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Abstract:

Telomere length shortening has been associated with genomic instability and acquisition of
molecular lesions, but these processes have not been systematically studied across large cohorts of
myeloid neoplasia (MN). As proof of concept for a novel, cross-validated WGS-based method of
telomere content (TC) determination combined with mutations, transcriptomics, and functional
assays, we studied TC in correlation with specific molecular features of a large cohort (n=1804) of
MN patients including acute myeloid leukemia (AML) and myelodysplastic syndrome. When compared to
healthy subjects and patients with non-clonal diseases such as persistent polyclonal B cell
lymphocytosis, both MN and non-malignant controls with clonal disease, such as paroxysmal nocturnal
hemoglobinuria and aplastic anemia, exhibited decreased TC. Furthermore, we show that TC is lowered
in adult MN abrogating correlation with age with considerable TC diversification among certain
morphologic and molecular subtypes. For instance, AML harbored the lowest TC. Furthermore, MN
originating from a more mature cell of origin (e.g., APL), and those characterized by
hyperproliferative driver mutations (e.g., RAS pathway genes) had lower TC, possibly indicating a
loss of telomere maintenance capacity. In contrast, MN subtypes arising in a context of profound
genetic alterations, such as TP53 mutations and complex karyotype, exhibited a relatively
higher/preserved TC compared to other mutations. This phenomenon did not involve alternative
lengthening processes but was rather consistent with an increased TC due to preserved activity of
the telomerase complex. Our results describe a common and genotype-specific telomeric make-up of a
large cohort of patients with MN providing a molecular benchmark for future therapeutic targeting
of the telomere machinery.
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Key points
- Telomere content (TC) in AML is not correlated with age and presents a broad variability according to
cytogenetic and molecular features.
- Increased telomerase complex activity in TP53-mutated AML results in higher TC compared to other

myeloid neoplasms with other mutations.
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Abstract

Telomere length shortening has been associated with genomic instability and acquisition of molecular lesions,
but these processes have not been systematically studied across large cohorts of myeloid neoplasia (MN).

As proof of concept for a novel, cross-validated WGS-based method of telomere content (TC) determination
combined with mutations, transcriptomics, and functional assays, we studied TC in correlation with specific
molecular features of a large cohort (n=1804) of MN patients including acute myeloid leukemia (AML) and
myelodysplastic syndrome. When compared to healthy subjects and patients with non-clonal diseases such as
persistent polyclonal B cell lymphocytosis, both MN and non-malignant controls with clonal disease, such as
paroxysmal nocturnal hemoglobinuria and aplastic anemia, exhibited decreased TC. Furthermore, we show
that TC is lowered in adult MN abrogating correlation with age with considerable TC diversification among
certain morphologic and molecular subtypes. For instance, AML harbored the lowest TC. Furthermore, MN
originating from a more mature cell of origin (e.g., APL), and those characterized by hyperproliferative driver
mutations (e.g., RAS pathway genes) had lower TC, possibly indicating a loss of telomere maintenance
capacity. In contrast, MN subtypes arising in a context of profound genetic alterations, such as TP53 mutations
and complex karyotype, exhibited a relatively higher/preserved TC compared to other mutations. This
phenomenon did not involve alternative lengthening processes but was rather consistent with an increased TC
due to preserved activity of the telomerase complex. Our results describe a common and genotype-specific
telomeric make-up of a large cohort of patients with MN providing a molecular benchmark for future therapeutic

targeting of the telomere machinery.
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Introduction
Telomeres are noncoding repeats, majority being but not limited to TTAGGG nucleotide sequence, at
chromosomal ends that prevent DNA degradation and genomic instability’. Increased telomerase activity is
one of the essential features of hematopoietic stem cells (HSCs), representing the mechanism countering
telomere attrition caused by repeated cell divisions®. Indeed, stem cells with short telomeres are more

susceptible to cellular senescence, chromosomal instability, and malignant transformation®*.

While leukemia-initiating cells may share the ability of telomere maintenance with normal HSCs TC, the bulk of
proliferative potential in myeloid neoplasia (MN) is likely secured by ontogenically more mature leukemic
precursors lacking this capacity >°. Therefore, excessive telomere shortening or defective telomeric repeats
due to replicative stress may also represent a distinctive feature of MN, similar to the observations made in
solid cancer genomes’. However, telomere machinery expression may vary between different MN subtypes,

corresponding to differentiation arrest at various stages of myeloid development.

Albeit the threshold of TC may be highly individual, critical shortening has been associated with genomic
instability and other features facilitating the stepwise acquisition of genomic lesions and a more aggressive
phenotype”®. Furthermore, inherited telomeropathy traits may be an additional contributing factor to excessive
TC lowering, possibly influencing clinical outcomes®*°. Hypomorphic alleles of telomere machinery genes have
been implicated in various constitutional bone marrow failure (BMF) syndromes as well as in aplastic anemia,
including seemingly acquired cases®. In some instances, such alterations represent risk factors for leukemia

and/or may contribute to accelerated telomeres shortening®.

Significant differences in telomere length (TL) have been observed among healthy subjects as well. In a recent
large study analyzing 462,666 UK Biobank participants WGS-based method of TC measurement has been
extensively validated. Using this technology, differential impact of clonal hematopoiesis (CH) gene drivers on
TL and vice versa was established'. The relationship between CH and telomere biology has been also
investigated in a cohort of patients with telomere biology disorders. In this setting, CH was observed
predominantly in symptomatic patients and was mainly driven by PPM1D, POT1, TERTp, U2AF1 and TP53
hits. Indeed, TP53 pathway emerged as a key player in malignant evolution of telomere biology disorders and

its mutations predictors of poor prognosis.*%.

In this perspective, despite a thorough investigation of predisposal conditions, a large, systematic study of the
relationship between telomere length/content and somatic genomic lesions processes in MN, including acute

myeloid leukemia (AML), myelodysplastic syndrome (MDS) and related disorders, has not been conducted.

With the ability to better define somatic defects, it is more likely to find possible correlations between specific

molecular alterations and TC. The availability of a new class of drugs targeting the telomerase machinery (e.g.,

520z 1890300 Lz uo 3senb Aq ypd 4198205202 POOIA/8LLE L ¥2/vF9820520C POOIA/Z81 L '01L/1op/pd-ajoile/poolq/Bio suonedligndyse//:diy woly papeojumoq



107
108

109
110
111
112
113
114
115
116

117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135

136

137
138

Telomere content in leukemia
Guarnera et al 2025

13,14

imetelstat) makes studies aiming to precisely estimate TC and its associations in MN very timely, whereas

TC may represent a biomarker of resistance or sensitivity to these novel therapeutic agents.

Previously, Southern blot, PCR methods or flow-FISH (fluorescent in situ hybridization with flow cytometry)
have been used to assess TC. Still, these methods have inherent technical drawbacks and limitations*>™’. In
addition to the multitude of avenues of research and clinical applications, WGS can also be adopted to
measure TC using various bioinformatics pipelines'®*®. We stipulate that modern sequencing platforms will be
helpful to reliably measure TC and thus investigate the biological features associated with decreased TC. To

18,19, and

this end, we inferred TC from WGS data, further cross-validating recently implemented methodologies
created an experimental set-up allowing for a systematic study of TC in MN, including determining the

presence of alternative telomeric repeats.

Taking advantage of a large, well-annotated cohort (n=1804) of patients with MN including AML, MDS, and
myeloproliferative neoplasms (MPN), we studied TC, its correlations with gene mutations, clinical phenotypes
and prognosis as well as the transcriptomic profile of genes related to the telomere machinery. Finally, we

provided mechanistic insights into the relation between TP53 mutations and telomere biology in MN.

Methods
Patients

Our study cohort (n=1804) included patients with AML (n=730), MDS (n=702) and MPN (n=372, including
chronic myeloid leukemia, essential thrombocythemia, polycythemia vera, primary myelofibrosis). Patients with
non-malignant clonal disorders such as paroxysmal nocturnal hemoglobinuria (PNH) and aplastic anemia (AA)
(n=102, of whom 42 PNH, 40 AA, 20 AA/PNH), patients with persistent polyclonal B cell lymphocytosis (PPBL;
n=50) and healthy subjects (h=6) served as controls.

DNA sequencing was performed on banked samples. The review of medical records was approved by the
internal Institutional Review Board involved in this study in agreement with the Declaration of Helsinki.
Pertinent clinical data including age, gender, diagnosis according to WHO 2016 classification of myeloid
disorders®, cytogenetics, and other clinical parameters were collected. Specimens were obtained in

accordance with ethical committee approvals of participating institutions.

Genomic studies
Whole genome sequencing

Libraries for WGS were generated from 1ug of DNA using the TruSeq PCR-Free prep kit, following the

manufacturer’s recommendations (lllumina, San Diego, CA, USA) and sequenced on NovaSeq6000 or HiSegX
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lllumina instruments following a 2x150bp paired-end reads standard protocol at a mean depth of coverage of
>100x.

Sequencing and telomere content estimation

Sequenced reads were mapped to the human hg19/GRCh37 reference genome within Illlumina’s BaseSpace
Sequence Hub infrastructure using Isaac (DNA alignment software) 3.162!. Resulting BAM files served as input
for estimating TC with TelSeq 0.0.2'° and TelomereHunter 1.1.0®. The two tools were also used to retrieve TC
characteristics and telomere repeat heterogeneity via singleton analysis. Results were validated via TC-based
methods (See supplementary methods). TC adjustment according to karyotypic anomalies, assessment of

chromothriptic events and TC validation by PCR are described in supplementary.
Variant calls and annotations

Variants were annotated using Annovar and had a minimum VAF of 2%, average of >500X coverage and
>98% of targeted regions showed over 100X coverage. Variants were classified according to established
guidelines®, and internal bio-analytic pipelines to identify somatic/germline mutations using sequences derived
from controls and mutational databases such as dbSNP138, 1000 Genomes or ESP 6500 database, and
Exome Aggregation Consortium (EXAC)®. In case of mutations not reported in these databases, literature

reports and in-silico predictions were used to assess the pathogenicity of the variants.
C-Circle assay

C-Circle assays were performed as described previously*. The analysis is based on the detection of the C-
Circle, a specific marker of telomere alternative lengthening (ALT). C-Circles are self-primed and present a
telomeric G strand GGGATT and a telomeric C strand CCCTAA. After the DNA extraction, the addition of phi29
DNA polymerase, deoxynucleoside triphosphates (with the exception of dCTP and with no primers) will cause
an ALT-specific rolling circle amplification (RCA). The RCA product can then be detected by specific probes.
For every sample, 30 ng of genomic DNA were used in the assay. A control without polymerase was processed
in parallel for every sample. A positive and negative assay control was included in every blot. Products of the
rolling circle were blotted onto a nylon membrane using a slot blotter (BioRad). Blots were hybridized with a
telomere probe and signals were developed using the TeloTTAGGG kit (Roche) according to the

manufacturers’ instructions.
RNA-sequencing

RNA-Seq was performed as previously described by our group?®. Total RNA (250 ng) from BM specimens was
prepared using the lllumina TruSeq Total Stranded RNA library preparation kit. Paired-end reads of 100bp were

sequenced with a median depth of 50 million reads/sample. Sequences were aligned to human reference

6
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genome hg19 using STAR 2.5.0 where gene counts were estimated using Cufflinks (v2.2.1)?°. Expression level
was expressed as log2CPM. p values were adjusted for multiple hypothesis testing with Bonferroni correction

(Q values <0.05 and inclusion level difference 25% were considered significant).

A complete description of the methods can be found in Supplemental Material.

Results

TC measurement via WGS - validation and impact on MN features

To comprehensively investigate the impact of changes in TC in MN, we set up an integrated workflow merging
transcriptomics and genomics (Supplementary Figure 1). We first used two WGS-based methods
(TelomereHunter'® and TelSeq™) to independently estimate TC. While the results were grossly comparable
(correlation coefficient r’= 0.3448, p<0.0001) we then selected TelomereHunter for all subsequent analyses
given the higher rate of informative TC results using this method. Indeed, TelSeq was unable to produce
informative results in 86 cases (4.6% of the population, for whom close to “0” value was rendered) but these
cases were easily resolved by TelomereHunter. For the cases that were resolved by both software packages

there was a good correlation coefficient of r’=0.5650, p<0.0001 (Figure 1A).

Thus, because of the better performance and the ability to quantify alternative telomere variant repeats, we
decided to proceed with the subsequent analyses using readout only from this tool'®*’. We then studied a
cohort of patients including AML (n=730, both primary [n=669] and secondary AML [n=61]), MDS (n= 702),
MPN (n=372) and non-malignant controls (n=158), including, a clonal comparator group of PNH and AA
(n=102), a non-clonal comparator group of PPBL (n=50) and healthy subjects (n=6) (Table 1) with the goal of
analyzing the landscape of telomeric footprints across MN. Given the high percentage of aneuploidy among
AML and MDS patients (for subsequent analysis referred together as MN), we examined the potential impact
of these karyotype abnormalities on TC measurement to assess whether correction factor had to be
introduced. Following adjustment according to type and allele frequency of aneuploidies, corrected output and
standard TC showed a strong correlation for the overall MN population (p<0.0001, r’= 0.9918; Figure 1B),
patients carrying abnormal karyotype (p<0.0001, r’= 0.97969; Supplementary figure 2A), complex karyotype
(CK, considered as >3 karyotype abnormalities; p<0.0001, r’= 0.9581. Supplementary figure 2B) and the
most frequent karyotype aneuploidies (Supplementary figure 2C-2G). Accordingly, for subsequent analysis,

TC as a surrogate measure for TL was used without adjustments. In addition, we also cross-validated WGS-

7
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based TC analysis with RT-PCR-based TC in 13 matched samples from non-malignant controls, showing a

significant correlation of the results obtained via the two methods (p=0.045, r’= 0.3156; Figure 1C).

To gain insight into TC-age relationship, we compared our non-clonal controls (PPBL patients and healthy
subjects), whose TC, plotted, reproduced the canonical sigmoid curves of TC gradual erosion over time with
MN patients (Figure 1D), clonal controls (PNH and AA patients; Figure 1E), MDS (Figure 1F) and AML
(Figure 1G) cohorts. Both clonal controls and MN patients showed a decreased TC, even though differences
between MDS and AML were noted (Supplementary table 1). Furthermore, we observed no age dependent
TC erosion in MN cohort (Supplementary figure 3A), while blast percentage showed a significant but weak
correlation with telomere shortening in both AML and MDS cohorts (p<0.0001, r’=0.0231 and p=0.0346,
r’=0.0063, respectively; Supplementary figure 3B-C). In addition, when we grouped AML by blast
morphologic features, a higher median TC in the M6 (erythroblastic) subtype was found when compared to the
MO, M1, M3, M4, and M5 groups (Supplementary figure 4).

TC-dependent clustering of genetic abnormalities in MN

When TC of MN patients grouped according to various karyotypic abnormalities was analyzed, we detected
higher TC in patients with del(5q) (p< 0.0001) and lower TC in patients with t(6;9) (p=0.0002), t(8;21) (p<
0.0001), inv(16) (p=0.0003), t(9;11) (p< 0.0001), t(15;17) (p< 0.0001) when compared to patients with normal
karyotype (NK) (Figure 2A, supplementary table 2; supplementary figure 5).

The analysis of TC among the whole MN population according to genetic landscape revealed higher TC in
patients harboring ETV6 (p=0.0117), SF3B1 (p=0.0005), SRSF2 (p<0.0001) and TP53 (p=0.0004) mutations
and lower TC in patients bearing FLT3 (p<0.0001), KRAS (p<0.0001), NPM1 (p<0.0001), NRAS (p=0.0002)
and WT1 (p<0.0001) mutations when compared to wt counterparts (Figure 2A; supplementary table 3;

supplementary Figure 6).

In AML cohort, CK (p< 0.0001), inv3/t(3;3) (p=0.0048) and del(5q) (p< 0.0001) cases had higher TC, whereas
t(6;9) (p=0.0003), t(8;21) (p=0.0132), t(9;11) (p=0.0099), t(15;17) (p=0008) and tr(1) (p=0.0203) presented
lower TC when compared to patients with NK. Furthermore, patients carrying CEBPA (p=0.0032), SF3B1
(p=0.0008), SRSF2 (p=0.0157) and TP53 (p<0.0001) had higher TC when compared to wt counterparts
(Supplementary figure 7 A-B).

In MDS, patients with CK exhibited lower TC when compared to patients with NK (p<0.0001). Moreover,
patients with TP53 mutations had lower TC (p<0.0001), and those harboring SRSF2 mutations presented
higher TC (p=0.0051) when compared to wt counterparts (Supplementary figure 7 C-D).
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We then performed a multivariate analysis to identify variables predicting TC. While neither the diagnosis (AML
vs MDS), nor the age or the karyotype (abnormal vs normal) correlated to TC, we detected the impact of blast
percentage (p<0.0001) and TP53 mutations (p=0.001) (Figure 2B; supplementary table 4). The influence of
TP53 mutation on TC was confirmed even considering CK as a variable in the model (Supplementary table
5). Considering the functional relationship between TP53 and PPM1D, we then investigated TC in patients
harboring PPM1D mutations and unmutated for TP53. Unlike TP53, no significant differences in TC were found
when compared TC among PPM1D mutants (Supplementary figure 8).

To investigate genetic signatures of diverse TC in MN, we analyzed the somatic karyotype abnormalities and
mutations in MN presenting a TC over the 90" and below the 10" percentile (Figure 2C-E). The first (high TC)
cohort, mainly represented by low-risk MDS, demonstrated an enrichment in -7/del(7q), inv(3)/t(3;3) and CK
abnormalities as well as ASXL1, SRSF2 and TP53 mutations. The second (low TC) was mainly represented by
AML, with an enrichment in t(15;17) and t(8;21) abnormalities and KRAS, NPM1, NRAS and WT1 mutations.
Finally, to investigate potential inter-dependency between somatic mutations and karyotype abnormalities
correlating with TC and potential biases due to chromothripsis events, we run another multivariate model,
which confirmed the role as independent higher TC predictors of TP53 and SRSF2 mutations and
chromothripsis. Independent predictors of lower TC were percentage of blasts, t(15;17) and t(8;21)
translocations and KRAS, NPM1 and WT1 hits (Supplementary table 6).

When we stratified the chromothriptic lesions according to TP53 mutational status, we saw a consistent
increase in chromothripsis according to the size of the clone expressed as VAF of TP53 mutation, as shown in
Supplementary Figure 9. Furthermore, in the TP53 mutant cohort, chromothripsis events were more common
in cases with CK (76% vs 56%, p= 0.0189) and correlated with higher TC (Supplementary Figure 10).

Given their prognostic relevance and the tight correlation of TP53 mutations with TC independently of
karyotype abnormalities, genetic mutations, clinical and demographic features and chromothripsis events
(Figure 2B; supplementary table 4-6), we performed a more in-depth TC analysis of TP53-mutated MN.
First, we investigated the allelic status of TP53 alterations grouping the cases according to our recently
proposed scheme for TP53 mutational configuration®® (Figure 2F). When TC was ranked, the distribution of TC
across TP53 wt/mut populations showed difference (Figure 2G): a proportionally higher presence of TP53-
mutated cases vs TP53 wild type (wt) was seen in patients with TC>90"™ (14.4% vs 9.5%, respectively;
p=0.06). Furthermore, although not quite significant (p=0.231), allelic status did seem to affect TC in the overall
cohort of TP53-mutated patients (16% probably monoallelic, 23% probably biallelic, 60% biallelic) vs TP53-
mutated patients presenting high TC (above 90™) (0% probably monoallelic, 25% probably biallelic, 75%
biallelic) (Figure 2H).

520z 1890300 Lz uo 3senb Aq ypd 4198205202 POOIA/8LLE L ¥2/vF9820520C POOIA/Z81 L '01L/1op/pd-ajoile/poolq/Bio suonedligndyse//:diy woly papeojumoq



264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286

287
288
289
290
291
292

293
294
295
296

Telomere content in leukemia

Guarnera et al 2025

Grouping patients according to TP53 mutational configuration and TC allowed for construction of KM curves.
TP53-mutant cases presented an inferior overall survival (OS) both in high TC (above 90™ percentile) and low
TC (below 90™ percentile) patients (Figure 21). KM curves showed a significant separation when MN were
grouped according to TC ranks (Supplementary figure 11). However, TC did not retain independent
prognostic impact, when accounting for strong and well-established patient- (age, gender) and disease-related
variables (TP53 mutations, blast percentage, cytogenetics) in both AML/MDS together and separately
(Supplementary tables 7-9; Supplementary Figures 12-14). TP53 mutations conferred different prognosis
according to the allelic state of the hits, being biallelic the one characterized by worse outcome.
(Supplementary figure 15A).

When we focused on the characteristics of TP53 mutations and their correlations with TC, biallelic TP53-
mutated MNs demonstrated a significantly increased TC when compared to cases with TP53 wt and “likely
monoallelic” TP53-mutated MNs (Figure 2J). In contrast, the clonal burden did not correlate with TC
(Supplementary figure 15A). Of note is that, analyzing the phenotype of TP53-mutated MN according to
allelic distribution, we observed a significant enrichment of AML in biallelic mutations and MDS in probably
monoallelic ones (p<0.001; supplementary figure 15B), which thus explain the correlation between TP53
mutations and high TC in AML and low TC in MDS (supplementary figure 7). Patients harboring
insertion/deletion mutations showed high TC, and, among missense mutations, the highest TC was observed
in cases carrying R175H (Supplementary Figure 15C-D). Finally, when divided according to the functional
impact of TP53 variants (according to Dutta et al.?®), we found no differences in terms of TC between disruptive

mutations and non-disruptive mutations (Supplementary figure 15E).

An increased telomerase activity but not alternative lengthening mechanisms defines TP53-mutated
MN

Pursuant the higher TC in TP53 mutant MN, we then investigated the possible mechanisms of telomere
elongation in high TC cases. We first compared TC measured in blasts and matched lymphocytes in AML
patients and observed a statistically significant difference in blast/lymphocyte ratio in samples with blasts
characterized by low TC (below 10" percentile) vs high TC (over 90" percentile) (p=0.0034, Figure 3A). The
uncoupling of blast and lymphocyte TC was also confirmed by PCR, with blast/lymphocyte ratios ranging from
0.02 to 2.45 (Figure 3B).

We then addressed the issue of telomere elongation in TP53-mutated MN by comparing the enrichment of
singletons (a specific type of telomere repeats that can be identified by the TelomereHunter software) in our
population grouped by TP53 mutational status and TC. TP53-mutated MN presented an increase in canonical

telomere repeat variants (chiefly TTTGGG, p<0.0001), arguing against the involvement of alternative

10
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lengthening of telomeres (ALT), a process characterized by a different singletons signature® (Supplementary
figure 16). This observation was confirmed by comparing high TC TP53-Mutated MN vs high TC TP53 wt MNs
(p=0.0141, Figure 3C). In support of these notions, we analyzed the presence of germline mutations in genes
involved in telomere machinery (Supplementary table 10), which could be responsible for alternative TC
sequences and ALT phenotypes (e.g. DAXX or ATRX-mediated ALT, commonly observed in solid
cancers®®
which 2 co-occurred with TP53 mutation (ATRX, ¢.6332G>C and TERT, c.1807del). However, these mutations

did not show a correlation with TC (Supplementary figure 17).

). A total of 18 pathogenic/likely pathogenic variants were identified (Supplementary table 11), of

We also studied the association of TP53 hits with ALT as a possible telomere maintenance mechanism in MN.
C-Circle assays*® were performed for representative samples with high and low TC, both in TP53-mutant and
wt samples (Figure 3D-E; Supplementary figure 18-20, Supplementary tables 12-18). In line with our
previous results, none of the subgroups exhibited significant signs of ALT. Once the lack of contribution of ALT
to telomere extension was established, we sought to determine whether increased TC may be due to higher

telomerase activity imprinted by TP53 mutations.
Differently expressed telomere machinery genes in long telomeres-MN

Thus, we analyzed the differential expression of telomere machinery genes in MNs. In cases with increased
TC MNs (above oo™ percentile), increased expression of RAP1A, TERC, TINF2, TPP1, CTCl1l and a
downregulation of TERF1 was detected (Figure 4A). In TP53-mutated MN, DKC1, TERT and TERC were
significantly overexpressed as compared to wt cases, while TEP1 was downregulated. Furthermore, the
expression of DKCL1 significantly correlated with high TC whereas TEP1 correlated with low TC (Figure 4B-E).
We observed no difference in TP53 expression between high- and low- TC MNs (Supplementary figure 21).
Of note, when stratified according to TP53 allelic status, we observed no differences in terms of expression of
telomerase machinery genes with the exception of TINF2, which was downregulated in patients harboring
biallelic mutations (Supplementary figure 22). To sum up, these findings may suggest a role of telomerase
machinery genes in TP53-mediated TC elongation. Functional studies to correlate the expression of
telomerase machinery genes and telomerase activity are warranted for further validation but could not be

performed here due to the lack of material.
Discussion

The increased use of NGS approaches, as well as the availability of more efficient techniques, led to a broad

application of comprehensive whole genome and transcriptomic sequencing for both research and diagnostic

purposes®®. Our study demonstrates another useful application of WGS, namely for the determination of TC,

which can potentially complement complex data sets that include copy number changes, somatic, and

germline alterations, among others. In this study, we applied WGS to a large cohort of patients with MN to
11
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explore TC dynamics, its associations with clinical and molecular phenotypes, and determinants of TC. Using
this bioinformatic framework, extensively validated in recently published large cohorts which applied analogous
bioanalytic strategy™', we found that TC lowering represents an overarching feature of hematologic disorders of
the myeloid compartment, inherent to their clonal nature and accounting for age factor. Furthermore, we
showed that significantly lower TC is inherent to excessive proliferation of leukemic progenitor cells as a much
stronger factor than aging. Most importantly, specific behaviors of different cell types, such as the permanent
self-renewal capability of HSCs in the bone marrow, could skew telomere shortening. This finding is consistent
with the difference in the telomere biology of progenitors rather than HSCs. For instance, in AML, the bulk
leukemic cells may lack the ability to extend telomeres due to an excessive proliferative drive and clonal
outgrowth from a single initiating cell. According to this notion, our results suggest that a bulk leukemic
population occurs at the level of progenitor cells [e.g., promyelocytes in AML harboring t(15;17)] which lose the
telomere elongation activity, whereas the one characterized by a profound genomic alteration (e.g., harboring
TP53 mutation or CK) maintain it. In addition, exuberant blast proliferation e.g. with NRAS, KRAS mutations)

might exceed the compensatory capacity of normal telomere lengthening.

As confirmation of the importance of disease’s features on telomere characteristics, TC was correlated to blast
percentage and TP53 mutation irrespective of age. Furthermore, TC correlated with the allelic status of the

mutation (biallelic/probable biallelic vs probable monoallelic and wt).

Large studies focused on the relationship between TC and TP53 mutations: Gutierrez-Rodriguez et al.
analyzed a case series of patients with telomere biology disorders (characterized by short or very short TL)
and focused on somatic rescue and risk of secondary malignancies, detecting an enrichment in TP53 and
PPM1D mutations®. Burren et al. analyzed, within UK Biobank individuals, a large population of healthy
subjects with CHIP via WGS, showing a correlation between TP53 mutation and shortened TL™. In contrast,
Nakao et al., using the UK Biobank and TOPMed databases, performed bidirectional Mendelian randomization
studies and demonstrated that longer TL increased propensity to develop CHIP, while CHIP, in turn shows
enhanced TL shortening35. However, in contrast to our analysis, in these studies TC was determined in non-
clonal cells, constituting most of the cells contributing DNA, rather than at that point tiny TP53 mutant clones.
Indeed, studies on MN produced contrasting evidence: Myllymaki and colleagues, in a cohort of 1267 MDS
patients (262 harboring TP53 mutation), did not find a significant correlation between TP53 mutation and TC
(TP53 mutations were enriched in the first quartiles of patients stratified for TC without, though, reaching the
significance threshold)®. In agreement with our results in a much larger and diverse cohort of patients, Abel and
colleagues found a correlation between TP53 mutation and higher TC analyzing 42 TP53-mutated MDS/AML

patients compared to a cohort of patients with core-binding AML*®.

12
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Intriguingly, our data would suggest that the lengthening mechanisms would act independently of ALT. Multiple
lines of evidence support this notion: i) our in-depth singleton repeat analysis, ii) the paucity of mutations in
telomere machinery genes potentially responsible for ALT phenotype (e.g., ATRX or DAXX), and iii) the results
from C-Circle assays.

While the use of bulk WGS for TC adds another useful application of this technology, there are several
limitations. The measures obtained correspond to the average length across various cell types both clonal and
non-clonal. In cases with relatively small clonal population, the TL corresponds to the normal polyclonal
hematopoiesis, while is highly clonal conditions the measurements will be reflective of neoplastic cells and
likely decoupled from the chronologic telomere attrition. Nevertheless, once WGS is obtained there may be
many useful applications of TC determination in both malignant and non-clonal conditions (e.g., hereditary

telomeropathies).

The implications of our study extend beyond the realm of telomere biology and leukemia pathophysiology.
Recently, therapies targeting the telomere machinery, e.g., the 13-mer inhibitor imetelstat, have shown
encouraging response rates in various myeloproliferative entities and MDS***"~*°. Our findings allow us to
hypothesize that the inhibition of telomerase in patients with shorter telomeres (not-TP53-mutated MN) may
lead to their senescence and apoptosis while cases with high TC have a larger “telomeric reserve”, fostering
drug resistance. Our hypothesis is supported by the observation of higher expression of TERC in TP53-
mutated cases (Figure 4C), which may cause a reduction of inhibition via imetelstat, and thus less
susceptibility of these patients to the drug irrespective of the TC. Several ongoing studies are currently
investigating the use of imetelstat in other MN. We stipulate that TC could further help stratify the patients most

amenable to be treated with such approaches and guide therapeutic strategy.

It is important to acknowledge that long-read WGS enabling quantitation of neotelomeres may add another
important aspect of TC quantitated in our study by short read NGS***'. Indeed, neotelomeres at sites of
double-strand DNA breaks (DBSs) potentially enable escape from bridge-fusion-breakage cycles. As
neotelomeres may have similar length to normal chromosomal caps and chromothripsis can involve up to
several hundred DSBs***!, thus the resultant neotelomeres may significantly contribute to the total TC. Short-
read NGS used in our study precluded exploration of this mechanism; unfortunately, even newer bioinformatic
tools such as TelFuse cannot resolve neotelomere length from short read NGS input. This shortcoming of our

results will be mitigated by future long-read WGS applications in MN.

Additional limitations of the study include the lack of investigation of intrachromosomal telomerase repeat
insertions. These stretches of telomeric repeats were observed in about 1/3 of TP53-mutant cases in the study

of Abel and colleagues® and might potentially contribute to enhanced TC.

13
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In summary, our findings show (1) a genomic rationale for the use of WGS to investigate TC; (2) the
fundamental discovery that telomere shortening is common in MN; (3) TP53 mutations being characterized by
increased TC; (4) the exploitation of TC to identify patient subgroups eligible for imetelstat treatment. We also
stipulate that TC measurements using WGS will help investigate pathophysiological features associated with
TC lowering, contributing to our understanding of the mechanisms of TC maintenance in leukemic genome.
The availability of therapies targeting telomere machinery may offer an opportunity for personalized therapy
beyond MPN, their current indication. It remains to be tested whether high TC associated with TP53 mutations
can serve as a marker of sensitivity or resistance to these agents. The findings described herein will have to be
further clarified on a more mechanistic level to identify the contributors to the lower-than-expected TC attrition
in TP53 mutant MN.
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Table 1. Table illustrating composition of the study cohort, demographic data and telomere content.

Population (n) Age (Years), median (Range) M/F ratio TC (*), median
Myeloid AML (730) 67.7 (17.8-93.1) 1.1 352.9 (123.8-2605.4)
malignancies
'g ! pAML (669) 67.9 (17.8-93.1) 1.1 349.9 (123.8-2605.4)
1804
( ) sAML (61) 63.5 (18.1-87.6) 1.6 369.1 (181.6-935.2)
MDS (702) 73.1 (23.3-93.1) 1.4 480.8 (184.8-1350.5)
LR-MDS (404) 73.2 (23.3-93.1) 1.2 498.1 (184.8-1350.5)
HR-MDS (292) 72.9 (31.8-90.8) 1.6 455.7 (188.9-1208.8)
MPN (372) 64.2 (15.7-87.3) 1.4 406.4 (162-1034)
Non-malignant PNH/AA (102) 38.5 (20-60) 0.9 429.2 (29.4-673.6)
controls (158
(158) PPBL (50) 49.3 (22.5-68.5) 0.3 462.6 (283.4-764.1)
HS (6) 33 (20-60) NA 639.23 (519-747)

AA: aplastic anemia; AML: acute myeloid leukemia; HR-MDS: high risk-myelodysplastic syndrome; HS: healhty subjects; LR-MDS:
low risk-myelodysplastic syndrome; pAML: primary AML; PNH: paroxysmal nocturnal hemoglobinuria; TC: telomere content; MPN:
myeloproliferative neoplasms; PPBL.: persistent polyclonal B cell lymphocytosis; SAML: secondary AML.

* Intratelomeric reads normalized by the number of reads of comparable GC content (48-52%) and multiplied by 10°
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Figure legends

Figure 1. Validation of telomere content using WGS-based and PCR-based methods and correlations of
TC with age. A Correlation between TelSeq and Telomere Hunter, software programs able to measure TC
from whole genome sequencing. When comparing the two bioinformatic pipelines, including all results, we
obtained a correlation coefficient r’=0.3448 (black line). However, Telseq was unable to produce informative
results in 86 cases (4.4% of the population, for whom close to zero value was rendered; red dots), which were
easily resolved by TelomereHunter. For the cases that were resolved by both software packages there was a
good correlation coefficient of r*=0.5650 (gray line). B Impact of TC adjustment, as described in methods
section, in MN patients. C Correlation between Telomere Hunter-based and PCR-based TC. To investigate the
correlation between age and TC across disease phenotypes and clonality, we projected the interquartile (25"-
75" percentile) range of TC according to age ranges of healthy subject and non-clonal controls (PPBL
patients). We then plotted TC according to age ranges of our study cohort [MN population (D), non-malignant
clonal controls (including AA and PNH, E), AML (F) and MDS (G)] and highlighted the range of patients
exhibiting TC lower and higher than 25" and 75™ percentile for age ranges (in the histogram) and the overall
TC split according to percentiles (pie chart). For visualization purposes and to respect the granularity of the
data, percentiles of non-clonal controls were shown according to 10-years age ranges, whereas the remaining

study cohort according to 5-years age ranges. Refer to supplementary table 1 for additional information.

AA: aplastic anemia; AML: acute myeloid leukemia; MDS: myelodysplastic syndrome; ns: not significant; PNH:
paroxysmal nocturnal hemoglobinuria; TC: telomere content; MPN: myeloproliferative neoplasms; PPBL:

persistent polyclonal B cell lymphocytosis; WGS: whole genome sequencing.

Figure 2. Telomere content and disease features. A The histogram shows the percentage of patients with

TC higher or lower the 25" and 75" percentile of MN cohort according to karyotypic abnormalities and gene
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mutations. For a better visualization only somatic lesions with higher TC and detected in at least 1% of MN
population were shown (Refer to supplementary tables 2 and 3 for a comprehensive landscape of TC across
somatic mutations and karyotype abnormalities). The asterisks highlight genotypes correlated to significantly
higher or lower TC when compared to the remaining cohort (See additional information in supplementary
figures 5 and 6). B Multivariate analysis for TC. Statistically significant features are indicated by asterisks. C
MN population stratified according to TC. Disease phenotype, karyotype abnormalities and somatic lesions in
MN presenting a TC above the 90"™(D) and below the 10" (E) percentile. F Overview of TP53 classification
scheme proposed by Bahaj et al. G Distribution of TC in TP53 wt and TP53 mutated MN. H Distribution of
TP53 mutated MN in the overall cohort (outer circle) and high TC MN (Over 90" percentile; inner circle)
according to the classification by Bahaj et al. | Kaplan-Meier curve for OS in MN patients grouped by TP53
mutational status and TC (High: above 90™ percentile, low: below 90" percentile). J Correlation between TC

and TP53 mutational and allelic status.

AML.: acute myeloid leukemia; B: biallelic; MDS: myelodysplastic syndrome; MN: myeloid neoplasia; ns: not

significant; PB: probable biallelic; PM: probable monoallelic; TC: telomere content; WT: wild type.

Figure 3. Mechanisms of telomere elongation. A Blasts TC distribution of AML patients for whom both
blasts and lymphocytes were available for TC measurements. A statistically significant difference was
observed in blast/lymphocyte ratio in samples with blast characterized by low TC (below 10" percentile) vs
high TC (over 90" percentile). B The uncoupling of blast and lymphocytes TC was confirmed with PCR. C
Evaluation, through singletons analysis, of canonic telomerase-dependent elongation (TTTGGG repeats) vs
alternative lengthening (ALT) in high and low TC MN grouped by TP53 mutational status; refer to
supplementary figure 9 for the comprehensive singleton distribution across TP53 mutated MN, TP53 wt MN
and non-malignant controls. D Schematic C-Circle analysis overview. Refer to methods for further details. E C-
Circle assays for representative samples of different subgroups based on TC and TP53 mutation status: TP53
mutated and high TC, TP53 wt and high TC, TP53 mutated and low TC, TP53 wt and low TC. For every
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sample, a control without polymerase (-Pol) was compared to the test sample with polymerase (+Pol). See

supplementary figures 19-20 and supplementary tables 12-18 for row data.

AML: acute myeloid leukemia; MN: myeloid neoplasia; TC: telomere content; wt: wild type.

Figure 4. Telomeres machinery genes expression analysis. A Volcano plot representing differential gene
expressions between MNs whose TC is above (on the right) or under (on the left) the 90" percentile. The
telomeres machinery genes are highlighted, the downregulated ones in blue, the upregulated ones in red. In B-
E correlations between TC and genes with differential expression in TP53 mutated and TP53 wt MN: DKC1

(B), TEP1 (C), TERC (D), TERT (E).

MN: myeloid neoplasia; ns: not significant; TC: telomere content; wt: wild type.
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