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Abstract

Foundation models, such as DNABERT and Nucleotide Transformer, have recently shaped a new direction in DNA research. Trained in an un-
supervised manner on a vast quantity of genomic data, they can be used for a variety of downstream tasks, such as promoter prediction,
DNA methylation prediction, gene network prediction, or functional variant prioritization. However, these models are often trained and evaluated
on entire genomes, neglecting genome partitioning into different functional regions. In our study, we investigate the efficacy of various unsu-
pervised approaches, including genome-wide and 3" untranslated region (3’"UTR)-specific foundation models on human 3’UTR regions. To this
end, we train a set of popular transformer architectures on a 3'UTR-specific dataset comprising 3 783 714 3'UTR sequences (6.6B bp) of 241
Zoonomia species. Our evaluation includes downstream tasks specific for RNA biology, such as recognition of binding motifs of RNA-binding pro-
teins, detection of functional genetic variants, prediction of expression levels in massively parallel reporter assays, and estimation of messenger
RNA half-life. Remarkably, models specifically trained on 3'UTR sequences demonstrate superior performance when compared to established
genome-wide foundation models in three out of four downstream tasks. Our results underscore the importance of considering genome parti-
tioning into distinct functional regions when training and evaluating foundation models. In addition, the proposed set of 3'UTR-specific tasks can
be used for benchmarking of future models.
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Introduction . . .
through zero-shot inference or by performing probing or fine-
Foundation models have revolutionized various fields by har-  tuning on task-specific labeled datasets. This paradigm, ini-
nessing self-supervised pre-training on vast datasets, enabling  tially established in natural language processing (NLP) with
these models to capture intricate patterns and representations  models like BERT [1] and GPT [2], has been successfully trans-
without requiring labeled data. After pre-training, these mod-  ferred to genomics, allowing the development of models with

els can be utilized for specific downstream tasks either directly ~ the ambitious goal of understanding the “DNA language.”
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In genomics, several large language models (LMs) for DNA
sequences have emerged [3-5], leveraging transformer-based
architectures to process and interpret genomic data. Among
these, DNABERT [3], inspired by the success of BERT in
NLP, focuses on capturing global contextual information
across DNA sequences by learning to predict spans of ran-
domly masked nucleotides in the sequence. However, trained
solely on the human genome, DNABERT is not able to uti-
lize evolutionary information, which has long been lever-
aged by alignment-based conservation models, such as Phy-
loP [6] or PhastCons [7]. Subsequent advancements, such as
DNABERT?2 [4], addressed this limitation by incorporating
data from 135 species, enabling the model to capture evo-
lutionary signals. Another major development in the field
is the Nucleotide Transformer (NT) family [5], which in-
cludes multispecies models trained on sequences from a broad
array of 850 species, spanning both vertebrates and non-
vertebrates. State space attention models have been suggested
as a more memory-efficient alternative [8]. All of these LMs
have demonstrated promising results in such tasks as pro-
moter prediction, enhancer detection, and prioritization of
functional variants.

However, training genomic LMs may overlook the parti-
tioning of the genome into distinct functional units, such as
UTRs or coding regions. Training sequences are usually se-
lected by chunking the genome without considering regional
boundaries, and no explicit information about the functional
context of these sequences is given to the model. Consequently,
it can be hard for the model to infer region-specific properties
of the sequences. While models trained on the whole genome
should in principle be also applicable to region-specific tasks,
this constraint could hinder their ability to capture essential
dependencies and functional relationships inherent to distinct
genomic regions.

The 3’ untranslated region (3'UTR) is a functionally cru-
cial segment of the genome, playing a vital role in post-
transcriptional regulation. It serves as a hub for interactions
with RNA-binding proteins (RBPs) and microRNAs, influ-
ences messenger RNA (mRNA) stability, and regulates trans-
lation efficiency. The unique functional landscape of 3'UTRs
raises the question of whether models trained specifically on
these regions can better capture the functional dependencies
required for 3'UTR-specific tasks.

We hypothesize that foundation models trained exclusively
on 3'UTRs might outperform genome-wide models on these
tasks by directly specializing on the unique features of this ge-
nomic region. To evaluate this hypothesis, we define a reusable
benchmark of four biologically and clinically relevant tasks:
recognition of RBP binding motifs, prioritization of functional
variants, prediction of expression levels in massively parallel
reporter assays (MPRA), and estimation of mRNA half-life.

We compare several 3'UTR-specific LMs against existing
genome-wide models, including the DNABERT (89M pa-
rameters), DNABERT2 (117M parameters), NT (NT-MS-
v2-100M, 98M parameters), and State Space (1M parame-
ters) architectures, assessing their performance across the pro-
posed tasks. Although the DNABERT and the multispecies
NT models were originally designed with distinct goals—
the former for human-specific tasks and the latter for gen-
eral multispecies applications—comparing their performance
on region-specific tasks like 3'UTRs allows us to assess the
trade-offs between specialization and generalization in ge-
nomic modeling. In the context of region-specific modeling,

it is also particularly compelling to investigate the potential
of the lightweight State Space architecture, which has previ-
ously been applied to modeling of fungi genomes. We also em-
phasize that none of the considered models relies on specific
biological knowledge or any other constraints other than the
input sequences that would limit their application to the initial
use case. By applying all these models to the proposed tasks,
we aim to highlight the importance of region-specific training
of genomic foundation models and establish a set of bench-
marks for future studies focusing on 3’'UTR biology.

Materials and methods

Multispecies data preparation

For multispecies training of LMs, we considered the 241 mam-
malian genomes of the Zoonomia project [9]. The Zoono-
mia dataset is particularly attractive, as it is supplied with
a Phylop-241way model that provides an evolutionary-based
conservation score computed on whole-genome alignment [9],
derived using one of the most recent aligners named Progres-
sive Cactus [10].

The 3'UTR plays a vital role in post-transcriptional regula-
tion, and its proper annotation is crucial for training models
that are aimed to capture region-specific features. However,
due to the lack of comprehensive 3’UTR annotations across
species, we developed an approximation method using highly
conserved coding sequences as anchors.

Our 3'UTR-specific models are trained on RNA data that
is prepared as follows. Sequence annotations for protein-
coding human genes are extracted using BioMart (https:/
www.ensembl.org/biomart/martview/), using GRCh38/hg38
as a reference genome. To facilitate comparison between
DNA- and RNA-based models, we only consider single-exon
UTRs, resulting in 18 134 3'UTR sequences in total. For
each gene, we consider the 3'UTR annotation of the Ensembl
canonical transcript. Obtaining 3’'UTR coordinates for non-
human species is more challenging since our search in the
public domain revealed a lack of 3'UTR annotations for most
of the Zoonomia species. For example, Ensembl release 112
provides 3'UTR coordinates for only 57 species out of 241.
One way to overcome this problem is to use the Zoonomia
whole-genome Progressive Cactus alignment [9]. We then as-
sume that the stop codons of protein-coding genes are well
aligned due to the adjacent highly conserved coding sequences.
The 5’end of a 3'UTR is located directly downstream of the
stop codon. Hence, by knowing the 5" end positions of 3'UTRs
in the human genome, one can use the Zoonomia alignment
to infer the corresponding positions in all other species. How-
ever, the positions of the 3’ends can not be determined equally
easily without full length cDNA or RNA-seq data. As an es-
timation of 3’'UTR coordinates in non-human genomes, we
simply considered sequence segments downstream of the stop
codon, with the length corresponding to the 3'UTR length
of the respective human transcript (Supplementary Fig. S1).
Most of the Zoonomia species are assembled at the scaffold
level. When extracting the 3'UTR sequences, we assumed that
the 3’'UTR of a given transcript and its stop codon are located
on the same scaffold. When evaluated on the 3'UTR annota-
tions available in Ensembl release 112, our approach detects
the position of 5’end of 3'UTRs with an accuracy of 93%, the
median Jaccard index between our 3'UTR annotations and
those from Ensembl being 70%. For both 5" and 3’ ends, the
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difference between the Ensembl 3’'UTR coordinates and those
detected by our approach has a median of 0 nt. The interquar-
tile range is 0 and 648 nt for the 5" and 3’ ends, correspond-
ingly. While this approach does not capture all species-specific
differences in 3'UTR length, it provides a consistent frame-
work for tasks that primarily evaluate human-centric vali-
dation datasets. To train the RNA-based models, sequences
mapped to the negative (reverse) strand of the human DNA,
including human transcripts on the negative strand, were re-
verse complemented to match the human RNA orientation. In
total, our Zoonomia-based 3'UTR-specific dataset comprised
3 783 714 3'UTR sequences with a total length of around
6.6B bp.

To train the whole-genome DNABERT2-ZOO model, we
prepared a whole-genome dataset based on the Zoonomia se-
quences. To this end, we extracted all contigs for all Zoono-
mia species from the Zoonomia whole-genome alignment. We
then split long sequences into chunks of 100 000 nt with
an overlap of 50 nt and shuffled. To extract sequences from
the Zoonomia alignment .hal file, we used HAL format API
v.2.3.

Models

To evaluate whether region-specific training improves down-
stream task performance, we selected a set of representative
models. This includes genome-wide models to serve as base-
lines and 3'UTR-specific models specifically trained to capture
localized context. The selected models span a diverse set of ar-
chitectural and training approaches. In particular, DNABERT
was designed to assess performance on human-specific se-
quences, while the DNABERT2 and NT models offer insights
into the benefits of incorporating multispecies data. Finally,
the State Space models offer a linearly scalable implementa-
tion of the attention mechanism and might be more suitable
for region-specific training due to the lower number of param-
eters. In total, 10 alignment-free and 4 alignment-based mod-
els were evaluated on human 3'UTR sequences, including 6
alignment-free models specifically trained on 3'UTRs. Among
these is the DNABERT2-ZOO model, which is a modification
of DNABERT?2 that we trained on the whole-genome Zoono-
mia dataset to assess the impact of species selection on the
performance of multispecies models.

Genome-wide transformer models:

DNABERT. DNABERT is the first BERT-like model for
DNA analysis. Specifically, we used the version referred to as
DNABERT-6, as it demonstrated the best performance in the
original study [3]. This model employs an encoding scheme
that splits the input sequence into overlapping 6-mer tokens
and can accommodate sequences of up to 512 nt in length.

DNABERT2. This is a BERT-like model trained on whole-
genome data from 135 species. The model uses byte pair en-
coding (BPE), which splits the input sequence into tokens of
variable length. Sequences up to 1024 tokens in length (=52
00 nt; the exact length in nt depends on the sequence content)
can be used.

DNABERT2-ZOO. We retrained the original DNABERT2
model based on the whole Zoonomia dataset [9], which we
describe in detail in the previous section.

NT-MS-v2-100M. The 100M-parameter multispecies NT
model. Although the 2.5B multispecies NT model outper-
formed the other NT models across the downstream tasks
[5], its training on the available GPU infrastructure would be
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challenging due to a substantial number of learning param-
eters. We therefore opted for the v2-100M version, which is
faster to train. The model employs an encoding scheme that
splits the input sequence into non-overlapping 6-mer tokens
and can accommodate sequences of up to 1024 tokens (6144
nt) in length.

3'UTR-specific transformer models:

DNBT-3UTR-RNA, DNBT2-3UTR-RNA, and NT-
3UTR-RNA. We retrained the previously proposed
DNABERT, DNABERT2, and NT-MS-v2-100M models
solely on 3'UTR sequences from the Zoonomia dataset [9].
We make the models RNA-specific by reversing the sequences
on the negative strand while training, as described in the
“Multispecies data preparation” section.

STSP-3UTR-RNA, STSP-3UTR-DNA, and STSP-3UTR-
RNA-HS. Using the State Space model architecture previously
used for language modeling on 3'UTR sequences in fungi [8],
we train a 3’UTR-specific RNA-based multispecies model, a
3'UTR-specific DNA-based multispecies model, and a 3’'UTR-
specific RNA-based human-only model to assess the effect of
including multiple species. These models employ an encoding
scheme that treats each nucleotide as a single token and can
accommodate sequences of up to 5000 nt in length.

The 3'UTR-specific LMs were trained on 2 NVIDIA A100
80G GPUs in parallel until the relative loss change for the
last three epochs dropped below 1%. The DNABERT2-ZOO
model was trained for ~2 epochs on 10 GPUs in parallel. This
corresponds to 270B tokens, which is comparable to the train-
ing set size of similar genome-wide LMs. For example, the
NT-MS-v2-100M model was trained on 300B tokens. To train
all models we used the AdamW optimizer [11]. To accelerate
the training procedure, we used the mixed precision training
and gradient accumulation techniques. The training parame-
ters (Supplementary Table S1) were set as close as possible to
the original model publication.

Many 3'UTRs exceed the maximum input length of trans-
former models. Chunking these regions while preserving over-
lapping context ensures that the models retain sequence de-
pendencies and make accurate predictions. For each trained
model, large sequences were split into chunks to match the
model’s field of view. We implemented a 50 nt overlap at both
ends of each chunk to provide the model with context from
the adjacent segments while minimizing the resulting number
of redundant training tokens.

All the models are trained in a BERT-like fashion, by mask-
ing a random portion of the input sequence. For each input
sequence, 15% of the tokens were randomly chosen for mask-
ing. Of these tokens, 80% were replaced with a MASK token,
10% were randomly mutated, and the remaining 10% were
left unchanged. The selection of 15% of tokens is somewhat
arbitrary but has gained popularity for training LMs since it
was first introduced in the original BERT paper [1], where
it was chosen with the rationale that the model struggles to
learn effective representations when too much text is masked.
While the random part helps prevent overfitting, the purpose
of the unchanged part is to teach the model to rely not only
on the neighboring positions when predicting a masked token
k but also on the token k itself. This makes the training task
closer to the inference task since no masking is used when gen-
erating embeddings. Since a large fraction of sequences in the
Zoonomia dataset contained long N-chunks, we added an ex-
tra “NNNNNN” token when training the DNABERT2 and
NT architectures.
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All the models were trained using cross-entropy loss com-
puted only on the masked positions in the sequence.

Alignment-based conservation models:

PhyloP-100way. This conservation model is based on
whole genome alignment of 100 vertebrates [6].

PhyloP-241way. This conservation model is based on whole
genome alignment of 241 mammalian genomes from the
Zoonomia project [9].

CADD-1.7. Combined Annotation-Dependent Depletion
model v. 1.7 [12]. This model is a logistic regression-based
classifier that directly predicts deleteriousness or function-
ness of a genetic variant in the human genome by combining
a wide range of genomic annotations derived from various
sources, including conservation across species, gene and tran-
script models, protein LMs, etc. We categorize CADD-1.7 as
an alignment-based model due to its reliance on PhyloP con-
servation scores.

Zoo-AL. As an alignment-based Zoonomia-specific allele-
sensitive baseline model, we compute allele probabilities from
the nucleotide frequencies across all columns of the 3'UTR
Zoonomia alignments.

Predictions using zero-shot scores and probing

LMs are pre-trained in a self-supervised manner. They can
then be utilized to make predictions for specific downstream
tasks using zero-shot scores or through probing or fine-tuning.
Zero-shot scores refer to the machine learning paradigm
where a pre-trained model is evaluated on classes that were
not used at training. They leverage the pre-trained model’s un-
derstanding of sequence context without altering its param-
eters. These scores are typically derived directly from token
predictions or from similarity metrics on embedding vectors.
Similar to [5], we define probing as a prediction technique con-
sisting of using embeddings generated by a LM as input fea-
tures to a simpler task-specific model trained in a supervised
manner. In this case, the parameters of the LM itself do not
need to be adjusted. In contrast, fine-tuning involves updating
the weights of all or only some layers of a pre-trained LM.
Additionally, extra layers are usually added to the pre-trained
LM to enable supervised training and prediction. In this study,
we explore zero-shot scores and probing, as it is computation-
ally much less expensive than fine-tuning, especially given the
necessity of cross-validation (CV) due to the relatively small
sizes of the task-specific datasets. For probing, we apply Ridge
regression, multilayer perceptron (MLP) models and support
vector regression (SVR) models, depending on the extent to
which task-specific information is linearly encoded in the
embeddings.

Recognition of RBP binding motifs: labeled data
As the first downstream task, we assess the ability of the mod-
els to recognize RBP binding motifs. The ground truth set of
proxy-functional RBPs motifs was built based on the consen-
sus of two experiments [13] that utilized distinct methodolo-
gies: RNA Bind-n-Seq (RBNS) and enhanced crosslinking and
immunoprecipitation (eCLIP). The purpose of combining the
eCLIP and RBNS datasets is to compensate for the possible
mislabeling in eCLIP data by restricting the provided eCLIP
peaks to the motifs associated with strong functional evidence
in the RBNS experiment.

Specifically, the proxy-functional set was composed of mo-
tif positions resulting from the overlap of high-confidence

eCLIP peaks with 5-mer binding sites detected in the RBNS ex-
periment for the same RBPs. We define high-confidence eCLIP
peaks as the peaks resulting from the irreproducible discovery
rate analysis, which estimates positions of reproducible peaks
based on experiments with two biological replicas [13]. Fol-
lowing the approach of [13], we additionally extend each such
peak 50 nucleotides upstream of its 5’ end, as some RBP motifs
can be found symmetrically around or only upstream of the
peak start. Filtering for 3’UTR-specific sites resulted in 57 172
motif hits in the proxy-functional set, spanning 77 unique 5-
mers for 20 RBPs. To construct the proxy-non-functional set,
we considered 1 653 964 motif hits for the same 77 unique 5-
mers not overlapping with any eCLIP peak for any biological
replicate [13]. From these, we randomly sampled 57 172 mo-
tif positions to simplify calculations, ensuring the same num-
ber of instances and the same distribution of 5-mers as in the
proxy-functional set. We assume that LM training should be
robust to the intrinsic class imbalance, as functional and non-
functional motifs are likely to appear in different sequenc-
ing contexts. Context-sensitive LMs should be able to recog-
nize these distinctions, reducing the chance to confuse the two
classes. Since our evaluation dataset undersamples the number
of non-functional motifs, we chose receiver operating charac-
teristic area under the curve (ROC AUC) as a metric robust to
class imbalance, as described in the next section.

To compare model performance on motifs with different
conservation, we examine two categories, with the proxy-
functional motifs falling into the top 10% conservation
(highly conserved motifs) and the bottom 10% conservation
(weakly conserved motifs), as measured by PhyloP-241way.
A given 5-mer can be associated with multiple RBPs. Assum-
ing that the associated RBP defines the sequence context for a
given S-mer, we independently selected the top 10% of weakly
conserved and 10% of highly conserved motifs for each group,
defined by the tuple (RBP, 5-mer). In total, there are 102 such
groups, each representing all positions of a specific 5-mer
experimentally linked to a particular RBP within the eCLIP
peaks. To create the set of proxy-functional motifs for the
weakly (highly) conserved categories, we combined the 10%
most weakly (highly) conserved motif positions from all (RBP,
5-mer) groups. We keep the same set of proxy-non-functional
motifs for the highly conserved and weakly conserved
categories.

Recognition of RBP binding motifs: predictions

To perform zero-shot predictions of binding sites, we com-
puted for all proxy-functional and proxy-non-functional mo-
tifs an aggregate score ®. For the alignment-based models,
whose output can not be interpreted in terms of probability,
we used the maximum of the model output across the motif
positions: ® = max(score(i)), i = 1..5. For the CADD model,
which provides scores for all possible single nucleotide vari-
ants (SNVs), the maximum SNV score across all motif posi-
tions was used as ®. For the Zoo-AL model and LMs, which
directly provide allele probability at the output, we used the
average reference allele probability across the motif positions
LD = 1/5pyfli), i=1.5.

To derive per-nucleotide probabilities from LM predictions,
we ran LM inference for all 18 134 3'UTR sequences in the
human genome, masking the input tokens as described in the
official model documentation or in the previous studies. In
particular, for the DNABERT models, which use overlapping
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tokenization, we employed the inference technique applied by
[8]. This technique consists in masking a contiguous span of
six 6-mers for each probed position and using the output for
the fourth nucleotide of the third masked 6-mer as predic-
tion. For the State Space models, the inference was performed
by masking the nucleotide positions in the rolling masking
fashion with stride = 50, as implemented in [8]. Finally, the
predictions for the NT models were derived by consecutively
masking each 6-mer. To predict the probability of a given nu-
cleotide A, C, G, or T, we summed up all the model proba-
bilities for all the tokens having a given nucleotide at a given
position. For the DNABERT2-based models, ® could not be
computed, since the variable token length in the BPE encoding
scheme impedes separation of contributions from individual
positions along the sequence.

We consider a higher @ as an indicator of a functional mo-
tif. Assuming that a more functional element is more con-
served, it can be expected to occur repetitively within similar
sequence contexts in the dataset. Such elements should then
be associated with higher p,,; and higher ®.

For each model, we then computed the ROC AUC metric,
considering @ as prediction and the motif proxy-functional
status as the label. Note that the ROC AUC score is insensi-
tive to class imbalance, since it is unaffected by multiplying the
ratio between ground truth proxy-functional and proxy-non-
functional labels by an arbitrary factor [14] and corresponds
to the probability that a randomly chosen proxy-functional
motif is ranked higher than a randomly chosen proxy-non-
functional motif. It is, therefore, an appropriate metric for
comparison between models. The resulting ROC AUC scores
and their bootstrap-estimated 95% confidence intervals are
reported in Supplementary Table S2. We considered two mod-
els equivalent when their 95% confidence intervals for ROC
AUC overlap.

Prioritization of functional variants: labeled data

The second task is to predict the functional impact of ge-
netic variants. We used four different sources to construct four
sets of proxy-functional variants. As putative functional vari-
ants, we first considered SNVs with (likely) pathogenic an-
notations from ClinVar v. 2023.10.07 [15], dropping variants
with no_assertion or no_interpretation annotations. However,
as a high conservation score from PhyloP often serves as a cri-
terion to include non-coding variants into ClinVar, the esti-
mation of generalization performance of the PhyloP-100way
model based on ClinVar variants is compromised. Hence, we
also considered rare SNVs with allelic count of 1 from gno-
mAD v. 3.1.2 [16] as an alternative set of proxy-functional
variants. As the third set, we utilized SNVs associated with
gene expression, known as expression quantitative trait loci
(eQTLs), extracted from the eQTL-SuSiE fine-mapping cred-
ible sets [17] with a stringent P-value threshold of <1072%,
Finally, we selected 3'UTR-specific “proxy-deleterious” vari-
ants used for CADD-1.7 training [12]. This is a set of sim-
ulated variants that do not naturally occur in primates and
might thus be enriched for functional mutations. In total, we
retained 261 ClinVar, 3 210 324 gnomAD, 11 301 eQTL, and
151 287 CADD SNVs.

As a matched set for proxy-functional variants from Clin-
Var, gnomAD, and eQTL data, we built a set of proxy-non-
functional variants using 10 000 randomly chosen SNVs
with gnomAD population allele frequency above 5%. These
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SNVs were selected to ensure no overlap with any proxy-
functional variant. To ensure that the SNVs from the proxy-
non-functional set do not exhibit eQTL effects, we also
disregarded all gnomAD variants that overlapped eQTLs
with P-value < 1072, As a matched set for the “proxy-
deleterious” CADD variants, we selected the corresponding
number of 3’'UTR-specific “proxy-neutral” variants, also used
in CADD training. These are variants that naturally occur in
primates and are thus more likely to be benign. To reduce
the computational burden, we used at most 10 000 randomly
sampled proxy-functional or proxy-non-functional variants in
each dataset.

Prioritization of functional variants: predictions

Predicting functional significance of genetic variants is a key
step to understanding disease mechanisms. By leveraging em-
beddings and token probabilities, we aim to capture signals
that distinguish functional and non-functional variants. To
this end, we first calculated a set of zero-shot scores that could
be used as an indicator of a variant’s functional significance.
Three of these scores were computed based on model predic-
tions at the variant position: the logarithm of the reference
allele probability (log(p,.f)), the logarithm of inverse alter-
native allele probability (log(pa_lg ), and the logarithmic ratio
of these two probabilities (log(p e/ Paic))- The last two scores
quantify the level of “surprise” the model experiences when
encountering an alternative allele at the variant position. For
more pathogenic variants, the alternative allele is expected
to occur more rarely, leading to a higher score. To compute
these scores, we used the same per-nucleotide probabilities
that we derived for computing the motif scores in the first
task.

For each variant we also computed the variant influence
score (VIS), introduced by [18]. To do this, we first extracted
a W =4096 nt-long chunk (W = 512 nt for DNABERT-based
models) of the reference sequence refseq centered at the vari-
ant’s position. After that, the LM was employed to predict
probabilities of all possible SNVs in this sequence. We then
generated LM predictions for the alternative sequence altseq
obtained by mutating the central (variant) nucleotide in the
reference chunk to the alternative allele. In agreement with
[18], the VIS for a variant at position 7 was computed as fol-
lows:

v
VIS; = W %;max{

| <odds(n,- = k|altseq) )
082 odds(n; = k|refseq)

}kGA,C,G,T

In simple terms, VIS quantifies to which extent the other
loci in the sequence depend on the given variant. Following
[18], when computing VIS, we retained masking only for the
DNABERT-based models, since it was required to avoid a data
leak due to the overlapping tokenization scheme used by the
model. For the NT models, we used the same method for ex-
tracting nucleotide probabilities as in [18]. To mitigate the
computational burden, we used at most 3000 variants per in-
ference set and per label for VIS computation. For the 3'UTR-
specific models, we did not include correlations with positions
beyond the 3'UTR border.

For a given input sequence, a pre-trained LM can be used
to extract a concise representation, called embedding. Tech-
nically, an embedding is usually the output of some interme-
diate layer of the model. Embeddings encode a compressed
representation of the input sequence given the context learned
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in training. Comparing embeddings for reference and alterna-
tive alleles provides a quantitative measure of how the model
perceives changes in sequence functionness. While for non-
functional variants, an alternative allele is likely to appear as
often as the reference allele in a given context, for functional
variants, it can be unexpected to appear in the same context.
Therefore, for non-functional variants, the embeddings cor-
responding to the reference and alternative sequences can be
expected to be more similar to each other than for functional
variants. With the RNA-based models, we used RNA instead
of DNA sequences, obtained by taking a reverse complement
of the DNA sequence for the genes located on the negative
strand.

For each tested LM, we extracted embeddings from the fi-
nal layer, following the official model usage instructions or
in the agreement with the original model publication. Based
on these embeddings, we computed four additional zero-shot
functionality scores using four similarity measures between
embeddings for reference and alternative sequences (11,12, dot
product, and cosine similarity). Two more scores were com-
puted based on the loss on the alternative sequence and the
difference between the alternative and reference losses.

In addition to the zero-shot scores, we also applied probing
by using extracted embeddings to train supervised classifiers
to predict functional variants. The embeddings were gener-
ated separately for the reference and alternative alleles by us-
ing a W = 4096 nt-long sequence window (W = 512 nt for
DNABERT-based models) centered around each variant. The
reference and alternative embeddings were then concatenated,
resulting in a 2x longer vector used as an input to an MLP
model. For the 3’'UTR-specific models, we cut the window at
the 3'UTR border.

The MLP was evaluated in a nested CV fashion, using the
inner 5-fold CV for the hyperparameter search and the outer
10-fold CV for the estimation of model generalization perfor-
mance. The MLP was trained for 300 epochs with learning
rate of le-4 and batch size of 1024 using the AdamW opti-
mizer [11]. The hyperparameter search for the number of lay-
ers, dropout probability, and weight decay was performed by
running a Tree-structured Parzen estimator solver [19] 150
times. To reduce the computational burden, we retained the
hyperparameters determined for the initial (first) outer CV
split. The MLP was trained separately for each LM and each
variant dataset, resulting in a total of 24 models.

For each functionality score and each variant dataset, we
computed the ROC AUC measure, considering the function-
ality score as the predictor and the motif functional status
as label. The zero-shot and MLP-based ROC AUC scores are
reported alongside with their bootstrap-estimated 95% con-
fidence intervals in Supplementary Tables S3 and S4, corre-
spondingly. We considered two models equivalent when their
95% confidence intervals for ROC AUC overlap.

MPRA expression levels and mRNA half-life:
labeled data

A model’s ability to predict gene expression measured in
MPRA experiments or mRNA half-life characterizes its ca-
pacity to capture the functional relevance of 3’'UTRs, making
MPRA and mRNA half-life prediction tasks crucial bench-
marks for evaluation. Thus, our third and fourth tasks consist
in predicting MPRA expression levels measured by [20] and
[21], and to estimate mRNA half-life reported by [22].

We considered the mRNA steady-state measurements in
six cell lines as prediction targets for the [20] data. In
particular, we used the logyFoldChange_Ref_{cell_line} and
logoFoldChange_Alt_{cell_line} values as prediction targets
for the reference and alternative allele of each variant cor-
respondingly. The length of oligo sequences used to generate
embeddings was 101 nt.

For the [21] data, the prediction targets were the mRNA
steady-state and mRNA stability measurements obtained in
the original experiment for two distinct cell lines. In particular,
we used the ratios_TO_GC_resid and ratios_T4T0_GC_resid
values as measures of steady state and stability, correspond-
ingly, as defined in the original study. The length of oligo se-
quences used to generate embeddings was 160 nt.

The sequence-level data in the original studies were re-
ported in GRCh37/hg19 coordinates. To enable our analysis,
we performed a liftover of variant and oligo coordinates to
GRCh38/hg38, removing all oligos for which liftover failed
and those who were not fully included in the hg38 UTRs.

In total, we generated embeddings for 14 264 oligo se-
quences from the [20] experiment, 10 286 oligo sequences
from the [21] experiment on average per prediction target, and
for 12 457 UTR sequences corresponding to genes for which
mRNA half-life was reported by [22].

MPRA expression levels and mRNA half-life:
predictions

The predictions were generated by probing of LM embed-
dings. As downstream regressors, we used Ridge regression
and SVR models. As a baseline for each dataset, we also im-
plemented feature encoding proposed in the corresponding
original study (see the “Reimplementing models from previ-
ous studies” section).

When computing embeddings using the 3'UTR-specific
models trained on RNA sequences, we used RNA sequences
obtained by taking the reverse complement of the DNA se-
quence for the genes located on the negative strand. To gener-
ate embeddings for 3'UTRs longer than the LM field of view,
we cut the sequences at the 3’ end, assuming that the rele-
vant functional elements are located closer to the 5’ end of the
3'UTR.

All Ridge regression models were evaluated in a nested CV
fashion, using the inner five-fold group-based CV for the hy-
perparameter search and the outer LeaveOneGroupOut CV
for estimation of the generalization performance. The group-
ing criteria in the outer loop followed the conventions of the
original study: groups for the MPRA data from [20] were
composed of oligos derived from the same gene, groups for
the MPRA data from [21] data matched chromosomes, and
groups for the mRNA half-life data from [22] aligned with
the folds defined in the original study.

In the MPRA task, expression levels were predicted inde-
pendently for oligo sequences carrying the reference and al-
ternative alleles, following the methodology in the original
studies.

To fully leverage the potential of LM embeddings, we addi-
tionally trained SVR models on the same data. These models
were evaluated using the same validation strategy as the Ridge
regression models, following a nested CV approach. This in-
volved an inner five-fold group-based CV for hyperparameter
optimization and an outer LeaveOneGroupOut CV to esti-
mate the model’s generalization performance. To reduce the
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Figure 1. ROC AUC scores for RBP binding motif predictions for all motifs (A), proxy-functional motifs within the top 10% conservation (B),
and proxy-functional motifs within the bottom 10% conservation (C), as assessed by PhyloP-241way. The error bars show the 95% confidence intervals.
The color indicates genome-wide (dark green) or 3'UTR-specific models (light green).

computational burden, we retained the hyperparameters de-
termined for the initial (first) outer CV split. The SVR hy-
perparameters (regularization strength C, RBF kernel coeffi-
cient vy, and epsilon-tube width ¢) were searched on a loga-
rithmic scale by running a Tree-structured Parzen estimator
solver (Bergstra et al.,2011) 300 times.

The prediction quality was measured with the Pearson cor-
relation coefficient 7, computed between the predictions gath-
ered from all test folds and the values measured in the exper-
iment. We consider two models equivalent when their 95%
confidence intervals for Pearson r overlapped. The 95% con-
fidence interval was computed using Fisher transformation.

The alignment-based conservation models were excluded
from the evaluation since they do not provide a way to gener-
ate sequence embeddings.

Reimplementing models from previous studies

Baseline models from previous studies provide a benchmark
for evaluating the added value of LM embeddings. By reimple-
menting these models, we ensure a fair comparison between
traditional feature-based methods and embedding-based ap-
proaches. Therefore, for the third and the fourth tasks, we
trained additional regression models using sequence-based
features proposed for the corresponding dataset in the orig-
inal study.

In particular, for the MPRA data from [20], the input fea-
ture vector (7 = 58) for each oligo sequence was constructed
based on the following features: nucleotide percentage (across
four bases, 4 features), dinucleotide percentages (16 features),
exact dinucleotide counts (16 features), maximum homopoly-
mer length (for each nucleotide A, T, C, G, and across all
nucleotide types, five features), maximum dinucleotide length
across all bases (16 features), and a measure of sequence uni-
formity (computed as follows: for i in range(1,len (seq)): if
seq[i] == seq[i-1]: seq_uniformity = seq_uniformity + 1).

For the MPRA data from [21], the input feature vector
(n = 1024) for each oligo sequence was constructed by count-
ing the number of occurrences of each possible 5-mer in the
input sequence since these features led to the best predictions
in the original study.

For mRNA half-life prediction, the input feature vector
(n =21 844) for each human 3'UTR sequence was constructed
by counting all k-mers (k = 1..7) in the sequence.

Similarly to LM embeddings, the generated feature vectors
were used as an input to Ridge and SVR models.

Results

Recognition of RBP binding motifs

By serving as binding regions for RBPs, RBP binding sites
play a critical role in regulating gene expression through post-
transcriptional processes such as mRNA stability, splicing,
and translation. Accurate prediction of these binding sites is
essential for unraveling complex biological networks and un-
derstanding disease mechanisms, especially in disorders asso-
ciated with RNA dysregulation.

We therefore assessed the ability of each model to detect
binding sites for 20 RBPs, represented by 77 unique 5-mers.
This task might be particularly challenging for alignment-
based models since regulatory elements might exhibit cer-
tain mobility [8]. In the context of multispecies alignment,
the exact position of a given regulatory element may vary
across different genomes and not necessarily match its po-
sition in the human sequence. The resulting model perfor-
mance, assessed as ROC AUG, is illustrated on Fig. 1 and in
Supplementary Table S2 for the whole dataset as well as for
highly conserved (top 10%) and weakly conserved (bottom
10%) proxy-functional motifs separately.

The best performance across all motifs is delivered by the
NT-3UTR-RNA model (AUC = 0.703). All 3'UTR-specific
LMs outperform their genome-wide counterparts. To gain
deeper insight into the mechanisms of alignment-free and
alignment-based models, we assessed their ability to de-
tect highly conserved and weakly conserved proxy-functional
motifs separately (Fig. 1B and C). In the high conserva-
tion group, all LMs were outperformed by the alignment-
based PhyloP and CADD models. In this group of motifs
the alignment based models exploit the fact that the me-
dian PhyloP-241way conservation for the proxy-functional
motifs (score &~ 6.6) is about six times greater than for the
proxy-non-functional (score ~ 1.1). Among the LMs, NT-
3UTR-RNA performs the best with AUC = 0.829. On the
other hand, the State Space and DNABERT-based LMs per-
form worse than the alignment-based per-nucleotide proba-
bility model Zoo-AL (AUC = 0.731). These LMs might there-
fore struggle to use context information to predict p,¢. In-
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Figure 2. ROC curves for prediction of proxy-functional variants on (A) ClinVar, (B) gnomAD, (C) eQTL, and (D) CADD data using the best predictor for

each model. The ROC AUC scores for the three best models are shown.

deed, when comparing the allele probabilities predicted by the
LMs to the ground truth data from Zoo-AL (Supplementary
Fig. S2), the NT-3UTR-RNA model achieves the highest ac-
curacy, reconstructing the ground truth allele probability
with a Pearson correlation of ~0.54. In contrast, all other
3'UTR-specific multispecies LMs exhibit Pearson correlations
around 0.4.

In contrast, all LMs outperformed the alignment-based
models in the weak conservation group, with the State Space
models performing the best (AUC = 0.656). In this group, the
proxy-non-functional motifs are on average six times more
conserved (score ~ 1.1) compared to the proxy-functional
motifs (score ~ 0.2). Consequently, the ROC AUC score
for alignment-based models falls below 0.5. In contrast, all
LMs score above 0.5. Compared to the high conservation
group, the NT-3UTR-RNA model degrades in performance
(AUC = 0.600), whereas the other LMs perform similarly.

It is worth noting that the single-genome STSP-3UTR-
RNA-HS model performs closely to the multispecies State
Space models. This LM appears to leverage multiple occur-
rences of functional 5-mers appearing within similar sequence
contexts across different 3'UTRs. One may also notice that
some LMs even perform slightly better on the weakly con-
served motifs (Supplementary Table S2). Since the same pat-
tern is observed for the STSP-3UTR-RNA-HS and DNABERT
models, which were not exposed to any multispecies data, we
attribute this performance difference to possible mislabeling
in the motifs dataset.

The NT-3UTR-RNA model appears to effectively use not
only the shared functional role of the same 5-mer occuring
in different 3’'UTRs of the same species but also evolutionary
conservation, as follows from its improved performance in the
high conservation group. The possible reasons why the State
Space and DNABERT-based models may not utilize evolution-

ary conservation so effectively include the smaller size of the
former and the narrower field of view of the latter.

Prioritization of functional variants

Predicting functional significance of genetic variants is a key
to understanding genotype-to-phenotype relationships. As the
second task, we evaluated how well the analyzed models prior-
itize proxy-functional variants in 3'UTR sequences. To achieve
this, we measured their performance on the ClinVar, gnomAD,
eQTL, and CADD datasets, each modeling a distinct variant
prediction scenario with a focus on identifying pathogenic or
regulatory variants. We compared the performance of LMs
with zero-shot scores (Supplementary Table S3) or probing
(Supplementary Table S4) as well as alignment-based mod-
els (Supplementary Table S5). The results are summarized in
Fig. 2.

First, we investigated which method performs best on each
of the data sets. Alignment-based models perform the best on
three out of four datasets. In particular, CADD-1.7 excels on
the ClinVar data (AUC = 0.975), while Zoo-AL ranks first
on the gnomAD (AUC = 0.701) and CADD (AUC = 0.951)
datasets. In contrast, on the eQTL data the probing models
using embeddings of the Zoonomia-based DNABERT2-ZOO
and DNBT2-3UTR-RNA models achieve an exceptional score
of AUC = 0.831 and 0.821 correspondingly, largely outper-
forming all other models. In this task, we notice no system-
atic improvement on 3'UTR-specific models compared to their
whole genome counterparts.

Let us now have a closer look at the LM zero-shot, prob-
ing, and alignment-based predictions. The ROC AUC values
for 10 zero-shot scores are shown in Supplementary Table S3.
In this simple zero-shot scenario, most LMs already demon-
strate some predictive capability, with the best ROC AUC
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of 0.735 (NT-MS-v2-100M), 0.607 (NT-3UTR-RNA), 0.581
(STSP-3UTR-DNA), and 0.728 (NT-3UTR-RNA) on Clin-
Var, gnomAD, eQTL, and CADD, respectively. The NT-3UTR-
RNA model achieves the best or equivalent performance
in three out of four datasets, which correlates with its im-
proved ability to predict the per-nucleotide allele probability
(Supplementary Fig. S2).

Previous studies suggested [18] that the VIS, which consid-
ers dependencies between positions, could be a better predic-
tor of functional variants than p,.;. We observe this trend on
the ClinVar and eQTL datasets; however, on the gnomAD and
CADD data, p,s generally outperforms VIS. To better under-
stand the factors influencing VIS, we plotted the difference
between VIS-derived and p,,s-derived ROC AUC as a func-
tion of the observation window width W around the variant.
As shown in Supplementary Fig. S3, the resulting curve varies
across models. Notably, for some LMs, the AUC improvement
due to VIS begins to decline at larger W for ClinVar variants.
A possible explanation is that correlations in the immediate
vicinity of the variant become masked by noise introduced
by uncorrelated positions further away. In contrast, for some
LMs, the AUC improvement increases with W on the eQTL
data, suggesting that long-range interactions may play a key
role in identification of eQTL variants.

To explore the LM performance in probing, we then trained
a MLP classifier to predict proxy-functional variants based
on LM embeddings. The resulting ROC AUC scores are
summarized in Supplementary Table S4. Compared to zero-
shot prediction, all LMs considerably improved in perfor-
mance on the ClinVar and eQTL data. The AUC on Clin-
var ranges from 0.920 to 0.958, with insignificant perfor-
mance differences between all LMs. On the eQTL data, the
DNABERT2-ZOO (AUC = 0.831) and DNBT2-3UTR-RNA
(AUC = 0.821) models, which we specifically trained on the
Zoonomia dataset, achieved equivalent top performance. It is
worth mentioning that on this data, the DNABERT2-based
models consistently outperform the DNABERT-based models
despite their very similar architecture. It is, therefore, likely
that the difference in performance results from the signifi-
cantly larger field of view of the DNABERT2-based mod-
els that allows accounting for long-range interactions. This
assumption is further supported by the fact that in addi-
tional experiments, we also observed that reducing the field
of view strongly impacts the performance of the DNABERT2-
based models on eQTL variants. In contrast, on the gnomAD
and CADD data, the performance of most LMs shows only
slight improvement or even declines compared to the zero-
shot scores. One possible explanation for this is the reduced
number of correlated positions for these variants, as suggested
by VIS (Supplementary Table S3 and Supplementary Fig. S3).
The lack of such correlations might cause the difference be-
tween the reference and alternative embeddings for proxy-
functional and proxy-non-functional variants to remain on a
similar scale.

It is also of note that similar to the first task, the single-
genome DNABERT and STSP-3UTR-RNA-HS models per-
formed comparably to some of their multispecies counter-
parts. Again, this can be possible due to similarities in se-
quence and regulatory function between different 3’UTRs of
Homo Sapiens.

We then performed effect prediction using alignment-based
models. The results are shown in Supplementary Table S5.
These models outperform the LMs on ClinVar (AUC = 0.976,
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CADD-1.7), gnomAD (AUC = 0.701, Zoo-AL), and CADD
(AUC = 0.951, Zoo-AL). These three datasets are designed
in such a way that proxy-functional variants are expected
to have a higher p..s and lower p,, compared to the proxy-
non-functional. For the PhyloP models, conservation acts as
a proxy for p,s while Zoo-AL directly provides the nu-
cleotide probability, leading to higher scores on two out of
four datasets. In this regard, the inferior performance of LMs
can be related to their poor ability to predict the alignment-
based nucleotide probability (Supplementary Fig. S2). Inter-
estingly, Zoo-AL outperforms CADD-1.7 (AUC = 0.690) on
the CADD training dataset. A possible reason for this is the
reliance of CADD-1.7 on the Zoonomia PhyloP scores, which
also demonstrate suboptimal performance (Supplementary
Table S5).

However, the performance of alignment-based models
drops significantly on eQTL, where Zoo-AL achieves the high-
est AUC of only 0.525. The poor performance of alignment-
based models on eQTL is likely due to poor evolutionary con-
servation of these variants. Indeed, 95% of proxy-functional
eQTL variants have gnomAD allele frequency above 5%,
which suggests that the alternative allele may also frequently
occur in multiple species alignment. This makes the allele
probability a poor predictor for these variants.

Prediction of MPRA expression levels and mRNA
half-life

Regulatory sequence elements in 3'UTRs influence gene ex-
pression and mRNA stability. Predicting these properties pro-
vides an opportunity to evaluate whether LMs can effectively
encode biologically relevant signals. To explore this potential,
we designed two additional downstream tasks. Our third task
consists in predicting reporter expression in two MPRA stud-
ies on 3'UTR variants. The fourth task consists in predicting
mRNA half-life.

MPRA is a powerful experimental technique to explore the
regulatory impact of variants. The alleles associated with the
analyzed variant are first seeded into short oligonucleotide se-
quences, which are placed next to the reporter gene on a plas-
mid. By assessing reporter expression across different oligo
sequences, the impact of the analyzed variant (alleles) on gene
expression can be estimated.

Following the probing approach, we first applied Ridge re-
gression to predict MPRA reporter expression from LM em-
beddings. MPRA data were measured in six human cell lines
for several thousand variants associated with human disease
and evolutionary selection [20]. The Pearson correlation coef-
ficient 7 between expression predictions and the hold out data
are shown in Table 1.

Across all cell lines, the region-specific STSP-3UTR-RNA
model (r = 0.30 — 0.50) yields the best or equivalent perfor-
mance across all the LMs and greatly outperforms the baseline
model from [20]. All 3’'UTR-specific LMs outperform their
genome-wide counterparts.

Embeddings generated by distinct model architectures en-
code data differently. For some of them, the relevant informa-
tion might not be encoded linearly with respect to the predic-
tion target. In such cases, Ridge regression lacks the complex-
ity required to reveal intricate patterns relevant to gene ex-
pression. Staying within the probing framework, we therefore
trained a more sophisticated SVR regressor with a RBF kernel.
SVR improves the prediction score for all the models by up to
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Table 1. Pearson r correlation coefficient between Ridge-based predictions from sequence embeddings and ground truth MPRA expression from [20]

HEK293FT HMEC HEPG2 GM12878 K562 SKNSH
DNABERT 0.28 +0.01 0.17 £ 0.02 0.27 £ 0.01 0.38 £0.01 0.23 £0.01 0.22 £ 0.01
DNBT-3UTR-RNA 0.38 +£0.01 0.32 +£0.01 0.35 +£0.01 0.51 +£0.01 0.35 +£0.01 0.34 +0.01
DNABERT2 0.11 £ 0.02 0.10 £ 0.02 0.13 £0.02 0.31 £0.01 0.18 £ 0.01 0.15 £0.02
DNABERT2-Z0OO 0.12 +0.02 0.08 +0.02 0.14 £+ 0.02 0.31 +£0.01 0.15 +£0.02 0.11 £ 0.02
DNBT2-3UTR-RNA 0.29 +0.01 0.20 £ 0.01 0.28 £ 0.01 0.46 £ 0.01 0.29 £ 0.01 0.27 £ 0.01
NT-MS-v2-100M 0.14 £+ 0.02 0.12 £ 0.02 0.16 = 0.02 0.32 +£0.01 0.20 +£0.01 0.18 £ 0.02
NT-3UTR-RNA 0.29 £ 0.01 0.24 £ 0.01 0.28 £ 0.01 0.46 £ 0.01 0.30 £ 0.01 0.28 £0.01
STSP-3UTR-RNA 0.40 = 0.01 0.30 £ 0.01 0.38 £ 0.01 0.50 £0.01 0.34 £ 0.01 0.32 £0.01
STSP-3UTR-RNA-HS 0.35 +£0.02 0.22 +0.02 0.37 +0.02 0.45 +0.02 0.29 +0.02 0.26 + 0.02
STSP-3UTR-DNA 0.33 £0.02 0.18 £0.03 0.34 £ 0.02 0.39 £0.02 0.23 £0.02 0.22 £0.02
Griesemer et al., 2021 0.24 +£0.01 0.22 +0.01 0.24 +£0.01 0.41 +£0.01 0.27 +£0.01 0.24 +0.01

The 95% confidence intervals are reported.

30% (Supplementary Table S6), with embeddings from STSP-
3UTR-RNA leading to the best performance across all cell
lines (r = 0.39 — 0.56). Interestingly, the human-only STSP-
3UTR-RNA-HS model performs equivalently to STSP-3UTR-
RNA on five out of six cell lines. This result emphasizes again
the similarity in sequences and regulatory elements between
different 3'UTR regions of Homo Sapiens. We also note that
on this dataset, the RNA-based model STSP-3UTR-RNA out-
performs the DNA-based model STSP-3UTR-DNA.

Again following the probing strategy, we evaluated the po-
tential utility of LM embeddings in predicting mRNA steady-
state and stability levels in Jurkat and BeasB2 cells mea-
sured in the second MPRA experiment [21]. The prediction
results are shown in Supplementary Tables S7 and S8 for
Ridge and SVR regressors correspondingly. For both regres-
sors, the 3’'UTR-specific models outperformed their genome-
wide counterparts as well as the baseline 5-mer model from
[21]. In Ridge regression, DNBT-3UTR-RNA showed the best
results across all targets (r = 0.32...0.54), while in SVR regres-
sion it was outperformed by NT-3UTR-RNA for steady state
prediction on Beas2B cells. Additionally, compared to [20], the
difference between Ridge and SVR results is less pronounced.
We observed that training on this dataset required stronger
regularization (smaller SVR parameter C), which may level
out the performance difference between simple (Ridge) and
more complex (SVR) machine learning techniques. Again, the
human-only STSP-3UTR-RNA-HS model performed equiva-
lently to the multispecies STSP-3UTR-RNA model for all but
one target.

To check if providing additional context can improve model
performance, we additionally experimented with predictions
based on a longer sequence context of 4096 nt, obtained by
placing the original oligo sequences in their genomic context.
This resulted in degraded performance for all the models. We
suppose that the reason for this is that in MPRA experiments
all oligo sequences are placed in a fixed context, independently
of their actual position in the human genome.

Finally, we used embeddings generated by the LMs to pre-
dict mRNA half-life derived by [22]. In that study, the consen-
sus mRNA half-life was obtained as the first principle compo-
nent of a sample x gene matrix composed of half-life mea-
surements from 39 human samples, spanning different cell
types and measurement techniques. We note that the study
of [22] did not reveal any cell type-specific differences be-
tween different samples, so the consensus half-life values are
cell type-agnostic.

We first predicted the half-life from 3'UTR sequences alone,
using various 3'UTR embeddings, including LM embeddings
and k-mer (k = 1..7) embeddings used in the original study
(Fig. 3A). In this task, the 3'UTR-specific LMs again out-
performed their genome wide counterparts. The DNBT2-
3UTR-RNA (r = 0.43) and NT-3UTR-RNA (r = 0.42) mod-
els demonstrated the best performance, while the k-mer em-
beddings performed the worst. Notably, DNBT-3UTR-RNA
(r =0.41) performed equivalently to the best models. Since the
field of view of DNABERT-based models is limited to 512 nt,
this suggests that the key elements defining mRNA half-life are
primarily located within the first 512 nt from the 5’end of the
3'UTR. The results for most models improved when probed
with SVR (Supplementary Table S9). The greatest improve-
ment (~80%) is achieved for k-mer embeddings. This clearly
indicates that in contrast to LM embeddings, there is no lin-
ear relationship between the simple k-mer embeddings and
mRNA half-life as the prediction target. In SVR regression,
the DNBT2-3UTR-RNA and NT-3UTR-RNA models again
showed the best results (r = 0.45).

Additional mRNA features might provide complementary
information relevant for half-life prediction, which is not en-
coded in 3'UTR embeddings alone. The difference in perfor-
mance of models using various 3'UTR embeddings might thus
be less pronounced when these models are also equipped with
additional mRNA features. To investigate this, we considered
the BC3MS model from [22], which showed the best perfor-
mance among all models utilizing manually crafted sequence-
based features in the original study. This model relies on basic
mRNA features (length and G/C content of 5UTR, ORF, and
3'UTR; intron length; ORF exon junction density), mRNA
codon counts, 3'UTR k-mers (k = 1..7), miRNA target re-
pression, and SeqWeaver RBP binding prediction. To test our
hypothesis, we predicted mRNA half-life using the BC3MS*
model, which we constructed by replacing the original k-mer
encodings for 3'UTR sequences in BC3MS with embeddings
from the DNBT2-3UTR-RNA model. The DNBT2-3UTR-
RNA embeddings were chosen as they led to the best re-
sults when predicting mRNA half-life from 3’'UTR embed-
dings alone (Fig. 3A and Supplementary Table S9). Both em-
beddings led to equivalent performances (Fig. 3B), with Pear-
son 7 values of 0.67 = 0.04 and 0.69 + 0.03 for BC3MS
and BC3MS*, respectively, considerably outperforming all the
models based on 3'UTR embeddings only. This indicates that
additional mRNA features indeed encode complementary in-
formation relevant for half-life prediction, thus reducing the

G20z 18q0300 |z Uo Jasn wnjibojojeweeH 4S9 Ad £202528/ | 28JeNB/. L/€G/aoIHE/1euU/Wod dNodlWepeo.)/:SA)Y Woly papeojumod


https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf871#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf871#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf871#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf871#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf871#supplementary-data

>
©
e
1

Pearson r
© © © ©
e B N W

1
.

FLE AL O FL0
T NV AR (KR ¥
I SORCASIR SRS
% QKA & XN
Ny é?“é)\q' &Qé &éz : 0&632
Q A )
S 5

Foundation models for 3'UTR 1"

Pearson r w
o o o
SN [e)] 0]

©
N}

0.0 BC3MS

BC3MS*

~ Saluki human

Figure 3. (A) Pearson r correlation coefficient between mRNA half-life prediction and ground truth data from [22], obtained by applying Ridge regression
to different 3’'UTR embeddings. (B) Pearson r correlation coefficient for mRNA half-life prediction with the BC3MS model based on different 3'UTR
embeddings and the Saluki model. The performance of the BC3MS model and the BC3MS* model with DNBT2-3UTR-RNA embeddings is reported
based on the SVR results. The performance of Saluki is reported as provided in the original study [22]. The error bars show the 95% confidence intervals.

impact of a particular approach used to generate 3’UTR em-
beddings. However, in comparison to the deep CNN-based
Saluki model reaching a Pearson r of 0.77 £ 0.03 in [22],
both BC3MS and BC3MS* exhibit inferior performance (Fig.
3B). We also observed that applying SVR produced equivalent
quantitative results as Lasso regression used in the original
study.

Discussion

In this work, we considered a range of 3'UTR-specific
tasks to compare general-purpose genomic foundation mod-
els with LMs specifically trained on 3'UTR sequences and
conservation-based models. In all tasks apart from variant ef-
fect prediction, LMs specifically trained on 3'UTR sequences
outperformed their whole genome counterparts, with the op-
timal model being task-specific. This highlights the potential
of region-specific training to capture unique regional depen-
dencies that are overlooked by general-purpose models.

We first proceeded with identification of RBP binding mo-
tifs. In this task, the NT-3UTR-RNA model showed the best
performance. When splitting motifs according to conserva-
tion, all LMs performed better than the alignment-based mod-
els on the weakly conserved group. This showcases a certain
ability of LMs to leverage the specific sequencing context to
predict the reference allele probability in an alignment-free
manner.

We note, however, that all LMs evaluated in this task still
struggle with accurate prediction of the nucleotide probability
from the human-reference multispecies alignment. This sug-
gests that sequence alignments still contain valuable informa-
tion that is currently not exploited by the current strategies
of self-supervised learning across many genomes. Developing
new training strategies that leverage the information about or-
thologous sets of sequences across species could lead to LMs
capable of more accurate prediction of nucleotide probability
and improved prediction of functional motifs.

Another difficulty in this task is potential mislabeling of
proxy-functional motifs. A given RBP is not equally likely to
bind all of its 5-mers identified in the RBNS experiment. In-

stead, it exhibits varying degrees of affinity for each 5-mer,
which we do not account for when constructing the proxy-
functional set, potentially resulting in some non-functional
motif hits labeled as proxy-functional. However, we believe
that this way of constructing the dataset is acceptable as far
as relative, rather than absolute, model performance is con-
sidered (e.g. for comparison between the models).

We then proceeded with variant effect prediction. We first
observed that the LMs already exhibit certain predictive ca-
pacity by delivering meaningful zero-shot scores. Task-specific
probing based on LM embeddings significantly improved vari-
ant classification on ClinVar and eQTL, suggesting non-linear
relationships between LM embeddings and variant function.
We note that the DNABERT2-ZOO and DNBT2-3UTR-RNA
models specifically trained on the Zoonomia dataset achieved
exceptional performance on 3'UTR-specific eQTLs. This indi-
cates the strong predictive potential of Zoonomia-based mod-
els, and future studies should also consider evaluating the
DNABERT2-ZOO model on other genomic regions. On the
other hand, LMs with more accurate predictions of nucleotide
probability might excel on the gnomAD and CADD datasets,
as indicated by the superior performance of Zoo-AL on this
data.

We would also like to comment on the superior perfor-
mance of the alignment-based conservation models on the
ClinVar and CADD datasets. In the case of ClinVar, conserva-
tion is often directly used to annotate causal non-coding vari-
ants, which might cause “label leakage.” In the case of CADD,
the labels of proxy-neutral variants are inferred as human
lineage-derived sequence alterations in primate whole-genome
alignments [12]. Therefore, the label does not directly depend
on sequence conservation. However, conservation is an impor-
tant predictor in the CADD model, which is in line with the
good performance of conservation in predicting CADD labels
observed in our analyses. Similar considerations might apply
to a more subtle extent also to the gnomAD proxy-functional
variants. This should be taken into account while choosing the
best model for a particular application.

The superiority of region-specific LMs was corroborated
when predicting MPRA expression measured in the experi-
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ments of [20] and [21]. In this task, all region-specific models
outperformed their genome-wide counterparts as well as the
baseline models from the original studies.

The region-specific NT-3UTR-RNA and DNBT2-3UTR-
RNA models also performed the best when predicting mRNA
half-life based on 3’'UTR embeddings only. In this task, they
outperformed k-mer (k = 1..7) embeddings used to encode
3'UTR sequences in the original study [22]. However, using
the 3'UTR embeddings alongside with other features in the
BC3MS and BC3MS* models annihilated the performance
difference, probably due to the additional features contain-
ing 3’'UTR-specific information, such as G/C content and pre-
dicted binding score of human RBPs, as well as the features
derived from other mRNA regions. Notably, encoding 3'UTRs
using LM embeddings instead of k-mers did not bring the per-
formance of the BC3MS-based models closer to that of the
deep full-mRNA Saluki model [22]. This suggests that the su-
perior performance of Saluki cannot be attributed to enhanced
encoding of the 3’'UTR alone, but rather to a more com-
plex processing (compared to BC3MS) of the whole mRNA
sequence.

Across all the tasks, we observed that the single-genome
STSP-3UTR-RNA-HS model performed close or even equiv-
alently to the State Space multispecies models. This may only
be possible when regulatory elements with shared functional
roles occur in a similar sequence context across different hu-
man 3'UTRs. The short training time of STSP-3UTR-RNA-
HS (Supplementary Table S1) makes this model particularly
attractive in resource-constrained settings.

We hypothesize that there could be a distinct reason why
a particular LM excels in a given task. For example, it is
apparently the improved ability of NT-3UTR-RNA to re-
construct the reference allele probability that makes it per-
form the best on motif recognition. On the other hand,
the Zoonomia-based DNABERT2 models are likely to pro-
vide the exceptional results on eQTL variants due to their
ability to capture long-range correlations more effectively
than the other models. On the other hand, DNBT-3UTR-
RNA and STSP-3UTR-RNA perform the best on MPRA ef-
fect prediction, where long-range interactions are not consid-
ered due to the small length of oligo sequences. The worse
performance of the whole genome LMs in this task could
be due to these models confusing short sequences coming
from different genomic regions. In this regard, it was previ-
ously pointed out [5] that genome-wide N'T models might en-
counter challenges in recognizing 3’'UTR sequences. Finally,
models with a greater field of view, such as DNBT-3UTR-
RNA and NT-3UTR-RNA, excel on half-life predictions. Al-
though the State Space models possess a comparable field of
view, their small number of parameters might hinder their
performance.

We observed that in the MPRA prediction on the [20]
data, the DNA-based 3'UTR-specific model STSP-3UTR-
DNA was outperformed by its RNA-based counterpart, STSP-
3UTR-RNA. Notably, the evaluation strategy for this task
involves training the LM on genomic alterations within a
given subset of 3'UTRs, and then assessing its performance
on alterations in a held-out set of 3'UTRs from a spe-
cific gene or chromosome. This approach assumes strong
similarity between regulatory elements across different hu-
man 3'UTRs. Reversing sequences for genes on the nega-
tive strand (RNA-based models) may help the model recog-

nize similar regulatory patterns across different regions, ef-
fectively augmenting the dataset. Additionally, this evalua-
tion strategy suggests that MPRA predictions could be fur-
ther enhanced by training on larger datasets, thereby increas-
ing the chances that sequences in the training and test sets
are more homogeneous (similar) in terms of sequences and
functions.

When applying LMs to study fungi genomics, previous
studies showed [8] that adding a species label to the model
can lead to improved performance. To check this, we con-
ducted additional tests by providing a species label to the
STSP-3UTR-RNA input while training. The resulting species-
aware model performed as well as STSP-3UTR-RNA across
all our tasks. We speculate that the closer evolutionary dis-
tance between the Zoonomia species (up to 260 m.y.) com-
pared to the fungi dataset from [8] (up to 500 m.y.) leads to
the reduced divergence between the genomes, eliminating the
impact of species-awareness.

To the best of our knowledge, there is no established strat-
egy for selecting species for model training. To explore the
impact of species selection, we trained the DNABERT2-ZOO
model, which provided superior results on the variant effect
prediction task compared to the original DNABERT2. While
this clearly suggests that species choice can affect model per-
formance, further research is needed to understand which
characteristics of the species selection are the most impor-
tant determinants of model performance. In addition to mul-
tispecies models, future studies could also explore 3'UTR-
specific models trained on multiple human genomes (e.g. the
1000 Genomes dataset), since genome-wide versions of these
models were shown to outperform multispecies LMs on some
tasks [3].

Finally, as noted in the “Materials and methods” section,
probing rather than fine-tuning was chosen in this study as
the evaluation strategy due to the higher computational de-
mands of the latter. Therefore, it remains an open question
whether fine-tuned genome-wide models could outperform
3'UTR-specific LMs.

The proposed set of tasks provides a robust benchmark for
evaluating genomic LMs, expanding their applicability to bi-
ologically and clinically relevant problems. By standardizing
these evaluations, this benchmark lays the groundwork for fu-
ture advancements in RNA-focused genomic modeling, foster-
ing innovation and cross-comparison in the field.

Conclusion

We demonstrated that LMs trained on 3'UTR sequences from
a large set of mammalian genomes outperform existing human
single-genome and multispecies foundation models in three
out of four 3'UTR-specific tasks. Our results highlight the im-
portance of evaluating LMs in a region-specific manner. Addi-
tionally, the proposed set of 3'UTR-specific tasks can be used
as a benchmark for future model development.

Acknowledgements

We would like to thank Julien Gagneur and Pedro Tomaz da
Silva for an insightful discussion. We additionally thank Julien
Gagneur for the provided computational resources that sup-
ported the start of this work.

G20z 18q0300 |z Uo Jasn wnjibojojeweeH 4S9 Ad £202528/ | 28JeNB/. L/€G/aoIHE/1euU/Wod dNodlWepeo.)/:SA)Y Woly papeojumod


https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf871#supplementary-data

Author contributions: S.V. and M.H. jointly conceived the
study. S.V. implemented the analysis. S.V. and M.H. wrote the
manuscript.

Supplementary data
Supplementary data is available at NAR online.

Conflict of interest

None declared.

Funding

This work was supported by the German Ministry for Edu-
cation and Research (BMBF) [031L0203A (VALE) to M.H.]
within the computational life science program. M.H. is sup-
ported by the Chan Zuckerberg Initiative [2019-202666,
2021-237882]. Funding to pay the Open Access publication
charges for this article was provided by Institute core funding.
This study was supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) via the IT In-
frastructure for Computational Molecular Medicine (project
#461264291).

Data availability

The pre-trained weights and the model implemen-
tation of the 6-mer DNABERT model were down-
loaded from the official GitHub repository: https:
/lgithub.com/jerryji1993/DNABERT. The pre-trained
weights and the model implementation of DNABERT2
were downloaded from the official HuggingFace page:
https://huggingface.co/zhihan1996/DNABERT2-117M. The
pre-trained weights and the model implementation of the
NT-MS-v2-100M multispecies model were downloaded
from the official HuggingFace page: https://huggingface.co/
InstaDeepAl/nucleotide-transformer-v2-100M-multi-species.
PhyloP-100way conservation scores were downloaded
from the UCSC ftp server: http://hgdownload.soe.ucsc.edu/
goldenPath/hg38/phyloP100way/. PhyloP241-way conserva-
tion scores (241-mammalian-2020v2.bigWig) and Zoonomia
Progressive Cactus alignment (241-mammalian-2020v2.hal)
were downloaded from the UC Santa Cruz Computational
Genomics Lab web page: https://cglgenomics.ucsc.edu/
november-2020-nature-mammalian-and-avian-alignments/.
HAL format API was downloaded from the project’s GitHub
page: https://github.com/ComparativeGenomicsToolkit/hal.
ClinVar data were downloaded from the NCBI ftp
server:  https:/ftp.ncbi.nlm.nih.gov/pub/clinvar/.  Gno-
mAD data were derived from the official web page:
https://gnomad.broadinstitute.org/. eQTL-SuSiE data
were downloaded from the EBI ftp server: http:
//ftp.ebi.ac.uk/pub/databases/spot/eQTL/susie/. CADD
training data were derived from the official CADD
website:  https://cadd.bihealth.org/. The  implementa-
tion of the State Space architecture was adopted from
https://github.com/DennisGankin/species-aware-DNA-LM.
The raw model scores, model weights, and preprocessing data
can be found at: https://doi.org/10.5281/zenodo.14993890.
The scripts to process this data can be found at: https:
/lgithub.com/heiniglab/investigating-foundation-models-3utr
and https://doi.org/10.5281/zenodo.15286123.
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