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In order to find extrinsic rewards, humans explore their environment even if exploration
requires several intermediate, reward-free decisions. It has been hypothesized that
intrinsic rewards, such as novelty, surprise, or information gain, guide this reward-
free exploration. However, in artificial agents, different intrinsic reward signals induce
exploration strategies that respond differently to stochasticity. In particular, some
strategies are vulnerable to the “noisy TV problem,” i.e., an attraction to irrelevant
stochastic stimuli. Here, we ask whether humans exhibit a similar attraction to
reward-free stochasticity. We design a multistep decision-making paradigm in which
participants search for rewarding states in a complex environment containing a highly
stochastic but reward-free subregion. We show that i) participants persistently explore
the stochastic subregion, and ii) their decisions are best explained by a novelty-
driven exploration strategy, compared to alternatives driven by information gain or
surprise. Our findings suggest that novelty and extrinsic rewards jointly control human
exploration in complex environments.

exploration | human behavior | reinforcement learning | information-seeking

Humans frequently search for more valuable rewards (e.g., more nutritious foods or
better-paid jobs) than those currently available (1-3). However, the computational and
algorithmic nature of this exploratory behavior has remained highly debated (4-6).
State-of-the-art models of human exploration use intrinsically motivated reinforcement
learning (RL) algorithms (7—10) that, initially inspired by research in psychology (11, 12),
have been designed to solve complex machine learning tasks with sparse “extrinsic”
rewards (13-19). These algorithms use internally generated signals like “novelty,”
“surprise,” or “information gain” as “intrinsic” rewards to guide exploratory action
choices (11). However, different intrinsic rewards result in different exploration
strategies (20, 21). An unresolved yet crucial puzzle in neuroscience and psychology
is identifying the type of intrinsic reward that drives exploration in humans (9, 10).

Resolving this puzzle primarily requires advances in experimental design. Experimental
studies of human exploration have been mainly limited to simple experimental paradigms
where a single action (or at most a pair of actions) is sufficient for reaching an extrinsic
reward (22-28) or information (29-33). These tasks are principally different from
exploration in the real world, where reaching a “goal” requires several intermediate
actions with no explicit progress feedback (9). This has recently led to major concerns
about the reliability and relevance of these tasks for characterizing human exploratory
behavior (34-36). Studying exploration in multistep tasks (37, 38) is hence pivotal for
understanding and modeling human exploration (9, 39, 40).

Compared to traditional experimental paradigms with homogeneously distributed
stochasticity (41, 42), multistep environments with a localized stochastic component
have an important advantage: they enable the dissociation of exploration strategies based
on different intrinsic rewards. Specifically, machine learning research has shown that
intrinsically motivated RL agents are prone to distraction by stochasticity, i.e., they are
attracted to novel, surprising, or just noisy states independently of whether or not these
states are rewarding (43) [the so-called “noisy TV” problem (20, 21)]. However, the
extent of this distraction varies between algorithms and depends on the type of intrinsic
reward (44-48). Artificial RL agents seeking information gain eventually lose their interest
in stochasticity when exploration yields no further information (20, 21); in contrast, RL
agents seeking surprise or novelty exhibit a persistent attraction by stochasticity (20, 21).

Here, we ask i) whether humans are distracted in the same situations as intrinsically
motivated RL agents and, if so, ii) whether this distraction vanishes (similar to seeking
information gain) or persists (similar to seeking surprise or novelty) over time.
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Results state. Except for the progressing action in state 6, all these actions
were deterministic, meaning that they always led to the same next
state. The progressing action in state 6 was almost deterministic:
it took participants to the “likely” goal state G* with a probability
of 1 — € and to the “unlikely” goal states G| and G, with equal
probabilities of § <« 1. In state 4, instead of a self-looping action,
there was a “stochastic” action that took agents to a randomly
chosen (with equal probability) stochastic state (Fig. 1B1). In
each stochastic state, one fixed action (e.g., the left disk) reliably
took agents back to state 4, and two stochastic actions took
them to another randomly chosen stochastic state (Fig. 152). In
each trap state, all three actions were deterministic: two actions
brought agents to either the same or the other trap state and one
action to state 1.

The stochastic part of the environment—which mimics the
main features of a noisy TV (43)—is the crucial difference to
existing paradigms (37, 38, 50, 51). Without the stochastic part,
all types of intrinsic reward would help agents avoid the trap
states and find the goal (37). Hence, intrinsic rewards would help
exploration before and not harm exploitation after finding a goal.
However, the stochastic part dissociates exploratory behaviors
driven by different intrinsic rewards; we elaborate on these
differences in later sections (see ref. 20 and S/ Appendix).

We designed an experimental paradigm in which human partic-
ipants explored an environment comprising 61 states, including
three goal states (Fig. 1 A and B). Three actions were available
in each of the 58 nongoal states, and agents could move from
one state to another by choosing these actions (arrows in Fig. 1
A and B). We use the term “agents” to refer to either human
participants or agents simulated by RL algorithms. In the human
experiments, states were represented by images on a computer
screen and actions by three disks below each image (Fig. 1C); for
RL agents, both states and actions were abstract entities, i.e., we
considered RL in a tabular setting (49). The assignment of images
to states and disks to actions was random but fixed throughout
the experiment (Fig. 1C2). Agents were informed that there were
three different goal states in the environment (G*, Gy, or G; in
Fig. 1A4) and that their task was to find a goal state 5 times;
see SI Appendix for how this information was incorporated in
the RL algorithms. Neither human participants nor RL agents
were aware of the total number of states or the structure of the
environment (i.e., how states were connected).

The 58 states of the environment were classified into three
groups: progressing states (1 to 6 in Fig. 14), trap states (7 and
8 in Fig. 1A), and stochastic states (S-1 to S-50 in Fig. 1B,
shown as a dashed oval in Fig. 14). In each progressing state,
one action (“progressing” action) brought agents one step closer Reward Optimism as an Incentive to Explore. We recruited 63
to the goals, while another (“bad” action) brought them to one human participants and instructed them to perform our task for
of the trap states. The third action in states 1 to 3 and 5 to 6 five episodes: each episode began by initializing participants at
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Fig. 1. Experimental paradigm. (A) Structure of the environment; only 5 out of the 50 stochastic states are shown (dashed oval; see B). Each circle represents
a state and each solid arrow an action. All actions except those to the stochastic part or to the goal states are deterministic. Dashed arrows indicate random
transitions; values (e.g., 1 — €) show the probabilities of each transition. We chose ¢ « 1 (Materials and Methods). (B) Zoom on stochastic transitions between
states S-1 to S-50 inside the dashed oval. (B1) In state 4, one action takes agents randomly (with uniform distribution) to one of the stochastic states. (B2) In each
stochastic state (e.g., state S-1 in the figure), one action (always the same) takes agents back to state 4 and two actions to another randomly chosen stochastic
state. (C) Timeline of one episode in human experiments (C1). The states were represented by images on a computer screen and actions by disks below each
image. The assignment of images to states and disks to actions was random but fixed throughout the experiment (C2). An episode ended when a goal image
(i.e., “3 CHF" image in this example) was found. (D) Human participants were informed that there were three goal states in the environment and that these goal
states had different monetary values of 2 Swiss Franc (CHF), 3 CHF, and 4 CHF. For each participant, these monetary reward values were randomly assigned
to different goal locations (i.e., G*, G1, and Gy in A) at the beginning of the experiment (without informing them); the assignment was fixed throughout the
experiment. Hence, G* had a different value for different participants, resulting in three groups of participants with different levels of reward optimism during
episodes 2 to 5 (i.e., after finding G* for the first time). See Materials and Methods.
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goal states (i.e., G*, G1, and G3). We chose a small enough €
(Fig. 1A) to safely assume that all participants would visit only
G* while being aware that G| and G, existed.

To further motivate exploration, we informed human par-
ticipants that there were three different possible reward states
corresponding to values of 2 Swiss Franc (CHF), 3 CHF, and
4 CHF, represented by three different images (see Materials
and Methods for details and SI Appendix for incorporating this
information in the RL algorithms). At the beginning of the
experiment, we randomly assigned the three different reward
values to the goal states G*, G, and G, separately for each
participant (without informing them), and kept the assignment
fixed throughout the experiment (Fig. 1D). Following this

random assignment, and after excluding 6 participants from
further analyses (see Materials and Methods for criteria), G* held
different reward values across participants: 21 of 57 participants
were assigned to environments with 2 CHF reward value for G*,
19 participants to environments with 3 CHF reward value for
G*, and 17 participants to environments with 4 CHF reward
value for G*. In the following, we refer to each group by their
reward value of G*, e.g., the 3 CHF group is the group of human
participants who had a reward value of 3 CHF for G* (Fig. 1D).

The resulting three groups of human participants were
characterized by three different levels of “reward optimism”
in episodes 2 to 5, where we define reward optimism as the
expectancy of finding a goal of higher value than the one
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Fig. 2. Human participants persistently explore the stochastic part. (4) Participants spent less time in the trap states (one-sample t test; t = —6.35; 95%C| =
(—0.186, —0.097); DF = 56) and more time in the stochastic part (t = 4.25; 95%Cl = (0.073,0.203); DF = 56) during the 2nd half of episode 1 (E1) than during
the 1st half. Error bars show the SEM. (B) Search duration in episodes 2 to 5. (B1) Median number of actions over episodes 2 to 5 for the three different groups:
2 CHF (dark), 3 CHF (medium), and 4 CHF (light). Error bars show the SE of the median (SEMed; evaluated by bootstrapping). The Pearson correlation between
the search duration and the goal value is negative (correlation test; t = —4.2; 95%Cl = (—0.67, —0.27); degree of freedom (DF) = 55; Materials and Methods).
(B2) Average fraction of time-steps spent in the stochastic part of the environment during episodes 2 to 5. The Pearson correlation between the fraction of
time-steps spent in the stochastic part and the goal value is negative (correlation test; t = —4.7; 95%Cl = (—0.70, —0.32); DF = 55; Materials and Methods).
Error bars show the SEM. (C) Median number of actions in episodes 2 to 5 for the 2 CHF group. A Bayes Factor (BF) of 1/3.7 in favor of the null hypothesis (53)
suggests a zero Pearson correlation between the search duration and the episode number (one-sample ¢ test on individual correlations; t = 0.63; 95%Cl =
(—0.20,0.37); DF = 20). Error bars show the SEMed. (D-F) Posterior predictive check (PPC): simulating novelty-seeking RL in our experimental paradigm
replicates the main qualitative patterns of the participants’ behavior (see Fig. 5 for quantification across 43 summary statistics). Panels D-F correspond to
panels A-C, respectively, and illustrate the same summary statistics but for 1,500 simulated novelty-seeking agents. We note that these results must be seen
only as post hoc confirmation of the fitted novelty-seeking algorithm—rather than a priori prediction. Single dots in all panels show the data of individual
human participants (A-C) or a subset (20 per group) of simulated participants (D-F). Red P-values in A-C: significant effects with False Discovery Rate controlled
at 0.05 (54) (Materials and Methods). Red BFs in A-C: significant evidence in favor of the alternative hypothesis (BF > 3). Blue BFs in A-C: significant evidence in
favor of the null hypothesis (BF < 1/3).
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already discovered (Fig. 1D); we note that reward optimism in
our experiment is closely linked to but independent of general
optimism in psychology (52). Hence, even though all participants
had received the same instructions, the 4 CHF group did not
have any monetary incentive to explore further in episodes 2 to
5, whereas the 2 CHF group had a high monetary incentive to
explore and find a higher reward in episodes 2 to 5. Therefore, we
expected participants in the 2 CHF group to continue searching
for more valuable goals in episodes 2 to 5. In the following
sections, we characterize this search behavior, with the aim of
identifying its dominant drive.

Human Participants Persistently Explore the Stochastic Part.
We first studied the behavior of human participants without
explicit computational modeling. During the 1st episode, all
three groups of participants (i.e., 2 CHF, 3 CHF, and 4 CHF)
had to explore the environment until they found the goal state
G* for the first time. Throughout this exploration, they received
no intermediate reward or progress feedback. Nevertheless, the
participants learned to avoid the trap states (Fig. 2 A, Leff) and
were attracted to exploring the stochastic part of the environment
(Fig. 2 A, Righr). This suggests that participants used a guided
exploration strategy (as opposed to a random exploration strategy;
see SI Appendix).

After finding the goal G* for the 1st time (i.e., at the beginning
of episode 2), each participant had effectively two options: i)
attempt to return to the discovered goal state G* (exploitation)
or ii) search for the other goal states G| and G, (exploration). We
quantified the extent of the exploratory behavior during episodes
2 to 5 by the search duration (i.e., the number of actions taken
before returning to the discovered goal state; Fig. 2B1) and the
fraction of time-steps spent in the stochastic part (Fig. 282). Both
of these quantities were negatively correlated with the reward
value of G*, e.g., the 2 CHF group had a longer search duration
and spent more time in the stochastic part than the other two
groups. Nevertheless, we still found a nonnegligible exploration
of the stochastic part by some participants in the 4 CHF group
(Fig. 2B2, light blue), even though they had already found the
goal state with the highest reward value. These observations i)
support the hypothesis that a higher degree of reward optimism
leads to higher exploration in human participants and ii) imply
that human exploratory behavior is guided toward the stochastic
part of the environment, even when there is no monetary
incentive for exploration (see next section).

The behavior of the 2 CHF group is particularly interesting,
as they were, by design, the most optimistic group about finding
higher rewards. The 2 CHF group exhibited a constant search
duration over episodes 2 to 5 (zero correlation between the search
duration and episode index confirmed by Bayesian hypothesis
testing (53); Fig. 2C). This implies that they persistently
explored the stochastic part, even though it would have been
theoretically possible to infer the structure of the environment
and decrease exploration over time—as shown by “optimal”
agents seeking information gain (see ref. 20 for a review and S/
Appendix for simulations). Collectively, these results indicate that
human exploration is neither random nor theoretically optimal
(Discussion).

Human Participants Successfully Learned the Environment’s
Structure. Thus far, we have shown that human participants
exhibited a persistent attraction to the stochastic part in episodes
2 to 5, a behavioral pattern that is theoretically suboptimal.
However, an implicit premise of our conclusion is that par-
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Fig. 3. Human participants successfully reconstructed the environment’s
structure. At the end of the experiment, participants were shown images
of progressing states (1 to 6), trap states (7 to 8), one stochastic state
(S-44), and a new image (X). All images were presented simultaneously in
a pseudorandom layout, and participants were asked to draw transitions
between them (Materials and Methods). (A) Average reconstruction across
participants. (A1) Link labels show the proportion of participants who drew
each connection (only links >10% shown). Inset: Ground truth. (A2) The
reconstruction rate for the link between state 4 and S-44 was significantly
higher than for erroneous links between S-44 and X (one-sample t test;
t = 2.46; 95%Cl = (0.03,0.32); DF = 56) as well as the 2-hop (t = 3.88; 95%Cl
= (0.12,0.37); DF = 56) and n-hop connections (n > 2; t = 4.44; 95%CI| =
(0.15,0.39); DF = 56). (B) Reconstruction scores (range: —1 to +1) were
significantly above chance in all reward groups: 2 CHF (one-sample t test
against 0; t = 16.9; 95%Cl = (0.49, 0.63); DF = 20), 3 CHF (t = 15.1; 95%Cl
= (0.44,0.58); DF = 18), and 4 CHF groups (t = 10.0; 95%Cl| = (0.35,0.53);
DF = 16). (C and D) Participants who reconstructed the link between state 4
and the stochastic state S-44 had visited S-44 significantly more often than
those who did not (C; unequal variances t test; t = 3.20; 95%Cl = (2.4,11.4);
DF = 20.9); they had also experienced the transitions between states 4 and
S-44 significantly more often than those who did not (D; unequal variances
t test; t = 2.14; 95%Cl = (0.01,0.97); DF = 18.3). Red P-values in B-D:
significant effects with false discovery rate controlled at 0.05 (54) (Materials
and Methods). Red BFs in B-D: significant evidence in favor of the alternative
hypothesis (BF > 3). Error bars in B and C: SEM. Single dots in B-D: data of
individual participants (color-coded based on their reward group in C and D);
for random drawing in B (Chance), we showed only 40 out of 1,000 samples.

ticipants had learned the environment’s structure well enough
to know how to return to G* in episodes 2 to 5. To test this
premise, we next analyzed whether participants could reconstruct
the environment’s structure at the end of the experiment
(Fig. 3). After finishing the experiment, participants were asked to
reconstruct a map of the environment by connecting the images
of different states (Fig. 3A4; Materials and Methods). All three
groups of participants achieved an above-chance reconstruction
score (Fig. 3B; Materials and Methods). Each individual link
along the path from the trap states to state 6 was correctly
reconstructed by at least 75% of participants (Fig. 341), and 30
out of 57 participants successfully reconstructed the entire path.
This implies that, by the end of the experiment, participants had
built an explicit mental path for reaching the goal state G*.

The images presented to participants also included one of the
stochastic states (S-44) and a new image (X) that did not belong
to the 58 states of the environment. Almost one-third of the
participants successfully reconstructed the connection between

state 4 and S-44 (Fig. 341), while none linked state 4 and
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the new image X. The 28% reconstruction rate for the link
between state 4 and S-44 was significantly higher than both
the rate of erroneously connecting the novel image to S-44
and the baseline error rates for other nonexisting connections,
where links drawn by the participant corresponded to a 2-hop or
n-hop path (with » > 2; Fig. 342). These results suggest that
the 28% reconstruction rate reflects genuine learning of the state
transition, rather than participants’ general, baseline tendency to
connect different images.

Importantly, while reconstructing the link between states 4
and S-44 indicates that the participant had learned the transition
from state 4 to some stochastic states, not reconstructing this link
can be due to reasons other than a lack of understanding of the
environment’s structure. For example, some participants might
have ignored this link because they thought it was unimportant
as it was not on the path to rewards, because they could not
remember this very specific stochastic state, or because they never
experienced a transition between state 4 and S-44. In fact, we
observed that participants who reconstructed the link between
states 4 and S-44 had visited state S-44 more frequently than
those who did not (Fig. 3C). Strikingly, half of the participants
who reconstructed the link had never directly experienced this
specific transition (Fig. 3D). This indicates that these participants
had learned the structure so thoroughly that they could generalize
and reconstruct a link they had never directly encountered.

Opverall, these results provide direct evidence that human
participants were able to reconstruct a step-by-step map of
the environment—despite the unprecedented complexity of the
environment compared to other behavioral RL paradigms

(42, 50). Hence, these results complement recent findings on
human graph learning (55-57) and, most importantly, imply
that participants’ theoretically suboptimal exploration strategy is
not an obvious consequence of poor graph learning.

Computational Modeling of Human Exploration. To gain in-
sights into the algorithmic form of human exploration, we
modeled human participants as intrinsically motivated RL agents
that move in an environment with an unknown number of
states, seeking both extrinsic and intrinsic rewards (Fig. 44; see
Materials and Methods). Intrinsic rewards are given to agents
internally whenever they encounter a “novel,” “surprising,” or
“informative” state. In contrast, extrinsic rewards are received
only at the three goal states (S Appendix). Specifically, at each
time #, an agent observes state s, evaluates its intrinsic reward
value 7in; (e.g., the novelty of state 5;), and evaluates also its
extrinsic reward value 7ex,, (which is zero except at the goal
states). Intrinsic and extrinsic reward values are then passed to
two parallel but separate RL systems, each working with a single
reward signal.

The two RL systems use a hybrid algorithm (50, 58) that
combines model-based planning (59, 60) and model-free habit
formation (61) to estimate one set of Q-values Qe ; for future
extrinsic rewards and another set Qi , for future intrinsic
rewards (20, 37). The next action 4, is then sampled from
a softmax policy 7, based on a weighted combination of the
Q-values, i.e., fincQings + Pext Qexr,r (Fig. 44; see SI Appendix).
The amplitudes of the combination weights, fine and Pex
determine the degree of random exploration, while their ratio
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Fig. 4. Novelty-seeking is the most accurate model of human behavior. (A) Block diagram of the intrinsically motivated RL algorithm for modeling human
behavior. Given the state s; at time t, the intrinsic reward lintt (€-8. novelty) and the extrinsic reward rext ¢ (i.€., the monetary reward value of s¢) are evaluated
and passed to two identical (except for the reward signals) parallel RL algorithms. The two algorithms compute two sets of Q-values, one for seeking intrinsic
reward Qi+ and one for seeking extrinsic reward Qext,¢- The weighted sum of the Q-values is used in a softmax function ¢ as the action-selection policy
#¢t. The next action a; is selected by sampling from z;. See S/ Appendix for details. (B) Bayesian model comparison: human participants’ action choices are
best explained by novelty-seeking (N) compared to seeking information gain (IG), seeking surprise (S), or exploration with no intrinsic reward (nIR). (B1) The
expected posterior probability quantifies the proportion of participants whose behavior is best explained by each algorithm (65) (regarding cross-validated
log-likelihoods; S/ Appendix). (B2) Protected exceedance probability (66) quantifies the probability of each model being more frequent than the others among
participants. Insets show confusion matrices from the model recovery (67) (S/ Appendix); we could always recover the model that had generated the data, using
almost the same number of simulated participants (60) as human participants (57). (C) Cross-validated accuracy rate of novelty-seeking in predicting individual
actions of human participants. The chance level is 33%. Error bars show the SEM. Novelty-seeking allows above-chance prediction of each participant’s actions.
(D) Protected Exceedance Probability (as in B2) for participants in the 2 CHF (E1), 3 CHF (E3), and 4 CHF (E4) groups. Novelty-seeking is the most frequent model

of behavior across and within groups.
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governs the extent to which intrinsic rewards drive exploration.
Hence, to explicitly model the link between exploration and
reward optimism, we assumed that these weights depend on the
degree of “reward optimism.” To do so, we specified fin; and
Pex: to i) differ between episode 1 and episodes 2 to 5, and ii)
depend, during episodes 2 to 5, on the reward magnitude of G*
discovered in episode 1 (Materials and Methods and SI Appendix).
As a result, reward optimism, by design, controls the extent of
exploration in our model, regardless of which intrinsic reward
drives exploration.

We formulated three different hypotheses for human explo-
ration in the form of three types of intrinsic rewards 7in,; all
three are representative examples of classes of intrinsic rewards in
machine learning (20, 21): i) novelty (13, 14, 37), ii) information
gain (17, 19, 62, 63), and iii) surprise (15, 43, 64). Novelty
quantifies how infrequent the state s; has been until time #; thus,
exploration in novelty-secking agents is guided toward the least
visited states. Information gain quantifies how much the agent
updates its belief about the structure of the environment upon
observing the transition from the state-action pair (s,—1, 2;—1) to
state 5;; thus, exploration in information-gain-secking agents is
guided toward states where the agents’ estimates of the transition
probabilities are least certain. Surprise quantifies how unexpected
it is to observe state s after taking action a4, at state s;_; thus,
exploration in surprise-seeking agents is guided toward states with
the most stochastic actions.

As a control, we also considered the hypothesis that no
explicit intrinsic reward signal is needed to explain human
exploratory actions. We formalized this hypothesis in the form of
an algorithm that uses no intrinsic reward but incorporates some
exploration incentive into the model via optimistic initialization
of the Q-values for extrinsic rewards (49). We note that the
three algorithms with intrinsic rewards (i.e., novelty-seeking,
information-gain-seeking, and surprise-secking) also enable op-
timistic initialization; see S/ Appendix for details.

Novelty Is the Most Likely Drive of Human Exploration. To
test which algorithm best explains human behavior, we used
threefold cross-validation (68): we fitted the parameters of our
four algorithms (i.e., novelty-seeking, information-gain-seeking,
surprise-seeking, and exploration with no intrinsic reward) to the
action choices of two-thirds of the participants by maximizing the
likelihood of data given the model parameters (S7 Appendix). We
then evaluated each algorithm’s predictive power by computing
the likelihood of the remaining participants’ data under the fitted
parameters (SI Appendix). For each algorithm, this approach
enables us to identify the parameters that provide the closest
approximation to human behavior. We emphasize that the only
difference between the four algorithms is the type of intrinsic
reward used for exploration.

Given the cross-validated likelihood of different algorithms,
we used Bayesian model comparison (41, 66) to rank the models
(81 Appendix). We find that seeking novelty is by far the most
probable model for the majority of human participants, followed
by seeking information gain as the 2nd most probable model
[Fig. 4B; model-recovery (67) in Inset]. Repeating the model
comparison separately for each group of participants yielded the
same conclusion (Fig. 4D; despite the ~70% decrease in the
sample size). This result shows i) that seeking novelty describes the
behavior of human participants better than seeking information
gain, seeking surprise, or exploration with no intrinsic reward
and ii) that reward optimism mainly influences the extent of
the exploration but does not have a strong influence on the

6 of 10 https://doi.org/10.1073/pnas.2502193122

A1 A2 B1
= 1.0 Novelty (N) 1.0 Inf. Gain (IG) 35
g
2
@ 0.8 0.8 ]
S . .. b5
<] . )
@ .o . 2
c 06 . 064 - * ®
@ . : . ©
aQ . ® =
[0} c
$ g
@ 0.4
£ £
5 g
& 0.2 o
©
o
w

0.0 1.8
< N IG S nIR
high optimism high optimism

A3 A4 B2
< 19 1surprise (s) 10 1No Int. Rew (nIR) 35
3
.9
% 08 0.8 .
© (<]
£ 5
3 C e
c 06 . 0.6 =
2 R : °
) ©
[%] (o))
® o
£ g
= @
k) o
[ o
kel o
©
o
[T

1.8
N IG S nIR

<«
high optimism

(_
high optimism

Fig. 5. Model-comparison based on PPC. (A) Comparing different algorithms
with respect to how accurately they replicate the fractions of time-steps spent
in the stochastic part during episodes 2 to 5. Blue points show the human
behavioral data of Fig. 2B2, and the red bars in A1 correspond to data from
the simulated agents by novelty-seeking in Fig. 2£2. (B) Median (B1) and
average (B2) relative error (i.e., absolute difference divided by the SE) of
each algorithm in replicating 43 group-level summary statistics of the action
choices of human participants. See S/ Appendix for details and the full list of
statistics.

exploration strategy. In other words, if we were to summarize
the thousands of actions taken by participants into a handful of
parameters, our results indicate that the hybrid RL algorithm with
a novelty-seeking component would provide the most accurate
summary of the data among our candidate models.

To confirm the results of our model comparison, we next
asked how well, if at all, the fitted algorithms could reproduce
the statistical properties of the data. To address this, we simulated
each of the four algorithms, using their fitted parameters, within
our experimental paradigm, i.e., we performed PPC (67, 69).
First, the PPC results confirmed that the fitted novelty-secking
reproduces the key qualitative patterns of human behavior
(compare Fig. 2 A-C with D—F). We then went beyond these few
patterns and compared 43 summary statistics of human action
choices (e.g., the fraction of time-steps spent in the stochastic part;
Fig. 54) with those of the simulated agents (see ST Appendix for
the full list of summary statistics). While several qualitative effects
were also approximately reproduced by the surprise-secking
and information-gain-seeking algorithms, novelty-seeking was
the most quantitatively accurate in capturing the full statistical
structure of human behavior (Fig. 5B and SI Appendix). These
results confirm that the hybrid RL algorithm with a novelty-
seeking component best summarizes the key patterns of human
behavior—while we emphasize that this summary may be far
from perfect (Discussion).
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Finally, to test the predictive power of novelty-seeking, we
quantified its accuracy in predicting individual actions of human
participants, i.e., given a participant’s actions until time z, we
asked whether novelty-seeking could predict the participant’s
action at ¢ + 1 (8] Appendix). We found a more than 40%
cross-validated accuracy rate in episode 1 (Fig. 4C; chance level:
33%). As the participants moved through the environment, their
behavior became more predictable (i.e., it was determined more
strongly by their experience throughout the experiment than by
their life experience before the experiment): We observed an
increase in the cross-validated accuracy rate for episodes 2 to 5,
with an accuracy rate of more than 60% in episode 5. Therefore,
novelty-seeking enabled an above-chance prediction of each
participant’s actions, even though it had no prior information
about the participant.

Taken together, our results provide quantitative and qual-
itative evidence for novelty as a candidate driver of human
exploration in our experiment.

Discussion

We designed an experimental paradigm to study human goal-
directed exploration in multistep stochastic environments with
sparse rewards. We made three main observations: i) Human
participants who were optimistic about finding higher rewards
than those already discovered were persistently attracted to the
stochastic part; ii) the extent of attraction to the stochastic part
decreased by decreasing the participants’ level of optimism, but it
did not vanish even when there was no prospect of finding better
rewards than the one already discovered; and iii) this exploratory
behavior was explained more accurately by seeking novelty than
seeking information gain or surprise.

These three observations are instrumental in addressing the
long-standing question of how humans explore their environ-
ments (4-6). Specifically, past experimental studies have shown
that humans use a combination of random and directed explo-
ration in 1-step or 2-step decision-making tasks (e.g., multiarmed
bandits) (22-24, 70-72), and theoretical studies have proposed
distinct motivational signals as potential drives of human
directed exploratory actions (5, 8, 9, 73, 74). However, despite
significant advances (25-27, 29-31, 75-82), it has remained
highly debated which motivational signal best explains human
exploration (9, 10). The focus of existing studies on 1-step or 2-
step decision-making tasks has raised questions about whether our
current understanding of human exploration can be generalized
to more complex and realistic situations (9, 34-36, 39).

To bridge between exploration in 1-step and multistep tasks,
we showed in an earlier study (37) that novelty most accu-
rately explains human exploration in complex but deterministic
environments with sparse rewards. Observations (i)—(iii) above
provide further evidence for novelty-seeking as the most accurate
candidate for human goal-directed exploration even in situations
with heterogeneous stochasticity, when seeking novelty is not
necessarily optimal. Specifically, after episode 1, participants can
reasonably assume that the task is solvable, i.e., if they have suc-
ceeded in finding the 2 CHF reward, then they should also be able
to find the higher rewards. Hence, the fact that the participants in
the 2 CHF group continued the search during episodes 2 to 5 is
expected and economically rational, but our results show that they
overexplored the stochastic part of the environment—likely due
to the use of a suboptimal novelty-based search strategy. Further
experimental studies are needed to investigate the implications
of our results for other types of human exploratory behavior. In
particular, it is a priori unclear whether goal-directed exploration,
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as studied here, shares some drives and mechanisms with reward-
free exploration strategies in, e.g., reactive orienting and passive
viewing (79, 83), navigation (84, 85), and noninstrumental
decision-making tasks (29, 32, 33).

Our experimental paradigm features complexity across sev-
eral dimensions, including a large yet unknown number of
states, heterogeneous stochasticity, and multiple goal states with
differing reward values. While this complexity enabled us to
uncover some critical patterns in human exploration, it also
necessitated a higher degree of complexity in computational
modeling. As a result, our candidate algorithms are considerably
more complex than conventional “theory-driven” models in
cognitive science (e.g., refs. 24, 50, 77 and 86) and may be
better understood as data-summarization tools rather than formal
cognitive theories. Specifically, our modeling goal can be seen
as identifying the exploration strategy that best summarizes
thousands of participant actions using approximately 30 inter-
pretable parameters (Materials and Methods). In this regard, our
modeling approach strikes a practical balance between flexibility
and interpretability—sufficiently rich to account for behavior
in our multistep, stochastic environment, yet structured enough
to offer insight into the underlying mechanisms of exploration.
However, in line with the recent success of complex function
approximators in cognitive modeling (87-89), we also acknowl-
edge that we cannot confidently claim that our fitted hybrid
model with novelty-seeking reflects the true cognitive process
underlying human exploration. This underscores the importance
of complementary modeling approaches in future studies.

Odur results appear to contradict the long-standing belief that
humans are not prone to the noisy TV problem (1, 46, 48).
It is important to note, however, that the stochasticity in
our environment differs from passively watching a noisy, gray-
flickering TV screen. Rather, participants could take actions in
our experiment, akin to switching between TV channels, each
offering novel and variable contents; this, in fact, is closely
similar to a recent implementation of the noisy TV problem in
machine learning (43). In this respect, our experimental paradigm
resembles modern social media platforms, where users spend
extended periods engaging with “endless scrolling” to discover
new videos (90, 91)—despite the availability of alternative
activities with clearer extrinsic rewards. This user behavior is
analogous to the behavior of participants in the 4 CHF group,
who continued to explore the stochastic part despite knowing
the path to the most rewarding goal state. While we have focused
primarily on the influence of reward optimism in explaining
this overexploration, other factors—such as time or action
costs—could similarly modulate exploratory behavior. However,
introducing such elements would also bring additional confounds
and shift the task away from the noisy TV formulation in the
machine learning community. Systematically incorporating such
costs remains an interesting direction for future work.

Finally, we note that notions of novelty, surprise, and
information gain as scientific terms often refer to different
precise mathematical definitions (64, 92)—across a broad set
of applications in neuroscience (37, 93, 94), psychology (95—
97), and machine learning (20, 21, 48). Our results in this paper
are based on the specific mathematical formulations that we have
chosen (Materials and Methods), but we expect our conclusions
to be invariant to the precise choice of definitions as long as
i) novelty quantifies infrequency of states (37) as, for example,
defined with density models in machine learning (13, 14, 98);
ii) surprise quantifies mismatches between observations and an
agent’s expectations, where the expectations are made based
on the previous state—action pair, including all measures of
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prediction surprise (64) and typical measures of prediction error
in machine learning (15, 43); and iii) information gain quantifies
improvements in the agents’ world-model and vanishes with the
accumulation of experience, which includes Bayesian (93) and
Postdictive surprise (94), measures of disagreement and progress-
rate in machine learning (17-19, 44, 99), and optimal exploration
bonuses in RL theory (100, 101).

In conclusion, our results show i) that human decision-making
is influenced by an interplay of intrinsic and extrinsic rewards,
controlled by reward optimism, and ii) that novelty-seeking RL
algorithms are strong candidates for modeling this interplay.

Materials and Methods

Ethics Statement. The data for human experiment were collected under CE
164/2014, and the protocol was approved by the "Commission cantonale
d'éthique de la recherche sur I'étre humain.” All participants were informed
that they could quit the experiment at any time and signed a written informed
consent. All procedures complied with the Declaration of Helsinki (except for
preregistration).

Participants. Sixty-three participants joined the experiment through voluntary
sampling—in response to advertisements placed on the EPFL campus website.
Data from 6 participants were removed (see below), and the data from the
remaining 57 participants (27 female, mean age 24.1 £ 4.1 y) were included
in the analyses. The sample size was chosen to be within the typical range of
in-lab experiments (e.g., refs. 61, 86, and 102) and to ensure that, for each
goal condition, we had twice as many participants as in our previous study on
multistep decision-making (37). All participants were naive to the purpose of the
experimentand had normal or corrected-to-normal visual acuity. The experiment
was scripted in MATLAB using the Psychophysics Toolbox (103).

Experimental Procedure. Before starting the experiment, participants played
a demo to familiarize themselves with navigating a simple environment with
a different structure from that of the main experiment. They were explicitly
instructed on how action selection works and how they could transition between
images by selecting differentactions. Participants were givenawritten instruction
(S1 Appendix) but were also debriefed in person. They were then informed that
both the environment's structure and the state images were differentin the main
experiment from those in the demo. Importantly, they were explicitly told that
"[We] cannot tell whether the experiment you are going to do is deterministic
or stochastic” (S/ Appendix). Additionally, the participants were informed that
there were three goal states, and they need to find any of the 3 goal states 5
times. They were shown the 3 goal images and informed that each image had a
different reward value of 2 CHF, 3 CHF, or 4 CHF. Specifically, they were given an
example that “if you find [the 2 CHF goal] twice, [the 3 CHF goal] once, and [the
4 CHF goal] twice, then you will be paid 2 x 241 x 3+2 x 4 = 15 CHF"; see
Sl Appendix for how this information was incorporated into the RL algorithms.
At each trial, participants were presented with an image (state) and three gray
disks below the image (Fig. 1C). Clicking on a disk (action) led participants
to a subsequent image, which was chosen based on the underlying graph of
the environment in Fig. 1 A and B (which was unknown to the participants).
Participants clicked through the environment until they found one of the goal
states, which finished an episode (Fig. 1C).

The assignment of images to states and disks to actions was random but kept
fixed throughout the experiment and identical for all participants (Fig. 1C2).
Exceptionally, we did not make the assignment for the actions in state 4 before
the start of the experiment. Rather, for each participant, we assigned the disk that
was chosen in the Tst encounter of state 4 to the stochastic action and the other
two disks randomly to the bad and progressing actions, respectively (Fig. 14).
With this assignment, we ensured that all human participants would visit the
stochastic part at least once during episode 1. The same protocol was used for
simulated RLagents. Additionally, to ensure that participants would not get lost
in the stochastic part, we used the same assignment for the "escape action” in
all stochastic states (i.e., the action that took participants from stochastic states
to state 4 in Fig. 1B).

https://doi.org/10.1073/pnas.2502193122

Before the start of the experiment, we randomly assigned the different goal
images (corresponding to the three reward values) to different goal states G*,
Gy, and Gy, separately for each participant (Fig. 1D). The image and, hence, the
reward value were then kept fixed throughout the experiment. In other words,
we randomly assigned different participants to different environments with the
same structure but differentassignments of reward values. We, therefore, ended
up with three groups of participants: 23 in the 2 CHF group, 20 in the 3 CHF
group,and 20inthe 4 CHF group (Fig. 1D).The probability of encounteringagoal
state other than G* was controlled by the parameters . We considered € to be
around machine precision 10~8, so we have (1 — £)°*63 ~ 1 - 1075 ~ 1,
meaning that all 63 participants would be taken almost surely to the goal state
G* in all five episodes.

Two participants (in the 2 CHF group) did not finish the experiment, and four
participants (1 in the 3 CHF group and 3 in the 4 CHF group) took more than
3 times the group-average number of actions in episodes 2 to 5 to finish the
experiment. We considered this as a sign of being nonattentive and removed
these 6 participants from further analyses.

At the end of the experiment, participants were given a paper with the
pseudorandomly placed images of progressing states (1 to 6), trap states
(7 to 8), one stochastic state (S-44), a new image (X) that did not belong to
the 58 states of the environment, and the three goal states. Participants were
asked to "draw the transitions between images” and were told they “can add
anything [they] want." Some participants had not reported the directionality
of transitions. Hence, we only analyzed how many participants had drawn a
link between every pair of states, independently of the link’s direction (Fig. 3).
Moreover, most participants had ignored the transitions to the goal states, so
we excluded the goal states from the analysis. To further simplify analyses, we
did not distinguish between different trap states when counting the connections
from nontrap states to the trap states. As a result, there were 1+ 9 x 8/2 = 37
possible links to draw (the extra 1 belongs to the connection between the two
trap states), but there were only 13 links in the ground truth (Fig. 3 4, Inset).
Accordingly, we defined the reconstruction score in Fig. 3 as the ratio of correctly
reconstructed links (out of 13) minus the ratio of incorrectly reconstructed links
(out of 24). This limits the reconstruction score to the range [—1, 1] with the
chance level at 0.

Statistical Tests. The correction for multiple hypotheses testing was done by
controlling the false discovery rate at 0.05 (54) over all 13 null hypotheses
that are presented in Figs. 2 and 3 (P-value threshold: 0.046). All Bayes
Factors (abbreviated BF in the figures) were evaluated using the Schwartz
approximation (53) to avoid any assumptions on the prior distribution.

Intrinsically Motivated RL as a Model of Human Behavior. We used ideas
fromnonparametricBayesianinference(104)todesignanintrinsically motivated
RLagent that operates in an unknown and expanding state space (see also refs.
62 and 105 for alternatives). Below, we present three key ingredients of the
model that are essential for interpreting our results; the algorithmic details and
derivations are presented in S/ Appendix.

Thefirstingredientis the dual value streams to simultaneously learn extrinsic
and intrinsic Q-values (visualized as parallel pathways in Fig. 44). The extrinsic Q-
value Qext ¢ (S, @) estimates the expected future extrinsic reward of taking action
a in state s, while Qint (s, a) represents the analogous value for the intrinsic
reward (49). All candidate algorithms share this architecture and receive the
same extrinsic reward signal rextt, but they differ in the signal they treat as
intrinsically rewarding. We present the different types of intrinsic rewards in the
next section.

The second key ingredient is the nonparametric estimation of the environ-
ment'stransition probability p; and the empirical state frequency pt. The quantity
pi(s'|s, a) represents the agent's estimate of the probability of transitioning to
s’ after taking action a in state s. The quantity p; (s”), on the other hand, reflects
how frequently s” has been visited so far-independently of the previous state
s or action a. These two estimates underlie fundamental distinctions between
surprise and novelty (see ref. 106): The transition probability p; (s'|s, a) captures
how "unpredictable” or “unexpected” s’ is, conditioned on s and a, whereas the
empirical frequency pt(s”) captures the "relative familiarity” of s’ compared to
other states. This distinction forms the basis for the intrinsic reward functions
described in the next section.
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The final key ingredient is the hybrid softmax policy, whose simplified form
is given by (see S/ Appendix for the full version)

t(als) o< exp [ﬂextoext,t(S/ a) + PintQintt (S, a)]- (]

The inverse-temperature parameters fext and it both control the stochas-
ticity of action selection (i.e., the degree of random exploration) and determine
the weighting of intrinsicvs. extrinsicvalue (i.e., the degree of exploration driven
by intrinsic reward). After the goal G* is discovered, at the end of episode 1, we
allowed Bext and Bint, for all models, to vary across goal conditions (2,3, and 4
CHF) but fixed across participants within each group. This naturally captures the
experimentallyinduced “reward optimism” that modulates the balance between
exploration and exploitation.

With all components combined, the algorithms with intrinsic rewards (i.e.,
novelty-seeking, surprise-seeking, and information-gain-seeking) had 27 free
parameters. Removing the branch for intrinsic rewards yields our fourth
algorithm (nRI in Figs. 4 and 5), which had 19 parameters. Models were
compared according to their test log likelihood, evaluated by stratified threefold
cross-validation. See S/ Appendix for details.

Different Types of Intrinsic Rewards. Ourcandidatealgorithms(represented
by different colors in Figs. 4 and 5) share the same modeling architecture
described above, but differ in their definitions of intrinsic reward. Below, we
present a compact formulation of each intrinsic reward; technical details are
presented in S/ Appendix.

For an agent seeking novelty (red in Figs. 4 and 5), we defined the intrinsic

reward rint + as the novelty of state st e,

fint = — 109 Pr—1(st)- [2]

According to this definition, more frequently visited states receive lower
novelty values-and therefore lower intrinsic rewards. For an agent seeking
surprise (orange in Figs. 4 and 5), the intrinsic reward riy; ; was defined as the
Shannon surprise (a.k.a. surprisal) of observing st conditioned on s;_4 and
at_1, i.e.,

intt += — 109 py—1(Stlse—1, ap—1)- (3]

With this definition, the expected (i.e., averaged over s) intrinsic reward

of taking action a at state s corresponds to the entropy of the distribution
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