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Single-cell multiome and spatial profiling reveals 
pancreas cell type–specific gene regulatory programs 
of type 1 diabetes progression
Rebecca Melton1†, Sara Jimenez2†, Weston Elison1, Luca Tucciarone3, Abigail Howell3,  
Gaowei Wang3, Denise Berti3, Elisha Beebe3, Michael Miller4, Chun Zeng3, Carolyn McGrail1, 
Kennedy VanderStel3, Katha Korgaonkar3, Ruth Elgamal1, Hannah Mummey5, Joshua Chiou6, 
Emily Griffin3, Irina Kusmartseva7, Mark Atkinson7, Sebastian Preissl4,8,9,10,11, Fabian J. Theis2‡, 
Maike Sander3,12,13‡, Kyle J. Gaulton3*‡

Cell type–specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, 
we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-
positive (AAB+), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell 
types, including multiple exocrine subtypes. β, Acinar, and other cell types, and related cellular niches, had altered 
abundance and gene activity in T1D progression, including distinct pathways altered in AAB+ compared to T1D. 
We identified epigenomic drivers of gene activity in T1D and AAB+ which, combined with genetic association, re-
vealed causal pathways of T1D risk including antigen presentation in β cells. Last, single-cell and spatial profiles 
together revealed widespread changes in cell-cell signaling in T1D including signals affecting β cell regulation. 
Overall, these results revealed drivers of T1D in the pancreas, which form the basis for therapeutic targets for dis-
ease prevention.

INTRODUCTION
Type 1 diabetes (T1D) is a complex endocrine disorder character-
ized by autoimmune destruction of β cells in the pancreatic islets, 
leading to lifelong dependence on insulin therapy. The destruction 
of β cells in T1D is caused by interactions with multiple cell types in 
and surrounding the islet microenvironment including infiltrating 
immune cells, other endocrine cells, and endothelial cells (1–3). Cell 
types in the pancreas outside the local islet environment, such as 
exocrine acinar and ductal cells, are also increasingly implicated in 
T1D pathogenesis (4, 5). β Cells themselves likely contribute to the 
development of T1D as well through response to environmental fac-
tors, external signaling to immune, β, and other cell types, and cel-
lular survival (6). The sequence of events in the pancreas that drives 
initiation of β cell autoimmunity and progression through stages of 
T1D, however, as well as the role of each pancreatic cell type in these 
processes, remains poorly understood.

Seroconversion to autoantibody positivity (AAB+) against islet 
proteins (i.e., self-antigens) precedes T1D onset in nearly all cases 
and is used as a clinical biomarker of T1D progression (7, 8). Indi-
viduals at T1D diagnosis can present with a differing number and 
type of autoantibodies, which are associated with varying rates of 
disease incidence; for example, the presence of a single islet AAB has 
a relatively low lifetime risk of T1D, whereas individuals with mul-
tiple AAB have disease rates more than 90% (9–11). As clinical pre-
sentation of T1D does not occur until a large fraction of β cells has 
been destroyed, there is a window of time between seroconversion and 
T1D onset where disease processes can potentially be halted or re-
versed (7). Even after onset of T1D, residual β cell mass could poten-
tially be modulated therapeutically to restore metabolic function (12). 
Defining changes in disease-relevant cell types across the stages of T1D 
progression would both improve our understanding of the mecha-
nisms of T1D as well as reveal potential targets to prevent or reverse 
disease. Furthermore, an improved understanding of key changes as-
sociated with progression would also help identify biomarkers of T1D, 
which are particularly needed in the early stages of disease to identify 
progressors and candidates for therapeutic intervention (13).

Single-cell technology, the focus of this work, enables profiling of 
individual cells within the pancreas (5,  14). Previous single-cell 
studies of the pancreas in T1D have been limited in that they fo-
cused primarily on gene expression profiling of dispersed cells 
(4, 15), which does not provide information on the spatial localiza-
tion of cellular transcriptomes within the pancreas nor the genomic 
elements driving changes in gene activity. Recent developments in 
spatial transcriptomics enables profiling cells in their native location 
(16), which enables understanding cell type–specific changes in the 
context of specific cellular neighborhoods and niches in the pan-
creas. This is particularly important in the context of T1D which has 
extensive heterogeneity in disease processes within the pancreas 
(17). In addition, single-cell epigenome profiling, for example, using 
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single-nucleus Assay for Transposase-Accessible Chromatin using 
Sequencing (snATAC-seq) or single-cell multiome [paired single-
nucleus RNA sequencing (snRNA-seq) + snATAC-seq], can reveal 
transcriptional regulators, cis-regulatory elements (cREs), and gene 
regulatory networks (GRNs) driving altered gene expression in T1D 
(14, 15). Critically, GRNs and cREs can be intersected with T1D-
associated variation to infer cell type–specific regulatory programs 
that may play a causal role in driving disease (5, 18).

Previous single-cell studies have also been limited in the extent 
to which they have captured key windows of T1D progression and 
pathogenesis (4, 15). Specifically, nondiabetic (ND) AAB+ donors in 
these efforts were largely those with single glutamic acid decarbox-
ylase (GAD) autoantibodies (4), which have a relatively lower risk of 
developing T1D compared to multiple AAB+ donors and do not re-
flect the full arc of progression to T1D (19). Furthermore, many of 
the T1D donors in these studies had long-standing T1D where dis-
ease processes are potentially more dormant, whereas profiling do-
nors who had more recently developed T1D may give greater insight 
into active disease processes. Third, these studies profiled purified 
islets, and profiling tissue sampled from the whole pancreas may 
offer greater insight into genomic changes during T1D progression 
in exocrine cells and other cell types outside of the islet microen-
vironment.

In this study, we addressed these limitations by performing 
single-cell gene expression and epigenome profiling in whole pan-
creas from 32 ND, ND single and multiple AAB+, recent-onset T1D, 
and long-standing T1D organ donors, as well as spatial transcrip-
tomics in a subset of ND and recent-onset T1D donors. We deter-
mined changes in pancreatic cell type abundance, cellular pathways, 
GRNs, and cell-cell signaling across these stages of T1D progression 
and pathogenesis and, using T1D association data, identified path-
ways and gene networks that may play a causal role in the develop-
ment of T1D.

RESULTS
A comprehensive, multimodal, spatially resolved map of 
pancreatic cell types
We obtained pancreatic tissue from 32 donors in the Network for 
Pancreatic Organ Donors with Diabetes (nPOD) biorepository 
including 11 ND, 9 ND autoantibody positive (ND AAB+), and 
12 T1D which we separated into 7 recent onset (<1 year from diag-
nosis) and 5 longer duration (>5 years from diagnosis) (table S1). 
Within the ND AAB+ group, most organ donors, by our study de-
sign, had multiple autoantibodies (multiple ND AAB+). For all sam-
ples, we performed snRNA-seq and snATAC-seq assays, and for 
eight of the samples, we performed single-nucleus multiome (joint 
snRNA-seq and snATAC-seq in the same nucleus) assays (table S1). 
In addition, for six of the samples, we performed spatial transcrip-
tomic assays using the CosMx Spatial Molecular Imager (Fig. 1A).

After extensive barcode quality control and filtering steps (see 
Materials and Methods), we integrated data from all 32 donors 
using Harmony (20) and clustered 276,906 gene expression profiles 
(Fig. 1B and figs. S1 and S2). We annotated the resulting 18 clusters 
based on the expression of known cell type marker genes which re-
vealed 12 pancreatic cell types including exocrine (acinar and ductal), 
endocrine (α, β, and δ), immune (T cell, B cell, macrophage, and 
mast), stellate, endothelial, and Schwann cells (Fig. 1, B and C, and 
table  S2). Cell type clusters had broadly consistent representation 

across donors and donor characteristics (figs. S2 and S3). We aggre-
gated expression profiles for all cells in the cell type and derived nor-
malized expression levels of each gene using counts per million 
(CPM) (data S1). For each cell type, we further identified genes with 
expression levels specific [false discovery rate (FDR) < 0.1] to the 
cell type which revealed both known and previously unreported sets 
of genes with cell type–specific expression (table S3); for example, 
well-known genes with expression specific to β cells included INS, 
IAPP, and G6PC2 as well as others with no now known role in β cell 
function (e.g., PLCH2, NRG2, RBFOX3, and MTUS2).

Several cell types displayed multiple subclusters representing 
both known cell subtypes, such as active and quiescent stellate cells, 
blood vessel cells (BVECs), lymphatic endothelial cells (LECs), and 
MUC5b+ ductal cells, as well as several potential subtypes of acinar 
cells (Fig. 1, B and C). As the genomic properties of these subtypes 
have not been completely described previously, we derived sets of 
marker genes for each subtype (see Materials and Methods and 
table S3). For BVECs and LECs, in addition to reported marker 
genes PLVAP (BVECs) and FLT4 (LECs), we observed specific up-
regulation of genes in each subtype such as INHBB, BMP6, FCN3, 
and PCAT19 in BVECs and EFNA5, COLEC12, and MYCT1 in 
LECs. In MUCB5+ ductal cells, there was up-regulation of ERN2, 
CYP2C18, MYO7B, and DMBT1 compared to the primary subtype 
of ductal cells. For acinar cells, the primary cluster, which we anno-
tated as “basal” acinar cells, was enriched for genes and pathways 
involved in digestive enzyme production and secretion. Other clus-
ters included “high-enzyme” acinar cells with higher expression of 
enzymes such as chymotrypsin (CTRB1/2), trypsinogen (PRSS1 and 
PRSS2), lipase (PNLIP), carboxyl ester lipase (CEL), chymotrypsin-
like elastase (CELA3A/B), and increased oxidative phosphorylation 
and translation, “signaling” acinar cells with increased signaling and 
stress-response activity, and “signaling/differentiation” acinar cells 
with increased signaling, metallothionein (MT1/MT2), and identity 
and differentiation genes (REG1A/B and PTF1A) (Fig. 1D).

To next characterize the spatial organization of pancreatic cell 
types, we performed RNA in situ hybridization of 1010 genes with 
CosMx from a subset of donors including three ND and three 
recent-onset T1D (tables S1 and S4). We imaged a total of 82.6M 
transcripts from 71 fields of view (FOVs) in pancreatic sections from 
three ND (32 FOVs) and three recent-onset T1D donors (39 FOVs) 
(fig. S4A) and assigned transcripts to 392,248 cells overall (80 me-
dian genes and 200 median transcripts per cell), using the CosMx 
default segmentation. We performed unsupervised clustering of cel-
lular gene expression profiles, which revealed nine distinct clusters 
including exocrine, endocrine, endothelial, immune, and mast cells 
(fig. S4B). We next mapped finer-grained cell type annotations from 
snRNA-seq using moscot (fig. S4, B and C) (21), which revealed 
14 cell types and subtypes that were confirmed on the basis of mark-
er gene expression (Fig. 1E and fig. S4). Spatial neighborhood en-
richment using squidpy (22) revealed expected cell type clustering 
including acinar subtypes, ductal subtypes, endocrine cells (β, α, 
and δ), and connective cells (e.g., endothelial, immune, and stellate) 
(Fig. 1F).

Next, we sought to determine whether spatial neighborhoods 
form recurrent niches across the pancreas, by defining niches in-
volving a cell type using a gene-gene covariance matrix (23) in a 
spatial neighborhood of 30 cells. We recovered six niches in total, 
characterized by cell type abundance (see Materials and Methods), 
including three exocrine (acinar-enriched, ductal-enriched, and 
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Fig. 1. Cell type–specific map of gene expression in the pancreas. (A) Design of study profiling human pancreas from ND, ND AAB+, and T1D donors using single-cell 
assays. (B) Uniform Manifold Approximation and Projection (UMAP) plot showing clustering of 276,906 nuclei from single-nuclear RNA-seq of 32 whole pancreas donors 
from the nPOD biorepository. Clusters are labeled on the basis of cell type and subtype annotations. (C) Dot plot showing the normalized expression levels of selected 
known marker genes for pancreatic cell types and subtypes. (D) Dot plot of genes with preferential expression across different subtypes of acinar cells (top left) and nor-
malized enrichment score (NES) of pathways enriched in each subtype using fgsea (top right). Box plot showing donor CPM of selected genes with preferential expression 
in different subtypes of acinar cells. GTPase, guanosine triphosphatase. (E) Representative FOV per condition (ND: top, T1D: bottom) showing (from left to right) immuno-
fluorescence, coarse cell type annotation with the spatial gene panel directly, and finer-grained cell type annotation transferred from the snRNA-seq data. DAPI, 
4′,6-diamidino-2-phenylindole. (F) Matrix plots showing the neighborhood enrichment of cell types based on spatial neighbors. Cell type labels are the same as fine-
grained annotations in (E). (G) Stacked barplot illustrating the relative abundance of each cell type in each multicellular niche. Cell type labels are the same as fine-grained 
annotations in (E, left). Dot plot showing the normalized gene expression levels of spatially variable genes across multicellular pancreatic niches (right). (H) Box plot 
showing normalized cell counts for selected pancreatic cell types and subtypes grouped by T1D status. P values from likelihood ratio test, **FDR < 0.1, *uncorrected P < 
0.05. (I) Stacked barplot showing the relative abundance of each multicellular niche per condition. Niches have altered abundance in ND samples denoted as *P < 0.05.
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MUC5b ductal-enriched) niches, one endocrine niche, one niche 
including both endocrine and exocrine cells (endo-exo), and one 
niche consisting of connective cells (Fig. 1G). To characterize each 
niche, we identified spatially variable genes (Moran’s I > 0.2, P < 0.05) 
that captured gene signatures specific to the niche (Fig. 1G). In the 
acinar-enriched niche, marker genes from the basal and high-enzyme 
cell types showed strong spatial clustering (PRSS2 and REG1A). In 
comparison, the ductal-enriched niche had more spatial associa-
tion with signaling and signaling/differentiation acinar cells (MT1X, 
SOD2, and MT2A). In the MUC5b ductal–enriched niche, spatially 
variable genes were strongly associated with immune interactions 
(HSPA1A, HLA-A, and B2M). In addition, the endocrine niche had 
highly distinct patterns which highlighted multiple endocrine-specific 
genes (e.g., INS, GCG, SST, and IAPP) (Fig. 1G).

Last, we determined whether there were changes in abundance 
of cell types and subtypes in T1D progression based on snRNA-seq 
(see Materials and Methods). There was a significant decrease (like-
lihood ratio test, FDR < 0.1) in β cells (Fig. 1H and table S5) 
although we still observed residual β cells in T1D particularly in 
recent-onset (ND = 1.5%, recent-onset T1D = 0.93%). We also ob-
served a significant decrease (FDR < 0.1) in δ cells in T1D and 
increased abundance of immune populations in ND AAB+ and 
recent-onset T1D. There was also nominal evidence (P < 0.05) for 
altered abundance of specific subtypes including high-enzyme 
acinar (P = 0.037) and MUC5b+ ductal cells (P = 0.049). We next 
asked whether there were corresponding changes in the abundance 
of specific niches in T1D in spatial profiles. We quantified the pairwise 
similarity between ND and T1D spatial graphs using Wasserstein 
distance (fig. S4D) (24), which revealed substantial changes in the 
underlying structure of endocrine cells (α and β) in T1D. We also 
observed significant changes in the abundance of the endocrine and 
MUC5b+ ductal niche in T1D (P < 0.05) (Fig. 1I).

Comprehensive map of pancreatic cell 
type–accessible chromatin
To understand how the epigenome may drive changes in cell type–
specific gene expression in T1D, we next created a matched map of 
accessible chromatin in pancreatic cell types. Of the 32 nPOD do-
nors with snATAC-seq assays, 30 passed quality control (see Materi-
als and Methods). We filtered, integrated, and clustered accessible 
chromatin profiles from the 30 donors and annotated cell type iden-
tity by label transfer of the gene expression map using Seurat (see 
Materials and Methods) (25). After filtering nuclei with low transfer 
predictions (<0.5), there were 203,348 chromatin profiles mapping 
to the same cell types and subtypes (Fig. 2A and figs. S6 and S7). We 
estimated that label transfer was >97% accurate at the cell type level 
by comparing the predicted and actual identity of accessible chro-
matin profiles in single-cell multiome data. We also confirmed that 
predicted cell types were accessible at the promoter regions of key 
marker genes (Fig. 2B). The proportions of each cell type were high-
ly correlated between expression and chromatin maps (r  =  0.98, 
P = 1.7 × 10−13; fig. S8).

We identified transcription factor (TF) binding motifs preferen-
tially enriched in each pancreatic cell type and subtype using chrom-
VAR (26). At the cell type level, enriched sequence motifs revealed 
key regulators of each cell type; for example, β cells and other endo-
crine cells were enriched for RFX and FOXA motifs; ductal cells for 
HNF1, ONECUT, and TEAD motifs; endothelial cells for ETV, FLI, 
and GABPA motifs; and T cells for RUNX, ETV, and ETS motifs, 

among others (Fig. 2C and table S6). Motif enrichments also high-
lighted regulators that distinguished accessible chromatin profiles of 
cell types within specific lineages; for example, NEUROD1 and 
NR3C1 had stronger enrichment in β compared to other endocrine 
cells (Fig. 2C). Acinar cells showed distinct sets of enriched TF mo-
tifs across different subclusters, including signaling acinar cells 
which were more enriched for FOS/JUN, activating transcription 
factor (ATF), and Nuclear Factor Erythroid (NFE) motifs (Fig. 2, C 
and D, and table S6). In high-enzyme acinar cells, the strongest 
enrichments were for TFs such as Zinc finger E-box-binding 
(ZEB), Snail transcription factor (SNAI1-3), and Transcription Factor 
(TCF3-4), which were also the most enriched motifs in acinar cells 
overall compared to other cell types (Fig. 2, C and D, and table S6). 
As structurally related TFs often have similar motifs, we linked TF 
motifs enriched in subclusters to specific TFs in the same structural 
subfamily with concordant expression patterns. For example, FOSL2 
and JUNB/D, as well as ATF3, NFE2L2, and BACH1/2, were in-
creased in signaling acinar cells, and TCF3 had increased expression 
in high-enzyme acinar cells (Fig. 2D).

For each cell type and subtype, we next defined candidate cREs. 
We derived “pseudo”-bulk accessible chromatin profiles by aggre-
gating reads from all cells for that cell type or subtype and identified 
cREs by performing peak calling with Model-based Analysis of 
ChIP-seq (MACS2). In total, there were 368,688 cREs across cell 
types and an average of 94.3k cis-regulatory elements (cREs) per cell 
type (data S2). Among cREs in our study, 9.4 and 7.4% were unique 
compared to a pan-tissue (27) and pancreas-specific (5) cRE cata-
log, respectively, such as a T cell cRE directly upstream of ZNF746 
(Fig. 2E). We identified cREs with cell type–specific activity by com-
paring accessible chromatin profiles across cell types (data S3; see 
Materials and Methods). Cell type–specific cREs were enriched 
for sequence motifs of key cell type TFs as well as proximity to 
genes involved in cell type–specific function (tables  S7 and 
S8). For example, β cell–specific cREs were significantly enriched 
(FDR < 0.1) for proximity to insulin secretion–related pathways 
and RFX, FOXA, NEUROD, and NKX6.1 TF motifs, whereas 
endothelial-specific cREs were significantly enriched for proximity 
to angiogenesis, blood vessel morphogenesis, and vasculature path-
ways and FLI, ETS, and ETV TF motifs (tables S7 and S8). We also 
identified cREs specific to several of the subtypes within acinar cells; 
for example, signaling acinar-specific cREs were enriched for JUN, 
FOS, and ATF motifs.

Because of the scarcity of immune populations in the pancreas, 
the epigenome of resident and infiltrating pancreatic immune cells 
has not been extensively described. In our study, we identified mul-
tiple immune cell types including T cells, macrophages, B cells, and 
mast cells, although available cell numbers only enabled defining 
cREs in T cells and macrophages. T cell–specific cREs were signifi-
cantly enriched for proximity to genes involved in T cell activation, 
T cell receptor complex, and cytokine receptor activity and motifs 
for ETS, ETV, and RUNX TFs, while macrophage-specific cREs 
were enriched for immune-related processes and PU.1 and SPIB 
motifs (Fig. 2F). Compared to a previous study which profiled sev-
eral whole pancreas donors, more than double the number of cREs 
were identified in each cell type (T cells: 58.8k versus 24.5k; macro-
phages: 114.3k versus 55.7k). The increased number of cREs im-
proved annotation of T1D-associated variants; for example, candidate 
T1D variant rs947474 [posterior probability of association (PPA) = 
0.88] (5) overlapped a pancreatic T cell and macrophage cRE not 

D
ow

nloaded from
 https://w

w
w

.science.org at H
elm

holtz Z
entrum

 M
nchen - Z

entralbibliothek on O
ctober 20, 2025



Melton et al., Sci. Adv. 11, eady0080 (2025)     10 September 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 22

CD69FLT4PLVAP
C1QA
C1QC

Basal acinar

Signaling acinar
High enz. acinar

Sig/diff acinar
Ductal

Beta
Alpha

Delta
Act. stellate

Quies. stellate
Endothelial

Lymph. endo.
Macrophage

T cell

COL6A3 SPARCL2CFTR INS GCG SSTREG1A

A snATAC-seq of 30 ND, AAB+, and T1D donors:

T cell

Ductal
Macrophage

Act. stellateBeta

Alpha

Endothelial “Basal” acinar

Schwann

B cell
Mast

Quies. stellate

Delta

Lymph. endo.

“Signaling”
acinar

UMAP2

U
M
A
P
1

“High-enzyme” acinar
“Sig./diff.” acinar

B

−2

0

2

4

6

NEUROD1

M
ot
if 
en
ric
hm

en
t

−3

0

3

6

M
ot
if 
en
ric
hm

en
t

NR3C1

D
uc
ta
l

B
et
a

A
lp
ha

D
el
ta

A
ct
. s
te
lla
te

Q
. s
te
lla
te

E
nd
ot
he
lia
l

Ly
m
ph
. e
nd
o

A
ci
na
r b

as
al

A
ci
na
r s
ig
.

A
ci
na
r e

nz
.

A
ci
na
r s
ig
./d
iff
.

M
ac
ro
ph
ag
e

T 
ce
lls

3

0

HNF1A

-3M
ot
if 
en
ric
hm

en
t

0

5

M
ot
if 
en
ric
hm

en
t

RUNX2

D
uc
ta
l

B
et
a

A
lp
ha

D
el
ta

A
ct
. s
te
lla
te

Q
. s
te
lla
te

E
nd
ot
he
lia
l

Ly
m
ph
. e
nd
o

A
ci
na
r b

as
al

A
ci
na
r s
ig
.

A
ci
na
r e

nz
.

A
ci
na
r s
ig
./d
iff
.

M
ac
ro
ph
ag
e

T 
ce
lls

1

2

3

4

5

M
ot
if 
en
ric
hm

en
t

TCF3

-0.4 0.0 0.4
Log fold change

TCF3

TCF4

*

Ac
ina
r b
as
al

Ac
ina
r s
ig.

Ac
ina
r e
nz
.

Ac
ina
r s
ig.
/di
ff.

0

FOS

-5

-2.5

M
ot
if 
en
ric
hm

en
t

0.0 1.0 2.0
Log fold change

FOSL2 *
JUNB

FOSB

JUN

JUND

FOS

*

*

A
ct
iv
at
ed
 s
te
lla
te

S
ch
w
an
n

Q
ui
es
ce
nt
 s
te
lla
te

A
lp
ha

D
el
ta

B
et
a

A
ci
na
r h

ig
h-
en
z.

A
ci
na
r s
ig
./d
iff
.

A
ci
na
r b

as
al

A
ci
na
r s
ig
.

D
uc
ta
l

M
U
C
5b
 d
uc
ta
l

M
ac
ro
ph
ag
e

Ly
m
ph
 e
nd
o

E
nd
ot
he
lia
l

T 
ce
lls

B
 c
el
ls

M
as
t MA0103.3_ZEB1

MA0830.2_TCF4
MA1559.1_SNAI3
MA0153.2_HNF1B
MA0046.2_HNF1A
MA0679.2_ONECUT1
MA0047.3_FOXA2
MA1109.1_NEUROD1
MA0509.3_RFX1
MA0727.1_NR3C2
MA0113.3_NR3C1
MA0809.2_TEAD4
MA0808.1_TEAD3
MA0478.1_FOSL2
MA0476.1_FOS
MA1141.1_FOS::JUND
MA0511.2_RUNX2
MA0098.3_ETS1
MA0076.2_ELK4
MA0687.1_SPIC
MA0081.2_SPIB
MA1950.1_FLI1::FOXI1
MA0062.3_GABPA
MA0761.2_ETV1

Endoth.

Mphage

T cell

Beta/
endo.

Ductal

Acinar

C D

0 20 40 60

Immune response

Defense response

Myeloid activation

-Log10(q value)

Innate immune response

G

I

6.34 Mb 6.35 Mb 6.36 Mb

T cell
Macrophage

Acinar
Ductal

Act. stellate
Q. stellate

Alpha
Beta
Delta
Endo.

Lymph. endo.

0.0
0.4
0.8

T1D
PPA

rs947474

0 10 20 30 40

Immune response
T cell activation

Lymphocyte activation
T cell receptor complex

Cytokine receptor activity

0 1 2 3 4
0

10

30

20

-Log10(q value)

-L
og

10
(P
 v
al
ue
)

Fold enrich

ETV2
ETV1 ETS1
FLI1 RUNX2

RUNX1RUNX

ERG
T cell-specific cREs:

0 1 2 3 4
0
10
20
30
40
50

Fold enrich 

-L
og

10
(P
 v
al
ue
)

Macrophage-specific cREs:
PU.1ELF4
SPIBELF5

0
10
0k
20
0k
30
0k
40
0k

All cREs

Zhang et al. (26)

Chiou et al. (5)
38.2k (9.2%)
30.7k (7.4%)

T cells
Acinar

Act. stell
Alpha
Beta
Delta
Ductal
Endo.

Mphage
Q. stell

ZNF746

Not in:

Novel cRE

E F

B
H
LH

A
15

N
R
1D

1
G
FI
1

ZN
F5

28
ET

V7
P
O
U
5F

1
ZB

TB
7B

N
FI
C

SO
X8

ZN
F6

67
R
XR

G
PA

X6
N
E
U
R
O
D
1

PA
X3

H
A
N
D
2

O
SR

2
TW

IS
T1

TB
X
18

H
O
X
D
8

M
EO

X2
R
R
EB

1
FO

XC
1

TB
X
21

R
U
N
X
3

Ductal

Alpha
Beta

“Basal” acinar
“High-enzyme” acinar

Endothelial

A. stellate

Macrophage
T cell

“Signaling” acinar
“Sig./diff.” acinar

Q. stellate

0.0 0.5 1.0

Endothelial
1 mm

1 mm

- 0.5

0.0

0.5

1.0

1.5

2.0

2.5

BHLHA15 (MIST1) PAX6

“Basal” acinar Beta T cellsBeta,  alpha

NEUROD1 MEOX2RUNX3

0

1

2

3

4

5

1 mm

1 mm

- 1

0

1

2

3

4

1 mm

1 mm

0

1

-1

2

3

4

5

1 mm

1 mm

-1

0

1

2

3

1 mm

1 mm

Stellate

H

J

TF GRN

TF Gene A

TF Gene B

Alpha
Beta

Acinar basal
Acinar sig
Acinar enz
Acinar diff

Ductal
Endothelial
Act stellate
Q stellate

Macrophage
T cells

0 5 10 15 20 25 30

Linked cREs/gene

ABC + prox.

cRE-gene links (ABC + prox.):

Z-scaled scores

0.0 0.5 1.0

Z-scaled scores

Fig. 2. Cell type–specific map of accessible chromatin in the pancreas. (A) UMAP plot showing clustering of 203,348 nuclei from single-nuclear ATAC-seq of 30 pan-
creas donors from the nPOD biorepository. Clusters are labeled with cell type and subtype identity based on label transfer from the gene expression map. (B) Genome 
browser showing accessible chromatin signal at the promoter regions of known marker genes for pancreatic cell types. (C) Heatmap showing genome-wide accessibility 
from chromVAR of sequence motifs for selected transcription factors (TFs) across cell types (left) and box plots showing donor-level accessibility of selected TF motifs across 
cell types (right). (D) Box plot showing genome-wide accessibility of TF motifs with preferential enrichment in subtypes of acinar cells (left) and log fold change in expres-
sion for genes in structural subfamilies for enriched TF motifs, and error bars are SE (right). *FDR < 0.10. (E) Number of cREs identified across all cell types and the percentage 
of cREs that do not overlap previous catalogs of cREs (27, 53) (top). Example of a pancreatic T cell–specific cRE at the ZNF746 locus. (F) TF sequence motifs enriched in cREs 
with activity specific to each cell type (left) and bar plots showing −log10 P values of gene sets enriched for proximity to cell type–specific cREs using the Genomic Regions 
Enrichment of Annotations Tool (GREAT). (G) Example of a cRE active in pancreatic T cells and macrophages that overlaps a candidate T1D risk variant. (H) Box plot showing 
gene-cRE links per gene per cell type (top) and schematic of TF GRNs (bottom). (I) Matrix plot showing scaled z-score of TF activities for top TFs identified for each cell type 
using a t test with overestimated variance. (J) Spatial plot of selected TFs showing the TF activity profile (top) and cell type distribution for the respective cell type (bottom).
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identified in these cell types in the pancreas previously and not ac-
tive in other pancreatic cell types (Fig. 2G).

We next predicted networks of genes regulated by TF activity in 
each pancreatic cell type (see Materials and Methods). We linked 
cREs to target genes in each cell type using the activity-by-contact 
(ABC) method, which revealed an average of 46,474 cRE-target 
gene links per cell type, as well as based on promoter proximity 
(data S4). Using ABC and promoter proximity, genes were linked 
to, on average, 2.8 cREs per cell type (Fig.  2H). We identified 
genes which had highly cell type–specific cRE links (see Materials 
and Methods), and genes with highly cell type–specific cRE links in-
cluded key marker genes such as INS in β cells, GCG in α cells, IL-2, 
IFNGR1, and GZMA in T cells, and MARCOS in macrophages. In 
each cell type, we next constructed GRNs for 366 TFs by combining 
(i) cRE-target gene links, (ii) TF motif predictions in cREs, and (ii) 
TF and target gene expression levels (Fig.  2H; see Materials and 
Methods and data S5). We annotated likely cellular functions of TF 
GRNs by identifying biological pathways with gene sets that signifi-
cantly overlapped TF GRNs. There were thousands of significant 
relationships linking TF GRNs to biological pathways across all cell 
types (Fisher’s test, FDR  <  0.1) (data S6), which annotated many 
known regulators of pathway activity as well as many putative func-
tions of TFs.

Last, we used spatial transcriptomic data in combination with cell 
type–specific TF GRNs to infer TF activity within cell types and sub-
types in the pancreas. Briefly, we used a univariate linear model to 
predict the observed gene expression based on TF-gene interaction 
weights, from which we scored TFs as active or inactive in each cell 
type (28). We identified TFs with endocrine-specific activity in line 
with the previously described regulators of endocrine cell activity, 
such as NEUROD1, as well as high activity of PAX6 in β cells, where 
it is a key regulator of β cell identity, function, and survival (Fig. 2, 
I and J) (29). Among other cell types, we inferred high activity for 
BHLHA15/MIST1 in acinar cells, where it may play a role in the 
maintenance of pancreatic acinar identity (30), and highly specific 
activity for MEOX2 in endothelial cells and RUNX3 in T cells (Fig. 2, 
I and J). Integrating GRNs with spatial transcriptomic profiles thus 
confirmed the specificity of key TFs regulating pancreatic cell types, 
including for TFs not measured on the spatial panel directly.

Pancreatic cell type gene expression in T1D progression
Changes in genome-wide gene activity within each pancreatic cell 
type during progression to T1D are poorly understood. We there-
fore identified genes and biological pathways in each cell type with 
altered activity in ND AAB+ and T1D. To increase our power to 
detect changes in endocrine cell types, we also used single-cell RNA-
seq from purified islets of 48 donors from the Human Pancreas 
Analysis Program (HPAP) (4,  15,  31) including 27 ND, 11 ND 
AAB+ (9 single, 2 multiple), and 10 T1D (6 recent, 4 long-standing). 
For each cell type and subtype, we derived gene counts per sample, 
tested for differential expression in single and multiple ND AAB+ 
and recent and long-standing T1D compared to nondiabetes, and 
considered genes significant at FDR < 0.1 (see Materials and Meth-
ods). We further performed gene set enrichment of differential 
expression results for each cell type and subtype and identified path-
ways with significant (FDR < 0.1) changes in activity in each condi-
tion (see Materials and Methods).

Marked gene expression changes were observed in β cells in 
T1D (Fig.  3A). In recent-onset T1D, 704 genes in β cells had a 

significant change (FDR < 0.1) in expression, where the most up-
regulated genes included major histocompatibility complex (MHC) 
class I and related (CD74 and B2M) genes, cytokines, and cytokine-
induced genes (IL15, GBP2, and IFIT3), cytokine-responsive TFs 
(STAT1/4 and IRF1), and components of the 20S proteosome 
(Fig. 3B, fig. S9, and data S7). We also observed up-regulation of 
MHC class II genes in T1D, particularly HLA-DPB1, as well as 
MHC class 1 modulators such as NLRC5 (fig. S9). At the pathway 
level, there was up-regulation of antigen processing and presentation, 
interferon signaling, interleukin signaling, and Janus kinase–signal 
transducers and activators of transcription (JAK-STAT) signaling 
and down-regulation of oxidative phosphorylation, translation, mito-
chondrial function, mitosis, mRNA processing, protein folding and 
localization, endoplasmic reticulum (ER)–Golgi transport, and au-
tophagy (Fig. 3C and table S9). We examined whether specific path-
ways up-regulated in T1D showed heterogeneity in expression across 
single β cells and pathways including antigen presentation had evi-
dence for bimodal expression while others such as interferon and 
JAK-STAT signaling did not (fig. S10). Further, a higher proportion of 
β cells from ND AAB+ and T1D donors expressed antigen presenta-
tion pathways compared to ND (fig. S10).

Compared to recent-onset T1D, the most significant changes in 
gene expression generally differed in long-standing T1D, including 
down-regulation of INS and key genes involved in β cell function 
such as GLIS3 and G6PC2 (data S7). In addition, antigen presenta-
tion and class I MHC genes were less pronounced, specific IRF TFs 
had higher expression, and class II MHC genes had stronger up-
regulation in long-standing T1D (fig. S9). At the pathway level, 
interferon signaling was significantly enriched (FDR < 0.1) in long-
standing T1D, although there were overall few pathways with sig-
nificant changes in activity potentially due to the low number of β 
cells at this stage (table S9). We identified more nominal enrichment 
for multiple pathways including up-regulated antigen presentation 
and cytokine receptor interactions and down-regulated autoph-
agy, insulin processing, β cell regulation, and β cell development 
(table S9).

Given marked changes in gene expression in β cells in recent-
onset T1D, we further characterized whether these pathways had 
altered activity within specific localizations in the pancreas. Of 
the genes with altered expression in β cells in recent onset T1D and 
present in the spatial gene panel, almost all (95%) were up-regulated 
in T1D in spatial profiles (Fig. 3D and fig. S11). Furthermore, mul-
tiple up-regulated genes in T1D such as MHC class I genes (e.g., 
HLA-A and B2M) showed spatially dependent expression pat-
terns (Moran’s I > 0.2) within endocrine, immune, and ductal cells 
(Fig. 3D). We further characterized pathways in recent-onset T1D 
with expression profiles dependent on specific niches and altered 
in T1D progression. We identified pathways in the PROGENy data-
base in LIANA+ (32) to predict pathways preferentially active in 
a niche using a multivariate linear model. We identified multiple 
pathways with niche-dependent expression, including hypoxia in 
the endocrine niche (Fig. 3E). When further assessing T1D-specific 
changes, pathways related to hypoxia and inflammation such as tu-
mor necrosis factor–α and JAK-STAT were differentially active in 
T1D (fig. S11).

In contrast to T1D, few individual genes had significant changes 
in expression in β cells in either single or multiple ND AAB+ (Fig. 3A). 
We determined whether more subtle changes might be occurring at 
these stages. Genes altered in recent-onset T1D had significantly 
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Fig. 3. Cell type–specific changes in gene expression in T1D progression. (A) Number of genes in each cell type with significant (FDR < 0.1) changes in expression in 
T1D stages compared to nondiabetes (top). Number of pathways enriched in genes with up- and down-regulated expression in each cell type in T1D stages (bottom). The 
results in all panels include 80 donors (nPOD + HPAP) for endocrine cells and 32 donors (nPOD) for nonendocrine cells. Note that nonendocrine cells were not tested for 
single ND AAB+ association. (B) Volcano plot showing differential expression in β cells in recent-onset T1D compared to ND. (C) Bar plot showing normalized enrichment 
(NES) of pathways enriched in up- and down-regulated genes in β cells in recent-onset T1D (bottom). MT, Mitochondrial. (D) Scaled expression in spatial profiles of genes 
with up-regulated expression in T1D in β cells (left). Spatially dependent expression of selected genes up-regulated in T1D in each cell type (right). (E) Pathways with dif-
ferential expression within spatial niches in T1D compared to ND. EGFR, epidermal growth factor receptor; TNFα, tumor necrosis factor–α. (F) Scatterplot of log fold change 
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model of log fold change values, and P values are from Spearman correlation. FC, fold change. (G) Normalized enrichment of pathways in recent-onset T1D and multiple 
ND AAB+. Pathways are colored on the basis of significant enrichment (FDR < 0.1) in either, or both, states. (H) Normalized enrichment of pathways in β cells across each 
T1D state compared to nondiabetes. (I) Log fold change in expression of selected genes in β cells in each T1D state compared to ND. (J) Normalized enrichment of path-
ways in other pancreatic cell types in recent-onset T1D or multiple ND AAB+. For all panels, *FDR < 0.1, •P < 0.05.
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correlated effects in multiple ND AAB+, although not in single ND 
AAB+ (Fig. 3F). At the pathway level, antigen processing and pre-
sentation were up-regulated in both single and multiple ND AAB+, 
and interferon signaling was up-regulated in multiple ND AAB+ 
(Fig. 3, G and H, and table S9). Among key genes in these pathways, 
MHC class I genes and interferon signaling IRF TFs were up-
regulated in multiple but not in single ND AAB+ (Fig. 3I and data 
S7). We also identified pathways altered specifically in single and 
multiple ND AAB+ and not in recent-onset T1D; for example, heat 
stress response was up-regulated in single and multiple ND AAB+, 
extracellular matrix (ECM) organization, cytokine-cytokine inter-
actions, and G protein–coupled receptor (GPCR) ligand binding 
were all down-regulated in multiple ND AAB+, and transforming 
growth factor–β (TGF-β) signaling was down-regulated in single 
ND AAB+ (Fig. 3H and table S9). In addition, class II MHC antigen 
presentation was strongly up-regulated in multiple ND AAB+, but 
not in single ND AAB+, including class II MHC genes HLA-DBP1 
and HLA-DRB1 (data S7 and table S9). These results highlight that 
single and multiple ND AAB+ have both shared and distinct ge-
nomic changes in β cells compared to T1D.

Changes have been reported in the exocrine pancreas in T1D 
and at-risk individuals (33), and in our study, we observed marked 
changes in exocrine cell gene expression in T1D progression. In 
basal acinar cells, there were 255 genes with altered expression in 
recent-onset T1D, almost all of which (95%) had decreased expres-
sion (Fig. 3A and data S7). Basal acinar and other acinar subtypes 
showed down-regulation of numerous pathways in recent-onset 
T1D including those related to signaling, stimulus response, me-
tabolism, and protein transport (Fig. 3A and table S9). In multiple 
ND AAB+, the high-enzyme acinar subtype showed significantly 
higher expression of antigen presentation, interferon signaling, and 
immune-related pathways, as well as increased activity of amino 
acid metabolism, which is necessary for enzyme production, carbo-
hydrate and glucose metabolism, transcriptional activity, and respi-
ration (Fig. 3J and table S9). We also observed down-regulation of 
genes in ductal cells in T1D associated with small molecule trans-
port, stimulus response, cytokine signaling, and RNA processing 
but no evidence for changes in ND AAB+ (table S9).

Other cell types in islets and the surrounding microenvironment 
also had significant changes in activity across entire pathways dur-
ing progression to T1D. In α cells, antigen presentation, interferon 
signaling, and other pathways were significantly increased in T1D 
with less pronounced effects for these pathways in multiple ND 
AAB+ and, in contrast to β cells, little change in single ND AAB+ 
(Fig. 3J and table S9). δ Cells showed more prominent changes in 
multiple ND AAB+, including significantly increased hypoxia and 
heat stress response and cell cycle–related pathways and decreased 
signaling pathways, as well as in single ND AAB+ (Fig. 3J and ta-
ble  S9). In endothelial cells, we observed increased interleukin-2 
(IL-2) and JAK-STAT signaling as well as Stem Cell Factor (SCF)/
KIT signaling, which promotes angiogenesis (34,  35), in recent-
onset T1D (Fig. 3J and table S9). In activated stellate cells, there was 
decreased expression of translation and RNA processing in ND 
AAB+ and down-regulation of many pathways in recent-onset T1D 
(table S9). We observed few significant changes in gene or pathway 
activity in immune (T cell and macrophage) cells, although this 
could be due to the small number of cells profiled for these cell types.

Together, these results reveal key genes and pathways altered in 
pancreatic cell types in ND AAB+ and T1D donors with both shared 

and distinct changes in ND AAB+ compared to T1D, which in ND 
AAB+ included antigen presentation, interferon signaling, ECM-
related and stress response pathways in β cells, and metabolism and 
immune signaling in acinar cells.

Changes in the pancreatic cell type–specific epigenome in 
T1D progression
We next examined to what extent altered gene and pathway activity 
in pancreatic cell types in T1D progression is driven by changes in 
the epigenome using snATAC-seq profiles from 30 ND, ND AAB+, 
and T1D donors from nPOD. First, we identified cREs in each cell 
type with altered activity in T1D progression using a linear mixed 
model to account for pseudo-replication (see Materials and Meth-
ods). We observed significant changes (FDR < 0.1) in cRE activity in 
ND AAB+ (single and multiple) and T1D for most pancreatic cell 
types (data S8). β Cell cREs with increased activity in recent-onset 
T1D were significantly enriched (FDR < 0.1) for sequence motifs of 
steroid hormone receptors (NC3C1 and NR3C2), NF-Y (NFYA, 
NFYB, and NFYC), interferon response factors (IRF2 and IRF7), 
and stress-response TFs (ATF4, STAT1, and CEBPG) among others 
(Fig. 4A and table S10). Conversely, cREs with decreased activity in 
T1D were significantly enriched for sequence motifs of TFs involved 
in core β cell functions, such as HNF1 and RFX, with many β cell 
identity TFs (NKX6.1 and PDX1) and other TF families including 
FOXA and MEF showing more nominal enrichment (Fig. 4A and ta-
ble S10). We also identified sequence motifs enriched in β cell cREs 
altered in ND AAB+, including IRF, TCF, and STAT TF motifs in cREs 
with increased activity and MEF, RFX, and NFAT TFs in cREs with 
decreased activity, although other T1D-associated motifs such as HNF1 
showed no change in ND AAB+ (Fig. 4A and table S10). Sequence 
motifs were also enriched cREs altered in T1D progression for other 
pancreatic cell types, such as MEF and RFX TF motifs in α cells, 
RUNX TF motifs in activated stellate cells, STAT TF motifs in endo-
thelial cells, and FOS/JUN motifs in ductal cells.

We determined next whether TF motifs enriched in T1D-
associated cREs in pancreatic cell types had broader, genome-wide 
changes in activity in T1D progression by modeling sequence motif 
accessibility across individual cells using chromVAR (see Materials 
and Methods) (26). In β cells, we observed consistent changes in the 
genome-wide accessibility of specific sequence motifs in T1D pro-
gression, including increasing accessibility of IRF motifs and de-
creasing accessibility of RFX, FOXA, and MEF motifs from ND 
AAB+ to T1D states (Fig. 4B and table S11). In other cases, sequence 
motifs had different patterns in ND AAB+ and T1D, such as de-
creased accessibility of HNF1 and increased accessibility of PAR-
related and hormone receptor TFs in T1D only and opposed 
accessibility of SIX TFs in ND AAB+ and T1D. While α cells showed 
similar increases in accessibility of hormone receptor, stress re-
sponse, and PAR-related TFs in T1D progression as in β cells, there 
were also several marked differences such as increased accessibility 
of MEF and RFX motifs in ND AAB+ and recent-onset T1D, respec-
tively (Fig. 4B and table S11).

We used TF GRNs to determine which TFs drive changes in 
pathway activity in T1D progression. In β cells, pathways altered in 
ND AAB+ and T1D had highly specific links to TF GRNs, suggest-
ing key regulators of pathway activity in T1D progression (Fig. 4C 
and data S6). For example, pathways up-regulated in β cells in T1D 
and ND AAB+ such as interferon signaling were linked to GRNs for 
IRF TF motifs, and antigen processing and presentation were linked 
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to NFY, IRF, and nuclear factor κB (NF-κB) TF GRNs, while down-
regulated pathways in T1D such as ER and Golgi-related processes 
were linked to CREB3L1, XBP1, and other TF motifs (Fig. 4C). We 
also identified TF GRNs linked to pathways altered specifically in 
ND AAB+, such as heat stress–related pathways and heat shock fac-
tor (HSF) TF GRNs, ECM-related pathways and ETS, ELK and ELF 
TFs, and GPCR signaling pathways and RFX and FOXA GRNs 
(Fig. 4C and data S6). While we observed a strong change in HNF1 
motif accessibility, as well as HNF1A expression, in β cells in T1D 
(Fig. 4, B and D), no pathways linked to the HNF1 GRN had a sig-
nificant change in expression in T1D. However, there was a more 
nominal change in β cell development and function pathways linked 
to the HNF1 GRN in T1D (Fig. 4D), supporting that reduced HNF1 
activity likely underlies altered β cell function in T1D, as has been 
shown in the context of type 2 diabetes (36).

Similarly, in other pancreatic cell types, TF GRNs were linked to 
pathways with altered activity in ND AAB+ or T1D. For example, in 
enzyme-high acinar cells, metabolic pathways altered in ND AAB+ 
were linked to GRNs for specific TFs such as glucose metabolism 
and HNF1, amino acid metabolism and STAT1, and oxidative phos-
phorylation and MEF and FOS TF GRNs (Fig. 4E and data S6). In 
activated stellate cells, fibrin-related pathways up-regulated in ND 
AAB+ were significantly linked to ELK, HOX, CEBP, and other TF 
GRNs. In endothelial cells, IL-2 and JAK-STAT signaling path-
ways up-regulated in T1D were strongly linked to NF-κB (REL and 
RELA) and IRF TF GRNs, and SCF/KIT signaling was also linked to 
HOX family TF GRNs, among others. We further explored changes 
in TF activity inferred from spatial gene expression profiles of TF 
GRNs across cell types, which revealed increased activity of im-
mune regulation, inflammation and signaling TFs (e.g., STAT3, 
RBPJ, FOSL2, and JUND), and reduced activity of endocrine-related 
TFs (e.g., PAX6, GLI3, MAFA, INSM1, and NEUROD1), in T1D 
compared to nondisease (fig. S12).

We next annotated specific β cell cREs altered in T1D progres-
sion with putative target genes and assessed changes in regulatory 
programs at specific loci. There were 114 β cell cREs with altered 
activity in T1D progression linked to genes with significant changes 
in expression. For example, a β cell cRE on chromosome 14 in the 
first intron of TSHR had increased accessibility in recent-onset T1D 
and was linked to TSHR, which had among the largest increases in 
expression in recent-onset T1D (Fig. 4F). We identified similar cREs 
up-regulated in recent-onset T1D linked to genes with highly up-
regulated expression including HLA-A (Fig. 4F), as well as CD74, 
GAD1, IL15, and STAT1/4. In other cases, we observed epigenomic 
changes in β cells that may precede changes in expression of cognate 
target genes. For example, a cRE upstream of IAPP had reduced ac-
cessibility in early T1D, although IAPP itself only had a significant 
decrease in expression in longer-duration T1D.

Given pathways and transcriptional regulators with altered cell 
type activity in T1D progression, we determined whether any 
changes before T1D onset showed evidence for a role in genetic risk 
of T1D. We tested for enrichment of cREs linked to genes in each 
pathway for T1D-associated variants genome-wide (excluding the 
MHC locus) using fgwas (see Materials and Methods) (5, 37). In β 
cells, several pathways altered in ND AAB+ were enriched for T1D-
associated variants including antigen processing and presentation 
(log enrich  =  4.48), class II MHC antigen presentation (log en-
rich = 4.74), and interferon signaling (log enrich = 6.00) as well as 
several extracellular interaction-related processes (focal adhesion 

and laminin interactions) and GPCR signaling (Fig. 4G). By com-
parison, multiple other pathways previously implicated in driving 
T1D risk in β cells, such as apoptosis, autophagy, mitophagy, and 
senescence, showed limited to no enrichment (Fig.  4G). Among 
other cell types, we found evidence for enrichment of immune, me-
tabolism, and transcription-related pathways in high-enzyme as 
well as basal acinar cells (fig. S13).

We further identified specific T1D risk loci that may alter regula-
tory activity of disease-enriched pathways in key cell types such as 
β cells, T cells, and other immune populations and exocrine cells 
during T1D progression. We identified candidate causal variants at 
known T1D loci by overlapping cREs altered in T1D progression with 
published fine-mapping data (5). In β cells, multiple candidate causal 
variants at the IRF1 locus overlapped cREs with increased activity in 
T1D including at the promoter and downstream of IRF1 (Fig. 4H and 
table S12). There was increased β cell expression of IRF1 through 
stages of T1D progression, and IRF1 is a driver of β cell interferon 
responses, which is a pathway broadly enriched for T1D-associated 
variants (Fig. 4H). Conversely, at the STAT4 locus, we identified cREs 
with increased activity in β cells as well as T cells, although candidate 
causal variants for T1D at the STAT4 locus only overlapped cREs ac-
tive in T cells (Fig. 4I). This finding supports that while increased 
STAT4 activity in β cells is observed in T1D, the STAT4 locus more 
likely affects T1D risk through altered T cell function.

Proinflammatory cytokine exposure has been used as a model to 
study genetic risk of T1D in β cells (18, 38), but the extent to which 
cytokine-induced changes in β cells captures transcriptional regula-
tors and sites of T1D risk in actual T1D progression is not well es-
tablished. Several TF motifs enriched in cytokine-responsive cCREs 
mirrored those enriched in cCREs up-regulated in T1D including 
IRF and STAT TFs, while other TFs such as steroid hormones may 
be more specific to T1D progression. We next compared the overlap 
of T1D risk loci with cCREs altered in T1D progression and 
cytokine-responsive cCREs from a prior study (38). Risk variants at 
a subset of T1D loci overlapped both sets of cCREs, including the 
IRF1 locus. These results suggest that cytokine exposure partially 
recapitulates epigenomic changes in β cells during T1D progression 
and may help model disease mechanisms at specific loci. Together, 
these results reveal transcriptional regulators and networks altered 
in T1D progression, including those regulating pathways that likely 
play a causal role in T1D such as antigen presentation, interferon 
signaling, and extracellular interactions in β cells.

Changes in pancreatic cell-cell signaling in T1D progression
External signaling between cell types is a key driver of changes in cell 
type–specific regulation and function, and therefore, we lastly identi-
fied cell-cell signaling interactions in the pancreas altered in T1D pro-
gression. We first inferred cell-cell interactions using snRNA-seq data 
for 32 nondiabetes, ND AAB+ (both single and multiple), and T1D 
donors in nPOD using 1939 ligand-receptor (LR) pairs in CellChat 
(see Materials and Methods) (39), which revealed 87,650 interactions 
significant (FDR < 0.1) in at least one condition (table S13). Grouping 
ligands into functional categories revealed classes of outgoing signals 
preferentially produced by each cell type; for example, hormones, 
neuropeptides, and cell adhesion molecules from endocrine cells and 
enzymes from exocrine cells (fig. S14 and table S14).

We identified cell-cell interactions with changes in activity in 
T1D progression using a permutation test and considered changes 
significant at FDR < 0.1 (see Materials and Methods). Overall, there 
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Fig. 5. Cell-cell signaling networks altered in T1D progression. (A) Summary of total interaction strength (top) and number of interactions (middle) for each pancre-
atic lineage in nondiabetes, ND AAB+ (both single and multiple), recent-onset T1D, and long-standing T1D using snRNA-seq from 32 donors (nPOD). Bar plot showing the 
number of LR interactions per donor FOV in spatial slides, and error bars are SE (bottom). (B) Heatmap showing normalized interaction strength of signals for each cell 
type among donors which were nondiabetes, ND AAB+, recent-onset T1D, and long-standing T1D. Stars represent significance of the difference in interaction strength in 
each T1D state compared to nondiabetes. **FDR < 0.01 and *FDR < 0.05. (C) Difference in strength of interactions between β cells and other cell types and subtypes in 
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change in signal involving β cells. **FDR < 0.01 and *FDR < 0.05. (F) Heatmap per donor showing the interaction score of the top LR interactions from a likelihood ratio 
test comparing ND and T1D donors. (G) Spatial plots of a representative FOV (T1D: top, ND: bottom) highlighting spots with an interaction between HLA-C and CD8A and 
the cell types where this interaction occurs. (H) Volcano plot showing genes with up- and down-regulated expression in EndoC-BH1 after BMP5 treatment (left). Pathways 
enriched in up- and down-regulated genes in BMP5 exposure (right). The experiment was performed using n = 6 biological replicates per treatment. MAPK, mitogen-
activated protein kinase. (I) Volcano plot showing genes with up- and down-regulated expression in EndoC-BH1 after progranulin (PGRN) treatment (left). Biological 
pathways enriched in genes with up- and down-regulated expression after PGRN exposure (right). The experiment was performed using n = 3 biological replicates per 
treatment. TCA, citric acid cycle.
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was a reduction in the number and strength of interactions in recent-
onset and long-standing T1D compared to nondiabetes, which was 
largely driven by exocrine cells (Fig. 5A). In both ND AAB+ and 
recent-onset T1D, there was increased strength of interactions involv-
ing endocrine cells and other cell types, although the total number of 
interactions was reduced (Fig. 5A). We further identified cell-cell in-
teractions among cells in spatial niches and determined changes in 
T1D using spatial transcriptome profiles. We identified spatially coex-
pressed LR interactions by Moran’s bivariant extension in SpatialDM 
(40) using LR pairs from CellChat (39). We compared the number of 
detected interactions considering each FOV as technical replicates of 
a donor and observed significant heterogeneity across donors and, 
like dispersed cell data, fewer interactions in T1D compared to ND 
donors (H statistic = 19.6, P = 0.0015) (Fig. 5A).

Among specific cell types, endocrine cells displayed significant in-
creases in both outgoing and incoming signaling in recent-onset T1D 
(Fig. 5, B and C). We also observed significant increases in incoming 
signaling to endothelial, ductal, and activated stellate cells, as well as 
nominal changes in basal and high-enzyme acinar, immune, and stel-
late cells, in recent-onset T1D. Summarizing signaling by functional 
category revealed broad classes of cell type–specific signals altered in 
T1D; for example, β and other endocrine cells had increased signaling 
from cell adhesion molecules, whereas T cells had increased antigen 
presentation and interleukin signaling (Fig. 5D). We further exam-
ined changes in signaling between specific pairs of cell types in T1D 
progression (table S15). Significant changes (FDR < 0.1) in recent-
onset T1D included increased incoming and outgoing signaling in-
volving β cells, including between β cells themselves (Fig. 5C), as 
well as increased signaling for α cells, outgoing signaling from high-
enzyme acinar cells, and incoming signaling to endothelial cells.

Given the importance of external signaling to β cells in T1D, we 
focused specifically on signals involving β cells. In recent-onset 
T1D, autocrine/paracrine signals incoming to β cells with signifi-
cant changes in activity included cell adhesion molecules NRXN1, 
CADM1, and NEGR1 from all endocrine cell types and the secreted 
factor BMP5 from β cells (Fig. 5E). In addition, high-enzyme acinar 
cells had increased signaling of trypsinogen (Fig. 5E), and stellate 
cells had increased signaling of ECM and cell adhesion molecules to 
β cells. Among immune cells, signals with significant changes in sig-
naling to β cells included GZMA and CCL5 from T cells and VSIR, 
PGRN, and LGALS9 from macrophages (Fig. 5E). In return, β cells 
had increased signaling of IL7 and MHC class I genes HLA-A and 
HLA-C to T cells, as well as increased signaling of BMP5, EFNA5, 
DLK1, and ANGPTL2 to macrophages. Notably, multiple β-immune 
cell signals altered in a T1D map to T1D risk loci (e.g., DLK1, HLA-
A, HLA-C, and IL7R) (5).

We next identified differential interactions (P < 0.05) in spatial 
profiles by performing a likelihood ratio test, which provided sup-
port for many T1D-associated interactions identified in dispersed 
cell data. For example, interactions involving HLA class I (e.g., 
HLA-C), APP, SPP1, and BMP5, as well as ECM-related interac-
tions, were altered in T1D (Fig. 5, F and G). We also identified ad-
ditional interactions enriched in T1D donors, for example, between 
migration inhibitory factor MIF and its transmembrane receptor 
CD74, consistent with previous studies (41), and involving several 
chemokines. Next, we identified spatially coexpressed LR pairs using 
the Moran’s I score in Liana+ (32). We obtained the top interactions 
associated with each niche using non-negative matrix factorization 
(see Materials and Methods). In T1D, an interaction between APP 

and CD74 was enriched in the endocrine niche, where APP is in-
volved in inflammation and could promote immune responses in 
T1D (fig. S15). Conversely, interactions involving INS, IGF1R, INSR, 
and CALM1, among others, were enriched in the endocrine niche 
from nondisease donors (fig. S15).

Several ligands that signal to β cells in T1D progression includ-
ing BMP5 and PGRN have not been previously implicated in T1D, 
and cellular responses to these ligands may contribute to changes in 
gene activity observed in β cells in T1D. We thus determined the 
effects of in vitro exposure to these ligands on gene expression using 
the β cell model EndoC-BH1. Exposing β cells to BMP5 in culture 
revealed 1926 genes with significant change (FDR < 0.1) in expres-
sion, where the most up-regulated genes were ID1-4 and SMAD6-7, 
known targets of BMP that regulate proliferation and differentia-
tion, and the β cell identity gene MAFA (Fig.  5H and table  S16). 
More broadly, BMP5 exposure up-regulated pathways (FDR < 0.1) 
related to TGF-β signaling, glycolysis, secretion, and lipid metabo-
lism and down-regulated pathways such as antigen presentation and 
chemokine signaling (Fig.  5H). Second, PGRN encodes secreted 
proteins produced by macrophages and ductal cells. Upon exposure 
to granulin, 491 genes had a significant change (FDR < 0.1) in ex-
pression including up-regulation of β cell function and insulin se-
cretion genes MAFA, ISL1, SOX4, CRY2, and down-regulation of 
apoptosis-related genes PEA15, PDCD5, and CCAR1 (Fig.  5I and 
table  S17). More broadly, granulin up-regulated cholesterol and 
glycerolipid metabolism and down-regulated interleukin signaling 
and inflammation, transcription and translation, and cell death. 
Overall, these results support that both BMP5 and PGRN suppress 
pathways up-regulated in β cells in T1D and therefore may play a 
protective role in β cells during T1D progression. These results to-
gether reveal broad changes in predicted cell-cell signaling in T1D 
progression most prominently among endocrine cells and niches 
but also involving other cell types, including signals altered in T1D 
that modulate T1D-relevant regulatory programs in β cells.

DISCUSSION
Single-cell and spatial profiling of human pancreas donors revealed 
extensive changes in the abundance, regulation, and signaling of 
specific cell types in T1D progression, including processes that play 
a likely causal role in driving disease. In β cells, class I and class II 
MHC antigen presentation and interferon signaling pathways, TF 
regulators of these pathways, and cREs linked to genes in these path-
ways all had up-regulated activity in recent-onset T1D and ND 
AAB+. Antigen presentation was altered as early as single ND AAB+ 
donors, suggesting that aberrant antigen presentation in β cells may 
be an initial triggering event in T1D. A larger proportion of β cells 
from ND AAB+ and T1D donors expressed antigen presentation 
pathways, although whether subsets of these cells drive initiation or 
exacerbation of immune responses requires further investigation. 
Antigen presentation and interferon signaling pathways in β cells 
were broadly enriched for T1D-associated variants, and specific risk 
loci for T1D were linked to key genes in these pathways such as 
IRF1. In contrast, we found limited evidence that pathways directly 
related to apoptosis, as well as other processes implicated in T1D in 
β cells such as autophagy, senescence, and mitophagy, harbor T1D 
risk and are thus more likely consequences of disease. It has been 
long hypothesized that β cells affect genetic risk of T1D through 
increased cell death (41–47). Our results support that β cells may 
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primarily contribute to T1D risk via the initiation or exacerbation of 
immune responses, which necessitates different cellular models and 
phenotypic readouts to understand their role in disease.

In addition to shared pathways, gene activity in β cells and other 
pancreatic cell types had distinct changes in ND AAB+ compared to 
recent-onset T1D, revealing that genomic profiles before T1D onset 
are only partially intermediate to those in T1D. In addition, the lack 
of individual genes with highly significant changes expression in 
ND AAB+ suggests that changes at these stages are likely more sub-
tle, in contrast to previous reports (4). Several pathways in β cells 
were altered specifically in single and multiple ND AAB+ such as 
heat shock response and ECM organization. Heat shock responses 
are activated by a variety of stressors, promote antigen presenta-
tion in β cells, and can act as chaperones for antigens and thus may 
plausibly contribute to the initiation of autoimmunity (48, 49). The 
breakdown of ECM is also an important process in T1D, as both a 
precursor to immune invasion and by affecting intrinsic β cell func-
tion (50). We observed a similar pattern of both shared and distinct 
changes in the epigenome of β cells in ND AAB+ compared to T1D, 
including increased NEUROD1 activity and decreased SIX TF ac-
tivity. There were also shared and distinct features in T1D based on 
the duration of disease; for example, a more pronounced reduction 
in β cell function in long-standing T1D.

In contrast to β cells, changes in pathway activity in α cells were 
largely restricted to multiple ND AAB+ and T1D, including anti-
gen presentation and interferon response pathways and transcrip-
tional regulators of these pathways. This supports that immune 
responses are more pronounced within β cells compared to α cells 
particularly in the early stages of T1D, which may reflect differ-
ences in immune targeting as well as the intrinsic properties of 
each cell type. The latter is supported by in vitro studies showing 
pronounced responses of β cells to external stressors (18). A previ-
ous study revealed changes in α cell function and gene expression 
in single ND AAB+ using data from HPAP (51), although there 
were overall few genes with altered expression which supports our 
findings that genomic changes in α cells before T1D are likely sub-
tle. In addition, several TF families such as RFX and MEF2 had 
different patterns of accessibility between α cells and β cells in 
T1D, further highlighting the unique responses of each cell type 
to disease. Conversely to α cells, δ cells had altered activity of mul-
tiple stress and inflammatory response pathways both in single 
and multiple ND AAB+, as well as decreased abundance in T1D, 
suggesting that they may play an as-of-yet unappreciated role in 
T1D progression.

Given that we profiled pancreatic tissue samples and not purified 
islets, our study was uniquely placed to reveal changes in the exo-
crine pancreas compared to previous single-cell studies (4, 15). We 
identified multiple clusters of acinar and ductal cell types which had 
distinct genomic profiles and may represent heterogeneous sub-
types of these cell types. In acinar cells, subclusters were broadly 
related to enzyme production and signaling responses, and previous 
reports highlighted similar heterogeneity in secretory and idling 
acinar cells (52). Similar hormone-producing and signaling states 
have been reported in endocrine cells (53) and thus may represent 
a common property of secretory cells. Resolving exocrine subclus-
ters revealed genomic changes within specific exocrine subtypes 
in T1D. Enzyme-high acinar and MUC5B+ ductal cells were more 
abundant in ND AAB+ donors, and acinar subtypes had altered im-
mune signaling, metabolism, and transcriptional pathways, as well 

as increased signaling to β cells, in T1D progression. Specific path-
ways within acinar cells altered in T1D progression also harbored 
T1D-associated variants, further supporting a role for exocrine pan-
creas in T1D risk (4, 5) and providing new in-roads to determine 
how cellular processes in acinar cells contribute causally to T1D.

Signaling relationships between pancreatic cell types revealed in-
coming and outgoing external signals during progression to T1D. 
Cell-cell signaling between immune and β cells highlighted known 
signals in T1D (54, 55), as well as potential mechanisms of genes 
implicated in T1D risk such as DLK1 and IL7 (5). Additional signals 
incoming to β cells in T1D such as BMP5 and PGRN have no prior 
known role in disease. BMP5 has increased autocrine/paracrine sig-
naling in T1D and in  vitro suppressed antigen presentation- and 
chemokine-related genes and enhanced expression of several genes 
linked to β cell proliferation and function. Other BMP proteins have 
been shown to both enhance and inhibit β cell function, maturity, and 
proliferation (56–58), where the direction of effect depends on the 
level of BMP signaling. PGRN suppresses class I MHC expression and 
T cell infiltration of ductal adenocarcinoma cells in the context of 
pancreatic cancer and has been shown to promote proliferation in 
mouse models of β cells (59, 60). Signaling pathways altered in T1D, 
particularly those involved in T1D risk, may represent therapeutic ar-
eas for preserving β cell function to prevent or reverse T1D.

There were several limitations of the data and analyses in our 
study to highlight. Current single-cell and spatial assays provide 
sparse profiles per cell which can affect downstream analyses. For 
example, although we used data integration methods designed to 
overcome sparsity in spatial data (21), there are still challenges in 
annotating cell types and subtypes among cells with sparse profiles. 
In addition, analyses such as differential expression, TF activity, and 
cell-cell communication likely underrepresent true biological sig-
nals that are lowly expressed and have more limited detection in 
single-cell and spatial assays. The data from single-cell and spatial 
assays also represent a limited sample of the whole pancreas. For 
example, our single-cell assays profiled the head of the pancreas, and 
whether cell type–specific changes in T1D in this region reflect 
those in the body and tail is unknown. Similarly, spatial assays pro-
filed FOV selected on the basis of specific criteria which limited our 
ability to define changes in T1D more broadly across the pancreas. 
Overcoming these limitations with current technology could consist 
of repeated assays per donor covering many different regions and 
FOV. Last, cell-cell interactions in our study represent predictions 
based on gene expression, which may not necessarily reflect ligand 
and receptor protein abundance nor capture direct LR interactions, 
and additional experiments are needed to validate these interactions.

Last, one key area for future studies to address is the still rela-
tively limited profiling of donors across all dimensions of T1D 
pathogenesis and progression. For example, we profiled few donors 
from nPOD that were single ND AAB+, which prohibited under-
standing changes in nonendocrine cells in the earliest stages of dis-
ease initiation. In addition, while we grouped ND donors by the 
number of autoantibodies, there is further granularity in how T1D 
stages can be defined. For example, stage 2 of T1D is marked by both 
multiple autoantibody positivity and reduced β cell function (61), 
and refined characterization of T1D stages may help reveal drivers 
of dysglycemia in T1D progression. The extent of differences in ge-
nomic profiles of heterogeneous subgroups of T1D, for example, 
based on age of onset, HLA background, or other variables (62–64), 
is also largely unknown. Continued collection of single-cell and 
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spatial data from much larger sample sizes will be instrumental in 
enabling all these analyses. Last, studies pairing pancreas data with 
other T1D-relevant tissues from matched donors, for example, pan-
creatic lymph nodes, will help understand immune infiltration and 
cross-tissue signaling in driving T1D in the pancreas.

In summary, our study revealed gene regulatory changes in pan-
creatic cell types in T1D progression and highlighted pathways, regu-
latory networks, and signals that may play a causal role in T1D; 
efforts that inform both new directions for mechanistic studies and 
targets for therapies to prevent or reverse T1D. We provide these data 
and maps in visualization tools at http://t1d-pancreas.isletgenomics.
org to further enhance their utility to the research community. More 
broadly, our study highlights the utility of single-cell multiomic and 
spatial analysis to reveal insight into cellular processes underlying 
progression to complex disease.

MATERIALS AND METHODS
Sample selection
Whole pancreas tissue was obtained from the nPOD biorepository 
according to federal guidelines with informed consent obtained 
from each donor’s legal representative. Studies were considered ex-
empt and approved by the Institutional Review Board of the Univer-
sity of California San Diego. We selected 7 T1D donors with more 
recent onset (<1 year from diagnosis) and 5 T1D donors with longer 
duration (>5 years from diagnosis), along with 11 age- and sex-
matched ND individuals. We also selected nine ND donors with 
T1D autoantibodies (ND TD AAB+), most of which had multiple 
antibodies although one donor was single GAD+. In total, 32 donors 
were obtained for genomic profiling. For all 32 donors, frozen tissue 
samples were obtained from head of the pancreas (table S1).

Single-cell assays
Tissue homogenization
For each sample, we homogenized roughly 40 mg of flash-frozen pan-
creas tissue using mortar and pestle on liquid nitrogen, and ground 
tissue was used as input for the different single-nucleus assays.
Generation of snATAC-seq data
Ground pancreas tissue was resuspended in 1 ml of nuclei per-
meabilization buffer [10 mM tris-HCl (pH 7.5), 10 mM NaCl, 3 mM 
MgCl2, 0.1% Tween 20 (Sigma-Aldrich), 0.1% IGEPAL-CA630 (Sigma-
Aldrich), 0.01% digitonin (Promega), and 1% fatty acid–free bovine 
serum albumin (BSA) (Proliant, 68700) in molecular biology–grade 
water]. Nuclei suspension was filtered with a 30-μm filter (CellTrics, 
Sysmex) and then incubated for 5 min at 4°C on a rotator. Nuclei 
were pelleted with a swinging bucket centrifuge (500g, 5 min, 4°C; 
Eppendorf, 5920 R) and washed with 1 ml of wash buffer [10 mM 
tris-HCl (pH 7.5), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween 20, and 
1% BSA (Proliant, 68700) in molecular biology–grade water]. Nuclei 
were pelleted and resuspended in 10 μl of 1× nuclei buffer (10x 
Genomics). Nuclei were counted using a hemocytometer, and 15,360 
nuclei were used for tagmentation. snATAC-seq libraries were gen-
erated using the Chromium Single Cell ATAC Library & Gel Bead 
Kit v1.1 (10x Genomics, 1000175), Chromium Chip H Single Cell 
ATAC Kit (10x Genomics, 1000161), and indexes (Single Index 
Kit N Set A, 1000212) following the manufacturer’s instructions. Final 
libraries were quantified using a Qubit fluorometer (Life Technolo-
gies), and the nucleosomal pattern was verified using a TapeStation 
(High Sensitivity D1000, Agilent). Libraries were sequenced on 

NextSeq 500, HiSeq 4000, and NovaSeq 6000 sequencers (Illumina) 
with the following read lengths (Read1 + Index1 + Index2 + Read2): 
50 + 8 + 16 + 50. Libraries were sequenced to an average depth of 
333M reads (table S1).
Generation of snRNA-seq data
Ground pancreas tissue was suspended in 500 μl of nuclei buffer: 
0.1% Triton X-100 (Sigma-Aldrich, T8787), 1× EDTA free protease 
inhibitor (Roche or Pierce), 1 mM dithiothreitol (DTT), and ribo-
nuclease (RNase) inhibitor (0.2 U/μl; Promega, N211B), and 2% 
BSA (Sigma-Aldrich, SRE0036) in phosphate-buffered saline (PBS). 
Sample was incubated on a rotator for 5 min at 4°C and then pel-
leted with a swinging bucket centrifuge (500g, 5 min, 4°C; 5920 R, 
Eppendorf). The supernatant was removed, and the pellet was re-
suspended in 400 μl of sort buffer [1 mM EDTA and RNase inhibi-
tor (0.2 U/μl) in 2% BSA (Sigma-Aldrich, SRE0036) in PBS] and 
stained with DRAQ7 (1:100; Cell Signaling Technology, 7406). A 
total of 75,000 nuclei were sorted using an SH800 sorter (Sony) into 
50 μl of collection buffer [RNase inhibitor (1 U/μl) and 5% BSA 
(Sigma-Aldrich, SRE0036) in PBS]. Sorted nuclei were then centri-
fuged at 1000g for 15 min (Eppendorf, 5920R; 4°C, ramp speed of 
3/3), and the supernatant was removed. Nuclei were resuspended in 
18 to 25 μl of reaction buffer [RNase inhibitor (0.2 U/μl) and 1% 
BSA (Sigma-Aldrich, SRE0036) in PBS] and counted using a hemo-
cytometer. A total of 16,500 nuclei were loaded onto a Chromium 
controller (10x Genomics). Libraries were generated using the 10x 
Genomics, Chromium Next GEM Single Cell 3′ GEM, Library & 
Gel Bead Kit v3.1 (10x Genomics, 1000121), Chromium Next GEM 
Chip G Single Cell Kit (10x Genomics, 1000120), and indexes 
(Single Index Kit T Set A, 10x Genomics, 1000213 or Dual Index Kit 
TT Set A, 10x Genomics, 1000215) according to the manufacturer’s 
specifications. cDNA was amplified for 12 polymerase chain reac-
tion (PCR) cycles. SPRISelect reagent (Beckman Coulter) was used 
for size selection and cleanup steps. Final library concentration 
was assessed by the Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific), and fragment size was checked using a TapeStation 
(High Sensitivity D1000, Agilent). Libraries were sequenced using a 
NextSeq 500 and a Novaseq6000 (Illumina) with the following read 
lengths (Read1 + Index1 + Index2 + Read2): 28 + 8 + 0 + 90 (single 
index) or 28 + 10 + 10 + 90 (dual index). Libraries were sequenced 
to an average depth of 206M reads and captured 1580 genes per 
nucleus (table S1).
Generation of joint single-nucleus RNA and ATAC-seq  
data (Multiome)
Ground tissue was resuspended in 1 ml of wash buffer [10 mM tris-
HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween 20 (Sigma-
Aldrich), 1% fatty acid–free BSA (Proliant, 68700), 1 mM DTT 
(Sigma-Aldrich), 1× protease inhibitors (Thermo Fisher Scientific, 
PIA32965), and RNasin (1 U μl−1; Promega, N2515) in molecular 
biology–grade water]. Nuclei suspension was filtered with a 30-μm 
filter (CellTrics, Sysmex) and pelleted with a swinging bucket centri-
fuge (500g, 5 min, 4°C; Eppendorf, 5920 R). Nuclei were resuspended 
in 400 μl of sort buffer [1% fatty acid–free BSA, 1× protease inhibi-
tors (Thermo Fisher Scientific, PIA32965), and RNasin (1 U μl−1; 
Promega, N2515) in PBS] and stained with 7-aminoactinomycin D 
(1 μM; Thermo Fisher Scientific, A1310). A total of 120,000 nuclei 
were sorted using an SH800 sorter (Sony) into 87.5 μl of collection 
buffer [RNasin (1 U μl−1; Promega, N2515) and 5% fatty acid–free 
BSA (Proliant, 68700) in PBS]. Nuclei suspension was mixed in 
a ratio of 4:1 with 5× permeabilization buffer [50 mM tris-HCl 
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(pH 7.4), 50 mM NaCl, 15 mM MgCl2, 0.5% Tween 20 (Sigma-
Aldrich), 0.5% IGEPAL-CA630 (Sigma-Aldrich), 0.05% digitonin 
(Promega), 5% fatty acid–free BSA (Proliant, 68700), 5 mM DTT 
(Sigma-Aldrich), 5× protease inhibitors (Thermo Fisher Scientific, 
PIA32965), and RNasin (1 U μl−1; Promega, N2515) in molecular 
biology–grade water] and incubated on ice for 1 min before pellet-
ing with a swinging bucket centrifuge (500g, 5 min, 4°C; Eppendorf, 
5920 R). The supernatant was gently removed, and ~10 μl was left 
behind to increase nuclei recovery. A total of 650 μl of wash buffer 
[10 mM tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween 
20 (Sigma-Aldrich), 1% fatty acid–free BSA (Proliant, 68700), 1 mM 
DTT (Sigma-Aldrich), 1× protease inhibitors (Thermo Fisher Sci-
entific, PIA32965), and RNasin (1 U μl−1; Promega, N2515) in 
molecular biology–grade water] was added with minimal dis-
turbance of the pellet, and samples were centrifuged again with a 
swinging bucket centrifuge (500g, 5 min, 4°C; Eppendorf, 5920 R). 
The supernatant was gently removed without disturbing the pellet, 
leaving ~2 to 3 μl behind. Approximately 7 to 10 μl of 1× nuclei 
buffer (10x Genomics) were added, and nuclei were gently resus-
pended. Nuclei were counted using a hemocytometer, and 18,300 
nuclei were used as input for tagmentation. Single-cell multiome 
ATAC and gene expression libraries were generated following the 
manufacturer’s instructions (Chromium Next GEM Single Cell 
Multiome ATAC + Gene Expression Reagent Bundle, 10x Genom-
ics, 1000283; Chromium Next GEM Chip J Single Cell Kit, 10x Ge-
nomics, 1000234; Dual Index Kit TT Set A, 10x Genomics, 1000215; 
Single Index Kit N Set A, 10x Genomics, 1000212) with the follow-
ing PCR cycles: 7 cycles for preamplification, 8 cycles for ATAC in-
dex PCR, 7 cycles for cDNA amplification, and 12 cycles for RNA 
index PCR. Final libraries were quantified using a Qubit fluorome-
ter (Life Technologies), and the size distribution was checked using 
a TapeStation (High Sensitivity D1000, Agilent). Libraries were se-
quenced on NextSeq 500 and NovaSeq 6000 sequencers (Illumina) with 
the following read lengths (Read1 + Index1 + Index2 + Read2): ATAC 
(NovaSeq 6000), 50 + 8 + 24 + 50; ATAC (NextSeq 500 with custom 
recipe), 50 + 8 + 16 + 50; RNA (NextSeq 500, NovaSeq 6000), 
28 + 10 + 10 + 90. Libraries were sequenced to an average depth 
of 104M reads for RNA-seq and 247M reads for ATAC-seq and cap-
tured 1789 genes per nucleus (table S1).
Quality control and filtering
Single nuclei ATAC data were processed and aligned to reference 
genome hg38, and duplicate reads were removed using CellRanger 
ATAC (v1.1.0). Chromatin accessibility for each sample was quanti-
fied in 5-kb genome windows as previously described (53). Nuclei 
with less than 1000 unique ATAC-seq fragments were removed. 
Initial quality control was performed to retain cells in each sample 
using the following metrics unique usable reads > 5000, fraction pro-
moters used > 0.01, and transcription start site (TSS enrichment) 
(TSSe) > 0.3 using scanPy v1.8.0. Doublets were removed using 
Amulet v1.0 per sample (65). After quality control, snATAC-seq pro-
files from two donors (6366 and 6459) were excluded from further 
analysis due to low barcode numbers and poor clustering.

Single-nuclei RNA samples were processed using CellRanger 
(v6.0.1) with reference genome hg38 (66). Individual samples were 
processed for quality initially by removing nuclei with less than 500 
expressed genes. Doublets were detected for each sample using 
DoubletFinder (v2.0.3) using an expected doublet rate of 4% for 
all samples (67). In effort to reduce ambient RNA contamination 

largely driven by acinar cells, we used SoupX (v1.6.2) and selected 
acinar marker genes, REG1A and PRSS1, to estimate contamination 
rates (68). Gene expression count matrices were then corrected for 
this predicted contamination, and these correct counts were used 
for both clustering and downstream analysis.

Paired multiome data were processed and aligned, and multiplet 
reads were removed using cellranger arc (v2.0.0) with the reference 
genome hg38. Individual sample quality control was done using 
both modalities to remove low-quality nuclei without a minimum of 
500 expressed genes and 1000 ATAC-seq fragments. Ambient RNA 
contamination was removed using SoupX (v1.6.2) using the same 
parameters as previously described. Doublets were detected and re-
moved for both modalities using DoubletFinder (v2.0.3) and Amu-
let (v1.0), with the same parameters as above for single modality 
data (65, 67).
Generation of spatial transcriptomic data
Pancreatic tissue from six nPOD organ donors—three with T1D (6228, 
6247, and 6456) and three ND (6431, 6339, and 6229), matched by 
age and sex—was selected for spatial transcriptomic profiling on 
the CosMx platform (NanoString, Seattle, WA). For each donor, five 
consecutive Formalin-Fixed, Paraffin-Embedded (FFPE) tissue sec-
tions from the pancreatic body region were cut at a thickness of 
4 μm. Sections #1, #2, #4, and #5 were mounted on the back of VWR 
Superfrost Plus Micro Slides, centered within the scanning area. Af-
ter sectioning, the slides were air-dried overnight at room tempera-
ture, sealed, and immediately shipped with desiccant and ice packs 
to the NanoString facility (Seattle, Washington), where they were 
processed within 2 weeks of receipt. Section #3 was triple-stained 
for CD3, insulin, and glucagon using chromogen-based immuno-
histochemical staining using the Mach2 Double Stain 1/Mach2 
Double Stain 2 HRP-AP Polymer Detection Kit according to the 
manufacturer’s instructions (Biocare Medical, Pacheco, CA), and 
chromogens used included Betazoid Diaminobenzidine (DAB) 
(CD3), Warp Red (insulin), and Ferangi Blue (glucagon; all from 
Biocare Medical). Slides were then counterstained with hematoxylin. 
After staining, the slide was digitized at ×20 magnification using an 
Aperio CS2 slide scanner (Leica Biosystems Inc., Wetzlar, Germany), 
and this image served as a reference for FOV selection during 
CosMx data processing. The FOVs were selected by prioritizing spe-
cific features such as insulitic islets, islets with few insulin-positive 
cells, insulin-negative islets, and areas of inflammation in acinar 
tissue. The gene panel used for spatial imaging included 1010 genes, 
including 1000 genes from the Human Universal Cell Characteriza-
tion RNA Panel and 10 additional custom genes selected for this 
project. The imaging experiments using CosMX were performed at 
NanoString (Seattle, WA). Cell segmentation was performed by 
NanoString using Giotto (69), which included using immunofluores-
cence for glucagon to mark islets, CD3 or CD45 to mark immune cells, 
and PanCK for ductal cells + 4′,6-diamidino-2-phenylindole.
Quality control and transcriptomic clustering of 
segmented cells
For downstream analysis of spatial transcriptomes, we used the Python 
toolkits Scanpy (70) and Squidpy (22). For each slide, we imported ma-
trices containing the gene expression, metadata, and positions of seg-
mented cells. We defined a unique cell name and created a merged 
anndata object with data from all the slides. We adopted a standard 
filtering strategy, removing cells with less than 10 detected genes and 
removing genes detected in less than 300 cells. We then normalized the 
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counts per cell, such that every cell has the same total count after nor-
malization (1 × 106), and we log-transformed the counts.

Clustering
Gene expression
After individual sample quality control, high-quality barcodes from 
single modality snRNA-seq and the RNA modality of our multiome 
data were clustered for 40 samples (32 snRNA and 8 snRNA multi-
ome) using Seurat (v4.3) (71). Quality control metrics such as high 
mitochondrial percentage (>1%), high number of genes detected 
(>4000 genes), and high number of RNA counts (>7500) were used 
to remove low-quality barcodes. A combined clustering was created 
using principal components (PCs) from gene expression. We used 
Harmony (20) (v1.0.3) to correct the PCs for batch effects across 
samples, sex, and sequencing technology. Clusters were removed 
with low number of cells (<10 cells) and with quality metrics such 
as the number of detected genes and RNA counts lower than other 
clusters. Additional doublet cells were removed on the basis of the 
expression of 2+ canonical markers from unrelated cell types. The 
final clustering resolution of 0.5 was determined empirically based 
on maximizing the recovery of known pancreatic cell types and sub-
types as distinct clusters.

We leveraged gene expression profiles specific to the wide array 
of pancreatic cells from previous work to broadly label each snRNA-
seq cluster as one of the following types: α (GCG), β (INS), endothe-
lial (PLVAP), lymphatic endothelial (FLT4), ductal (CFTR), acinar 
(REG1A), stellate (PDGFRB), and variety of immune cells including 
T cells (CD3D), macrophages (C1QC), and mast cells (KIT) (table S2). 
Using cell type markers previously used to annotate cell type and sub-
type populations such as activated stellate (COL6A3) and quiescent 
stellate (SPARCL1), we were able to annotate these clusters. We iden-
tified previously characterized ductal subtype MUC5b ductal cells 
from the presence of known marker genes such as MUC5B, TIFF3, 
and CRISP3 (52).

Marker genes of acinar subclusters were identified using DESeq2 
(72) (v1.34), followed by gene set enrichment of subcluster marker 
genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) (73–75) 
and REACTOME (76) pathways using the fgsea package (v1.20) in 
R. Briefly, this was done by first creating two sets of sample pseudo-
bulk count matrices of SoupX corrected gene expression for each cell 
type, one set which has the summation of count per sample per gene 
for that cell type and another with the summation of counts per sam-
ple per gene for all other cell types. We then performed DESeq for 
each cell type by concatenating these two matrices as our input and 
using cell type as the outcome variable with sample ID as a covariate.
Accessible chromatin
We first merged 40 samples (32 snATAC samples and 8 multiome 
snATAC samples) from 29 donors using read counts in 5-kb win-
dows using Signac (77) (v1.9.0). We then performed latent semantic 
indexing of the combined snATAC data using Signac (77). Harmony 
(v1.0.3) was used to correct for batch effects using the covariates 
sample, sex, and sequencing technology (20). Clustering was per-
formed on the batch-corrected PCs using graph-based Leiden clus-
tering. We removed nuclei with a TSSe score  <  2 and removed 
clusters with less than 10 cells or with overall lower-quality metrics, 
such as fraction of read in peaks, number of ATAC fragments per 
barcode, and fraction of reads in promoters compared to other clus-
ters. After an initial window-based clustering, we called peaks using 
MACS2 (78) (v2.2.7.1) (parameters: -q 0.05 --nomodel --keep-dup 

all) on each cluster and then repeated the entire clustering process 
using a consensus set of peaks merged across clusters. Additional 
doublets were manually removed based off the presence of promoter 
accessibility of other cell type marker genes. This was done using 
nine known marker genes (INS, GCG, REG1A, REG2B, CTRB2, 
PRSS1, PRSS2, CFTR, and C1QC); promoter region was considered 
2 kb upstream of the TSS. Data were clustered again after the re-
moval of doublets. The clustering resolution of 0.5 was defined em-
pirically based on maximizing the recovery of known pancreatic cell 
types and subtypes as distinct clusters. To label cell types, we first 
assigned gene names to peaks that overlapped 2 kb upstream of TSS 
and gene body using the gene activity function in Signac and then 
determined gene activity in established marker genes for each cell 
type and subtype.

We next performed label transfer on the snATAC object using 
our gene expression map as reference and the peak-based chromatin 
data as query in Signac. Because of the size of the chromatin data, 
before label transfer, we randomly split the barcodes in the object 
into smaller subsets. We used the 2k most highly variable features 
from the gene expression map to derive transfer anchors using ca-
nonical correlation analysis. These anchors were then used to trans-
fer to the chromatin map using the TransferData function in Seurat 
(v4.3). After each subset object was done with label transfer, we 
merged the objects and reclustered all the chromatin data together 
using the same methods described above. Last, we removed cells 
with low prediction scores (max.predicted.score < 0.5), and all cells 
passing this threshold were labeled with the predicted cell type an-
notation. For acinar cells, we summed the prediction scores of all 
acinar subtypes then filtered by a combined acinar max.predicted.
score < 0.5.

To determine the accuracy of label transfer, we used single-cell 
multiome data where the identity of the accessible chromatin profile 
is known from the paired gene expression profile. Since the gene ex-
pression and chromatin profiles for these nuclei were analyzed sepa-
rately, we could use them as an independent check. We identified 
multiome barcodes present in both chromatin and gene expression 
maps and then calculated the percentage of accessible chromatin 
barcodes with matching cell type assignments in label transfer and 
from the paired gene expression profile. Because of the limited 
transferring of subtypes in the chromatin modality, we calculated a 
percentage at both the cell type and subtype levels.
Clustering of segmented cells and cell type annotation in 
spatial data
To cluster the segmented cells, we first integrated the samples us-
ing scVI v1.1.2 (79). We performed integration by condition using 
the slide as a categorical covariate. We then used the latent repre-
sentation to create a shared nearest-neighbor graph and compute 
Uniform Manifold Approximation and Projection (UMAP) for two-
dimensional visualization. We performed hierarchical clustering on 
the scVI latent space at resolutions of 0.5 and 0.7, and we identified 
15 and 16 transcriptomic clusters for ND and T1D, respectively. 
To annotate cell types, we identified marker genes enriched in each 
cluster for knowledge-based cell type annotation. We detected en-
docrine cells by hormone expression, β (INS and IAPP) and α (GCG 
and TTR); we also identified exocrine cells positively expressing epi-
thelial marker EPCAM, ductal (SOX9 and KRT19), and acinar (EGF, 
DLL1, and JAG1); we further annotated endothelial cells (PECAM1 
and VWF), fibroblasts (VIM and COL1A1), immune cells (CD4 and 
CD8A), and mast cells (CPA3 and TPSAB1).
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Cell type label transfer from reference snRNA-seq data
To achieve a finer annotation on the spatial context, we transferred 
the cell type labels from the dissociated reference to the spatial data 
using spatial mapping function from moscot v0.3.5 (21). First, 
we performed pseudo-bulking of dissociated data using decoupler 
v1.6.0 (28). We found the optimal combination of parameters for 
the spatial mapping task by hyperparameter tunning per FOV, and 
we used cosine distance between the modalities. For the annotation 
mapping, we selected the label of the annotated cell with the highest 
matching probability.
Identification of spatial cellular neighborhoods
Cellular neighborhoods in the spatial context were computed per 
FOV using the squidpy (22) function spatial_neighbors, where we 
used generic coordinates and considered 30 nearest neighbors.
Identification and annotation of multicellular spatial niches
To identify multicellular niches, we computed the covet represen-
tation implemented in envi v0.3.0 (23) per FOV. We used the 
default parameters, which included 64 genes to represent the cova-
riance matrix. We then created a shared nearest-neighbor graph us-
ing the covet representation and performed unsupervised Leiden 
clustering with a resolution of 0.2. To annotate the clusters, we 
evaluated the relative cell type abundance in each group per FOV 
and performed hierarchical clustering. We aggregated “acinar bas-
al,” “acinar high-enzyme (enz),” “acinar signal,” and “acinar signal-
ing (sig)/differentiation (diff)” subtypes in the acinar niche, “ductal” 
and “MUC5b ductal” subtypes in the ductal niche, “α,” “β,” and 
“δ” subtypes in the endocrine niche, and “act stellate,” “Q. stellate,” 
“endothelial,” “macrophage,” and “T cells” in the connective 
tissue niche.

Downstream analysis
Final peak calling and signal tracks
Cell type–specific set of chromatin peaks were derived using MACS2 
(78) v2.2.7.1 on the final cell type annotations of our chromatin map 
using the following parameters -q 0.05 --nomodel --keep-dup all. 
These peak calls were used to accessible chromatin signal tracks in 
UCSC genome browser (80).
Marker CREs
Cell type–specific cREs were derived for each cell type and subtype. 
We first created a set of union peaks across the whole dataset. This 
was achieved by limiting peak size for all called peaks to 300 bp by 
centering any peaks larger than 300 bp at their summit and extend-
ing coordinates 150 bp in either direction. We grouped peaks based 
on overlap to create clusters of peaks. Within each cluster, the peak 
with the highest read count at its summit was identified as the refer-
ence peak for the region. We then generated a list of peaks that did 
not overlap any of the reference peaks and iteratively identified ad-
ditional reference peaks again until no peaks remained.

We used this set of union peaks to calculate two sets of sample 
level pseudo-bulk matrices per cell type as follows: First, we aggre-
gated the number of ATAC fragments within peaks per donor per 
cell type and then, for each cell type, created a second matrix with 
the summation of fragments from all other cell types. Normalized 
count matrices were generated by dividing the number of fragments 
within a peak by the total number of fragments for that sample in 
that cell type and then multiplying by a scaling factor (1 × 106). Cell 
type–specific regulatory elements were then determined for each cell 
type by comparing the normalized count matrix for a given cell type 
with the normalized count matrix of all other cell types summed 

together. To test enrichment of a given peak for each cell type, we 
performed a logistic regression model using sample ID as a covari-
ate and corrected for multiple tests using the Benjamini-Hochberg 
correction method (FDR < 0.1). We limited the marker cREs per 
cell type to the top 5000 cREs ranked by fold change. We performed 
motif enrichment of marker cREs for each cell type compared to a 
background of all cREs in the cell type using HOMER (81) v5.0.1 
and retained enriched motifs at FDR < 0.01. We also tested for gene 
set enrichment in marker cREs using GREAT (82) (v4.0.4).
Normalized gene expression levels
We derived normalized gene expression profiles for each cell type by 
creating aggregate count matrices by donor per cell type. Counts 
were normalized per million (CPM) by dividing the counts for each 
gene by the total counts per donor and multiplying by 1 × 106.
Cell type proportion changes
We first scaled the counts for each cell type in a sample to 10,000 
cells per sample. For several cell types, we excluded samples with 
abnormally high counts (6278 for β and δ; 6393 for T cells and B 
cells; 6375 for MUC5b+ ductal cells). We then created a linear mod-
el of the log-transformed counts as a function of disease status (ND, 
ND AAB+, recent-onset T1D, and long-standing T1D), age, sex, and 
body mass index (BMI), as well as a linear model without disease 
status. We performed comparison of the models using a likelihood 
ratio test in package lmtest in R and considered P values from the 
test significant at 0.05.
Differential gene expression
To determine disease-related changes in gene expression, we per-
formed differential analysis using DESeq2 (72) v1.34. Using snRNA-
seq data, we derived pseudo-bulk count matrices for each cell type 
by aggregating all barcodes of a donor for each gene on a per cell type 
basis. We created the count matrices from the SoupX (68)–corrected 
expression counts and then rounded counts in the matrix to the 
nearest integer. We included sex, age, and BMI, as well as proportion 
of β cells, as covariates in the model. For endocrine cell types, we 
included expression counts from scRNA-seq of 48 donors from the 
HPAP consortium (31) derived from a previously created single-cell 
map (15) and included an additional covariate in the model for 
cohort. For a given cell type, we only used samples with at least 
20 cells, except for long-standing T1D β cells where we included all 
samples, and donor 6234 was excluded from analyses due to aber-
rant numbers of endocrine cells. For nonendocrine cell types, genes 
were tested if detected in at least two samples per condition and 
had >10 counts across all tested conditions, while for endocrine cell 
types, genes were tested if present in at least half of the donors per 
condition. We further excluded genes for each cell type that are es-
tablished marker genes for a different cell type. Multiple test correc-
tion was performed using the Benjamini-Hochberg correction, and 
we considered genes significant at FDR < 0.1.
Differential cRE accessibility
Using cell type–specific peak calls from MACS2 (78) v2.2.7.1 per 
cell type, we created peak by barcode fragment count matrices all 
snATAC-seq donors for each disease condition. Peaks with low 
accessibility were removed from analysis, as determined by the av-
erage accessibility of peak across all samples less than median acces-
sibility of all peaks across all samples. In addition, for each cell type, 
samples were removed with <10 barcodes in that cell type. Last, cell 
types with less than 10 cells were not used in this analysis. We tested 
each disease condition against ND using glmer (83) in R using the 
logistic regression model [peak accessibility ~ disease + scale (FRiP) + 
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scale (count) + (1|sample)] using a binary peak count matrix. We 
used the fixed covariates of fraction reads in peak (FRiP) and ATAC 
fragment count (count) to account for sequencing depth variation 
and used sample ID as a random effect to adjust for sample varia-
tion. We considered sample as a random effect to mediate pseudo-
replication of barcodes from the same donors. Cell types with more 
than 30,000 cells were subsampled down to 10,000 for this analysis. 
Fold change was calculated by dividing the average accessibility of 
peaks between conditions. Multiple test correction was performed 
using the Benjamini-Hochberg method, and we considered cREs 
significant at FDR < 0.1.
Pathway enrichment during T1D using gene expression input
To test for pathways enriched by disease, we performed gene set 
enrichment analysis (GSEA) (84, 85). Using the results from our 
differential expression analysis, input genes were ranked using the 
following formula [−log10(P value) × log2 fold change], and the 
fgsea package (v1.20) in R was run using both KEGG (73–75) 
and REACTOME (86–92) databases [parameters: eps = 0.0, min-
Size = 0, maxSize = 1000]. Pathways were considered significant 
using FDR < 0.1.
Motif enrichment
We used chromVAR (26) to measure z-scored motif accessibility in 
snATAC-seq data. To do so, we prepared peak count data for input to 
chromVAR by converting the fixed peak sparse count matrix into a 
SummarizedExperiment and estimated Guanine/Cytosine (GC) con-
tent bias using chromVAR built in method (26). Human TF motifs 
from JASPAR 2022 (93) were accessed using the JASPAR2022 Bio-
conductor package in R, and motifs were annotated to peaks using 
motifmatchr (v.1.21.0) in R. The SummarizedExperiment and motif 
annotations were used as inputs into chromVAR computeDeviations 
function to derive GC bias–corrected motif accessibility z-scores.
Motifs enriched in cell types
TF motifs were filtered for those with an accessibility of >1.2 based on 
chromVAR built-in computeVariability function. Cell types with <50 
cells were excluded. Cell type motif accessibility z-scores were averaged 
and plotted with pheatmap (v1.0.13) and RColorBrewer (v1.1-3) in R.
Motifs enriched in acinar subtypes
After subsetting the motif matrix to barcodes from acinar cells, we 
averaged motif accessibility of each acinar subtype per sample and 
then tested each motif using a two-way analysis of variance (ANOVA) 
across acinar subtypes also including a donor variable. We then cal-
culated FDR from the P values using the q value package in R. To 
identify which specific subtype a significant motif was most en-
riched in, motifs were further tested using a two-way ANOVA com-
paring motif accessibility within the subtype to the average motif 
accessibility for the other acinar subtypes together also including a 
donor variable. P values for each motif were corrected by the Holm’s 
method. Motifs were annotated to subclusters based on being sig-
nificant in the pan-subtype ANOVA, significant in the post hoc 
ANOVA with Holm’s correction, and having the highest average de-
viation score in the given cluster.
Motif differential accessibility
To identify motifs with differential accessibility across disease 
states, we used a linear mixed model using the lmerTest (v3.1-3) 
package in R. We identified motifs in a cell type enriched in cREs 
with altered activity in ND AAB+ or T1D. For these motifs, acces-
sibility was modeled by barcode using encoded variables to contrast 
autoantibody, recent-onset and long-duration T1D against ND 
controls. Scaled fractions of reads in peaks and scaled number of 

counts were used as fixed effect covariates, and a random effect 
for sample was used to account for pseudo-replication. Samples 
with <10 cells in the cell type were excluded, and cell types with 
<50 cells or disease states with <20 cells and three samples were 
not tested. We obtained P values from the resulting models. Motif 
accessibility was averaged by sample and disease state to make 
box plots. Motif accessibility per condition was generated by av-
eraging sample average motif accessibility, and volcano plots were 
generated by comparing difference in motif accessibility versus 
−log10 q values, with a difference threshold of 0.25 and q value of 
0.05 for dashed lines and coloring and labeling of samples.
Motif enrichment in differential accessible CREs
To identify TF motifs enriched in cRE differential accessibility in each 
cell type, we used HOMER (81) (v5.0.1). For each cell type, we identi-
fied cREs with nominal association (uncorrected P < 0.05) and split 
cREs by fold change as input and user HOMER function findMotifs-
Genome with a background of all cREs for the cell type with a size 
parameter of 200 and a masked version of the human genome 
hg38. Multiple test correction was done using the Benjamini-Hochberg 
method, and significant motifs were considered at FDR < 0.1.
ABC analysis
To link cREs to target genes, we used ABC (94) v0.2. This was 
done by first creating .bam files for each cell containing only bar-
codes from the accessible chromatin map. Since the HiC reference 
panel used was in hg19 genome build, cell type bams and peaks 
were converted to hg19 using CrossMap (95) v0.6.3, and we called 
peaks for each cell type with MACS2 v2.2.7.1 using this genome 
build. To further improve enhancer activity prediction, we used 
publicly available Histone H3 lysine 27 acetylation (H3K27ac) 
chromatin immunoprecipitation sequencing data for acinar, duc-
tal, α, β, and δ cells (96). We predicted candidate regions and 
enhancer activity for each cell type using the following flags: 
--peakExtendFromSummit 250, --nStrongestPeaks 150000 and a 
list of genes with nonzero expression (CPM > 0) in that cell type. 
After ABC analysis, links were converted back to hg38 using 
CrossMap. We identified genes with cell type–specific cRE link 
profiles by calculating the proportion of the total number of ABC 
links for that gene by cell type and calculating Shannon entropy 
based on the proportion.
Constructing TF GRNs
To determine GRNs, we constructed units of TFs linked to cCREs 
linked to genes. We first used a position frequency matrix (PFMa-
trixList object) of TF DNA binding preferences from the JASPAR 
2022 database (93) and width-fixed peaks (97) as input to perform 
TF motif analysis. We used the “matchMotifs” function in the R 
package motifmatchr (v.1.21.0) to infer cell type–specific cREs 
bound by each TF. We linked cREs bound by each TF to target genes 
based on proximity to the gene promoter (±5 kb) of a TSS in GEN-
CODE V19 or through ABC links (94, 98) at a score cutoff of 0.015. 
TF GRNs were retained for analysis if the network included fewer 
genes and then the 90th percentile of number of genes linked to a 
given TF. In addition to ensure that TF GRNs were active in the as-
sociated cell type, we filtered TF GRNs based on cell type CPM > 1 
for the TF gene.
Identification of cell type–specific TF modules and pathway 
enrichment
For each pancreatic cell population, we identified pathways and TF 
modules enriched using our identified marker CREs. Briefly, this 
was done for each cell type by deriving CREs associated with KEGG 
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and REACTOME paths using the bedtools intersection TF module 
gene–linked CREs with union peaks accessible in that cell type. 
These union peak–based pathways were tested for enrichment using 
the fgsea package (v1.20) in R. We used the logistic regression mark-
er CRE results to rank peaks using the following formula [−log10 (P 
value) × log2 fold changes]. Similarly, we tested for TF modules en-
riched in each cell type by defining union peaks associated with a TF 
either proximally or through ABC and then using the logistic re-
gression marker CRE results to rank peaks and test for enrichment 
using fgsea. For both analyses, we used Benjamini-Hochberg for 
multiple test correction and retained results with an FDR < 0.1.
Identification of TF GRNs linked to biological pathways 
altered in T1D
To identify regulators of enriched pathways for each cell type, we 
next tested enrichment of each TF module in pathways identified in 
our fgsea analysis. We performed the Fisher’s exact test to test for 
overlap in genes in each TF GRN and genes in each biological path-
way in KEGG and REACTOME for each cell type. We performed 
multiple test correction using FDR and considered TF GRNs linked 
to a pathway at FDR  <  0.1. Next, we filtered results to biological 
pathways with significantly altered expression in T1D and TF motifs 
belonging to TF subfamilies with differentially accessibility in T1D 
from chromVAR (26) results.
Genetic association enrichment
We tested for enrichment of T1D-associated variants using sum-
mary statistics from a published genome-wide association study (5). 
We defined groups of cREs in multiple ways; first, by identifying all 
cREs in each cell type linked to genes in each biological pathway in 
KEGG and REACTOME using ABC and promoter proximity links 
and, second, by identifying cREs in each cell type in GRNs for each 
TF. We calculated Bayes factors for each variant with minor allele 
frequency > 0.05 genome-wide, excluding all variants at the MHC 
locus, using the method of Wakefield (99). We then tested for en-
richment of T1D-associated variants in groups of cREs genome-
wide using fgwas v0.3.6 (37) with a block size (−k) of 2500.

We overlapped cREs in each cell type with credible sets of vari-
ants at known T1D signals from a published fine-mapping study. We 
further determined which cREs had at least nominal evidence (un-
corrected P < 0.05) for differential accessibility in ND AAB+ or T1D.
Cell-cell interactions
The gene expression data were prefiltered before running CellChat 
(39) v1.1.3. First, any cell type represented by <20 cells for a sample 
was excluded. Next, cell types that appeared in fewer than two sam-
ples within a control or disease group were excluded from that group.

We considered a ligand expressed in a specific cell type if the aver-
age expression of the ligand in the cell type was greater than half the 
SD of its average expression across all cells in at least two samples. 
After applying these filters, we ran CellChat using the RNA data slot 
of the Seurat object across the entire CellChat database (CCdb) with 
default parameters except for “trim = 0” in the “computeCommunProb” 
command and “thresh = 1” in the “subsetCommunication” command 
(39). Each control and disease group was processed independently. 
Ligands from the CCdb were grouped into categories by manual cu-
ration using UniProt (100) and GeneCard (101, 102) (listed in table S14). 
Gene families were downloaded using biomart in the Bioconductor 
package (v3.1) in R.

Results from different conditions were consolidated and subjected 
to FDR correction using the Benjamini-Hochberg method with the 
q value package in Bioconductor (v3.21) in R. Predicted interactions 

with an FDR < 0.1 and an interaction strength (IS) above the second 
quartile were considered for downstream interpretation. To remove 
residual background contamination due to highly expressed genes, 
the following interactions were blacklisted in all cell sources except 
the ones listed: INS in β cells, GCG in α cells, SST in δ cells, PRSS1/2/3 
in acinar cells, CD8A, CD8B, and CD8B2 in T cells, and CD4 in T 
cells and macrophages.

To assess the significance of differences between conditions, we 
randomly permuted sample IDs among conditions and reperformed 
CellChat analysis 100× and compared outcomes with the observed 
results. The permutations were filtered using the same parameters as 
for the observed data. Next, we aggregated the IS across different 
“units” by summing all LR pairs within a unit and normalizing this 
sum by the number of significant interactions for each condition. We 
then quantified the difference in effect size (IS − effect size) across 
contrasts: ND AAB+ versus ND, recent-onset T1D versus ND, and 
long-duration T1D versus ND. A P value was calculated by compar-
ing the observed results against the simulations using the formula: the 
number of instances where simulation IS − effect size exceeded ob-
servational IS − effect size divided by the number of permutations. P 
values were corrected for multiple tests using Benjamini-Hochberg. 
We considered interactions with FDR < 0.1 significant.
Functional analysis of spatial genomic profiles
We inferred TF and pathway activities using Liana v1.1.0 (32). For 
TF activity inference, we use the cell type–specific GRNs derived 
from single-cell multiome. We then fit a univariate linear model to 
infer the interaction weights. To identify cell type–specific TFs, we 
performed a t test overestimating the variance of each group and 
filtered TFs according to an adjusted P < 0.05. We inferred pathway 
activities using the PROGENy model (32). We used weights of the 
top 500 responsive genes ranked by P value. We then fit a multivari-
ate linear model to obtain the weights corresponding to pathway 
interactions. As with the TF activity analyses, we identified cell 
type–specific pathways by performing a t test overestimating the 
variance of each group.
Cell-cell communication
We analyzed cell-cell communication in spatial transcriptomic data 
using SpatialDM v0.2.0 (40). We performed the analysis per condi-
tion, and per donor, having each FOV as technical replicate. For this 
study, the parameters l and cutoff were set to 100 and 0.2 to repre-
sent the spatial context. In addition, we computed the weight matrix 
using the single-cell mode, and we extracted the LR interactions 
from the CCdb (39). To compute the global Moran’s I score and the 
local spot detection, we used the z-score method.
EndoC-Bh1 stimulation experiments and RNA-seq
A total of 25,000 EndoC-BH1 cells were seeded in media composed 
of Dulbecco’s modified Eagle’s medium (Corning, 10014CV), 2% 
BSA (Sigma-Aldrich, A1470), 3.5 × 10−4 2-mercaptoethanol (Gibco, 
21985023), 0.12% nicotinamide (MilliporeSigma, 481907), transfer-
rin (5.5 ng/ml; MilliporeSigma, T8158), sodium selenite (6.7 pg/ml; 
Sigma-Aldrich, 214485), and 1% penicillin-streptomycin (Gibco, 
15140122) on a 96-well (CellTreat Scientific Products, 229105) plate 
coated with ECM (Sigma-Aldrich, E1270) and fibronectin (Sigma-
Aldrich, F1141). The recombinant protein concentrations used were 
as follows: PGRN (1 μg/ml) and BMP5 (50 ng/ml). EndoC-βH1 
cells were obtained from Human Cell Design. RNA was isolated us-
ing the RNeasy Mini Kit (QIAGEN) from EndoC-Bh1 cells either 
stimulated or unstimulated with each ligand. Samples included 
three replicates each for PGRN and its untreated controls and six 
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replicates each for BMP5 and its untreated controls. RNA integrity was 
assessed using a 2200 TapeStation (Agilent Technologies), and all sam-
ples achieved an RNA integrity number greater than 7. Ribodepleted 
total RNA libraries were prepared using the TruSeq Stranded Total 
RNA Library Prep Gold kit (Illumina, catalog no. 20020599) and se-
quenced at the UCSD Institute for Genomic Medicine on an Illumina 
NovaSeq S4 platform.
Bulk RNA-seq analysis
Quality control of the sequencing data was assessed using FastQC 
(v0.12.0). Transcript quantification was performed using Salmon 
(103) with default parameters and the hg38 reference indexes. 
Counts were imported into R using the tximport (104) package, and 
genes with fewer than 10 reads were excluded. Differential gene ex-
pression analysis was conducted using DESeq2 (72), applying an 
FDR threshold of <0.1. For pathway enrichment analysis, the fgsea 
package (v1.20) in R was used using the “stat” column from DESeq2 
results. The fgsea analysis was restricted to gene sets containing >10 
and <500 terms. Pathways were corrected for multiple testing using 
FDR < 0.1, and only pathways in KEGG (73–75) or REACTOME 
(86, 87, 89, 90) were considered.
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