterology 160, 1330-1344.e11 (2021).

J. Chiou, C. Zeng, Z. Cheng, J. Y. Han, M. Schlichting, M. Miller, R. Mendez, S. Huang,
J.Wang, Y. Sui, A. Deogaygay, M.-L. Okino, Y. Qiu, Y. Sun, P. Kudtarkar, R. Fang, S. Preiss|,
M. Sander, D. U. Gorkin, K. J. Gaulton, Single-cell chromatin accessibility identifies
pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat.
Genet. 53, 455-466 (2021).

H. E. Thomas, J. A. Trapani, T. W. H. Kay, The role of perforin and granzymes in diabetes.
Cell Death Differ. 17, 577-585 (2010).

A. L. Notkins, Immunologic and genetic factors in type 1 diabetes. J. Biol. Chem. 277,
43545-43548 (2002).

J. Goulley, U. Dahl, N. Baeza, Y. Mishina, H. Edlund, BMP4-BMPR1A signaling in f cells is
required for and augments glucose-stimulated insulin secretion. Cell Metab. 5, 207-219
(2007).

J. Chmielowiec, W. J. Szlachcic, D. Yang, M. A. Scavuzzo, K. Wamble, A. Sarrion-Perdigones,
0. M. Sabek, K. J. T. Venken, M. Borowiak, Human pancreatic microenvironment promotes
p-cell differentiation via non-canonical WNT5A/JNK and BMP signaling. Nat. Commun.
13,1952 (2022).

A. . Urizar, M. Prause, L. R. Ingerslev, M. Wortham, Y. Sui, M. Sander, K. Williams, R. Barres,
M. R. Larsen, G. L. Christensen, N. Billestrup, Beta cell dysfunction induced by bone
morphogenetic protein (BMP)-2 is associated with histone modifications and decreased
NeuroD1 chromatin binding. Cell Death Dis. 14, 399 (2023).

10 September 2025

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

. A.Barbu, M. H. Lejonklou, B. Skogseid, Progranulin stimulates proliferation of mouse

pancreatic islet cells and is overexpressed in the endocrine pancreatic tissue of an MEN1
mouse model. Pancreas 45, 533-540 (2016).

P.F.Cheung, J. Yang, R. Fang, A. Borgers, K. Krengel, A. Stoffel, K. Althoff, C. W. Yip,
E.H.L.Siu, L.W.C.Ng, K. S. Lang, L. B. Cham, D. R. Engel, C. Soun, |. Cima, B. Scheffler,

J. K. Striefler, M. Sinn, M. Bahra, U. Pelzer, H. Oettle, P. Markus, E. M. M. Smeets,

E. H.J. G. Aarntzen, K. Savvatakis, S.-T. Liffers, S. S. Lueong, C. Neander, A. Bazarna,

X. Zhang, A. Paschen, H. C. Crawford, A. W. H. Chan, S.T. Cheung, J. T. Siveke, Progranulin
mediates immune evasion of pancreatic ductal adenocarcinoma through regulation of
MHClI expression. Nat. Commun. 13, 156 (2022).

R. A.Insel, J. L. Dunne, M. A. Atkinson, J. L. Chiang, D. Dabelea, P. A. Gottlieb,

C.J. Greenbaum, K. C. Herold, J. P. Krischer, A. Lernmark, R. E. Ratner, M. J. Rewers,

D. A.Schatz, J. S. Skyler, J. M. Sosenko, A.-G. Ziegler, Staging presymptomatic type 1
diabetes: A scientific statement of JDRF, the Endocrine Society, and the American
Diabetes Association. Diabetes Care 38, 1964-1974 (2015).

M. Battaglia, S. Ahmed, M. S. Anderson, M. A. Atkinson, D. Becker, P. J. Bingley, E. Bosi,

T. M. Brusko, L. A. DiMeglio, C. Evans-Molina, S. E. Gitelman, C. J. Greenbaum,

P. A. Gottlieb, K. C. Herold, M. J. Hessner, M. Knip, L. Jacobsen, J. P. Krischer, S. A. Long,

M. Lundgren, E. F. McKinney, N. G. Morgan, R. A. Oram, T. Pastinen, M. C. Peters, A. Petrelli,
X.Qian, M. J. Redondo, B. O. Roep, D. Schatz, D. Skibinski, M. Peakman, Introducing the
endotype concept to address the challenge of disease heterogeneity in type 1 diabetes.
Diabetes Care 43, 5-12 (2020).

M. J. Redondo, N. G. Morgan, Heterogeneity and endotypes in type 1 diabetes mellitus.
Nat. Rev. Endocrinol. 19, 542-554 (2023).

C. McGrail, J. Chiou, R. Elgamal, A. M. Luckett, R. A. Oram, P. Benaglio, K. J. Gaulton,
Genetic discovery and risk prediction for type 1 diabetes in individuals without high-Risk
HLA-DR3/DR4 haplotypes. Diabetes Care 48, 202-211 (2025).

A.Thibodeau, A. Eroglu, C. S. McGinnis, N. Lawlor, D. Nehar-Belaid, R. Kursawe,

R. Marches, D. N. Conrad, G. A. Kuchel, Z. J. Gartner, J. Banchereau, M. L. Stitzel, A. E. Cicek,
D. Ucar, AMULET: A novel read count-based method for effective multiplet detection
from single nucleus ATAC-seq data. Genome Biol. 22, 252 (2021).

G. X.Y.Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo,

T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory, J. Shuga, L. Montesclaros,

J. G.Underwood, D. A. Masquelier, S. Y. Nishimura, M. Schnall-Levin, P. W. Wyatt,

C. M. Hindson, R. Bharadwaj, A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C. McFarland,
K. R. Loeb, W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen,

B.J. Hindson, J. H. Bielas, Massively parallel digital transcriptional profiling of single cells.
Nat. Commun. 8, 14049 (2017).

C.S. McGinnis, L. M. Murrow, Z. J. Gartner, DoubletFinder: Doublet detection in single-cell
RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329-337.e4 (2019).

M. D. Young, S. Behjati, SoupX removes ambient RNA contamination from droplet-based
single-cell RNA sequencing data. GigaScience 9, giaa151 (2020).

R. Dries, Q. Zhu, R. Dong, C.-H. L. Eng, H. Li, K. Liu, Y. Fu, T. Zhao, A. Sarkar, F. Bao,

R. E. George, N. Pierson, L. Cai, G.-C. Yuan, Giotto: A toolbox for integrative analysis and
visualization of spatial expression data. Genome Biol. 22,78 (2021).

F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: Large-scale single-cell gene expression data
analysis. Genome Biol. 19, 15 (2018).

Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck, S. Zheng, A. Butler, M. J. Lee, A. J. Wilk,
C. Darby, M. Zager, P. Hoffman, M. Stoeckius, E. Papalexi, E. P. Mimitou, J. Jain,

A. Srivastava, T. Stuart, L. M. Fleming, B. Yeung, A. J. Rogers, J. M. McElrath, C. A. Blish,

R. Gottardo, P. Smibert, R. Satija, Integrated analysis of multimodal single-cell data. Cell
184, 3573-3587.€29 (2021).

M. 1. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

M. Kanehisa, KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28,
27-30 (2000).

M. Kanehisa, Toward understanding the origin and evolution of cellular organisms.
Protein Sci. 28, 1947-1951 (2019).

M. Kanehisa, M. Furumichi, Y. Sato, M. Kawashima, M. Ishiguro-Watanabe, KEGG for
taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587-D592 (2023).
M. Milacic, D. Beavers, P. Conley, C. Gong, M. Gillespie, J. Griss, R. Haw, B. Jassal,

L. Matthews, B. May, R. Petryszak, E. Ragueneau, K. Rothfels, C. Sevilla, V. Shamovsky,

R. Stephan, K. Tiwari, T. Varusai, J. Weiser, A. Wright, G. Wu, L. Stein, H. Hermjakob,

P. D’Eustachio, The reactome pathway knowledgebase 2024. Nucleic Acids Res. 52,
D672-D678 (2024).

T. Stuart, A. Srivastava, S. Madad, C. A. Lareau, R. Satija, Single-cell chromatin state
analysis with Signac. Nat. Methods 18, 13331341 (2021).

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum,

R. M. Myers, M. Brown, W. Li, X. S. Liu, Model-based Analysis of ChIP-Seq (MACS). Genome
Biol. 9, R137 (2008).

R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, N. Yosef, Deep generative modeling for
single-cell transcriptomics. Nat. Methods 15, 1053-1058 (2018).

210f 22

GZ0Z ‘02 $2g0100 U0 YBU101|qIq RAIUSZ - USYOU Al LUNNUSZ Z1joyw pH Te BI0°80us 105 MMM//:SAY WO | Papeo lumod



SCIENCE ADVANCES | RESEARCH ARTICLE

80. L.R.Nassar, G. P. Barber, A. Benet-Pageés, J. Casper, H. Clawson, M. Diekhans, C. Fischer,
J.N. Gonzalez, A. S. Hinrichs, B.T. Lee, C. M. Lee, P. Muthuraman, B. Nguy, T. Pereira,
P.Nejad, G. Perez, B. J. Raney, D. Schmelter, M. L. Speir, B. D. Wick, A. S. Zweig, D. Haussler,
R. M. Kuhn, M. Haeussler, W. J. Kent, The UCSC Genome Browser database: 2023 update.
Nucleic Acids Res. 51, D1188-D1195 (2023).

81. S.Heinz, C.Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X. Cheng, C. Murre, H. Singh,
C. K. Glass, Simple combinations of lineage-determining transcription factors prime
cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38,
576-589 (2010).

82. C.Y.McLean, D. Bristor, M. Hiller, S. L. Clarke, B. T. Schaar, C. B. Lowe, A. M. Wenger,

G. Bejerano, GREAT improves functional interpretation of cis-regulatory regions. Nat.
Biotechnol. 28, 495-501 (2010).

83. D.Bates, M. Machler, B. Bolker, S. Walker, Fitting linear mixed-effects models using Ime4.
J. Stat. Softw. 67, 1-48 (2015).

84. V.K.Mootha, C. M. Lindgren, K.-F. Eriksson, A. Subramanian, S. Sihag, J. Lehar,

P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M. J. Daly, N. Patterson,
J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn,

D. Altshuler, L. C. Groop, PGC-1a-responsive genes involved in oxidative phosphorylation
are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273 (2003).

85. A.Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette,

A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment
analysis: A knowledge-based approach for interpreting genome-wide expression
profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550 (2005).

86. B.Jassal, L. Matthews, G. Viteri, C. Gong, P. Lorente, A. Fabregat, K. Sidiropoulos, J. Cook,
M. Gillespie, R. Haw, F. Loney, B. May, M. Milacic, K. Rothfels, C. Sevilla, V. Shamovsky,

S. Shorser, T. Varusai, J. Weiser, G. Wu, L. Stein, H. Hermjakob, P. D’Eustachio, The reactome
pathway knowledgebase. Nucleic Acids Res. 48, D498-D503 (2019).

87. J.Griss, G. Viteri, K. Sidiropoulos, V. Nguyen, A. Fabregat, H. Hermjakob, ReactomeGSA
- efficient multi-omics comparative pathway analysis. Mol. Cell. Proteomics 19, 2115-2125
(2020).

88. A.Fabregat, K. Sidiropoulos, G. Viteri, P. Marin-Garcia, P. Ping, L. Stein, P. D’Eustachio,

H. Hermjakob, Reactome diagram viewer: Data structures and strategies to boost
performance. Bioinformatics 34,1208-1214 (2018).

89. A.Fabregat, F. Korninger, G. Viteri, K. Sidiropoulos, P. Marin-Garcia, P. Ping, G. Wu, L. Stein,
P. D’Eustachio, H. Hermjakob, Reactome graph database: Efficient access to complex
pathway data. PLOS Comput. Biol. 14, €1005968 (2018).

90. K. Sidiropoulos, G. Viteri, C. Sevilla, S. Jupe, M. Webber, M. Orlic-Milacic, B. Jassal, B. May,
V. Shamovsky, C. Duenas, K. Rothfels, L. Matthews, H. Song, L. Stein, R. Haw,

P. D'Eustachio, P. Ping, H. Hermjakob, A. Fabregat, Reactome enhanced pathway
visualization. Bioinformatics 33, 3461-3467 (2017).

91. G.Wu, R. Haw, “Functional interaction network construction and analysis for disease
discovery”in Protein Bioinformatics, C. H.Wu, C. N. Arighi, K. E. Ross, Eds. (Springer New
York, 2017), vol. 1558 of Methods in Molecular Biology, pp. 235-253. http://link.springer.
com/10.1007/978-1-4939-6783-4_11.

92. M. Gillespie, B. Jassal, R. Stephan, M. Milacic, K. Rothfels, A. Senff-Ribeiro, J. Griss,

C. Sevilla, L. Matthews, C. Gong, C. Deng, T. Varusai, E. Ragueneau, Y. Haider, B. May,
V. Shamovsky, J. Weiser, T. Brunson, N. Sanati, L. Beckman, X. Shao, A. Fabregat,

K. Sidiropoulos, J. Murillo, G. Viteri, J. Cook, S. Shorser, G. Bader, E. Demir, C. Sander,
R. Haw, G. Wu, L. Stein, H. Hermjakob, P. D’Eustachio, The reactome pathway
knowledgebase 2022. Nucleic Acids Res. 50, D687-D692 (2022).

93. J. A.Castro-Mondragon, R. Riudavets-Puig, I. Rauluseviciute, R. Berhanu Lemma, L. Turchi,
R. Blanc-Mathieu, J. Lucas, P. Boddie, A. Khan, N. Manosalva Pérez, O. Fornes, T. Y. Leung,
A. Aguirre, F. Hammal, D. Schmelter, D. Baranasic, B. Ballester, A. Sandelin, B. Lenhard,
K.Vandepoele, W. W. Wasserman, F. Parcy, A. Mathelier, JASPAR 2022: The 9th release of
the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50,
D165-D173 (2022).

94. C.P.Fulco, J. Nasser, T. R. Jones, G. Munson, D.T. Bergman, V. Subramanian,

S.R. Grossman, R. Anyoha, B. R. Doughty, T. A. Patwardhan, T. H. Nguyen, M. Kane,
E. M. Perez, N. C. Durand, C. A. Lareau, E. K. Stamenova, E. L. Aiden, E. S. Lander,

J. M. Engreitz, Activity-by-contact model of enhancer-promoter regulation from
thousands of CRISPR perturbations. Nat. Genet. 51, 1664-1669 (2019).

95. H.Zhao, Z. Sun, J. Wang, H. Huang, J.-P. Kocher, L. Wang, CrossMap: A versatile tool for
coordinate conversion between genome assemblies. Bioinformatics 30, 1006—-1007 (2014).

96. H.E.Arda, J.Tsai, Y.R. Rosli, P. Giresi, R. Bottino, W. J. Greenleaf, H. Y. Chang, S. K. Kim, A
chromatin basis for cell lineage and disease risk in the human pancreas. Cell Syst. 7,
310-322.e4 (2018).

97. A.T.Satpathy, J. M. Granja, K. E. Yost, Y. Qi, F. Meschi, G. P. McDermott, B. N. Olsen,

M. R. Mumbach, S. E. Pierce, M. R. Corces, P. Shah, J. C. Bell, D. Jhutty, C. M. Nemec,
J.Wang, L. Wang, Y. Yin, P. G. Giresi, A. L. S. Chang, G. X. Y. Zheng, W. J. Greenleaf,

H.Y. Chang, Massively parallel single-cell chromatin landscapes of human immune cell
development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925-936 (2019).

Melton et al., Sci. Adv. 11, eady0080 (2025) 10 September 2025

98. J.Nasser, D.T. Bergman, C. P. Fulco, P. Guckelberger, B. R. Doughty, T. A. Patwardhan,
T.R. Jones, T. H. Nguyen, J. C. Ulirsch, F. Lekschas, K. Mualim, H. M. Natri, E. M. Weeks,
G. Munson, M. Kane, H.Y. Kang, A. Cui, J. P. Ray, T. M. Eisenhaure, R. L. Collins, K. Dey,
H. Pfister, A. L. Price, C. B. Epstein, A. Kundaje, R. J. Xavier, M. J. Daly, H. Huang,
H. K. Finucane, N. Hacohen, E. S. Lander, J. M. Engreitz, Genome-wide enhancer maps link
risk variants to disease genes. Nature 593, 238-243 (2021).
99. J.Wakefield, Bayes factors for genome-wide association studies: Comparison with

P -values. Genet. Epidemiol. 33, 79-86 (2009).

100. UniProt Consortium, UniProt: The universal protein knowledgebase in 2023. Nucleic Acids
Res. 51,D523-D531 (2023).

101. G. Stelzer, N. Rosen, I. Plaschkes, S. Zimmerman, M. Twik, S. Fishilevich, T. I. Stein, R. Nudel,
I. Lieder, Y. Mazor, S. Kaplan, D. Dahary, D. Warshawsky, Y. Guan-Golan, A. Kohn,
N. Rappaport, M. Safran, D. Lancet, The GeneCards suite: From gene data mining to disease
genome sequence analyses. Curr. Protoc. Bioinformatics 54, 1.30.1-1.30.33 (2016).

102. M. Safran, N. Rosen, M. Twik, R. BarShir, T. I. Stein, D. Dahary, S. Fishilevich, D. Lancet, “The
GeneCards suite” in Practical Guide to Life Science Databases, |. Abugessaisa, T. Kasukawa,
Eds. (Springer Nature Singapore, 2021), pp. 27-56. https://link.springer.
com/10.1007/978-981-16-5812-9_2.

103. R.Patro, G. Duggal, M. I. Love, R. A. Irizarry, C. Kingsford, Salmon provides fast and
bias-aware quantification of transcript expression. Nat. Methods 14, 417-419 (2017).

104. C.Soneson, M. I. Love, M. D. Robinson, Differential analyses for RNA-seq: Transcript-level
estimates improve gene-level inferences. F1000Res 4, 1521 (2015).

Acknowledgments: The content and views expressed are the responsibility of the authors
and do not necessarily reflect the official view of nPOD. Organ Procurement Organizations
(OPO) partnering with nPOD to provide research resources are listed at https://npod.org/
for-partners/npod-partners/. This manuscript used data acquired from the HPAP (HPAP-
RRID:SCR_016202) Database (https://hpap.pmacs.upenn.edu), a Human Islet Research
Network (RRID:SCR_014393) consortium (UC4-DK-112217, U01-DK-123594, UC4-DK-112232,
and U01-DK-123716). Funding: The work in this study was funded by DK120429 and
DK122607 to K.J.G. and M.S. and T32 GM00866 to R.M. This research was performed with the
support of the nPOD (RRID:SCR_014641), a collaborative T1D research project supported by
JDRF (nPOD: 5-SRA-2018-557-Q-R) and The Leona M. & Harry B. Helmsley Charitable Trust
(grant no. 2018PG-T1D053). Author contributions: K.J.G.: Conceptualization, methodology,
visualization, data curation, formal analysis, funding acquisition, project administration,
supervision, writing—original draft, and writing—review and editing. R.M.: Conceptualization,
methodology, investigation, visualization, data curation, formal analysis, software, writing—
original draft, and writing—review and editing. S.J.: Methodology, investigation, visualization,
data curation, formal analysis, software, resources, validation, writing—original draft, and
writing—review and editing. W.E.: Formal analysis, software, and visualization. L.T.:
Investigation, formal analysis, visualization, validation, writing—original draft, and
writing—review and editing. A.H.: Formal analysis, visualization, software, and writing—review
and editing. H.M.: Methodology and software. R.E.: Methodology, data curation, resources, and
software. M.M.: Methodology and investigation. D.B.: Investigation. E.G.: Investigation and
formal analysis. K.K.: Data curation and software. C.M.: Formal analysis, conceptualization, and
writing—review and editing. K.V.: Investigation, validation, resources, and writing—review and
editing. J.C.: Formal analysis. E.B.: Formal analysis and software. |.K.: Resources. M.A.:
Investigation, funding acquisition, resources, and writing—review and editing. G.W.:
Methodology. C.Z.: Resources. S.P: Methodology, project administration, supervision, and
writing—review and editing. F.J.T.: Conceptualization, methodology, funding acquisition,
project administration, software, supervision, and writing—review and editing. M.S.:
Conceptualization, methodology, validation, funding acquisition, resources, project
administration, supervision, and writing—review and editing. Competing interests: The
following conflicts of interest are reported for several authors. K.J.G. has done consulting for
Genentech, received honoraria from Pfizer, and holds stock in Neurocrine Biosciences, and his
spouse is employed by Altos Labs Inc. J.C. and R.E. hold stock in and are employed by Pfizer
Inc. FJ.T. consults for Immunai, Singularity Bio, CytoReason, Cellarity, and Omniscope and has
ownership interest in Dermagnostix and Cellarity. All other authors declare that they have no
competing interests. Data and materials availability: Raw sequence data can be accessed
from GEO at accession numbers GSE273594, GSE273597, and GSE273598, and spatial imaging
data can be accessed from Zenodo at doi:10.5281/zenodo.14870960. Supplementary data and
visualization of single-cell and spatial maps can be accessed at https://www.gaultonlab.org/
pages/T1D-pancreas-genomics/. Supplementary data files can be accessed from Zenodo at
doi:10.5281/zenodo.15802028. Code is archived in Zenodo at 10.5281/zenodo.15832080 and
available as an additional resource at https://github.com/Gaulton-Lab/nPOD and https://
github.com/theislab/spatial_pancreas.

Submitted 20 April 2025
Accepted 8 August 2025
Published 10 September 2025
10.1126/sciadv.ady0080

22 0f 22

GZ0Z ‘02 $2g0100 U0 YBU101|qIq RAIUSZ - USYOU Al LUNNUSZ Z1joyw pH Te BI0°80us 105 MMM//:SAY WO | Papeo lumod


http://link.springer.com/10.1007/978-1-4939-6783-4_11
http://link.springer.com/10.1007/978-1-4939-6783-4_11
https://link.springer.com/10.1007/978-981-16-5812-9_2
https://link.springer.com/10.1007/978-981-16-5812-9_2
https://npod.org/for-partners/npod-partners/
https://npod.org/for-partners/npod-partners/
https://hpap.pmacs.upenn.edu
http://dx.doi.org/10.5281/zenodo.14870960
https://www.gaultonlab.org/pages/T1D-pancreas-genomics/
https://www.gaultonlab.org/pages/T1D-pancreas-genomics/
http://dx.doi.org/10.5281/zenodo.15802028
http://dx.doi.org/10.5281/zenodo.15832080
https://github.com/Gaulton-Lab/nPOD
https://github.com/theislab/spatial_pancreas
https://github.com/theislab/spatial_pancreas

	Single-cell multiome and spatial profiling reveals pancreas cell type–specific gene regulatory programs of type 1 diabetes progression
	INTRODUCTION
	RESULTS
	A comprehensive, multimodal, spatially resolved map of pancreatic cell types
	Comprehensive map of pancreatic cell type–accessible chromatin
	Pancreatic cell type gene expression in T1D progression
	Changes in the pancreatic cell type–specific epigenome in T1D progression
	Changes in pancreatic cell-cell signaling in T1D progression

	DISCUSSION
	MATERIALS AND METHODS
	Sample selection
	Single-cell assays
	Tissue homogenization
	Generation of snATAC-seq data
	Generation of snRNA-seq data
	Generation of joint single-nucleus RNA and ATAC-seq data (Multiome)
	Quality control and filtering
	Generation of spatial transcriptomic data
	Quality control and transcriptomic clustering of segmented cells

	Clustering
	Gene expression
	Accessible chromatin
	Clustering of segmented cells and cell type annotation in spatial data
	Cell type label transfer from reference snRNA-seq data
	Identification of spatial cellular neighborhoods
	Identification and annotation of multicellular spatial niches

	Downstream analysis
	Final peak calling and signal tracks
	Marker CREs
	Normalized gene expression levels
	Cell type proportion changes
	Differential gene expression
	Differential cRE accessibility
	Pathway enrichment during T1D using gene expression input
	Motif enrichment
	Motifs enriched in cell types
	Motifs enriched in acinar subtypes
	Motif differential accessibility
	Motif enrichment in differential accessible CREs
	ABC analysis
	Constructing TF GRNs
	Identification of cell type–specific TF modules and pathway enrichment
	Identification of TF GRNs linked to biological pathways altered in T1D
	Genetic association enrichment
	Cell-cell interactions
	Functional analysis of spatial genomic profiles
	Cell-cell communication
	EndoC-Bh1 stimulation experiments and RNA-seq
	Bulk RNA-seq analysis


	Supplementary Materials
	The PDF file includes:
	Other Supplementary Material for this manuscript includes the following:

	REFERENCES AND NOTES
	Acknowledgments


